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Abstract: Bayesian inference of Gibbs random fields (GRFs) is often re-
ferred to as a doubly intractable problem, since the normalizing constant
of both the likelihood function and the posterior distribution are not in
closed-form. The exploration of the posterior distribution of such models
is typically carried out with a sophisticated Markov chain Monte Carlo
(MCMC) method, the exchange algorithm [28], which requires simulations
from the likelihood function at each iteration. The purpose of this pa-
per is to consider an approach to dramatically reduce this computational
overhead. To this end we introduce a novel class of algorithms which use
realizations of the GRF model, simulated offline, at locations specified by
a grid that spans the parameter space. This strategy speeds up dramati-
cally the posterior inference, as illustrated on several examples. However,
using the pre-computed graphs introduces a noise in the MCMC algorithm,
which is no longer exact. We study the theoretical behaviour of the result-
ing approximate MCMC algorithm and derive convergence bounds using a
recent theoretical development on approximate MCMC methods.
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1. Introduction

The focus of this study is on Bayesian inference of Gibbs random fields (GRFs),
a class of models used in many areas of statistics, such as the autologistic model
[7] in spatial statistics, the exponential random graph model in social network
analysis [34], etc. Unfortunately, for all but trivially small graphs, GRFs suffer
from intractability of the likelihood function making standard analysis impos-
sible. Such models are often referred to as doubly-intractable in the Bayesian
literature, since the normalizing constant of both the likelihood function and
the posterior distribution form a source of intractability. In the recent past
there has been considerable research activity in designing Bayesian algorithms
which overcome this intractability all of which rely on simulation from the in-
tractable likelihood. Such methods include Approximate Bayesian Computation
initiated by Pritchard et al. [30] (see e.g.Marin et al. [22] for an excellent re-
view) and Pseudo-Marginal algorithms [2]. Perhaps the most popular approach
to infer a doubly-intractable posterior distribution is the exchange algorithm
[28]. The exchange algorithm is a Markov chain Monte Carlo (MCMC) method
that extends the Metropolis-Hastings (MH) algorithm [24] to situations where
the likelihood is intractable. Compared to MH, the exchange uses a different
acceptance probability and this has two main implications:

• theoretically: the exchange chain is less efficient than the MH chain, in
terms of mixing time and asymptotic variance (see [29] and [39] for a
discussion on the optimality of the MH chain)

• computationally: at each iteration, the exchange requires exact and inde-
pendent draws from the likelihood model at the current state of the Markov
chain to calculate the acceptance probability, a step that may substantially
impact upon the computational performance of the algorithm

For many likelihood models, it is not possible to simulate exactly from the like-
lihood function. In those situations, Cucala et al. [11] and Caimo and Friel [10]
replace the exact sampling step in the exchange algorithm with the simulation of
an auxiliary Markov chain targeting the likelihood function, whereby inducing a
noise process in the main Markov chain. This approximation was extended fur-
ther by Alquier et al. [1] who used multiple samples to speed up the convergence
of the exchange algorithm.
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This short literature review of the exchange algorithm and its variants shows
that being able to simulate from the likelihood function at various parameter
points, either exactly or approximately, is central to those methods. However,
this simulation step often compromises their practical implementation, espe-
cially for large graph models. Indeed, for a realistic run time, a user may end up
with a limited number of draws from the posterior as most of the computational
budget is dedicated to obtaining likelihood realizations. In addition, note that
since the likelihood draws are conditioned on the Markov chain states, those
simulation steps are intrinsically incompatible with parallel computing [16].

Intuitively, there is a redundance of simulation. Indeed, should the Markov
chain return to an area previously visited, simulation of the likelihood is never-
theless carried out as it had never been done before. This is precisely the point
we address in this paper. We propose a novel class of algorithms where likeli-
hood realizations are generated and then subsequently re-used at in an online
inference phase. More precisely, a regular grid spanning the parameter space
is specified and draws from the likelihood at locations given by the vertices of
this grid are obtained offline in a parallel fashion. The grid is tailored to the
posterior topology using estimators of the gradient and the Hessian matrix to
ensure that the pre-computation sampling covers the posterior areas of high
probability. However, using realizations of the likelihood at pre-specified grid
points instead of at the actual Markov chain state introduces a noise process in
the algorithm. This leads us to study the theoretical behaviour of the resulting
approximate MCMC algorithm and to derive quantitative convergence bounds
using the noisy MCMC framework developed in Alquier et al. [1]. Essentially,
our results allow one to quantify how the noise induced by the pre-computing
step propagates through to the distribution of the approximate chain. We find
an upper bound on the bias between this distribution and the posterior of in-
terest, which depends on the pre-computing step parameters, i.e. the distance
between the grid points and the number of graphs drawn at each grid point.
We also show that the bias vanishes asymptotically in the number of simulated
graphs at each grid point, regardless of the grid structure.

Note that Moores et al. [25] suggested a similar strategy to speed-up ABC
algorithms by learning about the sufficient statistics of simulated data through
an estimated mapping function that uses draws from the likelihood function at a
pre-defined set of parameter values. This method was shown to be computation-
ally very efficient but its suitability for models with more than one parameter
can be questioned. Finally, we note that a related approach has been presented
by Everitt et al. [14] which also relies on previously sampled likelihood draws in
order to estimate the intractable ratio of normalising constants. However this
approach falls within a sequential Monte Carlo framework.

The paper is organised as follows. Section 2 introduces the intractable like-
lihood that we focus on and details our class of approximate MCMC schemes
which uses pre-computed likelihood simulations. We also detail how we auto-
matically specify the grid of parameter values. In Section 3, we establish some
theoretical results for noisy MCMC algorithms making use of a pre-computation
step. In Section 4, the inference of a number of GRFs is carried out using both
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pre-computed algorithms and exact algorithms such as the exchange. Results
show a dramatic improvement of our method over exact methods in time nor-
malized experiments. Finally, this paper concludes with some related open prob-
lems.

2. Pre-computing Metropolis algorithms

2.1. Preliminary notation

We frame our analysis in the setting of Gibbs random fields (GRFs) and we
denote by y ∈ Y the observed graph. A graph is identified by its adjacency
matrix and Y is taken as Y := {0, 1}p×p where p is the number of nodes in the
graph. The likelihood function of y is paramaterized by a vector θ ∈ Θ ⊂ Rd

and is defined as

f(y|θ) = qθ(y)

Z(θ)
=

exp{θTs(y)}
Z(θ)

,

where s(y) ∈ S ⊂ Rd
+ is a vector of statistics which are sufficient for the likeli-

hood. The normalizing constant,

Z(θ) =
∑
y∈Y

exp{θTs(y)},

depends on θ and is intractable for all but trivially small graphs. The aim is to
infer the parameters θ through the posterior distribution

π(θ | y) ∝ qθ(y)

Z(θ)
p(θ),

where p denotes the prior distribution of θ. In absence of ambiguity, a distribu-
tion and its probability density function will share the same notation.

One of the major challenge when inferring Gibbs random fields (and to a
greater extend, Markov random fields) is to handle model degeneracy, see for
example [20], [18] and [36]. Degeneracy refers to a state where a small change
in parameters leads to very different likelihood functions. Usually, only a subset
of the parameters, often referred to as phase transition, yields to degenerate
models. Phase transition separates high and low temperature regimes of the
model. For models whose parameter is in the low temperatures regime, the
likelihood is multimodal and while it is unimodal for models whose parameter
is in the high temperature regime, see [8]. Models that are not in the high
temperature region are not really useful for practitioners as they are not easy
to interpret. Of course, certain choices of sufficient statistics mitigate the risk
for degeneracy [20, 15] but it remains common practice to restrict inference on
a subset of parameters that defines non-degenerate models. This justifies that,
in most applications, Θ is taken as a compact subset of Rd.
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2.2. Computational complexity of MCMC algorithms for doubly
intractable distributions

In Bayesian statistics, Markov chain Monte Carlo methods (MCMC, see e.g. [19]
for an introduction) remain the most popular way to explore π. MCMC algo-
rithms proceed by creating a Markov chain whose invariant distribution has a
density equal to the posterior distribution. One such algorithm, the Metropolis-
Hastings (MH) algorithm [24], creates a Markov chain by sequentially drawing
candidate parameters from a proposal distribution θ′ ∼ h( · |θ) and accepting
the proposed new parameter θ′ with probability

α(θ, θ′) := 1 ∧ a(θ, θ′) , a(θ, θ′) :=
qθ′(y)p(θ′)h(θ|θ′)
qθ(y)p(θ)h(θ′|θ)

× Z(θ)

Z(θ′)
. (1)

This acceptance probability depends on the ratio Z(θ)/Z(θ′) of the intractable
normalising constants and cannot therefore be calculated in the case of GRFs.
As a result, the MH algorithm cannot be implemented to infer GRFs.

As detailed in the introduction section, a number of variants of the MH
algorithm bypass the need to calculate the ratio Z(θ)/Z(θ′), replacing it in Eq.
(1) by an unbiased estimator

�n(θ, θ
′, x) =

1

n

n∑
k=1

qθ(xk)

qθ′(xk)
, x1, x2, . . . ∼iid f( · | θ′) . (2)

Perhaps surprisingly, when n = 1 the resulting algorithm, known as the ex-
change algorithm [28], is π-invariant. The general implementation using n > 1
auxiliary draws was proposed in Alquier et al. [1] and referred therein as the
noisy exchange algorithm. It is not π-invariant but the asymptotic bias in dis-
tribution was studied in [1]. We note however that when n is large, the resulting
algorithm bears little resemblance with the exchange algorithm and really aims
at approximating the MH acceptance ratio (1). For clarity, we will therefore
refer to the exchange algorithm whenever n = 1 draw of the likelihood is needed
at each iteration and to the noisy Metropolis-Hastings whenever n > 1.

From Eq. (2), we see that those modified MH algorithms crucially rely on
the ability to sample efficiently from the likelihood distribution (X ∼ f( · | θ) for
any θ ∈ Θ). While perfect sampling is possible for certain GRFs, for example
for the Ising model [31], it can be computationally expensive in some cases,
including large Ising graphs. For some GRFs such as the exponential random
graph model, perfect sampling does not even exist yet. Cucala et al. [11] and [10]
substituted the iid sampling in Eq. (2) with n = 1 draw from a long auxiliary
Markov chain that admits f( · | θ) as stationary distribution. Convergence of
this type of approximate exchange algorithm was studied in Everitt [13] under
certain assumptions on the main Markov chain. The computational bottleneck
of those methods is clearly the simulation step, a drawback which is amplified
when n is large and inference is on high-dimensional data such as large graphs.

Intuitively, obtaining a likelihood sample at each step independently of the
past history of the chain seems to be an inefficient strategy. Indeed, the Markov
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chain may return to areas of the state space previously visited. As a result,
realizations from the likelihood function are simulated at similar parameter val-
ues multiple times, throughout the algorithm. Under general assumptions on the
likelihood function, data simulated at similar parameter values will share similar
statistical features. Hence, repeated sampling without accounting for previous
likelihood simulations seems to lead to an inefficient use of computational time.
However, the price to pay to use information from the past history of the chain to
speed up the simulation step is the loss of the Markovian dynamic of the chain,
leading to a so-called adaptive Markov chain (see e.g. [3]). We do not pursue
this approach in this paper, essentially since convergence results for adaptive
Markov chains depart significantly from the theoretical arguments supporting
the validity of the exchange and its variants.

In a different context, Moores et al. [25] addressed the computational expense
of repeated simulations of Gibbs random fields used within an Approximate
Bayesian Computation algorithm (ABC). The authors defined a pre-processing
step designed to learn about the distribution of the summary statistics of sim-
ulated data. Part of the total computational budget is spent offline, simulating
data from parameter values across the parameter space Θ. Those pre-simulated
data are interpolated to create a mapping function Θ → S that is then used
during the course of the ABC algorithm to assign an (estimated) sufficient statis-
tics vector to any parameter θ for which simulation would be otherwise needed.
Moores et al. [26] examined a particular GRF, the single parameter hidden Potts
model. They combined the pre-processing idea with path sampling [17] to esti-
mate the ratio of intractable normalising constants. The method presented in
Moores et al. [26] is suitable for single parameter models but the interpolation
step remains a challenge when the dimension of the parameter space is greater
than 1.

Inspired by the efficiency of a pre-computation step, we develop a novel
class of MCMC algorithms, Pre-computing Metropolis-Hastings, which uses pre-
computed data simulated offline to estimate each normalizing constant ratio
Z(θ)/Z(θ′) in Eq. (1). This makes the extension to multi-parameter models
straightforward. The steps undertaken during the pre-computing stage are now
outlined.

2.3. Pre-computation step

Firstly, a set of parameter values, referred to as a grid, G := (θ̇1, ..., θ̇M ) must be
chosen from which to sample graphs from. The grid G should cover the full state
space and especially the areas of high probability of π. Finding areas of high
probability is not straightforward as this requires knowledge of the posterior
distribution. Fortunately, for GRFs we can use Monte Carlo methods to obtain
estimates of the gradient and the Hessian matrix of the log posterior at different
values of the parameters, which will allow to build a meaningful grid. For a GRF,
the well known identity

∇θ log π(θ|y) = s(y)− Ef( · | θ)s(X) +∇θ log p(θ)



4144

allows the derivation of the following unbiased estimate of the gradient of the
log posterior at a parameter θ ∈ Θ:

G(θ, y) := s(y)− 1

N

N∑
i=1

s(Xi) +∇θ log p(θ) , X1, X2 . . . ∼iid f( · | θ). (3)

Similarly, the Hessian matrix of the log posterior at a parameter θ ∈ Θ can be
unbiasedly estimated by:

H(θ) :=
1

N − 1

N∑
i=1

{s(Xi)− s̄} {s(Xi)− s̄}T +∇2 log p(θ) ,

X1, X2 . . . ∼iid f( · | θ) , (4)

where s̄ is the average vector of simulated sufficient statistics.
The grid specification begins by estimating the mode of the posterior θ∗. This

is achieved by mean of a stochastic approximation algorithm (e.g. the Robbins-
Monro algorithm [33]), using the log posterior gradient estimate G defined at
Eq. (3).

The second step is to estimate the Hessian matrix of the log posterior at θ∗

using Eq. (4), in order to get an insight of the posterior curvature at the mode.
We denote by V := [v1, . . . , vd] the matrix whose columns are the eigenvectors
vi of the inverse Hessian at the mode and by Λ := diag(λ1, . . . , λd) the diagonal
matrix filled with its eigenvalues. The idea is to construct a grid that preserves
the correlations between the variables. It is achieved by taking regular steps in
the uncorrelated space i.e. the space spanned by [v1, . . . , vn], starting from θ∗ and
until subsequent estimated gradients are close to each other. The idea is that,
for regular models, once the estimated gradients of two successive parameters
are similar, the grid has hit the posterior distribution support boundary. Of
course, this grid design mechanism is only meaningful when π is unimodal.
The posterior of non-degenerate models is likely to be unimodal as explained
in [38] and [9]. In practice, it is possible to verify that this property is true by
checking that the Hessian of the log-likelihood is a semi-negative matrix for all
parameters. Two tuning parameters are required in the proposed grid design
mechanism: a threshold parameter for the gradient comparison m > 0 and an
exploratory magnitude parameter ε > 0. The grid specification is rigorously
outlined in Algorithm 1. Note that in Algorithm 1, we have used the notation
δj for the d-dimensional indicator vector of direction j i.e. {δj}� = 1j=�

The left panel of Figure 1 shows an example of a naively chosen grid built
following standard coordinate directions for a two dimensional posterior distri-
bution. The grid on the right hand side is adapted to the topology of the pos-
terior distribution as described above. This method can be extended to higher
dimensional models, but the number of sample grid points would then increase
exponentially with dimension. In this paper we do not look beyond two dimen-
sions.

Hereafter, we denote by {θ̇m, m ≤ M} the parameters constituting the grid
G, assuming M grid points in total. The second step of the pre-computing step
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Algorithm 1 Grid specification
1: require θ∗, V , Λ, m and ε.
2: Initialise the grid with G = {θ∗}
3: for i ∈ {1, . . . , d} do
4: for all θ ∈ G do
5: Set j = 0 and θ0 = θ
6: Calculate θ̃ = θ0 + εV Λ1/2δi
7: while ‖G(θ̃)− G(θj)‖ > m do

8: Set j = j + 1, θj = θ̃ and G = G ∪ {θj}
9: Calculate θ̃ = θj + εV Λ1/2δi
10: end while
11: end for
12: end for
13: Obtain a second grid G′ by repeating steps (2)–(12), but moving in the negative direction

i.e. θ̃ = θ − εV Λ1/2δi.
14: return G = G ∪ G′

Fig 1. Example of a naive (left panel) and informed (right) grid for a two dimensional poste-
rior distribution. The informed grid was obtained using the process described in Algorithm 1.

is to sample for each θ̇m ∈ G, n iid random variables (X1
m, ..., Xn

m) from the
likelihood function f( · |θ̇m). Note that this step is easily parallelised and sam-
ples can therefore be obtained from several grid points simultaneously. Parallel
processing can be used to reduce considerably the time taken to sample from
every pre-computed grid value. Essentially, these draws allow to form unbiased
estimators for any ratio of the type Z(θ)/Z(θ̇m):

Ẑ(θ)

Z(θ̇m)n
:=

1

n

n∑
k=1

qθ(X
k
m)

qθ̇m(Xk
m)

=
1

n

n∑
k=1

exp(θ − θ̇m)T s(Xk
m) . (5)

Note that those estimators depend on the simulated data only through the
sufficient statistics skm := s(Xk

m). As a consequence, only the sufficient statistics
S := {skm}m,k need to be saved, as opposed to the actual collection of simulated
graphs at each grid point. In the following we denote by U := {S,G} the
collection of the pre-computing data comprising of the grid G and the simulated
sufficient statistics S.
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2.4. Estimators of the ratio of normalising constants

We now detail several pre-computing version of the Metropolis-Hastings algo-
rithm. The central idea is to replace the ratio of normalizing constants in the
Metropolis-Hastings acceptance probability (1) by an estimator based on U. As
a starting point this can be done by observing that for all (θ, θ′, θ̇) ∈ Θ3,

Z(θ)

Z(θ′)
=

Z(θ)

Z(θ̇)

Z(θ̇)

Z(θ′)
=

Z(θ)

Z(θ̇)

/
Z(θ′)

Z(θ̇)
, (6)

and in particular for any grid point θ̇ ∈ G. We thus consider a general class of
estimators of Z(θ)/Z(θ′) written as

ρXn (θ, θ′,U) :=
ΨX

n (θ, θ′,U)

ΦX
n (θ, θ′,U)

, (7)

where Ψn and Φn are unbiased estimators of the numerator and the denominator
of the right hand side of (6), respectively, based on U. In (7), X simply denotes
the different type of estimators considered. To simplify notations and in absence
of ambiguity, the dependence of ρn, Ψn and Φn on θ, θ′, U and X is made
implicit and we stress that given (θ, θ′,U, X), the estimators Ψn and Φn are
deterministic.

We first note that ρn as defined in (7) is not an unbiased estimator of
Z(θ)/Z(θ′). In fact, resorting to biased estimators of the normalizing constants
ratio is the price to pay for using the pre-computed data. This represents a
significant departure compared to the algorithms designed in the noisy MCMC
literature [1, 23]. Nevertheless, as we shall see in the next Section, this does
not prevent us from controlling the distance between the distribution of the
pre-computing Markov chain and π.

We propose a number of different estimators of Ψn and Φn. Those estima-
tors share in common the idea that, given the current chain location θ and an
attempted move θ′, a path of grid point(s) {θ̇τ1 , θ̇τ2 , . . . , θ̇τC} ⊂ G connects θ to
θ′.

The simplest path consists of the singleton {θ̇τ}, where θ̇τ is any grid point.
Since only one grid point is used, we refer to this estimator as the One Pivot
estimator. Following (6), the estimators Ψn and Φn are defined as{

ΨOP
n (θ, θ′,U) := 1/n

∑n
k=1 qθ(X

k
τ )/qθ̇τ (X

k
τ ) ,

ΦOP
n (θ, θ′,U) := 1/n

∑n
k=1 qθ′(Xk

τ )/qθ̇τ (X
k
τ ) .

(8)

However, for some (θ, θ′, θ̇τ ) ∈ Θ2 ×G, the variance of Ψn or Φn defined in Eq.
(8) may be large. This is especially likely when ‖θ − θ̇τ‖ � 1 or ‖θ′ − θ̇τ‖ � 1.
The following Example illustrates this situation.

Example 1. Consider the Erdös-Renyi graph model, where all graphs y ∈ Y
with the same number of edges s(y) are equally likely. More precisely, the dyads
are independent and connected with a probability �(θ) := logit−1(θ) for any
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θ ∈ R. The likelihood function is given for any θ ∈ R by f(y | θ) ∝ exp{θs(y)}.
For this model, the normalizing constant is tractable. In particular, Z(θ) =
{1 + exp(θ)}p̄ where p̄ =

(
p
2

)
and p is the number of nodes in the graph.

For all θ ∈ R, consider estimating the ratio Z(θ′)/Z(θ) with θ′ = θ + h for
some h > 0 using the estimator

̂Z(θ + h)

Z(θ)

∣∣∣∣∣
n

=
1

n

n∑
k=1

qθ+h(Xk)

qθ(Xk)
=

1

n

n∑
k=1

exp{hs(Xk)} , Xk ∼iid f( · | θ) .

Then, when h increases, the variance vn of this estimator diverges exponentially
i.e.

nvn(h) ∼ exp(2hp̄)ν(θ) , (9)

where ∼ denotes here the asymptotic equivalence notation and ν(θ) = �(θ)p̄(1−
�(θ)p̄) is a constant. Remarkably, ν(θ) can be interpreted as the variance of the
Bernoulli trial with the full graph and its complementary event as outcomes.

Proof. By straightforward algebra, we have

vn(h) =
1

n

{
1 + exp(2h+ θ)

1 + exp(θ)

}p̄

{1−R(θ, h)} ,

where

R(θ, h) =
{1 + exp(θ + h)}2p̄

{1 + exp(2h+ θ)}p̄ {1 + exp(θ)}p̄
.

Asymptotically in h, we have

R(θ, h) ∼ exp(p̄θ)

{1 + exp(θ)}p̄
= �(θ)p̄

and noting that{
1 + exp(2h+ θ)

1 + exp(θ)

}p̄

∼ exp(2hp̄)
exp{p̄θ}

{1 + exp(θ)}p̄ = exp(2hp̄)�(θ)p̄

concludes the proof.

This is a concern since as we shall see in the next Section, the noise introduced
by the pre-computing step in the Markov chain is intimately related to the
variance of the estimator of Z(θ)/Z(θ′). In particular, the distance between the
pre-computing chain distribution and π can only be controlled when the variance
of Ψn and Φn is bounded. Example 1 shows that this is not necessarily the case,
for some Gibbs random fields at least. The following Proposition, whose proof
is available in the appendix, hints at the possibility to control the variance of
Ψn and Φn when ‖θ − θ′‖ � 1.

Proposition 1. Consider a Gibbs random field model with unormalized likeli-
hood qθ(y) = exp{θTs(y)} such that ‖s(y)‖ is a bounded random variable under
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qθ (for all θ ∈ Θ). Then, for all (θ, θ′) ∈ Θ2, the variance of the normalizing
constant estimator

Ẑ(θ)

Z(θ′)

∣∣∣∣∣
n

:=
1

n

n∑
k=1

qθ(Xk)

qθ′(Xk)
, Xk ∼iid f( · | θ′)

decreases when ‖θ − θ′‖ ↓ 0 and more precisely

var
Ẑ(θ)

Z(θ′)

∣∣∣∣∣
n

= (θ − θ′)Tcovθ′{s(y)}(θ − θ′) + o(‖θ − θ′‖2) . (10)

Proposition 1 motivates the consideration of estimators that may have smaller
variability than the One Pivot estimator.

(1) Direct Path estimator: the path between θ and θ′ consists now of two
grid points {θ̇1, θ̇2} defined such that θ̇1 = argminθ̇∈G

‖θ̇ − θ‖ and θ̇2 =

argminθ̇∈G
‖θ̇ − θ′‖. We therefore extend (6) and write

Z(θ)

Z(θ′)
=

Z(θ)

Z(θ̇1)

Z(θ̇1)

Z(θ̇2)

Z(θ̇2)

Z(θ′)
=

Z(θ)

Z(θ̇1)

Z(θ̇1)

Z(θ̇2)

/
Z(θ′)

Z(θ̇2)
.

This leads to two estimators Ψn and Φn defined as⎧⎪⎨
⎪⎩

ΨDP
n (θ, θ′,U) := 1/n

∑n
k=1 qθ(X

k
1 )/qθ̇1(X

k
1 )

× 1/n
∑n

k=1 qθ̇1(X
2
k)/qθ̇2(X

2
k) ,

ΦDP
n (θ, θ′,U) := 1/n

∑n
k=1 qθ′(Xk

2 )/qθ̇2(X
k
2 ) .

(11)

(2) Full Path estimator: the path between θ and θ′ consists now of adjacent grid
points p(θ, θ′) := {θ̇1, θ̇2, . . . , θ̇C}, where C > 1 is a number that depends
on θ and θ′. Note that given (θ, θ′), there is not only one path such as
p connecting θ to θ′. However, for any possible path, two adjacent points
{θ̇i, θ̇i+1} ⊂ p(θ, θ′) always satisfy the following identity (in the basis given
by the eigenvector of H(θ∗)):

∃ j ∈ {1, . . . , d} , V T
(
θ̇i − θ̇i+1

)
= ±εδj ,

where δj refers to the d-dimensional indicator vector of direction j i.e. {δj}�=
1j=�. As before, we extend (6) to accommodate this situation and write

Z(θ)

Z(θ′)
=

Z(θ)

Z(θ̇1)

Z(θ̇1)

Z(θ̇2)
× · · · × Z(θ̇C−1)

Z(θ̇C)

Z(θ̇C)

Z(θ′)

=
Z(θ)

Z(θ̇1)

Z(θ̇1)

Z(θ̇2)
× · · · × Z(θ̇C−1)

Z(θ̇C)

/
Z(θ′)

Z(θ̇c)
.

This then lead to consider two estimators Ψn and Φn defined as⎧⎪⎨
⎪⎩
ΨFP

n (θ, θ′,U) := 1/n
∑n

k=1 qθ(X
k
1 )/qθ̇1(X

k
1 )× 1/n

∑n
k=1 qθ̇1(X

2
k)/qθ̇2(X

2
k)

× · · · × 1/n
∑n

k=1 qθ̇C−1
(Xk

C−1)/qθ̇C (X
k
C) ,

ΦFP
n (θ, θ′,U) := 1/n

∑n
k=1 qθ′(Xk

C)/qθ̇C (X
k
C) .

(12)
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Variants of the Direct Path and Full Path estimators exist. For the Direct
Path, Ψn could be estimating Z(θ)/Z(θ̇τ1) and Φn the ratio Z(θ̇θ′)/Z(θτ1). For
the Full Path, defining θ̇τm as a middle point of p(θ, θ′), Φn and Ψn could
respectively be defined as estimators of Z(θ)/Z(θ̇τm) and Z(θ′)/Z(θ̇τm) using
the same number of grid points in both estimators. However, our experiments
have shown that these alternative estimators have very similar behaviour with
those defined in Eqs. (11) and (12). In particular, the variance of an estimator
does not vary much when path points are removed from the numerator estimator
and added to the denominator estimator, or conversely. As hinted by Proposition
1, the discriminant feature between those estimators is the distance between
grid points constituting the path. In this respect, the variance of the Full Path
estimator was always found to be lower than that of the Direct Path or One
Pivot estimators. Even though establishing a rigorous comparison result between
those estimators is a challenge on its own, a reader might be interested in the
following result that somewhat formalizes our empirical observations.

Proposition 2. Let (θ, θ′) ∈ Θ and consider the Direct Path and Full Path
estimators of Z(θ)/Z(θ′) defined at (11) and (12). Denoting by {θ̇1, . . . , θ̇C} a
full path connecting θ to θ′, we define for i ∈ {2, . . . , C} Ri

n as the estimator of
Z(θ̇i−1)/Z(θ̇i) and R2C

n as the estimator of Z(θ̇1)/Z(θ̇C) i.e.

Ri
n =

1

n

n∑
k=1

qθ̇i−1
(Xk

i )

qθ̇i(X
k
i )

, R2C
n =

1

n

n∑
k=1

qθ̇1(X
k
C)

qθ̇C (X
k
C)

, Xk
i ∼iid f( · | θ̇i) .

(13)
Let vFPn and vDP

n be the variance of the Full Path and Direct Path estimators
using n pre-computed sufficient statistics are drawn at each grid point.

Assume Φn and Ψn are independent. Then, there exists a positive constant
γ < ∞ such that

vDP
n − vFPn = γ

{
var(R2C

n )− var(R2
n × · · · ×RC

n )
}
. (14)

Moreover,

var(R2C
n ) =

1

n
var exp

{
(θ̇1 − θ̇C)

Ts(XC)
}

(15)

and for large n and C and small ε we have

var(R2
n × · · · ×RC

n ) =
ε4

n

C∑
i=2

{
vi

Z(θ̇i)Z(θ̇1)

Z(θ̇i−1)Z(θ̇C)

}2

+ o
(
ε4/n

)
, (16)

where {v1, v2, . . .} is a sequence of finite numbers such that vi ∈ O(ε).

Proposition 2 shows that for a large enough number of pre-computed draws
n, a long enough path and a dense grid i.e. ε � 1, the variance of the Full
Path estimator is several order of magnitude less than that of the Direct Path
estimator. In particular, unlike the Full Path estimator, the grid refinement
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Fig 2. Example of paths between two parameters (θ, θ′) in a two-dimensional space Θ. The
solid black lines represent level lines of the target distribution and the black dots represent the
grid vertices G = {θ̇1, . . . , θ̇M}. The thick lines show the paths p(θ, θ′) used by the different
estimators introduced in Eqs. (8), (11), (12): an example of a One Pivot path p(θ, θ′) = {θ̇}
(blue) and a Direct Path p(θ, θ′) = {θ̇1, θ̇2} (red) are shown on the left panel. Two examples
of Full Paths p(θ, θ′) = {θ̇1, . . . , θ̇C} (red) are illustrated on the right panel: multiple possible
full paths between θ and θ′ could be used to average a number of Full Path estimators.

does not help to reduce the variance of the Direct Path estimator. Proposition
2 coupled with the observation made at Example 1 helps to understand the
variance reduction achieved with the Full Path estimator compared to the Direct
Path estimator.

Note that when the parameter space is two-dimensional or higher, there is
more than one choice of path connecting θ to θ′. The right panel of Figure 2
shows two different paths. In this situation, one could simply average the Full
Path estimators obtained through each (or a number of) possible path. The
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Algorithm 2 Pre-computing Metropolis algorithm
(1)-Pre-computing

Require: Grid refinement parameter ε > 0 and number of draws n ∈ N

1: Apply Algorithm 1 to define the grid G = {θ̇1, . . . , θ̇M}.
2: Initiate the collection of sufficient statistics to S = {∅}.
3: for m = 1 to M do
4: for k = 1 to n do
5: Draw Xk

m ∼iid f(· | θ̇j)
6: Calculate the vector of sufficient statistics skm = s(Xk

m)
7: Append the pre-computed sufficient statistics set S = {S ∪ skm}
8: end for
9: end for

Return: The pre-computed data U = {G,S}
(2)-MCMC sampling

Require: Initial distribution μ and proposal kernel h, pre-computed data U and a type of
estimator ρXn , X ∈ {OP,DP,FP}

1: Initiate the Markov chain with θ0 ∼ μ
2: Identify the closest grid point from θ0, say θ̇i, and calculate

Z0 :=
1

n

n∑
k=1

exp
{
(θ0 − θ̇i)

T ski

}
.

3: for i = 1, 2, . . . do

4: Draw θ′ ∼ h( · | θi−1)

5: Identify the closest grid point from θ′, say θ̇i, and calculate

Z′ :=
1

n

n∑
k=1

exp
{
(θ′ − θ̇i)

T ski

}
.

6: Using Zi−1, Z
′ and S, calculate the normalizing ratio estimator ρXn , depending on the

type of estimator X using Eq. (8), (11) or (12).
7: Set θi = θ′ and Zi = Z′ with probability

ᾱ(θi−1, θ
′,U) := 1 ∧ ā(θi−1, θ

′,U) ,

ā(θi−1, θ
′,U) =

qθ′ (y)p(θ
′)h(θi|θ′)

qθi (y)p(θi)h(θ
′|θi)

× ρXn (θi−1, θ
′,U) (17)

and else set θi = θi−1 and Zi = Zi−1.
8: end for

Return: The Markov chain {θ1, θ2, . . .}.

different steps included in the Pre-computing Metropolis algorithm are summa-
rized in Algorithm 2.

3. Asymptotic analysis of the pre-computing Metropolis-Hastings
algorithms

In this section, we investigate the theoretical guarantees for the convergence
of the Markov chain {θk, k ∈ N} produced by the pre-computing Metropolis
algorithm (Alg. 2) to the posterior distribution π. The Markov transition ker-
nels considered in this section are conditional probability distributions on the
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measurable space (Θ, ϑ) where ϑ is the σ-algebra taken as the Borel set on Θ.
We will use the following transition kernels:

• Let P be the Metropolis-Hastings (MH) transition kernel defined as:

P (θ,A) =

∫
A

h(dθ′ | θ)α(θ, θ′) + δθ(A)r(θ) ,

r(θ) = 1−
∫
Θ

h(dθ′ | θ)α(θ, θ′) , (18)

where δθ is the dirac mass at θ and α the (intractable) MH acceptance
probability defined at Eq. (1).

• Let P̄U be the pre-computing Metropolis transition kernel, conditioned on
the pre-computing data U and defined as:

P̄U(θ,A) =

∫
A

h(dθ′ | θ)ᾱ(θ, θ′,U) + δθ(A)r̄(θ,S) ,

r̄(θ,U) = 1−
∫
Θ

h(dθ′ | θ)ᾱ(θ, θ′,U) , (19)

where ᾱ is the pre-computing Metropolis acceptance probability defined
at Eq. (17).

We recall that the MH Markov chain is π-invariant, a property which is lost
by the pre-computing Metropolis algorithm. In what follows, we regard P̄ as a
noisy version of the MH kernel P and ᾱ as an approximation of the intractable
quantity α. In terms of notations, we will use the following: for any i ∈ N, P i is
the transition kernel P iterated i times and for any measure μ on (Θ, ϑ), μP is
the probability measure on (Θ, ϑ) defined as μP (A) :=

∫
μ(dθ)P (θ,A).

Using the theoretical framework, developed in Alquier et al. [1], we show
that under certain assumptions, the distance between the distribution of the
pre-computing Metropolis Markov chain and π can be made arbitrarily small, in
function of the grid refinement and the number of auxiliary draws. The metric
used on the space of probability distributions is the total variation distance,
defined for two distributions (ν, μ) that admit a density function with respect
to the Lebesgue measure as

‖ν − μ‖ := (1/2)

∫
Θ

|ν(θ)− μ(θ)|dθ .

3.1. Noisy Metropolis-Hastings

We first recall the main result from [1] that will be used to analyse the pre-
computing Metropolis algorithm.

Proposition 3 (Corollary 2.3 in Alquier et al. [1]).
Let us assume that,
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• (H1) A MH Markov chain with transition kernel P (Eq. 18), proposal
kernel h and acceptance probability α (Eq. 1) is uniformly ergodic i.e. there
are constants B > 0 and ρ < 1 such that

∀ i ∈ N , sup
θ0∈Θ

‖δθ0P i − π‖ ≤ Bρi .

• (H2) There exists an approximation of the Metropolis acceptance ratio a,
â(θ, θ′, X) that satisfies for all (θ, θ′) ∈ Θ2

E |â(θ, θ′, X)− a(θ, θ′)| ≤ ε(θ, θ′) ,

where the expectation is with respect to the noise random variable X.

Then, denoting by P̂ the noisy Metropolis-Hastings kernel (Eq. 19), we have for
any starting point θ0 ∈ Θ and any integer i ∈ N:

‖δθ0P i − δθ0 P̂
i‖ ≤

(
λ− Bρλ

1− ρ

)
sup
θ∈Θ

∫
dθ′h(θ′|θ)ε(θ, θ′) , (20)

where λ =

(
log(1/B)

log(ρ)

)
.

An immediate consequence of Proposition 3 is that if ε is uniformly bounded,
i.e. there exists some ε̄ > 0 such that for all (θ, θ′) ∈ Θ2, ε(θ, θ′) ≤ ε̄ < ∞, then

∀ i ∈ N , ‖δθ0P i − δθ0 P̂
i‖ ≤ ε̄

(
λ− Bρλ

1− ρ

)
. (21)

Moreover, defining π̂i as the distribution of the i-th state of the noisy chain
yields

lim
i→∞

‖π − π̂i‖ ≤ ε̄

(
λ− Bρλ

1− ρ

)
. (22)

3.2. Convergence of the pre-computing Metropolis algorithm

In preparation to apply Proposition 3, we make the following assumptions:

• (A1) there is a constant cp such that for all θ ∈ Θ, 1/cp ≤ p(θ) ≤ cp.
• (A2) there is a constant ch such that for all (θ, θ′) ∈ Θ2, 1/ch ≤ h(θ′|θ) ≤

ch.

Assumptions (A1) and (A2) are typically satisfied when Θ is a bounded set
and p and h( · | θ) are dominated by the Lebesgue measure. Under similar as-
sumptions, Proposition 3 was applied to the noisy Metropolis algorithm [1] that
uses the unbiased estimator �n (Eq. 2). More precisely, it was shown that the
distance between π and π̂i satisfies ‖π − π̂i‖ ≤ κ/

√
n, where κ > 0 is a positive

constant, asymptotically in i.
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Establishing an equivalent result for the pre-computing Metropolis algorithms
is not straightforward. The main difficulty is that the acceptance ratio ã(θ, θ′,U)
(Eq. 17) is a biased estimator of the MH acceptance ratio a(θ, θ′) (Eq. 1). The
following Proposition only applies to the pre-computing Metropolis algorithm
involving the approximation of the normalizing constant ratio using the full
path estimator. Weaker results can be obtained using similar arguments for the
One Pivot and Direct Path estimators.

Proposition 4. Assume that (H1), (A1) and (A2) hold and for any (θ, θ′) ∈
Θ2 define by C the shortest path p(θ, θ′) length. Then, there exists a sequence
of functions un : N → R+ and a function v : R+ → R+ satisfying

un(C) =

√
C√
n

+ o(n−1/2) , v(ε) = 2
√
dψ1ε+ o(ε1/2) , (23)

such that the pre-computing Metropolis acceptance ratio ā(θ, θ′,S) (Eq. 17) sat-
isfies

E |ā(θ, θ′,S)− a(θ, θ′)| ≤ 2c2pc
2
hK1K

C+2d−1
2 (ε) {un(C) + v(ε)} . (24)

In Eq. (23), ψ1 < ∞ is a constant, n is the number of pre-computed GRF
realizations for each grid point and ε is the distance between grid points. In Eq.
(24), K1 and K2(ε) are finite constants such that K2(ε) → 1 when ε ↓ 0.

Corollary 1. Define by π̄i the distribution of the i-th iteration of the pre-
computing Metropolis algorithm implemented with the Full Path estimator. Un-
der Assumptions (H1), (A1) and (A2), we have

lim
i→∞

‖π − π̄i‖ ≤ κ̄K2d−1
2 (ε)

M∑
c=1

Kc
2(ε) {un(c) + v(ε)} pc , (25)

where pc = P{C = c} is the probability distribution of the path length and

κ̄ =

(
λ− Bρλ

1− ρ

)
2c2pc

2
hK1 .

In Eq. (25), un and v are defined in Eq. (23).

Corollary 1 states that the asymptotic distance between the pre-computing
Markov chain distribution and π admits an upper bound that has two main
components:

• un(c) ∼
√
c/n which is related to the variance of each estimator of a

normalizing constant ratio estimator,
• v(ε) ∼ 2

√
dψ1ε that arises from using a fixed step size grid.

This provides useful guidance as to how to tune the pre-computing parameters
n and ε. In particular, n should increase with the proposal kernel h variance and
ε should decrease with the dimension of Θ, that is d. When ε → 0 the upper
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bound of ‖π − π̄i‖ is in 1/
√
n which is in line with the noisy Metropolis rate of

[1]. Interestingly, when ε � 1, we believe that our bound is tighter thanks to the
lower variability of the Full Path estimator compared to the unbiased estimator
�n (Eq. 2) used in the noisy Metropolis algorithm. Indeed, their bound is in
o(K4

1/
√
n) which, given the crude definition of K1, is much looser compared to

our o(K1/
√
n) bound.

The following Proposition shows that when the number of data n simulated
at the pre-computing step tends to infinity then E |ā(θ, θ′,S)− a(θ, θ′)| van-
ishes. This result is somewhat reassuring as it suggests that the pre-computing
algorithm will converge to the true distribution, asymptotically in n, regardless
of the grid specification. However, it is not possible to embed this result in the
framework developed in [1] as the convergence comes without a rate.

Proposition 5. For any pre-computing Metropolis acceptance ratio that use an
estimator of the normalizing constants ratio of the form specified at Eq. (7):

E |ā(θ, θ′,U)− a(θ, θ′)| ≤ κ(θ, θ′)

[ ∫
|ψφ− α| fn(dψ |φ)(gn(φ)− g(φ))dφ

+
1

E(Φ1)
√
n

{√
var(Ψ1) +

√
var(Φ1)

E(Ψn |ζ|)
E(Φ1)

}]
,

where κ(θ, θ′) = qθ′(y)p(θ′)h(θ|θ′)/qθ(y)p(θ)h(θ′|θ), ζ ∼ N (0, 1), fn, gn and g
are probability density functions such that gn converges weakly to g.

Even though we only consider models with moderate dimensions in the ap-
plication section of this paper, the pre-computing method and the theoretical
analysis that supports it can be applied to higher dimensional settings. The fol-
lowing proposition states how the pre-computing parameters should be tuned
when d increases so as to keep the error ‖π − π̃i‖ under control. The appendix
of this paper contains a proof of this proposition.

Proposition 6. Assume a proposal kernel h(θ′ | θ) ∝ e−λ‖θ−θ‖1 with λ ≥ ψ1.
Let us consider the grid characteristic dimension ε and the number of simulation
per grid points n as generic functions of the model dimension d. Then, it is
sufficient to use ε(d) = ε0/d (for any ε0 > 0) and n(d) = (n0d)

d with n0 ≥ A/ε0
to control the upper bound of ‖π − π̃i‖.

This particular choice of h was motivated to ease the analytical derivations
but a proof exists in the same spirit if h is, for instance, a Gaussian random walk
kernel. The rate at which n should theoretically increase appears unrealistic.
This was obtained assuming that the number of grid points M would grow
geometrically with d, a model which can be questioned since a practitioner
can always control M , for instance via the parameter m in Algorithm 1. The
bottom line is that the error ‖π − π̃i‖ is controlled as long as n dominates M ,
i.e.M ∈ O(n), asymptotically in d.
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Table 1

Bias and variance of the different estimators of the ratio Z(θ)/Z(θ′) for various couples
(θ, θ′) in the setup of Figure 3. The bias and variance were estimated by simulating 10,000

independent realisations of each estimators for each couple (θ, θ′).

(θ, θ′) = (1.01, 2.06) (θ, θ′) = (3.02, 0.55) (θ, θ′) = (0.12, 0.94)
bias var. bias var. bias var.

FP .0007 .005 .0004 .001 .01 1.42
DP .003 .208 .003 .013 .27 99.02
OP .004 .199 .003 .014 .32 129.81

3.3. Toy Example

We consider in this section the toy example used to illustrate the Exchange
algorithm in [28, Section 5]. More precisely, the experiment consists of sampling
from the posterior distribution of the precision parameter θ arising from the
following model:

f( · | θ) = N (0, 1/θ) , p = Gamma(1, 1) ,

using one observation y = 2 and pretending that the normalizing constant of
the likelihood, namely Z(θ) =

∫
exp(−θy2/2)dy =

√
2π/θ is intractable. The

grid is set as G = {θ̇m = mε, 0 < m ≤ �10/m�}. Our objective is to quantify
the bias in distribution generated by the pre-computing algorithms.

We consider the situation where the interval between the grid points is ε = 0.1
and n = 10 data are simulated per grid points. Table 1 reports the bias and
the variance of the three estimators, i.e. the One Pivot, Direct Path and Full
Path, of the ratio Z(θ)/Z(θ′) for three couples (θ, θ′). This shows that the Full
Path estimators enjoys a greater stability than the two other estimators, even
when n is relatively small. This is completely in line with the results developed
in Propositions 1 and 2.

Figure 3 illustrates the convergence of the three pre-computing Markov chains
by reporting the estimated total variation distance between π̄i and π. We also
report the convergence of the exchange Markov chain: this serves as a ground
truth since π is the stationary distribution of this algorithm. For each algorithm,
the total variation distance was estimated by simulating 100, 000 iid copies of
the Markov chain of interest and calculating at each iteration the occupation
measure. This measure is then compared to π which is, in this example, fully
tractable. In view of Table 1, the chains implemented with the One Path and
Direct Path estimators converge, as expected, further away from π than the Full
Path chain.

Interestingly, it can be noted that the Full Path pre-computing chain con-
verges faster than the exchange algorithm. This is an illustration of the obser-
vation stated in the introduction regarding the theoretical efficiency of the ex-
change, compared to that of the plain MH algorithm. Indeed, the pre-computing
algorithms aim at approximating MH, and not the exchange algorithm, and
should as such inherits MH’s fast rate of convergence, provided that the vari-
ance of the estimator is controlled.
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Fig 3. Convergence (in Total variation) of the pre-computing Metropolis algorithms distri-
bution. Results were obtained from 100, 000 iid copies of the Markov chains initiated with
μ = p. All the chains were implemented with the same proposal kernel, namely θ′ = θ expσζ,
ζ ∼ N (0, 1) and run for 50 iterations. The pre-computing parameters were set to ε = 0.1
and n = 10. Comparing the convergence of the pre-computing chains to that of the exchange
(which theoretically converges to π), we see that the Full Path estimator has a negligible bias.
This is not the case for the One Pivot and Direct Path implementations.

4. Results

This section illustrates our algorithm. A simulation study using the Ising model
demonstrates the application to a ‘large’ dataset for a single parameter model.
More challenging examples are provided with application to a multi-parameter
autologistic and Exponential Random Graph Model (ERGM). In the single pa-
rameter example we use the estimates of the normalizing constant from Equa-
tions (11) and (12), denoted Full Path and Direct Path respectively. For the
single parameter example we compare the pre-computing Metropolis algorithm
with the approximate exchange algorithm [11] and also with a version of the
methods in Moores et al. [25]. Rather than the Sequential Monte Carlo ABC
used in Moores et al. [25], we implemented their pre-computation approach with
a MCMC-ABC algorithm [21]. This allowed a fair comparison of expected total
variation distance and effective sample size. In this section, the proposal kernels
used in MCMC algorithms are all Gaussian or truncated Gaussian.

MCMC-ABC

[25] used a pre-computing step with Sequential Monte Carlo ABC (see e.g. [12])
to explore the posterior distribution. However, Sequential Monte Carlo has a
stopping criterion which results in a finite sample size of values from the pos-
terior distribution. To establish a fair comparison between algorithms whose
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Algorithm 3 Pre-computing MCMC-ABC sampler
Require: Initial distribution ν, a proposal kernel h and ABC tolerance parameter ε > 0
1: Apply the pre-computing step detailed in [25]

� pre-computed data U′.
2: Draw θ0 ∼ ν
3: for i = 1, 2, . . . do
4: Draw θ′ ∼ h( · |θi−1)
5: Calculate the mean μ′ and variance σ′2 using the interpolation method in [25] and the

pre-computed data U′ for the parameter θ′

6: Simulate the sufficient statistic s′ ∼ N
(
μ, σ′2)

7: Set θi = θ′ with probability

αABC(θ, θ
′,U) := 1 ∧ π(θ′)h(θi−1|θ′)

π(θi−1)h(θ′|θi−1)
× 1|s′−s(y)|<ε(s

′)

and else set θi+1 = θi .
8: end for

Return: The Markov chain {θ1, θ2, . . .}.

sample size consistently increases over time, we implemented a modified ver-
sion of the method proposed in [25] using the MCMC-ABC algorithm. The
modification made to the MCMC-ABC algorithm amounts to replace a draw
y′ ∼ f(·|θ) by a distribution that uses the pre-computed data. More precisely,
sufficient statistics of a graph at a particular value θ are sampled from a normal
distribution

s ∼ N
(
μ(θ,U), σ2(θ,U)}

)
.

The parameters μ( · ,U) and σ2( · ,U) are interpolated using the mean and vari-
ance of the pre-computed sufficient statistics obtained at the grid points. This
pre-computing version of ABC-MCMC is described in Algorithm 3.

In the multi-parameter example we only compare results of the pre-computing
Metropolis with the standard exchange algorithm since the method of Moores
et al. [25] cannot be implemented in higher dimensions.

4.1. Ising simulation study

The Ising model is defined on a rectangular lattice or grid. It is used to model
the spatial distribution of binary variables, taking values -1 and 1. The joint
density of the Ising model can be written as

f(y|θ) = 1

Z(θ)
exp

⎛
⎝θ

M∑
j=1

∑
i∼j

yiyj

⎞
⎠ ,

where i ∼ j denotes that i and j are neighbours and

Z(θ) =
∑
y

exp

⎛
⎝ M∑

j=1

∑
i∼j

yiyjθ

⎞
⎠ .
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Fig 4. Results for the Ising study. The boxplots on the top left show the mean bias of the 24
graphs after the first 20 minutes of computation time: the pre-computing Metropolis algorithm
performs the best. The plot on the top right shows the mean estimated total variation of
the 24 graphs over time, the pre-computing Metropolis and the MCMC-ABC algorithm both
outperform the standard exchange algorithm. The bottom plot shows the effective sample size
over time, the pre-computing Metropolis algorithm, implemented with the Full Path estimator
performs the best followed by the Direct Path estimator.

The normalizing constant is rarely available analytically since this relies on tak-
ing summation over all different possible realisations of the lattice. For a lattice

with M nodes this equates to 2
M(M−1)

2 different possible lattice formations.

In this study, 24 lattices of size 80×80 were simulated. The true distribution
of the graphs were estimated using a long run (24 hours) of the approximate
exchange algorithm [11]. Each of the algorithms was run for just over 60 minutes.
The pre-computation step of choosing the parameter grid and estimating the
ratios for every pair of grid values took approximately 13 minutes. For each of the
algorithms we estimated the total variation distance using numerical integration
across the kernel density estimates. The values obtained give an indication of
which of the chain best matches the long run of the exchange algorithm. The
graph in Figure 4 is the average of the total variation for each algorithm over
all 24 lattices.

The results shown in Figure 4 illustrate how the pre-computing Metropo-
lis algorithms (full path and direct path) outperforms the exchange algorithm
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Fig 5. Presence (red) and absence (black) of red deer in the Grampian region of Scotland.

over time. As more iterations can be calculated per second, the pre-computing
Metropolis algorithm converges quicker. In this simulation, for fairness of com-
parison, the pre-computing data U were re-simulated for each individual graph.
Indeed, since all the graphs are on the same state space, only one single pre-
computation step for a large set of parameter values over the full state space
could have been sufficient. When analysis is required for many graphs which
lie on the same state space, we only need to carry out the pre-computation
step once. We stress that in practice, this situation is common and the speed-
up factor obtained by using the pre-computing algorithm would be even more
striking.

4.2. Autologistic Study

For the second illustration, we extend the Ising model to the autologistic model.
The autologistic model is a GRF model for spatial binary data. The likelihood
of the autologistic model is given by,

f(y|θ) ∝ exp(θT s(y))

= exp(θ1s1(y) + θ2s2(y)),

where s1(y) =
∑N

i=1 yi and s2(y) =
∑

i∼j yiyj with i ∼ j denoting node i and
node j are neighbours. θ1 controls the relative abundance of −1 and +1 values
while θ2 controls the level of spatial aggregation. We implement the autologistic
model using red deer census data, presence or absence of deer by 1km square in
the Grampian region of Scotland [4]. Figure 5 shows the observed data, a red
square indicates the presence of deer, while a black square indicates the absence
of deer.

A long run (4 hours) of the exchange algorithm was used to set a ’ground
truth’. The pre-computing grid points (top left of Figure 6) were chosen using the
method described in Algorithm 1. A total of 124 parameter values were chosen
as the values to pre-sampled from. It took just over 45 seconds to choose the
grid and calculate the ratios for all pairs of parameter values. The pre-computing
Metropolis algorithms all outperform the exchange algorithm as they converge
much quicker, as shown at the top right panel of Figure 6. In this example,
the two different choices of paths yield very similar results in terms of estimate
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Table 2

Posterior means and variances for the deer data. The table shows that the mean and
variance estimates of the noisy exchange are closer to the ’ground truth’ long exchange run.

θ1 θ2
Mean Variance Mean Variance

Exchange (long) -0.1435429 0.00028611 0.1516334 0.00016096
Exchange -0.1424322 0.00026794 0.1530567 0.00014771
Full Path -0.1434566 0.00026373 0.1519860 0.00015384

Direct Path -0.1436186 0.00028256 0.1515273 0.00016495

Fig 6. Grid for pre-computing (top left) and estimated total variation over time (right).
The plot on the top right shows that when the estimated total variation distance between the
algorithms and the long exchange is compared, the pre-computing Metropolis algorithms out-
perform the exchange algorithm. The two versions of the pre-computing Metropolis algorithm
also outperform the exchange in terms of effective sample size.

total variation distance. The pre-computing Metropolis algorithms result in a
more accurate mean and variance parameter estimates when compared to the
exchange algorithm run for the same amount of time; see Table 2. When the
chains are run for longer, it takes the exchange algorithm 34 minutes to reach
the same estimated total variation distance that the pre-computing Metropolis
algorithms takes to reach in 200 seconds. This illustrates the substantial time
saving resulting from the pre-computing Metropolis algorithms.
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4.3. ERGM study

We now show how our algorithms may be applied to the Exponential Random
Graph model (ERGM) [34], a model which is widely used in social network
analysis. An ERGM is defined on a random adjacency matrix Y of a graph
on p nodes (or actors) and a set of edges (dyadic relationships) {Yij : i =
1, . . . ,M ; j = 1, . . . ,M} where Yij = 1 if the pair (i, j) is connected by an edge,
and Yij = 0 otherwise. An edge connecting a node to itself is not permitted so
that Yii = 0. The dyadic variables may be undirected, whereby Yij = Yji for
each pair (i, j), or directed, whereby a directed edge from node i to node j is
not necessarily reciprocated.

The likelihood of an observed network y ∈ Y is modelled in terms of a collec-
tion of sufficient statistics {s1(y), . . . , sd(y)}, each with corresponding parameter
vector θ = {θ1, . . . , θd},

f(y | θ) = qθ(y)

Z(θ)
=

exp {
∑m

l=1 θlsl(y)}
Z(θ)

.

Typical statistics include the observed number of edges and the observed number
of two-stars, which is the number of configurations of pairs of edges which share
a common node. Those statistics are usually defined as

s1(y) :=
∑
i<j

yij , s2(y) :=
∑

i<j<k

yikyjk .

It is also possible to consider statistics which count the number of triangle
configurations, that is, the number of configurations in which nodes {i, j, k} are
all connected to each other.

4.3.1. Karate dataset

We consider Zachary’s karate club [40] which represents the undirected social
network graph of friendships between 34 members of a karate club at a US
university in the 1970s.

We consider the following two-dimensional model,

f(y | θ) = 1

Z(θ)
exp {θ1s1(y) + θ2s2(y)} ,

where s1(y) is the number of edges in the graph and s2(y) is the number of
triangles in the graph.

A long run of the exchange algorithm was again used to set a ‘ground truth’.
The tie-no-tie sampler [27] was used to simulate from the likelihood for the
exchange algorithm. The pre-computing step took roughly 30 seconds to set
the M = 191 parameter values constituting the grid and to calculate the esti-
mated normalizing ratio between each pair of parameter values using n = 1, 000
simulated graphs. The mean and variance of the parameter estimates for the
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Fig 7. Karate club data.

Table 3

Posterior means and variances for the karate data.

Edge Triangle
Mean Var Mean Var

Exchange (long) -2.0471 0.0962 0.3807 0.0306
Exchange -2.1758 0.0739 0.4670 0.0254
Full Path -2.3328 0.0991 0.4922 0.0210
Direct Path -2.1645 0.1095 0.4518 0.0454

noisy exchange algorithms using the two different paths and a short run of the
exchange algorithm are compared in Table 3. Figure 8 shows the choice of pa-
rameter for pre-processing (left) and the estimated total variation distance over
time (right). Some grid points lie beyond the posterior distribution high density
region, indicating that some graphs sampled from the tail regions could have
been avoided. In practice however, it was found that allowing the grid to span
beyond the posterior distribution high density regions gave much better results.
The two versions of the pre-computing Metropolis algorithm outperform the
exchange algorithm in the estimated total variation distance over time.

5. Conclusion

This paper considers including an offline, easily parallelizable, pre-computing
step as a way to overcome the computational bottleneck of certain variants of the
Metropolis algorithm. In particular, we show how such a strategy can be efficient
when inferring a doubly-intractable distribution, a situation that typically arises
in the study of Gibbs random fields. The pre-computing Metropolis algorithms
that we develop in this paper somewhat borrow from previous pre-computing
algorithms (see e.g. [26]) but scale better to higher dimensional settings. We
however note that our method would be impractical for very high dimensions.
Yet, the limit on the number of dimensions is similar to the limit on the INLA
method [35], which has seen widespread use in many areas.

The pre-computing Metropolis algorithms are noisy MCMC algorithms in
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Fig 8. Grid for pre-computing (left) and estimated total variation distance over time (right).
The pre-computing Metropolis algorithms outperform the exchange in terms of estimated total
variation distance. The effective sample size of the pre-computing algorithms is much higher
than the exchange.

the sense that the posterior of interest is not the invariant distribution of the
Markov chain. However, we establish, under certain conditions, some theoretical
results showing that the pre-computing Metropolis distribution converges into a
ball centered on the true posterior distribution. Interestingly, the ball radius can
be made arbitrarily small according to the pre-computing parameters, namely
the space between grid points and the number of auxiliary data simulated per
grid points. Our main contribution to the theoretical analysis of approximate
Markov chains is twofold:

• In contrast to estimators of the Metropolis acceptance ratio that have been
used in the approximate MCMC literature (see e.g. [1], [23] and [5]), the
different estimators considered in this paper (i.e. the One Pivot, the Direct
Path and the Full Path) are all biased. We stress that, when computational
time is not an issue, there is no particular gain in efficiency using biased
estimators but biasedness is an inevitable by-product when estimators
make use of pre-computed data exclusively.
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• A recurrent outcome from the research on approximate MCMC methods
highlights the importance of using estimators of the Metropolis accep-
tance ratio with small variance. We refer for instance to the aforemen-
tioned works and [6], [32] and [37]. In the context of estimating a ratio
of normalizing constants, we argue that the pre-computing step allows to
specify low variance estimators, yet biased, at low computational cost by
considering intermediate grid points, an idea that has been exploited by
the Full Path estimator.

The empirical results show that in time normalized experiments, the pre-
computing Metropolis algorithms provide accurate and efficient inference that
outperform existing techniques such as the exchange algorithm [28] or its ap-
proximate version [11] when sampling from the likelihood in infeasible.

Even though we have only considered in this paper a Gaussian random walk,
our pre-computing method is fully compatible with more sophisticated proposal
distributions such those using Langevin or Hamiltonian dynamics. The pre-
computing step would be especially useful for the Hamiltonian random walk
since, by construction, the accept-reject ratio requires computing a ratio of
normalizing constants at each step of the leapfrog integrator. The pre-computing
method that we propose in this paper would thus be even more beneficial from a
computational perspective for HMC than for RWMH, see for instance the recent
work of [37]. The theoretical derivations proposed in the paper only holds for
RMWH. An adaptation of the results could probably be done for the Langevin
algorithm, in the spirit of [1]. However it is significantly more challenging to
understand how the approximation propagates with HMC, as outlined in [37].

Focus for future research will examine alternative methods that would allow
inference of higher dimensional models. As it stands, the curse of dimensionality
implies an exponential growth of the number of grid points, which makes our
pre-computing step far too computationally intensive to be implemented in this
setting. A way to overcome this challenge would be to design the grid adap-
tively, i.e. as the Markov chain is being simulated, in order to avoid unnecessary
simulations at grid points whose vicinity is never visited by the Markov chain.
Even though such a strategy is straightforward to implement, the theoretical
analysis of the resulting algorithm is more involved. Indeed, it calls for results
on ergodicity of approximate adaptive Markov chain, a research topic which is
for now essentially unexplored.

Appendix

Variance of the estimators

Proof of Proposition 1. Denoting by vn the variance in Eq. (10), it comes

nvn(θ, θ
′) = Eθ′ exp 2(θ − θ′)Ts(y)−

(
Z(θ)

Z(θ′)

)2

. (26)

To show that nvn(θ, θ
′) ∈ O(‖θ−θ′‖2), let us start by addressing the first term:
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Eθ′ exp 2(θ−θ′)Ts(y) = 1+2(θ−θ′)TEθ′s(y)+2(θ−θ′)TEθ′
{
s(y)s(y)T

}
(θ−θ′)

+ Eθ′
∑
k>2

(2k/k!)
(
(θ − θ′)Ts(y)

)k
︸ ︷︷ ︸

=:φ1(θ,θ′)

, (27)

where we have used that for two real valued vectors of same dimension (a, b),
then {aTb}2 = aT{bbT}a and for a random matrix M , E{aTMa} = aTE{M}a,
by linearity of the expectation. We now show that under the assumption of Prop.
1, φ1(θ, θ

′) ∈ o(‖θ − θ′‖2). In particular, applying Cauchy-Schwartz inequality
we have that for all (θ, θ′) ∈ Θ2 such that ‖θ − θ′‖2 ≥ 0:

φ1(θ, θ
′) ≤ Eθ′

∑
k>2

(2k/k!)
∣∣(θ − θ′)Ts(y)

∣∣k ≤ Eθ′
∑
k>2

(2k/k!) ‖θ − θ′‖k ‖s(y)‖k ,

hence

φ1(θ, θ
′)/‖θ − θ′‖2 ≤ ‖θ − θ′‖

∑
k>2

(2k/k!)‖θ − θ′‖k−3Eθ′‖s(y)‖k ,

= ‖θ − θ′‖
∑
k≥0

(2k+3/(k + 3)!)‖θ − θ′‖kEθ′‖s(y)‖k+3 ,

≤ ‖θ − θ′‖23
∑
k≥0

(2k/k!)‖θ − θ′‖kMk , (28)

where we have used the fact that if ‖s(y)‖ is bounded then it exists an M > 0

such that f{s(y) > M | θ} = 0 and thus Es(y)k =
∫M

0
‖s(y)‖kf(s(y) ∈ dy | θ) +∫∞

M
‖s(y)‖kf(s(y) ∈ dy | θ) ≤ Mk +

∫∞
0

(‖s(y)‖ +M)kf(s(y) +M ∈ dy | θ) and
the last term is obviously null. Finally, the RHS of Eq. (28) writes

φ1(θ, θ
′)/‖θ − θ′‖2 ≤ 8‖θ − θ′‖ exp{2M‖θ − θ′‖}

and clearly lim‖θ−θ′‖→0 φ1(θ, θ
′)/‖θ − θ′‖2 = 0, thus φ1(θ, θ

′) ∈ o(‖θ − θ′‖2).
We now proceed to a Taylor expansion of the function θ �→ Z(θ) around θ′:

Z(θ) = Z(θ′) + (θ − θ′)T∇Z(θ′) + (1/2)(θ − θ′)T∇2Z(θ′)(θ − θ′) + φ2(θ, θ
′)

where φ2(θ, θ
′) ∈ o‖θ − θ′‖2. Therefore,

(Z(θ)/Z(θ′))2 =

(
1 + (θ − θ′)T

∇Z(θ′)

Z(θ′)
+ (1/2)(θ − θ′)T

∇2Z(θ′)

Z(θ′)
(θ − θ′)

+
φ2(θ, θ

′)

Z(θ′)

)2

,

and since ∇Z(θ′)/Z(θ′) = Eθ′s(y) and ∇2Z(θ′)/Z(θ′) = Eθ′s(y)s(y)T, we have:

(Z(θ)/Z(θ′))
2
= 1 + 2(θ − θ′)TEθ′(s(y)) + (θ − θ′)TEθ′

{
s(y)s(y)T

}
(θ − θ′)
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+ (θ − θ′)TEθ′(s(y))Eθ′(s(y))T(θ − θ′) + φ3(θ, θ
′) , (29)

where φ3(θ, θ
′) = o(‖θ − θ′‖2). Combining Eqs. (26), (27) and (29) leads to

nvn(θ, θ
′) = (θ − θ′)Tcovθ′{s(y)}(θ − θ′) + φ1(θ, θ

′) + φ3(θ, θ
′) . (30)

In other words, when ‖θ − θ′‖ decreases to zero, nvn(θ, θ
′) is equivalent to

(θ − θ′)Tcovθ′{s(y)}(θ − θ′).

Proof of Proposition 2. Note that

vDP
n − vFPn = E

(
R1

n

Ψn

)2 {(
R2C

n

)2 − (R2
n × · · · ×RC

n

)2}

−
{
E
R1

n

Φn
R2C

n

}2

+

{
E
R1

n

Φn
R2

nR
3
n × · · · ×RC

n

}2

,

which under the assumption that Φn and Ψn are independent yields

vDP
n − vFPn = E

(
R1

n

Ψn

)2 {
E
(
R2C

n

)2 − E
(
R2

n × · · · ×RC
n

)2}

−
(
E
R1

n

Ψn

)2 {(
ER2C

n

)2 − (ER2
n × · · · ×RC

n

)2}
.

Equation (14) holds with γ = E
(
R1

n/Ψn

)2
as a result of ER2C

n = ER2
n × · · · ×

RC
n = Z(θ̇1)/Z(θ̇C).
For simplicity of notation, define Rn := R2

n × · · ·×RC
n and Xn = logRn. For

large n, Ri
n can be approximate by a truncated normal (in the positive range)

R̄i
n ∼ N+(μi, (1/n)σ

2
i ), where μi := Z(θ̇i−1)/Z(θ̇i) and σi = var{exp(θ̇i−1 −

θ̇i)
Ts(Xi)}. It can be noted that, upon reparameterization of the sufficient

statistics vector (in the space spanned by the matrix V column vectors), we
have σi = var{exp εsi} where si is the projection on the only one dimension
where θ̇i−1 and θ̇i are not equal of the sufficient statistics s(Xi), Xi ∼ f( · | θ̇i).
Applying the delta method yields that Xi can be approximate by

X̄i
n := log R̄i

n ∼ N
(
logμi,

σ2
i

nμ2
i

)
. (31)

Define X̄n,C :=
∑C−1

i=1 X̄i+1
n and note that the sequence {X̄1

n, X̄
2
n, . . .} satisfies

a Lyapunov condition i.e.

lim
C→∞

∑C
i=1 E

∣∣X̄i
n − EX̄i

n

∣∣4{∑C
i=1 var(X̄

i
n)
}4 = 0 . (32)

Indeed, it can be checked that the fourth central moment of a Gaussian ran-

dom variable verifies E
∣∣X̄i

n − EX̄i
n

∣∣4 = 3var(X̄i
n)

2. Moreover since the σi’s are
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bounded, there exists two numbers 0 < m < M < ∞ such that m ≤ var(X̄i
n) ≤

M . This allows to justify (32) since∑C
i=1 var(X̄

i
n)

2{∑C
i=1 var(X̄

i
n)
}4 ≤

∑C
i=1 var(X̄

i
n)

2

m2C2
{∑C

i=1 var(X̄
i
n)
}2 ≤ 1

C
{∑C

i=1 var(X̄
i
n)
}2

(
M

m

)2

,

whose right hand side goes to 0 when C → ∞. In virtue of (32), a central limit
holds for X̄n,C and in particular, asymptotically in C,

X̄n,C ⇒ N
(

C−1∑
i=1

EX̄i+1
n ,

C−1∑
i=1

varX̄i+1
n

)
, (33)

which implies that R̄n is log-normal and, as a consequence,

varR̄n =
{
exp
(
varX̄n,C

)
− 1
}
exp
(
2EX̄n,C + varX̄n,C

)
. (34)

First note that combining (31) and (33)

EX̄n,C = log
Z(θ̇1)

Z(θ̇C)
, varX̄n,C =

1

n

C∑
i=2

{
Z(θ̇i)

Z(θ̇i−1)

}2

{var exp(εsi)}2 (35)

and

var exp(εsi) = var

⎛
⎝1 + ε

∞∑
j=1

εj−1sji
j!

⎞
⎠ = ε2vi , vi := var

⎛
⎝ ∞∑

j=1

εj−1sji
j!

⎞
⎠ .

Putting together with (35), we have:

varX̄n,C =
ε4

n

C∑
i=2

{
vi

Z(θ̇i)

Z(θ̇i−1)

}2

,

which eventually using (34) leads to

varR̄n =
ε4

n

C∑
i=2

{
vi

Z(θ̇i)Z(θ̇1)

Z(θ̇i−1)Z(θ̇C)

}2

+ o
(
ε4/n

)
. (36)

Remark 1 (On the proof of Proposition 2). Even though Proposition 1 is
established under the assumption that Ψn and Φn are independent, note that
this can be relaxed if the Direct Path estimator includes one more grid point in
its path i.e. if ΨDP

n estimates Z(θ)/Z(θ̇1) × Z(θ̇1)/Z(θ̇C−1) × Z(θ̇C−1)/Z(θ̇C).
When ε is small, we expect that the Direct Path estimator and this alternate
version would be highly similar. The result of comparison between the variances
of the Full Path estimator and this alternate version of the Direct Path estimator
holds without the independence assumption.
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Remark 2 (On the proof of Proposition 2). Unlike n and ε, the path length C in
the Full Path estimator is a random variable that depends on (θ, θ′). Therefore,
one can critically comment on the use of a central limit theorem in C that is
needed to establish Eq. (16). However, we insist that C could be made arbitrarily
as large as needed by using a path connecting θ to θ′ that is long enough. This
type of path should, however, not use a same grid point twice in order to satisfy
the independence assumption of the central limit theorem.

Convergence of the pre-computing transition kernel We preface the
proof of Proposition 4 with the following Lemma.

Lemma 7. Let X̄1
n, . . . , X̄

r
n be r iid sample mean estimators i.e. for j ∈ {1,

. . . , r}, X̄j
n = n−1

∑n
k=1 Xj,k, Xj,1, . . . , Xj,n ∼iid πj , where πj is any distribu-

tion. Assume that there exists a positive number M > 0 such that for all j, the
support of πj is such that supp(πj) ⊆ (0,M). Then:

var(X̄1
n × · · · × X̄r

n) ≤ M2r

{(
1 +

1

n

)r

− 1

}
.

Proof. This follows from the variance of a product of independent random vari-
ables. More precisely, var(X̄1

n×· · ·×X̄r
n) is a sum of 2r−1 products of r positive

factors. Each factor is either a squared expectation (EX̄j
n)

2 or a variance varX̄j
n

so that one of the 2r − 1 products that contains k variances (k > 0) and r − k
squared expectations is

pk := var(X̄n
1 )var(X̄

n
2 )× · · · × var(X̄n

k )(EX̄
n
k+1)

2(EX̄n
k+2)

2 × · · · × (EX̄n
r )

2 .

Note that pk can be reexpressed as

pk =
1

nk
var(X1)var(X2)×· · ·×var(Xk)(EXk+1)

2(EXk+2)
2×· · ·×(EXr)

2 , (37)

where for simplicity we have defined Xj ∼ πj in Eq. 37. Interestingly, pk can be
uniformly bounded in k as follows:

pk ≤ 1

nk
E(X2

1 )E(X
2
2 )× · · · ×E(X2

k)(EXk+1)
2(EXk+2)

2 × · · · × (EXr)
2 ≤ M2r

nk
.

(38)
Since there are

(
r
k

)
terms that have k variances and r− k squared expectations,

their sum p̄k can be bounded using the uniform bound provided in Eq. (38) so
that

p̄k ≤
(
r

k

)
M2r

nk
.

The proof is completed by rearranging the sum of 2r−1 products by aggregating
those products that have the same number k of variance factors, i.e.

var(X̄1
n × · · · × X̄r

n) =

r∑
k=1

p̄k ≤ M2r
r∑

k=1

(
r

k

)
1

nk
= M2r

(
1 +

1

n

)r

− 1 .
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Proof of Proposition 4. For notational simplicity, E is the expectation operator
under the distribution of the pre-computed data U. Under the assumptions of
Lemma 4, the two following constants

T := sup
θ∈Θ

‖θ‖ , ψ1 =: sup
x∈Y

sup
j∈{1,...,d}

sj(x) (39)

are finite. We first state three inequalities that are immediate consequences from
the grid geometry:

• Noting that |(θ − θ′)Ts(x)| ≤ ψ1‖θ − θ′‖, for any (θ, θ′) ∈ Θ2 and x ∈ Y ,
we have:

exp (−2Tψ1) ≤
qθ(x)

qθ′(x)
= exp(θ − θ′)Ts(x) ≤ exp (2Tψ1) := K1.

• For two neighboring points θ̇k and θ̇m in the pre-computed grid, there
exists j ∈ {1, . . . , d} such that |(θ̇k − θ̇m)Ts(x)| = ±εsj(x) , which yields

1/K2(ε) ≤
qθ̇k(x)

qθ̇m(x)
= exp(θ̇k − θ̇m)Ts(x) ≤ exp (εψ1) := K2(ε) .

• For any θ ∈ Θ, there is a point θ̇ ∈ G such that for all j ∈ {1, . . . , d},
|θj − θ̇j | < ε, we have

1/Kd
2 (ε) ≤

qθ(x)

qθ̇m(x)
≤ Kd

2 (ε) . (40)

We will intensively use the result from Lemma 7 on the variance of a product
of independent estimators and the fact that for any random variable X

∃M ∈ R s.t. X ≤ M ⇒ varX ≤ EX2 ≤ M2 . (41)

We recall that in the pre-computing Metropolis algorithm, the normalizing con-
stant ratio Z(θ)/Z(θ′) is estimated by

ρn(θ, θ
′,U) =

Ψn(θ, θ
′,U)

Φn(θ, θ′,U)

and that
Z(θ)

Z(θ′)
= E {Ψn(θ, θ

′,U)} /E {Φn(θ, θ
′,U)} . (42)

Now for any (θ, θ′) ∈ Θ2, the expectation of the absolute value between the
exact and approximate acceptance ratio is

E |ā(θ, θ′,U)− a(θ, θ′)| = E

∣∣∣∣h(θ|θ′)h(θ′|θ)
p(θ′)

p(θ)

qθ′(y)

qθ(y)

(
ρn(θ, θ

′,U)− Z(θ)

Z(θ′)

)∣∣∣∣
≤ c2pc

2
hK1E

∣∣∣∣ρn(θ, θ′,U)− Z(θ)

Z(θ′)

∣∣∣∣ . (43)
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In absence of ambiguity, we let the dependence on (θ, θ′,U) of the random vari-
ables ρn, Φn and Ψn be implicit. Using (42), we have:

E

∣∣∣∣ρn − Z(θ)

Z(θ′)

∣∣∣∣ = E |Ψn/Φn − EΨn/EΦn| ,

≤ E |Ψn/Φn − E (Ψn/Φn)|+ |E (Ψn/Φn)− EΨn/EΦn| ,
≤
√

var{Ψn/Φn}
+
∣∣cov(Ψn, 1/Φn) + EΨnE (1/Φn)− EΨn/EΦn

∣∣ ,
≤ √

varρn +
√

varΨnvar (1/Φn) + E {Ψn |E (1/Φn)− 1/EΦn|} ,

≤ √
varρn +

√
varΨnvar (1/Φn) + EΨn {E (1/Φn)− 1/E (Φn)} .

(44)

Our objective is now to bound uniformly in (θ, θ′) the RHS of Eq. (44). Using
Eq. (40), we have that

EΨn {E (1/Φn)− 1/E (Φn)} ≤ KC+d−1
2 (ε)

{
Kd

2 (ε)−
1

Kd
2 (ε)

}
. (45)

Defining Ψ1,n = (1/n)
∑n

k=1 exp(θ− θ̇1)
Ts(X1

k) and Ψ2,n = Ψn/Ψ1,n, note that

varΨn = var (Ψ1,nΨ2,n)

= varΨ1,nvarΨ2,n + (EΨ2,n)
2varΨ1,n + (EΨ1,n)

2varΨ2,n ,

= varΨ2,nEΨ
2
1,n + varΨ1,n(EΨ2,n)

2 .

Applying Lemma 7 to Ψ2,n, leads to

varΨ2,n ≤ K
2(C−1)
2 (ε)

{(
1 +

1

n

)C−1

− 1

}
,

which combined to

• EΨ2
1,n ≤ K2d

2 (ε)

• EΨ2,n ≤ KC−1
2 (ε)

• varΨ1,n ≤ K2d
2 (ε)/n

yields

varΨn ≤ K
2(C+d−1)
2 (ε)

{(
1 +

1

n

)C−1

− 1 +
1

n

}
. (46)

Finally, combining Eq. 46 and the fact that var(1/Φn) ≤ K2d
2 (ε), we obtain the

following bound:

√
varΨnvar(1/Φn) ≤ KC+2d−1

2 (ε)

√(
1 +

1

n

)C−1

− 1 +
1

n
. (47)
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Bounding varρn follows the same technique. Because Φn and Ψn are not in-
dependent, we need to rewrite ρn in preparation for applying Lemma 7 as
ρn = AnBnCn where

An = Ψ1,n, Bn = Ψ2,n

/
1

n

n∑
k=1

exp(θ̇C−1 − θ̇C)
Ts(XC

k ),

Cn =

∑n
k=1 exp(θ̇C−1 − θ̇C)

Ts(XC
k )∑n

k=1 exp(θ
′ − θ̇C)Ts(XC

k )
.

First note that

varρn = varAnBnvarCn + varAnBn(ECn)
2 + varCn(EAnBn)

2

= varAnBnE(C
2
n) + (EAnBn)

2
varCn .

Moreover, we have

varCn = E

{∑n
k=1 exp(θ̇C−1 − θ̇C)

Ts(XC
k )∑n

k=1 exp(θ
′ − θ̇C)Ts(XC

k )

}2

−
{
E

∑n
k=1 exp(θ̇C−1 − θ̇C)

Ts(XC
k )∑n

k=1 exp(θ
′ − θ̇C)Ts(XC

k )

}2

,

≤ K2d
2 (ε)

n2
E

{
n∑

k=1

exp(θ̇C−1 − θ̇C)
Ts(XC

k )

}2

− 1

K2d
2 (ε)

{
E exp(θ̇C−1 − θ̇C)

Ts(XC)
}2

,

≤ K2d
2 (ε)

n
var exp(θ̇C−1 − θ̇C)

Ts(XC)

+
{
E exp(θ̇C−1 − θ̇C)

Ts(XC
k )
}2
{
K2d

2 (ε)− 1

K2d
2 (ε)

}
,

≤ K
2(d+1)
2 (ε)

{
1 +

1

n
− 1

K4d
2 (ε)

}
(48)

and using a similarly technique, we obtain

varAnBn ≤ K
2(C+d−2)
2 (ε)

{(
1 +

1

n

)C−1

− 1

}
. (49)

Combining Eqs. (48) and (49) with E(C2
n) ≤ K

2(d+1)
2 (ε) and (EAnBn)

2 ≤
K

2(d+C−2)
2 (ε), we obtain

√
varρn ≤ KC+2d−1

2 (ε)

√(
1 +

1

n

)C−1

+
1

n
− 1

K4d
2 (ε)

. (50)
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Using the bounds derived in Eqs. (45), (47) and (50), Eq. (44) can be written
as

E

∣∣∣∣ρn − Z(θ)

Z(θ′)

∣∣∣∣ ≤ KC+2d−1
2 (ε)

{√(
1 +

1

n

)C−1

+
1

n
− 1

K4d
2 (ε)

+

√(
1 +

1

n

)C−1

− 1 +
1

n
+ 1− 1

K2d
2 (ε)

}
,

≤ 2KC+2d−1
2 (ε)

{√(
1 +

1

n

)C−1

+
1

n
− 1︸ ︷︷ ︸

:=un

+

√
1− 1

K4d
2 (ε)︸ ︷︷ ︸

:=v(ε)

}
, (51)

where we have used the fact that for two positive numbers (α, β), and γ > 1,

√
α+ β ≤

√
α+

√
β and 1− 1

γ
≤
√
1− 1

γ2
.

The proof is completed by noting that un :=
√

C/n + o(n−1/2) and v(ε) =
2
√
dφ1ε+ o(ε1/2).

Proof of Proposition 5. For n large enough, the delta method shows that the
asymptotic distribution of {1/Φn} is

1

Φn
⇒ g := N

(
1

E(Φ1)
,
var(Φ1)

nE(Φ1)4

)
. (52)

The nice benefit of this observation is that we know that denoting {gn}n the
sequence of distributions of {1/Φn}, we have that

lim
n→∞

∫
h(x)dgn(x) =

∫
h(x)dg(x) , (53)

for any bounded measurable function h. Defining fn as the pdf of (Ψn,Φn) and
α = EΨn/EΦn, the observation (52) motivates rewriting rn = E |ρn − α| with
implicit dependence on (θ, θ′) as follows:

rn =

∫ ∣∣∣∣ψφ − α

∣∣∣∣ fn(dψ, dφ) =
∫

|ψφ− α| fn(dψ |φ)gn(dφ) ,

=

∫
|ψφ− α| fn(dψ |φ)(gn(φ)− g(φ))dφ︸ ︷︷ ︸

rn,1(θ,θ′)

+

∫
|ψφ− α| fn(dψ |φ)g(dφ)︸ ︷︷ ︸

rn,2(θ,θ′)

. (54)

The pdfs fn and gn implicitly depend on θ and θ′. It is clear that given (53),
for any (θ, θ′) ∈ Θ2, rn,1(θ, θ

′) → 0, although it is not straightforward to obtain
a rate of convergence, uniformly in (θ, θ′).
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Interestingly, we also have rn,2(θ, θ
′) → 0 and more precisely defining W ∼ g

and ε ∼ N (0, 1), we have:

rn,2(θ, θ
′) = E |ΨnW − α| = E

∣∣∣∣Ψn

{
μ1 +

σ1√
n
ε

}
− α

∣∣∣∣ , (55)

where we have defined μ1 = 1/E(Φ1) and σ2
1 = var(Φ1)/E(Φ1)

4. This yields

rn,2(θ, θ
′) = E

∣∣∣∣μ1Ψn +
σ1√
n
Ψnε− α

∣∣∣∣
≤ 1

E(Φ1)
E |Ψn − E(Ψ1)|+

σ1√
n
E(Ψn |ε|)

≤
√

var(Ψ1)

nE(Φ1)2
+

√
var(Φ1)

nE(Φ1)4
E(Ψn |ε|)

=
1

E(Φ1)
√
n

{√
var(Ψ1) +

√
var(Φ1)

E(Ψn |ε|)
E(Φ1)

}
. (56)

Summarizing we have the following upper bound for rn:

rn(θ, θ
′) ≤

∫
|ψφ− α| fn(dψ |φ)(gn(φ)− g(φ))dφ+

1

E(Φ1)
√
n

{√
var(Ψ1) +

√
var(Φ1)

E(Ψn |ε|)
E(Φ1)

}
. (57)

On tuning the pre-computing parameters when d increases.

Proof of Proposition 6. The RHS of Eq. 25 is equal to

Rd(ε, n) := κ̄eψ1(2d−1)ε
M∑
c=1

eψ1εc {un(c) + v(ε)} pc ,

where pc = Pr{C = c}, un and v have been defined in Eq. 21 of the appendix
and ψ1 = supj,y |sj(y)|. The constant κ̄ is independent of the grid approximation
and therefore we will ignore it in the sequel. We propose the following bound
for Rd(ε, n)/κ̄:

R′
d(ε, n) := eψ1(2d−1)ε {un(M) + v(ε)}

M∑
c=1

eψ1εcpc , (58)

since un is a nondecreasing function of c. We now propose to study pc. For
simplicity, we take Q(θ, θ′) ∝ exp {−λ‖θ − θ′‖1}.

pc =

∫ ∞

0

Pr{C = c | ‖θ − θ′‖1 = z}Pr(‖θ − θ′‖1 ∈ dz) . (59)
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Remember that C is the number of grid points belonging to the path (full path)
connecting θ to θ′ and denoting by C1, C2, . . . , Cd the number of grid points in
each dimension, we have C = 1+

∑d
i=1 Ci. Note that Ci is a function of |θi−θ′i|

as:

Ci =

⌊
|θi − θ′i|

ε

⌋
.

In the sequel we work with the following approximation Ci ≈ |θi− θ′i|/ε. In this
context, we have

C ≈ ‖θ − θ′‖1/ε+ 1 ,

and Eq. (59) becomes:

pc ≈ p̂c :∝
∫

exp {−λ‖θ − θ′‖1} δ‖θ−θ′‖1/ε+1=c ∝ e−λεc .

Replacing pc by p̂c corresponds to the discretization of the r.v. ‖θ − θ′‖1. As
a consequence, when ε decreases, this approximation becomes more accurate.
Note that since C ∈ {1, . . . ,M}, we have:

p̂c = e−λεc 1− e−λε

1− e−λεM
, for c ∈ {1, . . . ,M} .

Using this approximation in Eq. (58) yields:

R′
d(ε, n) := eψ1(2d−1)ε {un(M) + v(ε)} 1− e−λε

1− e−λεM

M∑
c=1

e(ψ1−λ)εc ,

= eψ1(2d−1)ε {un(M) + v(ε)} 1− e−λε

1− e−λεM
e(ψ1−λ)ε 1− e(ψ1−λ)εM

1− e(ψ1−λ)ε
,

= e(2ψ1d−λ)ε {un(M) + v(ε)} 1− e−λε

1− e−λεM

1− e−(λ−ψ1)εM

1− e−(λ−ψ1)ε
,

= e(2ψ1d−λ)ε {un(M) + v(ε)} 1− e−(λ−ψ1)εM

1− e−λεM

g(λε)

g((λ− ψ1)ε)

λ

λ− ψ1
,

(60)

where g : (0,∞) → (0, 1) such that g : x �→ (1 − e−x)/x. We assume here that
λ ≥ ψ1 which imposes restriction on the proposal kernel Q in terms of upper
bounding the variance of the RW kernel. However, since ψ1 is itself an upper
bound of supy ‖s(y)‖∞, setting the precision parameter such that λ < ψ1 is not
too restrictive. In Eq. (60), we consider that (ε, n) are functions of d and study
how those functions should be designed so that R′

d does not diverge when d
increases. Let us remark that in fact M , treated so far as a constant (and so far
without loss of generality) is actually a function of d and ε. In the following, the
dependence of M , n and ε on d is implicit. Assuming that the grid spans over
an interval of length Ai in dimension i, for d and ε fixed, M is given by

M =

(
A1

ε
+ 1

)
× · · · ×

(
Ad

ε
+ 1

)
≈
(
A

ε
+ 1

)d

,
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where A is the typical grid dimension. From Eq. (60), we have that the conver-
gence rate ε should be polynomial (of order ≥ 1). Indeed, taking ε ≡ ε0/d (for
some ε0 > 0) is necessary to control the first term of Eq. (60). We also note that
for any choice of spacing function ε ∈ O(1) then limd→∞ εM → ∞. Indeed,

εM = ε(1 +A/ε)d ≥ A
(1 +A/ε)d

A/ε
= A(1 +A/ε)d−1(1 + ε/A)

which diverges since there exists d0 > 0 such that for d > d0, ε < ε and thus
εM ≥ A(1+A/ε)d−1 which diverges with d. Hence, with the choice of ε = ε0/d,
Eq. (60) writes:

R′
d(n, ε) = e(2ψ1−λ/d)ε0

{
un(M) +

√
1− e−4ψ1ε0

} 1− e−(λ−ψ1)wd

1− e−λwd

g(λε)

g((λ− ψ1)ε)

× λ

λ− ψ1
,

where wd →d→∞ ∞. Since g ∈ O(1) around 0, the last part of the analysis
is to note that n should match the growth rate of M since log un(M)1/2 ≈
(ε0/d)(1 + Ad/ε0)

d
/
n. In other words, taking n = (n0d)

d with n0 ≥ A/ε0 is
sufficient to control the error bound.
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