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Heidelberg University
Alfred-Weber-Institute for Economics

Bergheimer Strasse 58
69115 Heidelberg, Germany

e-mail: fabian.krueger@awi.uni-heidelberg.de

Abstract: We propose randomization tests of whether forecast 1 outper-
forms forecast 2 across a class of scoring functions. This hypothesis is of
applied interest: While the prediction context often prescribes a certain
class of scoring functions, it is typically hard to motivate a specific choice
on statistical or substantive grounds. We investigate the asymptotic behav-
ior of the test statistics under mild conditions, avoiding the need to assume
particular dynamic properties of forecasts and realizations. The properties
of the one-sided tests depend on a corresponding version of Anderson’s in-
equality, which we state as a conjecture of independent interest. Numerical
experiments and a data example indicate that the tests have good size and
power properties in practically relevant situations.

MSC 2010 subject classifications: 62G09, 62G10, 62M20.
Keywords and phrases: Comparative forecast evaluation, hypothesis
testing, randomization.

Received November 2017.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3759
2 Testing for forecast dominance – Initial considerations . . . . . . . . . 3762

2.1 Formal setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3762
2.2 Notions of forecast dominance . . . . . . . . . . . . . . . . . . . . 3762
2.3 A fictitious test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3764

3 Randomization tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3765

∗Recently retired

3758

http://projecteuclid.org/ejs
https://doi.org/10.1214/18-EJS1495
mailto:wernehm@web.de
mailto:fabian.krueger@awi.uni-heidelberg.de


Randomization test 3759

3.1 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3765
3.2 Test validity: Heuristics, and a conjecture . . . . . . . . . . . . . 3766
3.3 Some comments on the conjectured inequality . . . . . . . . . . . 3769

4 Asymptotics for quantile and expectile forecasts . . . . . . . . . . . . . 3770
4.1 Conditional weak convergence of D∗

n . . . . . . . . . . . . . . . . 3771

4.2 Weak convergence of D̃n . . . . . . . . . . . . . . . . . . . . . . . 3773
5 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 3774

5.1 Mean forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3774
5.2 Quantile forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 3775

6 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3776
6.1 Mean forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3776
6.2 Quantile forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 3777

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3778
8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3780
9 Additional material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3786
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3789
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3790

1. Introduction

Forecasts of future events and quantities are essential across disciplines. At the
same time, forecasts notoriously are imprecise and prone to bias, calling for
methods to assess and compare the performance of imperfect predictions both
theoretically and on the basis of empirical data. In the context of point fore-
casts, which we consider in this paper, the appropriate evaluation tool is that of
a consistent scoring function [21]. A scoring function S ≡ S(x, y) assigns to each
forecast x and realization y a real-valued score such that smaller scores corre-
spond to better forecasts. Specifically, let φ be a real-valued functional defined
on a class G of possible distributions G of y, such as the mean or a quantile of G.
The scoring function is consistent (for φ relative to G) if S(φ(G), G) ≤ S(x,G)
for every G ∈ G and forecast x; here S(x,G) = Ey∼G S(x, y). With a consistent
scoring function the forecaster can do no better than predict the true functional
value, which rewards honest reporting.

For a given functional φ, supposed fixed in the following, there generally exists
a whole class of consistent scoring functions, or “scores.” Characterizations of
the respective score classes for various functionals may be found in e.g. [5, 19, 21].
For example, all scores of the form S(x, y) = ϕ(y) − ϕ(x) − ϕ′(x) (y − x), ϕ
a convex function with subgradient ϕ′, are consistent for the mean functional
[5, 49]. In applied contexts, consistent alternatives to the special case ϕ(x) = x2

of the squared error score were discussed in [22], [37], [50] and others for the
binary case y ∈ {0, 1}, and in [43] for positive predictands y ∈ R+.

The availability of an entire family of scoring functions that are theoreti-
cally legitimate comes with the drawback that two scores may produce differ-
ent forecast rankings even if both are consistent for the same target functional
[16, 17, 44]. This lack of robustness is unsatisfactory as there are often no strong
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arguments for choosing a particular score. It is therefore natural to ask whether
forecast rankings are stable across a family of scores. E.g., given two forecasts
x1, x2, does x1 dominate x2 in the sense that it is superior with respect to all
consistent scoring functions? In the case of a quantile or expectile functional1

the complexity of the problem can be much reduced by means of a Choquet
representation: here every consistent score S can be represented as a mixture
of “elementary” (in fact: extremal) scores Sθ, θ ∈ R. That is, for every S there
is a nonnegative Borel measure M on R such that S(x, y) =

∫
Sθ(x, y) dM(θ)

[16]. The form of the elementary scores depends on the specific functional being
studied; for example, in case of the mean functional

Sθ(x, y) =

{
|y − θ| if min{x, y} ≡ x ∧ y ≤ θ < x ∨ y ≡ max{x, y},
0 else.

(1.1)

The Choquet representation makes it possible to reduce dominance with respect
to all consistent scoring functions to dominance with respect to the linearly
indexed family of elementary scores {Sθ : θ ∈ R}, a substantial simplification.
Nevertheless, testing related hypotheses remains a challenging task.

Our focus will be on a very simple test of forecast dominance that goes with-
out any of the common assumptions. In return, the notion of forecast dominance
acquires a central role. Initially, it may be defined as follows [16]. Given a fam-
ily S = {Sθ : θ ∈ Θ} of (consistent) scoring funcions Sθ we say that forecast
x1 dominates forecast x2 at the distribution G ∈ G if Sθ(x1, G) ≤ Sθ(x2, G)
for every θ ∈ Θ. In such a one-step scenario, the set of all G ∈ G satisfying
this condition could constitute the hypothesis ‘x1 dominates x2’ (with respect
to S). The question how to formulate suitable dominance hypotheses becomes
substantially more involved when, as usually, forecasts xk1, xk2 are produced
step by step and the realizations yk become known before the next forecast in-
stance. Current work on forecast evaluation and comparison emphasizes the joint
dynamic behavior of forecasts and realizations, by using martingale methods
[34, 51], the concept of prediction spaces [23, 52], or comparisons of conditional
predictive ability [20]. Bootstrap tests of dominance hypotheses are presented
in, e.g., [28, 38, 39, 56], based on different dominance concepts and asymptotic
frameworks. An account of the related literature addressing the relations with,
and differences to the present approach is given in the discussion section 7.

Usually, mathematical analyses proceed from statistical models for the data
and the formulation of hypotheses to related tests and their properties. Here we
follow a reverse path. We make no assumptions about possible data generating
mechanisms; instead we focus on a simple-to-implement test procedure and ask
for hypotheses for which this procedure represents a valid test (asymptotically,
at a given level). We take this route because quite often very little is known
about the stochastic nature of the data. In fact, typical forecasting problems
have to cope with complex statistical dependencies, structural change, and lim-

1Expectiles are an asymmetric generalization of the mean; they were introduced by [42] and
have recently received attention in financial risk management. We provide a formal definition
of expectiles in Section 4.
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ited domain knowledge. Thus presumably, most of the usual assumptions do
not apply, with largely unknown consequences, and are hard or impossible to
check. We therefore have recourse to the classical Fisherian technique of exter-
nal randomization, which is completely under one’s control, and treat everything
conditionally on the data (xk1, xk2, yk), k = 1, . . . , n.

The use of external randomization to compare forecast performance dates
back at least to [14]. Here we compare forecast performance across families of
scores, rather than with respect to a single scoring function. Concretely, our
goal is to elaborate on the sign randomization procedure tentatively proposed
in [16, end of Section 3] for testing forecast dominance. The idea is to reject the
hypothesis ‘forecast 1 dominates forecast 2’ if, e.g., supθ∈Θ Dn(θ) exceeds some
critical value cn where

Dn(θ) = n−1/2
∑

k≤n
dk(θ), dk(θ) = Sθ(xk1, yk)− Sθ(xk2, yk)

is the sum of the single score differences dk(θ), properly scaled for the sake of
asymptotics. Unfortunately, determination of cn generally is very diffcult even
asymptotically; it appears impossible without making assumptions about the
stochastic structure of the data. Our suggestion in [16] was to determine cn
such that Pr∗[supθ∈Θ D∗

n(θ) > cn] ≈ α, the test level, where

D∗
n(θ) = n−1/2

∑
k≤n

dk(θ)σk

and Pr∗ exclusively refers to the i.i.d. (“Rademacher”) random variables σk

assuming the values ±1 with probability 1/2 each. This clearly raises questions.
First, how can the randomization distribution be connected to the distri-

bution of the test statistic, particularly when no model assumptions are being
made? Secondly, what precisely is to be understood under the hypothesis ‘fore-
cast 1 dominates forecast 2’? As explained in Section 3.2, there is in fact a
close connection between the two problems that helps to get around both – up
to one missing link: The approximate validity of our one-sided tests depends
on an unproven variant of the celebrated Anderson’s inequality [2]. While for
symmetric hypotheses postulating ‘no difference in predictive performance’ the
classical Anderson’s inequality provides the necessary link, the asymmetry of
dominance hypotheses requires a one-sided version of the inequality which we
state as a conjecture that appears of independent interest.

Obviously, dispensing with model asssumptions cannot mean doing without
any assumptions. However, as detailed in Section 4.1, asssumptions distantly
related to stationarity and (in-)dependence properties of forecasts and observa-
tions will enter in a very indirect manner only, via basic asymptotic stability
and “moderate local clustering” conditions, respectively, which are fulfilled un-
der virtually any of the standard statistical models; cf. Section 9. Building on
this novel asymptotic framework we present, in Section 4, weak convergence
results governing the asymptotics of our test statistics in the important special
cases of quantile and expectile forecasts. For the overall organization of the paper
see the table of contents. R [46] program code to implement the randomization
test is available at https://github.com/FK83/fdtest.

https://github.com/FK83/fdtest
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2. Testing for forecast dominance – Initial considerations

2.1. Formal setup

Let (xk1, xk2, yk), k = 1, . . . , n be a sequence of n triplets where xk1, xk2 are
two point forecasts each for the subsequent observation yk. The triplets are con-
sidered as random variables on a common probability space (Ω,F , Q) endowed
with a filtration {Fk, k = 0, . . . , n} such that (xk1, xk2, yk) is Fk-measurable for
every k, and F0 is trivial. Given a family S = {Sθ, θ ∈ Θ} of scoring functions
Sθ, we compare the two forecasts via the suitably normalized average difference
of their Sθ scores, i.e., we are interested in the stochastic process

θ �→ Dn(θ) = n−1/2
∑

k≤n
dk(θ), dk(θ) = Sθ(xk1, yk)− Sθ(xk2, yk). (2.1)

Initially, the family S may be arbitrary; from Section 4 on it will be specialized
to the elementary scores for quantile and expectile forecasts.

2.2. Notions of forecast dominance

Which notion of forecast dominance fits with the randomizarion test in our
focus? One possibility to introduce forecast dominance in the present framework
is to declare forecast 1 as weakly dominating forecast 2 at Q (with respect to
S) if EQ Dn(θ) ≤ 0 for every θ ∈ Θ. The same condition furnishes a natural
one-sided hypothesis in a testing context:

Hw
− : supθ EQ Dn(θ) = supθ n−1/2

∑
k≤n

EQ dk(θ) ≤ 0. (2.2)

In fact, Hw
− stands for all probability measures Q under which supθ EQ Dn(θ) ≤

0. Note that the hypothesis does not depend on the scaling constant, which could
also be taken as n−1, or the constant 1. The present choice, n−1/2, is simply for
convenience in regard to the large sample asymptotics to be discussed later on.

The hypothesis Hw
− involves unconditional expectations referring to both the

observations yk and the forecasts xk�. This form of Hw
− is at odds with the

dominance concept of Section 1 which is sequential in nature and makes no
assumption about the dynamics of the forecasts, hence is more flexible in this
sense. Better accordance with this initial concept is achieved on replacing the
unconditional expectations EQ dk(θ) in (2.2) by conditional expectations given
the past. This leads upon the following definition of forecast dominance: we say
that forecast 1 dominates forecast 2 at Q if

Mn,Q(θ) = n−1/2
∑

k≤n
EQ [ dk(θ) | Fk−1] ≤ 0 (Q-a.s., θ ∈ Θ) (2.3)

(a.s. is short for almost surely). The corresponding hypothesis, H−, then com-
prises all probabilities Q for which (2.3) holds,

H− : Mn,Q(θ) ≤ 0 (Q-a.s., θ ∈ Θ). (2.4)
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HypothesisH− is defined by conditions on a random process rather than on a pa-
rameter, which is unusual. Nevertheless, it makes for a useful notion of forecast
dominance, and it will prove to be the appropriate hypothesis for the random-
ization test. We also will consider sub-hypotheses of H− including, specifically,
the hypothesis

Hs
− : EQ [ dk(θ) | Fk−1] ≤ 0 (Q-a.s., θ ∈ Θ, k = 1, . . . , n).2 (2.5)

The interpretation of Hs
− is straightforward: It says that forecast 1 is at least

as good as forecast 2 at each time step. In [20], this dominance concept is
referred to as a comparison of conditional predictive ability. In this parlance,
the hypotheses H− and Hs

− express superiority of forecast 1 over forecast 2 in
terms of, respectively, average and step-by-step conditional predictive ability.

Example 2.1. For illustration we consider the case where the forecasters know
one part each of the verifying observation. Specifically, let yk = ηk1 + ηk2 where
ηk�, k ≥ 1, � = 1, 2 are two independent autoregressive processes of the form
ηk� = a ηk−1,� + εk� with the same parameter a and independent innovations
εk� ∼ N (0, τ2� ). Suppose that at any instance k, forecaster 1 has access to ηk1
and the preceding value ηk−1,2 of the second process.3 If a is known, a natural
choice for the prediction of yk is xk1 = ηk1 + a ηk−1,2. By definition,

xk1 = a ηk−1,1 + εk1 + a ηk−1,2 = a yk−1 + εk1,

and if forecaster 2’s prediction similarly is xk2 = ηk2 + a ηk−1,1, then xk2 =
a yk−1+ εk2, and of course, yk = a yk−1+ εk1+ εk2. Taking at first squared error
as the scoring function, the k-th score difference becomes

dk = (yk − xk1)
2 − (yk − xk2)

2 = ε2k2 − ε2k1.

Thus if τ1 ≥ τ2, say, and the innovations εk� are independent of Fk−1 – as in the
common case where Fk is the σ-algebra generated by all triplets (xj1, xj2, yj), j ≤
k –, then E [ dk | Fk−1] ≤ 0, consistent with the intuition that the forecaster hav-
ing access to the more variable component should be better off. The case τ1 = τ2
is an instance of a situation where, a priori, none of the two forecasters is believed
to outperform the other. Here E [ dk | Fk−1] = 0, which holds in fact for every
scoring function S within the present model: by symmetry the joint conditional
distributions of (xkj , yk) = (a yk−1+εkj , a yk−1+εk1+εk2) given Fk−1 are identi-
cal (j = 1, 2), whence the conditional expectation of dk = S(xk1, yk)−S(xk2, yk)
vanishes. In particular, E [dk(θ) | Fk−1] = 0 for every θ ∈ R, where dk(θ) de-
notes the score difference with respect to the elementary scoring functions Sθ

for the mean value; see (1.1). In this case we even have the following.

Proposition 2.1. If τ1 > τ2 then E [dk(θ) | Fk−1] ≤ 0 for every θ ∈ R and
k ≤ n, i.e., Hs

− (and a fortiori H−) holds.

2If the functions θ �→ dk(θ) are sufficiently regular, the conditions (2.4), (2.5) holdQ-a.s. for
all θ ∈ Θ simultaneoulsy. We do not further dwell on this technicality.

3This setup is similar to the simulation example in [23, Section 4.1], except that our variant
includes time series dynamics.
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The example indicates that H− and Hs
− represent meaningful conditions

characterizing different forms of forecast dominance. Further examples may be
found in the recent systematic study [32] of dominance conditions based on the
concept of convex order.

2.3. A fictitious test

For testing the one-sided hypothesis H− (or Hs
−) it is natural to work with

test functionals T = T (Dn) that are monotone in the sense that T (f) ≤ T (g)
whenever f ≤ g pointwise on Θ, an interval in R from now on. Main examples
are the supremum functional and integrals of the positive part of Dn, e.g.

T∞(f) = supθ∈Θ f(θ), Tp(f) =

∫
Θ

f(θ)p+dθ (p ≥ 1, a+ = a ∨ 0). (2.6)

These functionals are convex in f , and accordingly, the generic test functional
T is supposed to be monotone and convex in the real functions f on Θ.

Importantly for the following, in tests ofH− orHs
− based on such a functional

T it suffices to control the error of the first kind at the “boundary” of the
hypothesis, where either Mn,Q(θ) ≡ 0 or EQ [dk(θ) | Fk−1] ≡ 0. Indeed, put

d̃k,Q(θ) = dk(θ)− EQ [ dk(θ) | Fk−1],

and let
D̃n,Q(θ) = n−1/2

∑
k≤n

d̃k,Q(θ) = Dn(θ)−Mn,Q(θ)

denote the conditionally centered version of Dn. Then by monotonicity

PrQ [T (Dn) > c] = PrQ [T (D̃n,Q +Mn,Q) > c] ≤ PrQ [T (D̃n,Q) > c] (2.7)

for every Q ∈ H−, as claimed. Thus, if critical values c̃n could be obtained such

that supQ∈H−PrQ [T (D̃n,Q) > c̃n] ≈ α,4 the rule ‘reject H− if T (Dn) > c̃n’
would give us an approximate level-α test of H−. For compactness of notation
we henceforth drop the index Q, taking the dependence on the underlying prob-
ability measure as self-evident.

An initial step toward the determination of critical values is the following
proposition, for which we need the Lindeberg condition

(A0) lim supn→∞ n−1
∑

k≤n E {dk(θ)2 1 |dk(θ)|>ε
√
n} = 0 (θ ∈ Θ, ε > 0).

Proposition 2.2. Suppose there is some non-random function γ̃ such that
γ̃(θ, θ) > 0, θ ∈ Θ, and for every pair θ1, θ2 ∈ Θ

n−1
∑

k≤n
d̃k(θ1) d̃k(θ2) ≡ γ̃n(θ1, θ2) −→p γ̃(θ1, θ2) as n → ∞. (2.8)

Then under (A0), the finite-dimensional distributions of the process D̃n converge

to those of a mean zero Gaussian process Z̃ with covariance γ̃.

4The notation ‘an ≈ bn’ is short for an − bn → 0 as n → ∞.
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The proposition suggests that for large n the distribution of the test statistic
T (Dn) at the boundary, where Dn = D̃n, can be approximated by the distribu-

tion of the functional T (Z̃) on the paths of the Gaussian process Z̃. Of course,
convergence of the finite-dimensional distributions is insufficient for such a con-
clusion; tightness of the processes D̃n in a suitable function space is required,
too. Furthermore, the distribution of T (Z̃) generally is unknown and may be

difficult to determine. And there still is the problem that the process D̃n in-
volves the (sum of the) conditional expectations E [ dk(θ) | Fk−1], which depend
on the unknown probability Q and would have to be estimated with sufficient
accuracy. In view of these difficulties with the determination of proper critical
values c̃n we refer to the hypothetical test rejecting H− if T (Dn) > c̃n as the
“fictitious test.”

For the sake of exposition we introduce further sub-hypotheses ofH−
5 besides

Hs
−, namely the null-hypothesis H0 of equal performance on average,

H0 : n−1/2
∑

k≤n
E [ dk(θ) | Fk−1] ≡ Mn(θ) = 0 (a.s., θ ∈ Θ), (2.9)

and the null-hypothesis Hs
0 of equal performance at every forecast instance,

Hs
0 : E [ dk(θ) | Fk−1] = 0 (a.s., θ ∈ Θ, k = 1, . . . , n). (2.10)

Evidently, H0, H
s
0 may be regarded as the boundaries of the one-sided hypothe-

ses H−, H
s
−, respectively, representing different forms of equal predictive ability.

Note that Hs
0 ⊂ Hs

− ⊂ H− ⊂ Hw
− , and H0 ⊂ H−; moreover, that a test that

is valid for a given hypothesis remains valid when used as a test of a smaller
sub-hypothesis; it may be invalid when used with a larger hypothesis comprising
the first.

3. Randomization tests

3.1. General idea

Using a standard randomization device (c.f. Section 7), we let σ1, σ2, . . . be
i.i.d. such that σk = ±1 with probability 1/2 each, and define

D∗
n(θ) = n−1/2

∑
k≤n

dk(θ)σk. (3.1)

We reject H− “at level α” if T (Dn) > c∗n where T is a monotone and convex
test functional, and c∗n is determined such that Pr∗[T (D∗

n) > c∗n] ≈ α. Here
Pr∗ exclusively pertains to the random signs σk, the data xk1, xk2, yk being
considered as fixed, non-random quantities. Henceforth we refer to this test as

5In testing for forecast dominance the hypothesis H− is of our primary interest. The other
hypotheses serve to develop the ideas step by step. In particular, the randomization test is
not intended, nor apt, to test e.g. Hs

0 vs. H0, or Hs
− vs. H−.
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the randomization test. Its rationale is as follows. First, if T is monotone, the
argument at (2.7) together with the inclusion H0 ⊂ H− imply

supH−Pr [T (Dn) > c∗n] = supH0
Pr [T (Dn) > c∗n], (3.2)

so that it suffices to control the error of the first kind across H0 where there is no
systematic difference between the two forecasts. Secondly, if there is no difference
in predictive performance between forecasts 1 and 2, changing the labels (i.e.,
the sign of the dk) should not affect the distribution of the test statistic. The
quotes in “at level α” shall underline that the test has (approximative) level α
only formally; the actual test level might differ.

While the randomization test has intuitive appeal and is easy to implement,
its properties are less clear. For instance, calculating the critical value c∗n from
the randomization distribution tacitly supposes that in the indifference case
the distribution of the R

n-valued process θ �→ (d1(θ), . . . , dn(θ)) is invariant
under arbitrary sign changes in the n components (same change for all θ), which
is an even stronger hypothesis than Hs

0 . This raises questions concerning the
approximate range of validity of the test in asymptotic regimes, where fine
distinctions between different hypotheses may become inessential.

Initial answers will be obtained through (partially) heuristic reasoning, uti-
lizing relationships between the randomization and the fictitious test. In Section
4 these considerations are complemented by rigorous weak convergence results
for the case of quantile and expectile forecasts, which validate the heuristics.

3.2. Test validity: Heuristics, and a conjecture

In part a) of the following proposition it is understood that chance enters in
two ways: via the random signs σk, and via the statistical nature of the data
triplets. In part b) we condition on the data, leaving the σk as the sole source
of randomness.

Proposition 3.1. a) Suppose there is a non-random function γ such that
γ(θ, θ) > 0, θ ∈ Θ, and for every pair θ1, θ2 ∈ Θ

n−1
∑

k≤n
dk(θ1) dk(θ2) ≡ γn(θ1, θ2) −→p γ(θ1, θ2). (3.3)

Then under assumption (A0) the finite-dimensional distributions of the process
D∗

n converge to those of a mean zero Gaussian process Z with covariance γ.
b) The latter conclusion also holds under Pr∗ (i.e., conditionally on the data)
provided that the stochastic convergence (3.3) is replaced by the usual (deter-
ministic) convergence, and the Lindeberg condition (A0) is satisfied without the
expectation sign.

Remark 3.1. Regarding part b), note that under Pr∗ the dk(θ) are known
non-random quantities, rendering the expectation sign void. On the other hand,
if in (A0) dk(θ) everywhere is replaced by d∗k(θ) = dk(θ)σk, and E by the
expectation E∗ pertaining to the σk only, then the resulting condition (A0∗) is
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a Lindeberg condition in the usual sense. Anyway, since |d∗k(θ)| = |dk(θ)|, there
is no difference between the conditions with and without the expectation sign,
and we need not distinguish (A0) and (A0∗).

We now address the question for which among the above hypotheses the ran-
domization test is approximately valid, i.e., has size � α. The discussion builds
on distributional approximations to be established later on and on an unproven
conjecture. The argument still is instructive as it helps delineate the key prob-
lem. Let us re-emphasize that in regard to testing for forecast dominance our
focus is on the one-sided hypothesis H−; cf. Footnote 5.

Hypothesis Hs
0 .

Under Hs
0 we have dk(θ) = d̃k(θ), hence Dn = D̃n and γn = γ̃n. Consequently,

the limit processes Z and Z̃ of D∗
n and D̃n are identical in distribution under

Hs
0 , and so are the limit distributions of any sufficiently regular test statistic

(which need not be monotone, for instance). In particular, the critical values
c∗n and c̃n of the randomization and the fictitious test coincide asymptotically.
Therefore, since the latter test is, for large n, approximatively valid for testing
Hs

0 at level α, then so is the former. The point is, of course, that the fictitious
test is valid but infeasible, whereas the randomization test is straightforward to
implement.

Hypothesis H0.
Under this hypothesis the above reasoning does not apply because the covariance
functions γ and γ̃, hence the limit processes Z and Z̃, generally are different.
Nevertheless, the randomization test remains approximatively valid for the hy-
pothesis H0 if the test functional T fits with H0. To substantiate this claim, let
us begin by noting that γ = γ̃ + ψ with a positive definite function ψ given by
the stochastic limit

ψ(θ1, θ2) = p -lim n−1
∑

k≤n
E [ dk(θ1) | Fk−1] E [ dk(θ2) | Fk−1]; (3.4)

cf. Lemma 9.1. For the limit processes this means that Z = Z̃+W in distribution,
where W is an independent centered Gaussian process.

Now in the context of the hypotheses H0, H
s
0 it is natural to consider test

functionals T that are symmetric, T (−f) = T (f), and convex in f . In other
words, the acceptance region A = {f : T (f) ≤ c} is symmetric and convex.
This allows us to control the error probability underH0 by applying a celebrated
inequality. A basic finite-dimensional version of the inequality is as follows.

Anderson’s inequality [2, Corollary 3]. Let X,Y be independent centered R
d-

valued Gaussian random variables. Let g : R
d → R be convex and symmetric,

i.e. g(−x) = g(x) for every x. Then Pr[g(X) ≤ b] ≥ Pr[g(X+Y ) ≤ b] for every
b ∈ R.

In our case X and Y correspond to Z̃ and W sampled discretely at d points
θj ∈ Θ ⊂ R. Examples of functions g corresponding to test functionals T of
interest are g(x) = maxi |xi| and g(x) =

∑
i |xi|p, p = 1 or p = 2. As the
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sampling gets dense, one finds that under H0 and for symmetric, convex test
functionals T one has

Pr [T (Dn) > c∗n]
(1)
= Pr

[
T (D̃n) > c∗n

]
≈ Pr

[
T (Z̃) > c∗n

]
(3.5)

(2)

≤ Pr [T (Z) > c∗n] ≈ Pr∗ [T (D∗
n) > c∗n] ≈ α.

Relation (1) holds because Dn = D̃n under H0, relation (2) by Anderson’s in-
equality along with a standard approximation [2, Proof of Corollary 4], and
the three ‘≈’ signs hold by Propositions 2.2 and 3.1, and by construction, re-
spectively. Note that (3.5) in fact implies supH0

Pr [T (Dn) > c∗n] ≈ α since
H0 ⊃ Hs

0 and the admissible error probability is fully exhausted on Hs
0 .

Hypotheses H−, H
s
−.

The test functionals T = T (f) appropriate for these hypotheses are convex and
monotone in f . The latter property is incompatible with symmetry, which is
an essential ingredient of Anderson’s inequality. We nevertheless could argue
similarly as above if there was a one-sided version of Anderson’s inequality. The
following would be most helpful.

A one-sided Anderson’s inequality? – Conjecture: Let X,Y be indepen-
dent centered R

d-valued Gaussian random variables. Let g : Rd → R be convex
and monotone in the sense that g(x) ≤ g(y) whenever x ≤ y (coordinatewise).
Then there is a universal constant α0 ∈ (0, 1/2] (bold guess: α0 = 1/2) such
that Pr[g(X) ≤ b] ≥ Pr[g(X + Y ) ≤ b] whenever Pr[g(X + Y ) ≤ b] ≥ 1− α0.

Remark 3.2. An important consequence of this inequality is that for test lev-
els α ≤ α0 the randomization test is (approximately) valid for testing the one-
sided hypotheses H−, H

s
−. The argument is parallel to (3.5), with two modifica-

tions: first, since Mn ≤ 0 under H−, H
s
−, instead of (1) we have an inequality,

Pr [T (Dn) > c∗n] ≤ Pr [T (D̃n) > c∗n], by the monotonicity of T ; secondly, re-
lation (2) now follows from the one-sided Anderson inequality, again up to an
approximation as in [2, Proof of Corollary 4].

Remark 3.3. The one-sided Anderson’s inequality is not needed for the ap-
proximative validity of the one-sided randomization test if we only consider
(sequences of) probability measures Qn ∈ H− that are contiguous [54, p. 87]
to some sequence Pn ∈ Hs

0 . This is because under Pn we have γn = γ̃n, hence
γn −→p γ = γ̃, and by contiguity this convergence also takes place under Qn;
cf. Propositions 2.2, 3.1. Therefore the distributions of the limit processes Z and
Z̃ coincide, and the inequality (2) in (3.5) becomes an equality; while the ‘=’
sign (1) there has to be replaced by ‘≤’, again by the monotonicity of T . Thus
in this case too, PrQn [T (Dn) > c∗n] � α, as claimed.

Summary. Asymptotically, the randomization test is an (approximatively) valid
level-α test of the hypotheses H0, H

s
0 . If the conjecture is correct it is also valid

for testing the hypotheses H−, H
s
−.
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It should be emphasized that the above discussion exclusively pertains to the
control of the error of the first kind. Regarding power we only mention that the
argument in 3.3 may as well be applied to alternatives Qn ∈ H+ – satisfying
Mn,Qn ≥ 0 Qn-a.s. for all θ ∈ Θ; cf. (2.4) – that are contiguous to a sequence
Pn ∈ Hs

0 . By monotonicity of T one analogously gets PrQn [T (Dn) > c∗n] � α,
i.e., the randomization test is unbiased against such alternatives. For alternatives
Qn not in H+, where θ �→ Mn,Qn(θ) assumes positive as well as negative values,
the power issue is subtle and will not be pursued systematically in this paper.

3.3. Some comments on the conjectured inequality

In dimension d = 1, the inequality is trivial. Convex, monotone acceptance
regions then are intervals of the form (−∞, b], and if Xi ∼ N (0, vi) (i = 1, 2)
with v1 ≤ v2, then obviously Pr[X1 ≤ b] ≥ Pr[X2 ≤ b] if and only if b ≥ 0, i.e.,
if and only if Pr[X2 ≤ b] ≥ 1/2. (This fits with the bold guess α0 = 1/2.)

For d > 1, a small piece of evidence in favour of the conjecture can be given as
follows. Let A ⊂ R

d be a convex acceptance region of the form A ≡ Ag,b = {x ∈
R

d : g(x) ≤ b} for some convex function g and b ∈ R. (Monotonicity of g is not
required for the argument.) Denote by G = N (0, V ), G+ = N (0, V+) the distri-
butions of the random variables X and X+Y , respectively. The matrices V, V+

and V+ − V are symmetric and (strictly) positive definite. Put K = A ∩ (−A),
which intersection is convex and symmetric, and let R denote the complement
of the union A ∪ (−A). Then for any symmetric probability distribution F on
R

d we have 1 = F (A) + F (−A) − F (K) + F (R) = 2F (A) − F (K) + F (R) or
F (A) = (1 + F (K) − F (R))/2. For the moment being, suppose that R is con-
tained in the set S where the density of G+ exceeds the density of G. Then
G+(R) ≥ G(R), and an application of Anderson’s inequality to the set K,
G+(K) ≤ G(K), yields the desired conclusion,

G+(A) = (1 +G+(K)−G+(R))/2 ≤ (1 +G(K)−G(R))/2 = G(A).

As for the possible inclusion R ⊂ S, note that in terms of the log densities

S = {x : x′(V −1 − V −1
+ )x > log (|V+|/|V |)}.

Now V+ > V implies V −1 > V −1
+ in the Loewner order [27, Corollary 7.7.4(a)].

Therefore Δ = V −1−V −1
+ is positive definite, and noting that L = log (|V+|/|V |)

> 0 we find that S is the complement of the ellipsoid E = {x : x′Δx ≤ L}.
Since Ag,b ↑ R

d as b ↑ ∞ and g is bounded on E, we have for all large enough b
that Sc = E ⊂ A ⊂ Rc, that is, R ⊂ S. But b → ∞ iff the test level α → 0, so
we have proved the following.

Proposition 3.2. If A = Ag,b for some convex function g and b ∈ R, then
there is α0 ∈ (0, 1) such that Pr[g(X) ≤ b] ≥ Pr[g(X + Y ) ≤ b] whenever
Pr[g(X + Y ) ≤ b] ≥ 1− α0.

In our case, X = (Z̃(θ1), . . . , Z̃(θd)), Y = (W (θ1), . . . ,W (θd)) with the θj
becoming dense. Since the covariance function γ̃ of Z̃ generally is unknown, we
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have no control on the eigenvalues of V −1 −V −1
+ . Proposition 3.2 thus does not

guarantee that α0 stays bounded away from zero uniformly in the pair V, V+

and all dimensions d, as it is necessary for the one-sided Anderson inequality.
This uniformity is the core of the problem.

A proof of the conjecture may require additional assumptions, e.g. invariance
of g under coordinate permutations. (Generalizations involving other invariance
conditions appear in [11, 41].) Relevant examples include the convex, monotone
functions g(x) = maxi xi, g(x) =

∑
i(xi)

p
+ (p ≥ 1), which correspond to test

functionals of major interest; cf. (2.6). A proof for such a special case would
already be most worthwhile.

Thus far, our numerical experiments in the bivariate case d = 2 and sim-
ulations with randomly generated covariance matrices for d > 2 yielded no
counterexample. Needless to say, this is irrelevant for the conjecture.

4. Asymptotics for quantile and expectile forecasts

In principle, the developments so far apply to largely arbitrary functionals φ
on the class G of predictive distributions G and related families of consistent
scoring functions Sθ. Hereafter we focus on functionals representing a quantile
or an expectile. Given α ∈ (0, 1), the α-expectile of G is defined as the unique

solution t to the equation (1−α)
∫ t

−∞(t−y) dG(y) = α
∫ ∞
t

(y− t) dG(y) [42]; for
α = 1/2 one obtains the mean value functional. As usual, q = inf{y : G(y) ≥ α}
is the (lower) α-quantile of G, which here is identified with its right-continuous
CDF. The median of G obtains when α = 1/2.

As mentioned in Section 1, forecast dominance with respect to all consistent
scoring functions is, for these functionals, equivalent to dominance with respect
to a certain linearly indexed family of “elementary” scoring functions Sθ, such
that any consistent scoring function can be written as

S(x, y) =

∫
Sθ(x, y) dM(θ), (4.1)

where M is a nonnegative Borel measure on R. Different functions S(x, y) are
characterized by different measures M . From [16, Theorem 1], the elementary
scores for α-quantiles are

Sθ(x, y) = {1y<x − α} {1θ<x − 1θ<y}; (4.2)

setting M in (4.1) equal to the Lebesgue measure results in the popular ‘piece-
wise linear’ score considered in quantile regression [30]. For α-expectiles,

Sθ(x, y) = |1y<x − α | {(y − θ)+ − (x− θ)+ − (y − x) 1θ<x}; (4.3)

again, the most popular choice of M is the Lebesgue measure, in which case
S(x, y) becomes the asymmetric squared error considered in [42].

The differences dk(θ) = Sθ(xk1, yk) − Sθ(xk2, yk) of the elementary scores
are distinguished by a particular property: dk(θ) factorizes into the product
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of an identification function I that depends only on the observation, times a
difference of indicator functions depending only on the forecasts. Specifically,
dk(θ) = I(θ, yk){1θ<xk1

− 1θ<xk2
} [16, Appendix A3]. We shall utilize this fact

to establish weak convergence results for quantile and expectile forecasts com-
plementing those of Propositions 2.2, 3.1 about finite-dimensional distributions.

4.1. Conditional weak convergence of D∗
n

The purpose of this section is to establish the approximation Pr∗[T (D∗
n) > c∗n]

≈ Pr[T (Z) > c∗n] figuring in the display (3.5) that is central to our argument.
The asymptotics involves conditioning on the data xk1, xk2, yk, so that the sign
variables σk form the only source of randomness. We thus avoid having to make
assumptions about the stochastic structure of the data.

Of basic importance are the second (cross-)moments of the process D∗
n,

γn(θ1, θ2) = ED∗
n(θ1)D

∗
n(θ2) = n−1

∑
k≤n

dk(θ1)dk(θ2),

ρn(θ1, θ2)
2 = E (D∗

n(θ2)−D∗
n(θ1))

2
= n−1

∑
k≤n

(dk(θ2)− dk(θ1))
2,

and the continuity moduli of the empirical distributions Gn, Fn1, Fn2 of the
observations yk and the forecasts xk1, xk2, respectively.

Put mk = |yk − xk1| ∨ |yk − xk2|, and let

for quantiles: Hn = Gn + Fn1 + Fn2 ,

for expectiles: Hn = Fn1 + Fn2 .

Assumptions.

(C1) (3.3) holds: there exists a function γ such that γ(θ, θ) > 0, θ ∈ R, and

n−1
∑

k≤n
dk(θ1) dk(θ2) = γn(θ1, θ2) −→ γ(θ1, θ2) (n → ∞, θ1, θ2 ∈ R).

(C2) There exist numbers κ ∈ (0, 1), B > 0, n2 ≥ 1 and a sequence βn → 0
such that

sup 0≤θ2−θ1≤r Hn([θ1, θ2]) ≤ B (r ∨ βn)
κ, r ∈ [0, 1], n ≥ n2.

(C3) supn n−1
∑

k≤nm
4
k ≡ M < ∞ (only for expectiles).

(C4) There exist numbers ν > 0, A > 0, and n1 ≥ 1 such that

(Fn1 + Fn2)([−θ, θ]c) ≤ Aθ−ν , θ ≥ 1, n ≥ n1 .

Discussion of the assumptions. In practice, the test functionals in (2.6) may
be evaluated over a bounded interval Θ in the full θ-domain R and the score
difference processes restricted correspondingly. Of course, forecast dominance
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then holds only with respect to all mixtures S =
∫
Sθ dM(θ) of scores Sθ with

a measure M supported by Θ, which would often be considered as sufficient.
Assumption (C1) is a basic asymptotic stability requirement that would hold

‘in probability’ under virtually any standard statistical model. However, as in
part b) of Proposition 3.1 there is no probability governing the data, hence no
convergence in probability (see also Remark 3.1).

The uniform Hölder condition assumed in (C2) requires that the data xk1, xk2,
yk are well dispersed and do not heavily cluster locally. The lower bound r ≥ βn

on the width of the increments is unavoidable because of the (asymptotically
small) jumps of the empirical CDFs.

Assumption (C3) only matters for expectiles. To substantiate it, one may ar-
gue that reasonable forecasts should covary with the observations, which would
limit the deflections of the quantities mk. (C3) is stronger than boundedness
on average of the m2

k, which appears as the minimal condition to impose. In
return, it implies a Lindeberg type condition holding uniformly in θ,

limn→∞ supθ n−1
∑

k≤n
dk(θ)

2 1 |dk(θ)|>ε
√
n = 0 for every ε > 0. (4.4)

Assumption (C4) restrains the large fluctuations of the forecasts xk1, xk2 and
allows us to control the tail behavior of the functions θ �→ ED∗

n(θ)
2.

Altogether, the assumptions appear weak as well as natural for the quan-
tile and expectile functionals and for continuously distributed data. They only
pertain to quantities computable from the data and do not presuppose any sta-
tistical model. On the other hand, if a probabilistic model is assumed, they
hold with arbitrarily high probability in many of the customary settings. See
the corresponding discussion in Section 9, where (C2), (C4) are verified under
conventional stationarity assumptions.

Hereafter, �∞0 denotes the space of all bounded measurable functions on R

vanishing at infinity equipped with the sup-norm [54]. The sample paths of D∗
n

are in �∞0 since the elementary scoring functions of quantiles and expectiles are
piecewise linear and vanish outside the smallest interval including all forecasts
xk�. In order to avoid problems related to the jumps ofD∗

n, we henceforth assume
that the critical values c∗n are calculated using a continuous version D̄n of D∗

n

obtained by linear interpolation of the D∗
n-values on the grid {jβn : j ∈ Z},

where βn is as in Assumption (C2). That is, the c∗n are supposed to satisfy
Pr∗ [T (D̄n) > c∗n] ≈ α. Since the grid becomes arbitrarily fine as n gets large
this modification is immaterial; see Lemma 8.2.

Theorem 4.1. Under the assumptions (C1) to (C4) the processes {D̄n(θ), θ ∈
R} converge weakly in �∞0 to a mean zero Gaussian process {Z(θ), θ ∈ R} with
covariance function γ and continuous sample paths.

The theorem states weak convergence under Pr∗, i.e., conditionally on the
data. A fortiori, this convergence holds unconditionally as long as the limit
covariance function γ, hence the limit process Z, is unique. See Proposition 3.1
for a related discussion.
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As a consequence of the theorem, T (D̄n) converges weakly in distribution to
T (Z) for any continuous functional on the space �∞0 . This covers the supremum
statistic T∞(f) = supθ∈R

f(θ) as one special case of interest. Other examples
such as the integral type functionals Tp(f) =

∫
R
f(θ)p+ dθ (p = 1, 2) require a

sharpening of assumption (C4) for the control of the tail masses.

Corollary 4.1. Assume (C1) to (C4). Then T1(D̄n) converges weakly in dis-
tribution to T1(Z) if the exponent ν in (C4) satisfies ν > 2 in the quantile, and
ν > 4 in the expectile case. For the functional T2 the corresponding conditions
are ν > 1 in the quantile, and ν > 2 in the expectile case.

The conditions on ν can be dropped if the integration in the functionals
T1, T2 is restricted to a finite interval Θ ⊂ R (cf. (2.6)). The simplification
occurs because, in this case, the functionals are continuous on the space �∞(Θ)
of all bounded measurable functions on Θ endowed with the sup-norm, and
because weak convergence in �∞0 implies weak convergence in �∞(Θ).

4.2. Weak convergence of D̃n

Here the focus is on the approximation Pr [T (D̃n) > c∗n] ≈ Pr [T (Z̃) > c∗n] in
(3.5), whose verification completes our proof of the validity of the randomization
test (apart from the conjecture). The setting is unconditional, so ‘Pr’ refers to
some underlying probability measure governing the joint stochastic behavior of
the data triplets. For simplicity we only deal with weak convergence on finite
intervals Θ, that is, in �∞(Θ).

The necessary distinction between the quantile and the expectile case is a bit
tedious. We denote the sequentially conditioned versions of the empirical data
distributions as

Gc
n(J) =

1

n

∑
k≤n

Pr[yk ∈ J | Fk−1], F c
n�(J) =

1

n

∑
k≤n

Pr[xk� ∈ J | Fk−1],

� = 1, 2, J an interval, and put as earlier Hc
n = Gc

n +F c
n1 +F c

n2 in the quantile,
and Hc

n = F c
n1 + F c

n2 in the expectile case. Note that F c
n� = Fn� in the common

case of forecasts xk� that are Fk−1-measurable. The following assumptions are
similar to those in the previous section, except that convergence is ‘in probabiliy’
and expectations are being taken at the appropriate places. A justification of
assumption (A2) is given in Section 9.

Assumptions.

(A1) (2.8) holds: there exists a function γ̃ such that γ̃(θ, θ) > 0 for all θ, and

n−1
∑

k≤n
d̃k(θ1) d̃k(θ2) = γ̃n(θ1, θ2) −→p γ̃(θ1, θ2) (n → ∞, θ1, θ2 ∈ R).

Given any b > 1 there exists a number p ≥ 1 such that (A2) and (A3) hold:
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(A2) There are numbers B > 0, n2 ≥ 1 and a sequence βn → 0 such
that for both Kn = Hn and Kn = Hc

n

sup 0≤θ2−θ1≤r EKn([θ1, θ2])
p ≤ B (r ∨ βn)

b, r ∈ [0, 1], n ≥ n2.

(A3) supn n−1
∑

k≤nEm4p
k < ∞ (only for expectiles).

As before we consider a continuous version of D̃n obtained by linear in-
terpolation on the grid {jβn : j ∈ Z}, βn as in Assumption (A2), which
we denote as D̂n. Accordingly, the approximation to be established becomes
Pr [T (D̂n) > c∗n] ≈ Pr [T (Z̃) > c∗n].

Theorem 4.2. Assume (A1) to (A3). For every bounded interval Θ ⊂ R the
processes {D̂n(θ), θ ∈ R} converge weakly in �∞(Θ) to a mean zero Gaussian

process {Z̃(θ), θ ∈ R} with covariance function γ̃ and continuous sample paths.

For bounded Θ the functionals T∞, T1, T2, and in fact all Tp, 1 ≤ p ≤ ∞ (see
Equation 2.6) are continuous on �∞(Θ). Therefore the desired approximation is
immediate from the following.

Corollary 4.2. Assume (A1) to (A3). Then for any 1 ≤ p ≤ ∞ the random
variable Tp(D̂n) converges weakly in distribution to Tp(Z).

5. Monte Carlo simulations

Here we study the randomization test in finite sample scenarios involving mean
(i.e., expectile) and quantile forecasts. The test statistics under examination are
the positive part integrals Tp(Dn) =

∫
Dn(θ)

p
+ dθ, p = 1, 2, considered as tests

of the hypothesis Hs
− saying that method 1 dominates method 2 at each time

step. All simulation results are based on 1 000 Monte Carlo iterations.

5.1. Mean forecasts

We first present simulation results for the illustrative example from Section 2.2.
One of the variances is fixed, τ1 = 1, while τ2 is varied. By Proposition 2.1
the hypothesis Hs

− is satisfied if τ2 ≤ 1, and violated otherwise. We consider
samples of n = 200 observations each, which in an economic context is empiri-
cally relevant for quarterly time series data focusing on the postwar period. The
top panel of Figure 1 summarizes our results for the case where the regression
parameter a = 0.4; similar results obtain for other values of a. The figure shows
that the performance of the test is quite satisfactory: It comes close to its nom-
inal level 5% at the boundary of the hypothesis (τ2 = 1), and it is conservative
in its interior (τ2 < 1), as predicted by the conjectured one-sided Anderson in-
equality. The part of the figure in which τ2 > 1 yields evidence on the power of
the test. Naturally, we find that the power increases monotonically in τ2 (i.e.,
clearer violations of the hypothesis imply higher rejection rates). Furthermore,
the functional T1 has a slightly higher power than T2.



Randomization test 3775

Fig 1. Size and power of the randomization test for mean forecasts (top panel) and quantile
forecasts (bottom panel). Rejections are at 5% level, marked by horizontal line. In each panel,
the dark gray area indicates the parameter range for which the hypothesis Hs

− is true, such
that the rejection rate should be at most 5%. Test statistics T1 and T2 are defined at (2.6).
Results are based on 1 000 Monte Carlo iterations; within each iteration, the test is computed
based on 1 000 simulated sign randomizations. See Sections 5.1 and 5.2 for further details.

5.2. Quantile forecasts

We take the observations yk to follow an AR(1)-GARCH(1,1) process in the
spirit of [6]:

yk = 0.03 + 0.05 yk−1 + skεk

s2k = 0.05 + 0.9 s2k−1 + 0.05 s2k−1ε
2
k−1

with independent “shocks” εk ∼ N (0, 1). The parametrization follows [44, Sec-
tion 3], thereby intending to replicate the empirical features of daily stock re-
turns. Forecasters are asked to state the α = 0.05-quantile of the process, con-
ditional on the information Fk−1 available up to and including time k − 1.

To devise a simulation model for two imperfect forecasts, let us first conceive
of an oracle. If the oracle knew the data generating mechanism and the initial
values s0, ε0, y0, she could successively compute sk from the observations yj , j <
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k. Let Fk denote the σ-algebra generated by the variables s0, ε0, yj , j ≤ k. Then
(assuming the regression parameters are known) yk | Fk−1 ∼ N (mk, s

2
k), where

we write mk = 0.03 + 0.05 yk−1 for convenience. Thus for our oracle, the ideal
quantile forecast would be the α-quantile of the conditional distribution of yk,
namely xk,ideal = mk+skzα where zα = Φ−1(α) is the ideal forecast in standard
units. This leads us to mimic lack of knowledge and forecast errors by assuming
that the issued forecasts are of the form xk� = mk + skzk� (� = 1, 2) where the
zk� are random perturbations of zα that are independent among themselves and
from all other variables. Specifically, we assume that the deflections from zα are
Gaussian in the log odds scale,

zk� = Φ−1

[
1

1 + e−β−uk�

]
(β = log

α

1− α
, uk� ∼ N (0, τ2� ), � = 1, 2). (5.1)

Intuitively, forecast 1 should be better than forecast 2 if τ1 < τ2, since the
deflections from the ideal forecast are then smaller for forecast 1. It can indeed
be shown that Hs

− holds if and only if τ1 ≤ τ2; cf. end of Section 9.
In our simulations (bottom panel of Figure 1), τ1 = 0.3 is fixed, and τ2 varies

from 0.05 to 0.5. The quantile level is α = 0.05, and the sample size is 2 000.
Both choices are in line with the empirical case study in Section 6.2, where we
analyze daily financial return data. Again, as in the previous example, the course
of the power as a function of τ2 supports our claim that the randomization test
is approximatively valid for testing Hs

−.

6. Case studies

6.1. Mean forecasts

For a practical application of the randomization test we consider the recession
probability forecasts studied in [48], using the updated data set analyzed by
[16, Section 4]. The data set covers n = 186 quarterly observations from 1968
to 2014, and two competing forecasting methods: Judgmental forecasts from a
survey of professional forecasters (SPF), and forecasts from a simple statistical
model (Probit). Both forecasts are one quarter ahead, and are out-of-sample.6

As shown in [16, Figure 6], the survey based forecasts attain better elementary
expectile scores for most thresholds θ ∈ [0, 1]. We specifically consider two test
problems where either the survey forecast or the model based forecast dominates
the respective other one under the maintained hypothesis.

The top panel of Table 6.1 summarizes the results, which are based on 1 000
simulated sign randomizations. The hypothesis that Probit dominates SPF is
rejected at the one percent significance level. By contrast, there is no evidence
against the hypothesis that SPF dominates Probit. These results conform with

6The statistical model is re-estimated recursively at each forecast date in order to mimic
a realistic forecast situation. The forecast data set is available within the R package murphy-
diagram [29].
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those of [16] who consider informal (pointwise) confidence intervals. Remark-
ably, the randomization test here proves powerful enough to yield interpretable
conclusions in a relatively small data set.

Table 1

Randomization test results for recession probability forecasts (top panel) and quantile
forecasts of stock returns (bottom panel).

Mean forecasts (recession probabilities)

Hypothesis (H−) Test statistic P-value

SPF dominates Probit T1 0.987
SPF dominates Probit T2 0.986
Probit dominates SPF T1 0.010
Probit dominates SPF T2 0.002

Quantile forecasts (stock returns, α = 0.05)

Hypothesis (H−) Test statistic P-value

QRRV dominates QRABS T1 0.646
QRRV dominates QRABS T2 0.916
QRABS dominates QRRV T1 0.000
QRABS dominates QRRV T2 0.000

6.2. Quantile forecasts

In a second case study we consider quantile forecasts of daily returns yk of the
Dow Jones Industrial Average (DJIA), using data that is freely available at
http://realized.oxford-man.ox.ac.uk/. Quantiles at low levels α are com-
monly used as measures for financial risk, and are referred to as Value-at-Risk
at level α (e.g. [40], Sections 1 and 2). We specifically consider prediction of the
five percent quantile of yk, given information until the previous business day
k− 1. In a first specification, which we denote by QRRV , the predicted quantile
is given by

xk1 = β̂0 + β̂1|RVk−1|, (6.1)

where RVk−1 is the so-called realized volatility computed from intra-daily data
(e.g. [1]). We obtain parameter estimates β̂0, β̂1 by quantile regression [30], based
on a rolling window of 2 000 observations.7 Recent evidence [60] suggests that
the specification in (6.1) compares favorably to a number of more complicated
alternatives. Our second specification (QRABS) is analogous to (6.1), except
that it employs the lagged absolute return |yk−1| in place of realized volatility
|RVk−1|. The two specifications are motivated by the fact that realized volatility

7The first rolling window ends on November 19, 2008; the last window ends on May 4,
2017. We use each rolling window to compute parameter estimates and form a forecast for the
next business day. Our data set thus covers 1 964 forecast/realization pairs that we use for
evaluation. Our implementation of quantile regression is based on the function rq from the R
package quantreg [31].

http://realized.oxford-man.ox.ac.uk/
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and absolute returns proxy for the variability of financial returns, which is well
known to fluctuate over time (cf. Section 5.2). Both measures should thus be
informative about the quantiles of yk, given Fk−1.

The bottom panel of Table 6.1 presents the results of the comparison. We
find no evidence against the hypothesis that QRRV dominates QRABS ; however,
we clearly reject the converse hypothesis that QRABS dominates QRRV . This
suggests that intra-daily information encoded in realized volatility contains more
predictive content than daily returns.8 Similar conclusions were reached in [58].
As in the first case study, the results are qualitatively robust across the two test
statistics T1, T2. In summary, the Monte Carlo simulations and the case studies
point to the potential usefulness of the proposed randomization test.

7. Discussion

We have studied randomization type tests of hypotheses implying that a quan-
tile or expectile forecast is superior to a competitor, uniformly across all (or a
large class of) consistent scoring functions. Variants of this topic recently have
gained considerable interest, particularly in the econometrics literature. Tests
of dominance relations in quantile and expectile forecasts are studied in [56]
using the bootstrap, while in [58] the authors focus on the so-called expected
shortfall functional, relying on a combination of pointwise tests and multiple
testing corrections. These two papers are closest to the present work in that
they base forecast comparisons on consistent scoring functions – arguably the
proper concept for this purpose [21] – and their mixture representation [16]. We
next provide a more detailed discussion of related literature.

Dominance concept. Our dominance concept aims at the direct comparison
of forecasts on a purely empirical basis. This is distinct from more theoretically
oriented concepts like nested or overlapping information sets [26, 32], or the no-
tion that forecast x1 ‘encompasses’ forecast x2 [18, Section 17.1]. In a nutshell,
forecast encompassing asks whether a user who has access to both forecasts
may safely ignore x2, judging from some given criterion. By contrast, our no-
tion of dominance asks whether a user who must choose between the forecasts
would prefer x1 over x2, in regard to any admissible criterion. Tests of stochastic
dominance are considered in [28, 38, 39]. Analogously to forecast dominance,
stochastic dominance stands for superiority (of some procedure compared to
another) that holds uniformly across a whole class of criteria. In stochastic
dominance, this class comprises those functions of e, the residuals or forecast
errors from some regression type model, that increase as e moves away from
zero, or else, are convex in e. In forecast dominance as here, the relevant criteria
are the consistent scoring functions, or some subclass thereof.

Modeling assumptions. Our stance is to try to avoid assumptions about pos-
sible data generating mechanisms as far as possible, on the grounds given in the
introduction. For a similar view see [20] and [28, p. 1308 and Sect. 5], where

8We obtain the same result when using the lagged squared return, y2k−1, rather than the

lagged absolute return, |yk−1|, in the second specification.
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the common stationarity assumption is weakened to distributional heterogene-
ity. Consequently our framework puts no restrictions on the type of forecasts or
their connection with the observations, and it allows for great freedom regarding
their dynamics. The lack of an explicit statistical model and the need to har-
monize the underlying statistics with the surrogate external randomization lead
us to state forecast dominance hypotheses in terms of conditional expectations
expressing conditional predicitive ability, as proposed in [20]. The step-by-step
character of the forecast scheme renders this an attractive, natural alternative
to the familiar formulations using unconditional expectations; see Example 2.1
or the simulation model in Section 5.2. We note, however, that our hypotheses
differ from those of [20]: there the focus is on single-criterion two-sided (equal-
ity) testing, whereas in the present paper the focus is on simultaneous one-sided
(inequality) testing. In the setup of [20], simple least squares regressions yield
attractive tests for the null-hypothesis of equal conditional predictive ability
that are not available in our case.

Test procedures. The idea of external randomization has long played an im-
portant role in statistics (see e.g. [15, Chapter 4.4], as well as [9] on the related
idea of permutation), and it is central to our approach. Randomization for the
task of forecast comparison was used in, e.g., [13, 14], and it has been applied to
ensure that a well-defined limiting distribution exists in the first place [4, 10, 53].
Our test construction is similar in spirit to the ‘conditional p-value’ approach of
[24] and the ‘wild bootstrap’ proposed in [35]. In the context of functional data,
the use of maximum and integral type test statistics like ours is standard; for
weighted versions cf. [39]. Since the limit distributions are unknown, the deter-
mination of critical values makes it necessary to resort to resampling methods,
customarily various forms of (block [33]) bootstrap as in [28, 38, 39, 56]. While
this is often the method of choice, its application in the present one-sided,
high-dimensional context is not without problems. These partly are due to the
nonstandard asymptotics of the bootstrap-based tests resulting from degenerate
limit processes; see e.g. [28, 39, 56]. Noteworthily at this point, the Gaussian
limit processes in our setting are entirely regular.

Test size control. Intuition and classical test theory suggest that in order to
control the error of the first kind, it might suffice to control it on the boundary
of the hypothesis. Unfortunately, what constitutes the boundary is subtle, and
a focus on least favorable cases is inadequate [25]. For an extensive discussion
of these points in a different framework (stochastic dominance) see Linton et
al. [39], who emphasize the importance, and difficulty, of a uniform control of the
test size (see also [28, p. 1320]) and develop a sophisticated bootstrap procedure
for this purpose (in the i.i.d. case). Still, even there uniformity is achieved only
if certain subsets of the hypothesis are excluded. We are actually not aware of
any fully satisfactory result in this regard; neither is the issue clarified in the
present paper. However, our approach suggests a potentially elegant solution at
least: if the one-sided Anderson’s inequality were true, our tests would be valid
uniformly onH−.

9 The discussion in Section 3.2 elaborates the central role of our

9To be read as: uniformly on those parts of H− where the weak convergence in Theorems
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corresponding conjecture. A resolution of the issue, whether in the positive or in
the negative, would certainly be of great interest. We may point out, however,
that independently of the final status of the conjecture, the randomization test
does behave properly for probabilities that are contiguous to the strict null-
hypothesis Hs

0 ; cf. Remark 3.3.

8. Proofs

Proof of Proposition 2.1. We may refer to [32, Example 2.3], wherein our
earlier proof is much simplified. To see the relevance of Theorem 2.1 of that
paper for the elementary scores note that the mean value is an α = 1/2-expectile
whence eq. (4.3) assumes the form Sθ = ϕ(y) − ϕ(x) − (y − x)ϕ′(x) with the
convex function ϕ(x) = 1

2 (x− θ)+. �

Proof of Proposition 2.2. Given θ1, . . . , θm ∈ R, c1, . . . , cm ∈ R, put Xn =∑
j cjD̃n(θj) and V =

∑
i,j ci cj γ̃(θi, θj). It suffices to show that the distribu-

tion of Xn converges to N (0, V ). We have Xn =
∑n

k=1 Xkn where

Xkn =
∑

j
cj n

−1/2 d̃k(θj), k = 1, . . . , n.

In order to apply [36, Theorem 2.3] to the martingale difference array {Xkn},
we note at first that (2.8) implies∑

k≤n
X2

kn =
∑

i,j
ci cj n

−1
∑

k≤n
d̃k(θi) d̃k(θj) −→p

∑
i,j

ci cj γ̃(θi, θj) = V.

(8.1)
Thus if

E
(
maxk≤n X

2
kn

)
→ 0 as n → ∞ (8.2)

holds, the two conditions (a), (b) of [36, Theorem 2.3] are satisfied, and in view
of (8.1) we are done. (We may asssume V = 1.) Now

maxk≤n X
2
kn ≤ 2m

n

∑
j
c2j

{
maxk≤n dk(θj)

2 +maxk≤n E[ dk(θj)
2 | Fk−1]

}
by Jensen’s inequality, and since m and the cj are fixed, it suffices to show that
n−1 times the expectation of the two maxima in curly brackets tends to zero
for every j. Let ε > 0. For any θ we have

E
(
maxk≤n n−1E [ dk(θ)

2 | Fk−1]
)

≤ E
(
maxk≤n n−1E [ dk(θ)

2 1 |dk(θ)|>ε
√
n | Fk−1]

)
+E

(
maxk≤n n−1E [ dk(θ)

2 1 |dk(θ)|≤ε
√
n | Fk−1]

)
≤ n−1 E

(∑
k≤n

E [ dk(θ)
2 1 |dk(θ)|>ε

√
n | Fk−1]

)
+ ε2

= n−1
∑

k≤n
E {dk(θ)2 1 |dk(θ)|>ε

√
n}+ ε2.

4.1, 4.2 holds uniformly. Clearly, such restrictions always apply when asymptotics is involved.
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The same upper bound holds for E
(
n−1 maxk≤n dk(θ)

2
)
. Since ε was arbitrary,

(8.2) follows by assumption (C0). �

Proof of Proposition 3.1. The proof follows the same lines as the proof of
Proposition 2.2. It suffices to replace d̃k(θ) by dk(θ)σk, define Fk as the σ-
algebra generated by the random variables σ1, . . . , σk, and observe that |σk| = 1
and E [ dk(θ)σk | Fk−1] = 0. See Remark 3.1. �

Toward the proofs of Theorem 4.1 and Corollary 4.1, we assume throughout
that (C1) to (C4) are fulfilled. We begin with some first consequences of the
assumptions. Constants generally depend on whether they refer to quantiles
or expectiles, which is indicated by subscripts q, e, respectively. Recall that
expectations and probabilities are conditional, and refer to the random signs
only. For simplicity we nevertheless use the “un-starred” symbols E, Pr.

Lemma 8.1. (i) There are constants Lq,e such that

supn

∫ ∞

−∞
ED∗

n(θ)
2dθ ≤ Lq,e. (8.3)

(ii) There are constants Aq,e and νq = ν, νe = ν/2 (cf. (C4)) such that

ED∗
n(θ)

2 ≤ Aq,e |θ|−νq,e , |θ| ≥ 1, n ≥ n1 . (8.4)

(iii) There are constants Bq,e and λq = κ/2, λe = κ/4 (cf. (C2)) such that

ωn(r) = sup 0≤θ2−θ1≤r ρn(θ1, θ2) ≤ Bq,e (r ∨ βn)
λq,e , r ∈ [0, 1], n ≥ n2. (8.5)

Proof. For generalized quantiles the individual score differences are of the form

dk(θ) = I(θ, yk) δk(θ), δk(θ) = 1θ<xk1
− 1θ<xk2

(8.6)

where I(θ, yk) is the respective identification function. Specifically for α-quantiles,
the identification function is I(θ, y) = 1y≤θ − α, whence |dk(θ)| ≤ |δk(θ)|. For
α-expectiles, I(θ, y) = (1− α) (θ − y)+ − α (y − θ)+, whence

|dk(θ)| ≤ |yk − θ| |δk(θ)| ≤ {|yk − xk1| ∨ |yk − xk2|} |δk(θ)| = mk |δk(θ)| . (8.7)

The second inequality is easily seen to follow from the fact that |δk(θ)| equals
one if θ lies between xk1 and xk2, and is zero otherwise. This observation also
shows that

∫
δk(θ)

2dθ = |xk1 − xk2| ≤ 2mk, whence by Hölder’s inequality and
(C3)∫

ED∗
n(θ)

2dθ = n−1
∑

k≤n

∫
dk(θ)

2dθ ≤ n−1
∑

k≤n
2(mk)

s+1 ≤ 2M
s+1
4

where s = 0 and s = 2 for quantiles and expectiles, respectively, which is (i).
Similarly, if |θ| ≥ 1, n ≥ n1, using (C4) we get for quantiles

ED∗
n(θ)

2 ≤ n−1
∑

k≤n
|δk(θ)| ≤ (Fn1 + Fn2)([−|θ|, |θ|]c) ≤ A |θ|−ν ,
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while for expectiles, (8.7), (C3), and Cauchy-Schwarz give

ED∗
n(θ)

2 = n−1
∑

k≤n
dk(θ)

2 ≤
{[

n−1
∑

k≤n
m4

k

] [
n−1

∑
k≤n

|δk(θ)|
]}1/2

≤ {MA |θ|−ν}1/2 , (8.8)

which settles (ii). As for the increments, let θ1 < θ2 and put δk(θ1, θ2) = δk(θ2)−
δk(θ1). Writing

dk(θ2)− dk(θ1) = {I(θ2, yk)− I(θ1, yk)}δk(θi) + I(θj , yk)δk(θ1, θ2)

with either i = 1, j = 2 or i = 2, j = 1, whichever is more convenient, we get for
α-quantiles

|dk(θ2)− dk(θ1)| ≤ 1θ1<yk≤θ2 + |δk(θ1, θ2)| , (8.9)

and for α-expectiles

|dk(θ2)− dk(θ1)| (8.10)

≤ |θ2 − θ1|(|δk(θ1)| ∨ |δk(θ2)|) + {|yk − θ1| ∧ |yk − θ2|} |δk(θ1, θ2)|
≤ |θ2 − θ1|(|δk(θ1)| ∨ |δk(θ2)|) + {|yk − xk1| ∨ |yk − xk2|} |δk(θ1, θ2)|.

The last inequality may be verified similarly as at (8.7) on observing that
|δk(θ1, θ2)| = 1 if exactly one of xk1, xk2 lies in the interval [θ1, θ2), and is
zero otherwise. This observation also shows that

n−1
∑

k≤n
|δk(θ1, θ2)| ≤ Fn1([θ1, θ2)) + Fn2([θ1, θ2)). (8.11)

For quantiles we then get by (8.9)

ρn(θ1, θ2)
2 ≤ 2 {Gn((θ1, θ2]) + Fn1([θ1, θ2)) + Fn2([θ1, θ2))}
≤ 2Hn([θ1, θ2]), (8.12)

while for expectiles the estimates (8.10), (8.11) and Cauchy-Schwarz give simi-
larly as at (8.8)

ρn(θ1, θ2)
2 ≤ 2 (θ2 − θ1)

2 + 2 {MHn([θ1, θ2]}1/2 . (8.13)

Assertion (iii) thus follows from (C2). �
Lemma 8.2. Up to adjustments of the constants, the assertions of Lemma 8.1
also hold for the interpolated processes D̄n, with the following improvement of
(iii):

sup 0≤θ2−θ1≤r E(D̄n(θ2)− D̄n(θ1))
2 ≤ Cq,e r

λq,e (r ∈ [0, 1], n ≥ n2) (8.14)

(i.e., with rλq,e rather than (r ∨ βn)
λq,e). Furthermore,

limn→∞ supθ E(D̄n(θ)−D∗
n(θ))

2 = 0, (8.15)

limn→∞ E

∫
(D̄n(θ)−D∗

n(θ))
2dθ = 0. (8.16)
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Proof. For convenience we intermediately write βn ≡ ε. Given θ, there is exactly
one � ∈ Z and w ∈ [0, 1) such that θ = (1 − w)�ε + w(� + 1)ε. By Jensen’s
inequality

E(D̄n(θ)−D∗
n(θ))

2

≤ n−1
∑

k≤n

{
w [dk((�+ 1)ε)− dk(θ)]

2 + (1− w)[dk(θ)− dk(�ε)]
2
}

≤ ωn(ε) ≡ ωn(βn),

which proves (8.15). Turning to (8.16), let us write Δk(θ) for the k-th term in
the above sum. We first consider the quantile case. Recalling that � and w are
uniquely determined by θ we get by (8.9),

Δk(θ) ≤ 2 1�ε<yk≤(�+1)ε + 2 |δk(�ε, (�+ 1)ε)| .

The right-hand side is always ≤ 4, and it vanishes except if both θ and any
of yk, xk1, or xk2 lie in the interval [�ε, (� + 1)ε). Thus for fixed k there are
at most 3 intervals of length ε on which the function θ �→ Δk(θ) is non-zero.
Consequently,

∫
Δk(θ)dθ ≤ 12ε, so taking the average over k settles the quantile

case. A similar reasoning applies in the expectile case. By (8.10),

Δk(θ) ≤ 2 ε2{|δk(�ε)| ∨ |δk((�+ 1)ε)|}+ 2m2
k |δk(�ε, (�+ 1)ε)| .

The term |δk(�ε)| ∨ |δk((� + 1)ε)| ≤ 1 is nonzero at most if θ ∈ [xk1 ∧ xk2 −
ε, xk1 ∨ xk2 + ε]. Therefore∫

Δk(θ)dθ ≤ 2 ε2 (|xk2 − xk1|+ 2ε) + 4m2
k ε ≤ 2 ε2 (2mk + 2ε) + 4m2

k ε,

so averaging over k and using (C3) gives (8.16).
Straightforward estimates yield the uniform Hölder condition (8.14) at first

for points θ1, θ2 belonging to the same interval [�ε, (� + 1)ε)], then belonging
to two adjacent intervals, finally for points with one or more such intervals in
between, where we may apply (8.5). The analogs of assertions 1 and 2 in Lemma
8.1 are obvious. �

Proof of Theorem 4.1. Convergence of the finite-dimensional distributions
being clear from Proposition 3.1, (4.4), and (8.15), we only need to prove
(stochastic) asymptotic equicontinuity [45, 54] and the uniform vanishing at
infinity of the sample paths of D̄n. Without loss of generality we may assume
n ≥ n1 ∨ n2 (cf. (C4), (C2)). Distinguishing between quantiles and expectiles
is not necessary here, so we omit the subscripts q, e in the quantities appearing
in Lemma 8.1 and 8.2. Moreover, by Lemma 8.2 quantities initially referring to
D∗

n such as ρn or ωn may also be used with D̄n, with the same bounds.
Let u > 0. For any set T0 ⊂ R, let Nn(u, T0) denote the minimal cardinality

of a subset T ⊂ T0 such that mint∈T ρn(θ, t) ≤ u for every θ ∈ T0. Given
b > 1, pick tj ∈ [−b, b] equidistant with spacing r = 2(u/B)1/λ. By (8.14), the
minimal ρn-distance of any θ ∈ [−b, b] to the resulting set T is ≤ ωn(r/2) ≤ u,
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whence Nn(u, [−b, b]) ≤ Kbu−1/λ. Here and subsequently we write K for any
independent finite constant, whose value may thus change from instance to
instance.

By (8.4) and Lemma 8.2 there is ν > 0 such that

ρn(θ, b)
2 ≤ 2{ED̄n(θ)

2 + ED̄n(b)
2} ≤ (Kb−ν)2, θ > b, (8.17)

and similarly for θ<−b. Therefore, with b=(K/u)1/ν we have mint∈T ρn(θ, t)≤
u for every θ ∈ R and thus

Nn(u,R) ≤ Ku−1/ν−1/λ, u > 0. (8.18)

Let

Ωn(r) = sup { |D̄n(θ2)− D̄n(θ1)| : ρn(θ1, θ2) ≤ r, θ1, θ2 ∈ R}, r > 0.

By [59, Lemma 1.2] applied with xi(s) ≡ dk(θ)/
√
n and p = 1 we have

E Ωn(r) ≤ K

∫ r/4

0

(logNn(u,R))
1/2 du ≤ K

∫ r

0

(log u−1/τ−1/λ)1/2 du

for all r ∈ [0, 1]. Therefore E Ωn(rn) → 0 if rn → 0, which implies asymptotic
equicontinuity on R with respect to the semi-metrics ρn.

There are two further consequences. First, we already know that for every
η > 0 there is b > 0 such that ED̄n(b)

2 ≤ η2 and ρn(b, θ) ≤ η for every
θ ∈ (b,∞). Thus

|D̄n(θ)| ≤ |D̄n(b)|+ |D̄n(θ)− D̄n(b)| ≤ |D̄n(b)|+Ωn(η)

and so

sup|θ|>b, θ∈R
|D̄n(θ)| = op(1) as b → ∞.

Secondly, by (8.14)

Ω̃n(r) = sup { |D̄n(θ2)− D̄n(θ1)| : |θ1 − θ2| ≤ r, θ1, θ2 ∈ R}
≤ Ωn(ωn(r)) ≤ Ωn(Krλ),

whence E Ω̃n(rn) → 0 if rn → 0, implying asymptotic equicontinuity also with
respect to the standard metric. It follows that the processes D̄n converge weakly
in �∞0 to the specified Gaussian process Z, which by the asymptotic equiconti-
nuity can be assumed to have continuous sample paths. �

Proof of Corollary 4.1. By (8.4) and Lemma 8.2,
∫
|θ|>b

ED̄n(θ)
2 dθ → 0 as

b → ∞ under the given conditions. Consequently, T2(D̄n) equals
∫
|θ|≤b

D̄n(θ)
2
+ dθ

up to the arbitrarily small contribution from the tails, and weak convergence
follows by Theorem 4.1. The same argument, up to an application of Jensen’s
inequality, applies to T1. �
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Proof of Theorem 4.2. To prove stochastic equicontinuity we use the classical
Kolmogorov moment criterion. In view of the linear interpolation it suffices to
show that there exist positive constants ξ,K, and η > 1, such that for all θ1, θ2
in the grid {jβn : j ∈ Z} one has

E |D̃n(θ2)− D̃n(θ1)|ξ ≤ K|θ2 − θ1|η. (8.19)

Let such a pair θ1, θ2 be fixed. Since the partial sums

Sk = n−1/2
∑

j≤k
(d̃j(θ2)− d̃j(θ1)), k = 1, . . . , n

represent a martingale with respect to the filtration {Fk}, Burkholder’s inequal-
ity [7, Theorem 9] gives

E |Sn|2p = E|D̃n(θ2)− D̃n(θ1)|2p

≤ Np E
{
n−1

∑
k≤n

(d̃k(θ2)− d̃k(θ1))
2
}p

for any p ≥ 1, with a universal constant Np. Now

ρ̃n(θ1, θ2)
2 := n−1

∑
k
(d̃k(θ2)− d̃k(θ1))

2

≤ 2ρn(θ1, θ2)
2 + 2n−1

∑
k
{E [ |dk(θ2)− dk(θ1)| | Fk−1]}2 (8.20)

which may be further estimated as in the proof of Lemma 8.1. We first consider
the expectile case. Putting δk = δk(θ1, θ2) we get from (8.10) that the last term
is bounded by a constant times the sum of (θ2 − θ1)

2 plus the term

n−1
∑

k
{E[mk |δk| | Fk−1]}2 ≤ n−1

∑
k
E[m2

k | Fk−1]E[ δ2k | Fk−1]

≤
{
n−1

∑
k
(E[m2

k | Fk−1])
2
}1/2 {

n−1
∑

k
E[ |δk| | Fk−1]

}1/2

≤
{
n−1

∑
k
E[m4

k | Fk−1]
}1/2

{Hc
n([θ1, θ2])}

1/2
.

It follows that

E ρ̃n(θ1, θ2)
2p ≤ K

[
|θ2 − θ1|2p + E

{(
n−1

∑
k
m4

k

)
Hn([θ1, θ2]

}p/2

+E
{(

n−1
∑

k
E[m4

k | Fk−1]
)
Hc

n([θ1, θ2]
}p/2

]
≤ K

[
|θ2 − θ1|2p +

{
E

(
n−1

∑
k
m4

k

)p
EHn([θ1, θ2]

p
}1/2

+
{
E

(
n−1

∑
k
E[m4

k | Fk−1]
)p

EHc
n([θ1, θ2]

p
}1/2

]
≤ K

[
|θ2 − θ1|2p +

√
M4p

(
EHn([θ1, θ2]

p + EHc
n([θ1, θ2]

p
)1/2]

whereM4p = n−1
∑

kEm4p
k . So given η > 1, putting b = 2η we may choose p ≥ 1

in (A2), (A3) such that (8.19) is satisfied with ξ = 2p. This settles the expectile
case. The quantile case can be dealt with similarly starting from (8.20). Given
η > 1 one puts b = η and uses (8.9), (8.12), then (A2), (A3). �
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9. Additional material

Lemma 9.1. Let hk(θ) = E [ dk(θ) | Fk−1]. Under the conditions (2.8), (3.3),
and (C3) we have

γ = γ̃ + ψ where ψ(θ1, θ2) = p -lim n−1
∑

k≤n
hk(θ1)hk(θ2). (9.1)

Proof. By (2.8), (3.3), and

γn(θ1, θ2) = n−1
∑

k≤n
{d̃k(θ1) + hk(θ1)} {d̃k(θ2) + hk(θ2)}

= γ̃n(θ1, θ2) + n−1
∑

k≤n
hk(θ1)hk(θ2)

+n−1
∑

k≤n
hk(θ2)d̃k(θ1) + n−1

∑
k≤n

hk(θ1)d̃k(θ2)

it suffices to show that e.g. the last term, to be denoted Rn, tends to zero in
quadratic mean. But ERn = 0 because E [ d̃k(θ2) | Fk−1] = 0 and hk(θ1) is
Fk−1-measurable. Similarly, ER2

n → 0: the off-diagonal terms in the double
sum vanish, and by Jensen’s and Cauchy’s inequalities and (C3) the sum of the
diagonal terms is O(n). �

Justification of (C2), (C4). We will show that the conditions (C2), (C4)
are satisfied with probability arbitrarily close to one under common probabil-
ity models for the data. Possible dependencies within the triplets (xk1, xk2, yk)
do not matter because (C2), (C4) effectively pertain to the marginal CDFs
Fn1, Fn2, Gn only. However, it is natural in the prediction setting to allow for
serial dependence. Specifically, suppose that the predictions xk1, xk2 and the
observations yk each form a strictly stationary sequence, defined for all k ∈ Z.

CONDITION (C2). To verify (C2) for the empirical CDFGn of the observations,
e.g., we may invoke an estimate byW. B. Wu applying to certain causal processes
of the form yk = J(· · · , εk−1, εk), where J is measurable and the εk, k ∈ Z are
i.i.d. random variables. As an immediate consequence of [55, Theorem 2] one
has, under the conditions given there, that

E
[
sup 0≤t−s≤r (Gn(t)−Gn(s))

2
]
= O(n−1 r1−2/q), r ≥ βn,

where 2 < q < 4 and βn is a sequence tending to zero sufficiently slowly (not
faster than n−1 (logn)2q/(q−2) ). Markov’s inequality then gives

Pr
[
sup 0≤t−s≤r |Gn(t)−Gn(s)| ≥ Krκ

]
= O(n−1 r1−2/q−2κ), r ≥ βn, K > 0.

Putting r = 2−� and summing over � = 0, 1, . . . we find that for any positive
κ < 1/2− 1/q we have with probability 1−O(n−1) that

sup 0≤t−s≤2−� |Gn(t)−Gn(s)| ≤ K(2−�)κ for every � with 2−� ≥ βn.

Thus (C2) holds with probability tending to one for the processes in question.
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For an alternative justification let us consider the more common case where
the yk form a strong (α-)mixing sequence. In a first step we apply covariance
inequalities due to E. Rio [47] yielding an estimate of the variance of the incre-
ments of Gn. Specifically, suppose that the mixing coefficients αn decay as n−


for some � > 1. Let G denote the common CDF of the yk. Then as a consequence
of [47, Theorem 1.2] we get that for some finite constant K

Var(Gn(t)−Gn(s)) ≤ Kn−1(G(t)−G(s))1−1/
, s < t, n ≥ 1. (9.2)

Proof. (Cf. [47, pp. 590,591].) We have Gn(t) − Gn(s) = n−1
∑

1≤k≤n ξk, ξk =
1s<yk≤t. The common ‘quantile function’ Qξ of the ξk is readily seen to be given
by Qξ(u) = 1 if u < Pr[s < yk ≤ t] = G(t) − G(s) ≡ Δ, and = 0 otherwise.
Since α−1(u) =

∑
k 1αk>u = O(u−1/
) it follows that the term∫ 1

0

α−1(u)Qξ(2u)
2 du ≤ K

∫ Δ

0

u−1/
 du = O(Δ1−1/
),

whence (9.2) follows. �
Further by [47, Theorem 1.2], the limits of the sequences nVar(Gn(t)−Gn(s))

and nVar(Gn(t)), hence also of nCov(Gn(s), Gn(t)), exist for all s, t. The latter,
for instance, is given by the absolutely convergent sum

limn→∞ nCov(Gn(s), Gn(t)) =
∑

k∈Z

Cov(1y0≤s, 1yk≤t) ≡ Λ(s, t). (9.3)

Analogous expressions hold for the other limits.
We next appeal to the weak convergence of the processes n1/2(Gn(t)−G(t)),

t ∈ R to the mean zero Gaussian process V (t), t ∈ R with covariance function
Λ from (9.3), which follows from a stronger (almost sure) approximation result
cited below. By the convergence of moments, the increments of V satisfy the
analog of (9.2),

E(V (t)− V (s))2 ≤ K(G(t)−G(s))1−1/
.

Since V is Gaussian, an application of the well-known Garsia-Rodemich-Rumsey
Lemma (see e.g. [3]) along with an intermediate time change implies that there
exists a positive constant K such that for any δ < (1 − 1/�)/2 the process V
satisfies with probability one a pathwise Hölder condition of the form

|V (t)− V (s)| ≤ K(G(t)−G(s))δ, s < t (almost surely, ‘a.s.’). (9.4)

Now suppose that the CDF G is uniformly Hölder continuous with index κ ∈
(0, 1]. Then by (9.4), V also fulfils, for any η < κ(1− 1/�)/2 ,

|V (t)− V (s)| ≤ K(t− s)η, s < t (a.s.).

In order to transfer this pathwise Hölder condition to the processes Gn we may
apply a “Hungarian type” strong approximation result for the empirical process
of a stationary sequence. As a consequence of [57, Theorem] or [12, Theorem
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2.1], there exists a sequence of Gaussian processes Vn(t), t ∈ R, all copies of V ,
all defined on a common probability space carrying also the yk, such that

supt∈R
|Gn(t)−G(t)− n−1/2Vn(t)| = o(n−1/2) (a.s.). (9.5)

It follows that a.s. for all s, t with |s− t| ≤ r

|Gn(t)−Gn(s)| ≤ |G(t)−G(s)|+ n−1/2|Vn(t)− Vn(s)|+ o(n−1/2)

= O(rκ) +O(n−1/2 rη) + o(n−1/2).

This reduces to O(rκ) if we set βn = n−1/(2κ), since then n−1/2 = βκ
n ≤ rκ

for r ≥ βn. The empirical processes Fn1, Fn2 can be treated analogously. Thus
we have shown that assumption (C2) is fulfilled with probability one under the
indicated conditions, namely (sufficiently) strong mixing of the yk and xk1, xk2,
and Hölder continuity of their respective marginal CDFs. �
CONDITION (C4). Suppose that the predictions xk1 form a strongly mixing
sequence with the common marginal CDF F1. Suppose, furthermore, that we
have a strong approximation of the empirical processes Fn1 as in the previously
discussed case. Using the same notation Vn for the approximating Gaussian
processes, we then have as in (9.5)

supθ∈R
|Fn1(θ)− F1(θ)− n−1/2 Vn(θ)| = o(n−1/2) (a.s.).

Arguing as from (9.2) to (9.4) we get |Vn(−θ)| ≤ KF1(−θ)δ for all θ ≥ 0 (a.s.),
where again δ may be any positive number less than (1− 1/�)/2 and � > 1 has
the same meaning for the xk1 as it had for the yk.

We now assume that
∫
|x|qdF1(x) < ∞ for some q > 0. Then

Fn1(−θ) ≤ F1(−θ) + n−1/2 |Vn(−θ)|+ o(n−1/2)

= O(θ−q) +O(n−1/2 θ−qδ) + o(n−1/2), θ ≥ 1 (a.s.)

For 1 ≤ θ ≤ n1/q, hence n−1/2 ≤ θ−q/2, we have

Fn1(−θ) = O(θ−q) +O(θ−q/2−qδ) + o(θ−q/2),

which certainly is o(θ−ν) if we set ν = q/2. An analogous estimate for the right
tail gives Fn1([−θ, θ]c) = o(θ−ν) uniformly in the range 1 ≤ θ ≤ n1/q (a.s.). On
the other hand, if θ > n1/q then

Pr [Fn1([−θ, θ]c) > 0] = Pr [maxk≤n |xk1| > θ] ≤ nθ−q

∫
|x|>n

1
q

|x|qdF1(x),

which is o(1) as n → ∞. It follows that with probability tending to one we have
Fn1([−θ, θ]c) = o(θ−ν) for all θ ≥ 1. Thus under the indicated assumptions, the
tail condition (C4) is fulfilled with arbitrarily high probability if the marginal
CDFs F1, F2 have a finite absolute moment of the order q = 2ν. �

Justification of assumption (A2). In view of general Poisson approxima-
tion results for frequencies of rare events (e.g., [8]) we may expect that under
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broad conditions allowing for dependent observations the number N of data
falling into a small interval J of length r is roughly Poisson distributed with
parameter of the order nrκ, where κ ∈ (0, 1] characterizes the (maximal) clus-
tering of the data points. The p-th moment (p ≥ 1) of the Poisson distribution
with mean m is O(m + mp) uniformly in m. Thus if nrκ ≥ 1 we may expect
that EHn(J)

p = O(n−p(nrκ)p) = O(rpκ), while for nrκ ≤ 1 we should have
EHn(J)

p = O(n−pnrκ) = O(n1−prκ). Now given b > 1, choose p > b/κ and
put βn = n−(p−1)/(b−κ). Noting that βn ≤ n−1/κ, we find that in case nrκ ≥ 1
we have both EHn(J)

p = O(rpκ) = O(rb) and r ≥ βn. In case nrκ ≤ 1 we
have EHn(J)

p = O(n1−prκ), which is O(βb−κ
n rκ) = O(rb) if r ≥ βn. It follows

that EHn(J)
p = O(rb) whenever r ≥ βn, so that (A2) indeed would hold under

quite general conditions. �

Analysis of the quantile forecast example (Section 5.2). The difference
of the elementary quantile scores is

dk(θ) = Sθ(xk1, yk)− Sθ(xk2, yk) = (1yk≤θ − α) {1θ<xk1
− 1θ<xk2

}.

Taking our assumptions into account and passing to standard units on writing
tk = (θ −mk)/sk (and zk� = (xk� −mk)/sk), we get

hk(θ) := E [ dk(θ) | Fk−1] = (Φ(tk)− α) {Pr[tk < zk1]− Pr[tk < zk2]} (9.6)

where Pr refers to the zk� (resp. uk�), everything else being considered as non-
random (given Fk−1). We henceforth omit the index k and use the abbreviation
hk(θ) ≡ h.

Since t < z� iff log[Φ(t)/(1 − Φ(t))] − log[α/(1 − α)] < u�, we have with
λ(p) = log[p/(1− p)] that

Pr[t < z�] = 1− Φ ([λ(Φ(t))− λ(α)]/τ�) = Φ ([λ(α)− λ(Φ(t))]/τ�) .

Suppose at first that Φ(t)−α < 0. Then λ(α)− λ(Φ(t)) > 0, so τ1 < τ2 implies

Pr[t < z1] = Φ ([λ(α)− λ(Φ(t))]/τ1) > Φ ([λ(α)− λ(Φ(t))]/τ2) = Pr[t < z2],

and hence h < 0, by (9.6). Analogously, Pr[t < z1] < Pr[t < z2] if Φ(t)−α > 0.
It follows that h < 0 in each case (and for all k, θ), proving that Hs

− holds iff
τ1 ≤ τ2. �
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