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Abstract: In high-dimensional linear models, the sparsity assumption is
typically made, stating that most of the parameters are equal to zero. Under
the sparsity assumption, estimation and, recently, inference have been well
studied. However, in practice, sparsity assumption is not checkable and
more importantly is often violated; a large number of covariates might
be expected to be associated with the response, indicating that possibly
all, rather than just a few, parameters are non-zero. A natural example
is a genome-wide gene expression profiling, where all genes are believed to
affect a common disease marker. We show that existing inferential methods
are sensitive to the sparsity assumption, and may, in turn, result in the
severe lack of control of Type-I error. In this article, we propose a new
inferential method, named CorrT, which is robust to model misspecification
such as heteroscedasticity and lack of sparsity. CorrT is shown to have
Type I error approaching the nominal level for any models and Type II
error approaching zero for sparse and many dense models. In fact, CorrT
is also shown to be optimal in a variety of frameworks: sparse, non-sparse
and hybrid models where sparse and dense signals are mixed. Numerical
experiments show a favorable performance of the CorrT test compared to
the state-of-the-art methods.

Received January 2017.

1. Introduction

Hypothesis testing for high-dimensional models is widely used. Statisticians usu-
ally utilize hypothesis tests to study the importance of one or many variables
in parametric models. Given pairs of observations (yi,wi), with yi ∈ R,wi ∈
R

p and i = 1, . . . , n, the importance of j-th variable of a parametric model
E[yi|wi] = w�

i β is studied by developing hypothesis tests for the related null
hypothesis H0 : βj = 0 against a suitable alternative, for example H1 : βj �= 0.
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In high-dimensional settings where p � n, several theoretical results are avail-
able on the design of such tests, including asymptotic optimality (Zhang and
Zhang, 2014; Javanmard and Montanari, 2014a; Van de Geer et al., 2014; Bel-
loni, Chernozhukov and Hansen, 2014; Ning et al., 2017; Chernozhukov, Hansen
and Spindler, 2015). A common thread among these works is an underlying as-
sumption on the sparsity of the parametric model at hand. A recent method
introduced by Zhu and Bradic (2017), extends this body of work by removing
some of the restrictive assumptions pertaining to the sparsity of the parametric
model.

In particular, Zhu and Bradic (2017) introduced the notion of restructured
regression where a specific moment of interest leads to robust and stable in-
ference in high-dimensional setting. The authors introduce feature stabilization
and synthesization pertaining to the null hypothesis of interest as a way of trans-
forming a parametric null into a suitable and testable moment condition that
is equivalent to the null hypothesis. We split into the parameter under testing
β∗ and the nuisance parameter γ∗. Applied to the problem of testing for signif-
icance of variables in high-dimensional linear models, a restructured regression
as proposed in Zhu and Bradic (2017) takes the form of

Y = Xγ∗ + Zβ∗ + ε, (1.1)

where W := (w�
1 , . . . ,w

�
n )

� = [X,Z] ∈ R
n×(p+1) with Z ∈ R

n and X ∈ R
n×p

being the design matrix, Y = (y1, . . . , yn)
� ∈ R

n and ε ∈ R
n is the error term.

When interested in testing

H0 : β∗ = β0, vs. H1 : β∗ �= β0, (1.2)

Zhu and Bradic (2017) consider an auxiliary model

Z = Xθ∗ + u, (1.3)

where θ∗ ∈ R
p is a high-dimensional and unknown parameter and u ∈ R

n is
the model error. Zhu and Bradic (2017) showcase that one can transform the
original parametric null (1.2) into the moment condition

H0 : E
[
(V−Xγ∗)�(Z−Xθ∗)

]
= 0, vs. H1 : E

[
(V−Xγ∗)�(Z−Xθ∗)

]
�= 0.
(1.4)

In the above, V is defined as a pseudo-response,

V := Y− Zβ0.

This paper extends the early work of Zhu and Bradic (2017) into a flex-
ible method for developing asymptotically exact and optimal hypothesis tests
regarding the importance of variables in high-dimensional linear models as iden-
tified through a family of moment conditions (1.4). We aim to build inference
methods that inherit the desirable empirical properties of the test of Zhu and
Bradic (2017) – such are the preservation of type I error rate and no loss in effi-
ciency – but can be used in the wide range of linear model setting characterized



3314 Y. Zhu and J. Bradic

by (1.1). Two of the most significant improvements over Zhu and Bradic (2017)
are related to (conditional) heteroscedasticity and double robustness.

For example, this paper encompasses the case where the error term εi is
heteroscedastic in that the conditional variance of εi can depend on the model
features; see Condition 1. More generally, we showcase that the moment condi-
tions of the form (1.4) can be used to provide valid and asymptotically optimal
tests as well as confidence intervals, regardless whether the initial model, (1.1),
or the auxiliary model, (1.3), is dense and/or heteroscedastic. An example of
a possibly non-sparse auxiliary model is the one whose covariate’s dependence
is represented through a dense graphical model. Although both this paper and
Zhu and Bradic (2017) deal with the inference of high-dimensional linear models
with non-sparse structures, it is worth pointing out that under the more general
settings (e.g., heteroscedasticity and lack of knowledge of which one of γ∗ and
θ∗ is dense), valid inference is substantially more difficult.

Section 2 gives a detailed treatment of this perspective. Moment condition
like (1.4) are understood as robust moment conditions, i.e., moment conditions
are written as the product of two residuals, one arising from the initial model
at hand (1.1) and the other arising from an auxiliary model on covariates (1.3).
Because individual residuals can have a potentially high bias, such product sta-
bilizes inference whenever either one of the residuals is estimated accurately.
This idea of correcting for bias using an auxiliary model is closely related to
the work on score decorrelation, Neyman score orthogonalization, and double
machine learning; see e.g., Neyman (1959); Ning et al. (2017); Chernozhukov
et al. (2017a). Important examples in high-dimensional problems include Liu
et al. (2015) and Chernozhukov et al. (2017a) for average treatment effect es-
timation, Belloni, Chernozhukov and Kato (2018) for quantile estimation, and
Tchetgen and Shpitser (2012); Zhao et al. (2014); Acion et al. (2017) for mod-
els related to time-to-event, survival analysis. These methods are quite general
and can deliver valid inference with the liberty of choosing from a large class
of estimators; these estimators need to have fast enough rate of convergence
for both the original model and the auxiliary model. However, even consistency
is quite difficult for dense models. Therefore, robust moment conditions alone
are not enough to achieve valid inference for non-sparse high-dimensional mod-
els.

We seek a unified, general framework for computationally efficient and prob-
lem-specific tests. These tests are optimized for the primary objective of testing
for significance of capturing a key parameter of interest, especially when the con-
sistent estimation of the nuisance parameters is not achievable. This pushes the
limit of the known optimality of doubly robust moments even in low-dimensional
setting. A consistent (but not necessarily optimal) estimation was once required;
now an inconsistent estimator can be allowed.

This paper addresses the challenges resulting from inconsistency by design-
ing a set of adaptive estimators and adopting a self-normalized structure. The
challenge in generalizing moment-based methods is that their success hinges on
whether the adaptive estimator adequately highlights the dimensionality and
heterogeneity of the model of interest. While it is natural to require estima-
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tors that achieve an optimal rate of convergence in appropriate norms (e.g.,
�1-norm or prediction norm) for sparse models, achieving even consistency is
not a trivial problem for dense models. Hence, we design estimators that enjoy
additional adaptive properties. If the target parameter is sparse, our estima-
tor enjoys similar properties to adaptive estimators that are designed only for
sparse problems; if the target parameter is dense, our estimator has the stability
needed for valid inference. When we use such adaptive estimators for both θ∗

and γ∗, asymptotic normality holds even if only one of them is sparse. How-
ever, the correct “asymptotic variance” would depend on which one is sparse.
Here, the self-normalization plays a critical role by automatically providing
the correct corresponding normalization. As a result, the proposed inference
method is valid without knowledge of the source of sparsity. In light of this,
it is natural to see why the aforementioned existing strategies that can be
coupled with generic estimators do not guarantee inference validity for dense
models.

Moment conditions of the form (1.4) typically arise in scientific applications
where rigorous statistical inference is required. The bulk of this paper is devoted
to a theoretical analysis of moment based tests, and to establishing asymptotic
normality of the resulting estimates even in the presence of severe model mis-
specification (e.g., non-Gaussianity, heteroscedasticity, lack of sparsity). We also
develop the theory for efficiency as well as power property of the introduced
tests. Our analysis is motivated by classical results for orthogonal moments, in
particular Robins and Rotnitzky (1995), paired with machinery from Zhu and
Bradic (2017) to address the adaptivity of the tests to model misspecification.
The resulting framework presents a flexible method for robust statistical esti-
mation as well as inference with formal asymptotic guarantees while allowing
model misspecification.

1.1. Related work

The idea of building tests on the basis of moment conditions (and orthogonal
moments) has a long history, including Neyman’s C(α) tests and Rao’s score
tests. They were introduced to address unobserved heterogeneity in parametric
statistics models. In medicine, popular applications of these techniques include
testing for rare variants (Lee, Wu and Lin, 2012; Neale et al., 2011), estimation
of treatment effects and causal parameters (Imbens, 2004), in economics, for es-
timation and inference in missing data models as well as studying the effects of
program or policy interventions (Imbens and Wooldridge, 2009). At its essence
the method necessitates that the moment condition used to identify the param-
eter of interest, needs to be insensitive towards small changes in the estimated
nuisance function.

A challenge facing this approach is that if the covariate space has more than
two or three dimensions performance can suffer if some of the parameters are
estimated at a rate slower than n−1/4. Unfortunately, in misspecified and high-
dimensional models such rate cannot be guaranteed. For well specified models,
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i.e., Gaussian models, Zhu and Bradic (2017) showcased that this rate can be
ignored. However, our paper proposes a generalization of their work in that the
developed test is both robust and efficient even when the model is not correctly
specified.

The original condition for Neyman orthogonality was proposed by Neyman
(1959), building on insights from the semi-parametric estimation framework;
its optimality in linear models was established in Newey (1994). It was then
utilized to develop a class of methods called doubly robust procedures, designed
to mitigate selection bias, nonrandom treatment assignment in observational
studies and noncompliance in randomized experiments (Robins and Rotnitzky,
2001; Van der Laan and Robins, 2003). Doubly robust methods can be viewed
as a refinement of a weighted estimating-equations approach to regression with
incomplete data proposed by Robins, Rotnitzky and Zhao (1994, 1995) and
Rotnitzky, Robins and Scharfstein (1998).

The perspective we take on moment condition (1.4) is a form of weighted
estimating-equations, where the weights are defined to be adaptive and to sta-
bilizing for model misspecification. However, we most closely build on the pro-
posal of Zhu and Bradic (2017) designed for Gaussian regression models. This
adaptively weighted estimating-equations perspective also underlies several sta-
tistical analyses of missing data and causal inference problems in the context of
improved local efficiency (see for example Rubin and van der Laan (2008)).

Our adaptive weighting scheme draws heavily from a long tradition in the
literature of adaptive estimation; specifically, where the dimensionality of the
model is high (Donoho and Johnstone, 1995; Cavalier and Tsybakov, 2002; Gau-
tier and Tsybakov, 2013; Collier et al., 2016; Collier, Comminges and Tsybakov,
2018). Our goal differs from the above in that we are not focused on adaptive es-
timation itself. Instead, we are interested in constructing a test that is as robust
as possible to model misspecification; we then rely on the self-normalization to
achieve statistical stability.

In this sense, our approach is related to the studies of nonparametric func-
tion estimation where a “gap” between estimation and inference has been well
established, i.e., a gap between the existence of adaptive risk bounds and the
nonexistence of adaptive confidence statements. We showcase here a reciprocal
“gap”; a “gap” between the existence of confidence intervals and the nonexis-
tence of risk or estimation bounds. We argue here in this article, that optimal
inference procedures exist even in the models for which estimation consistency
for the model parameters cannot be guaranteed.

Our asymptotic theory relates to an extensive recent literature on the high-
dimensional statistical inference, most of which focuses on the cases of Gaussian
models (Janson, Barber and Candes, 2017; Javanmard and Montanari, 2014a,
2018; Cai et al., 2017; Bradic, Fan and Zhu, 2018); correctly specified models
(Zhang and Zhang, 2014; Van de Geer et al., 2014; Belloni, Chernozhukov and
Hansen, 2014; Ning et al., 2017; Chernozhukov, Hansen and Spindler, 2015).
Our present paper complements this body of work by showing how methods
developed to study models with missing data can also be used to develop tests
for misspecified models through robust and yet adaptive tests.
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1.2. Motivating example: A challenge of the lack of sparsity

To better understand whether discoveries based on current state-of-the-art meth-
ods in high-dimensional inference can be spurious in the models that lack spar-
sity, we consider the problem of testing (1.2) in the model (1.1) with β0 = 0. For
emphasize the issue of lack of sparsity, we consider a homoscedastic Gaussian
model. Assume the simple setup of orthogonal designs and known noise level:
the entries of Z, X and ε are known to be independent standard normal random
variables. Moreover, assume that log p = o(n). Let β∗ = 0 and γ∗ = ap−1/21p,
where a ∈ [−10, 10] is a fixed constant and 1p = (1, . . . , 1)� ∈ R

p. It is easy

to see that γ∗ is not sparse if a �= 0. Let π∗ = (β∗,γ∗�)� ∈ R
p+1 and

W = (Z,X) ∈ R
n×(p+1). With λ = 16

√
n−1 log p we define the Lasso esti-

mator π̂ = argminπ∈Rp+1
1
2n‖Y−Wπ‖22 + λ‖π‖1. The de-biased estimator is

then defined as π̃ = π̂+Θ̂W�(Y−Wπ̂)/n, where Θ̂ is the estimated precision

matrix of the design1. Let β̃ be the first entry of π̃. Therefore, a Wald test for
the hypothesis β∗ = 0 with nominal size α ∈ (0, 1) can be defined as a decision

to reject the hypothesis whenever |β̃| > Φ−1(1 − α/2)/
√
n, where Φ(·) is the

cumulative distribution function of the standard normal distribution. The Type
I error of this test is characterized in the following result.

Theorem 1. In the above setup, a high-dimensional Wald test satisfies

lim
n→∞

P
(
|β̃| > Φ−1(1− α/2)/

√
n
)
= F (α, a),

where F (α, a) = 2− 2Φ
[
Φ−1

(
1− α

2

)
/
√
1 + a2

]
.

It is immediately obvious that when the model is sparse, i.e., a = 0, we have
that F (α, a) = α and thus the Type I error of the test is asymptotically equal
to the nominal level. However, when the model is not sparse, i.e., a �= 0, we have
that F (α, a) > α (see Figure 1), meaning that the Type I error asymptotically
exceeds the nominal level. In fact, in the non-sparse case, the Type I error of the
Wald test can be close to one. In Figure 1, we see that the state-of-the-art Wald
test with nominal size 1% can reject, in large samples, a true null hypothesis with
probability as high as 80%. In the proof of Theorem 1, we show that π̂ = 0 with
high-probability; this turns out to be a minimax optimal estimator in �2-balls;
see Dicker (2016). However, even though the zero vector resulted from (entry-
wise) shrinkage methods might be a good approximation of π∗ in the �∞-norm,
this approximation is poor for the inference problems. Hence, this illustrates the
drawback of the Wald principle in non-sparse models in general, as even optimal
estimators might not be good enough for this principle to perform well.

1 Since the true precision matrix is Ip+1 the (p+1)×(p+1) identity matrix, we set Θ̂ = Ip+1

for simplicity; our result still holds if we use the nodewise Lasso estimator in Equation (8) of
Van de Geer et al. (2014). Moreover, observe that the method of Javanmard and Montanari
(2014b) is equivalent to Van de Geer et al. (2014) in this particular setting. By Theorem 2.2

therein,
√
n(β̃ − β∗) = ξ + oP (1), where ξ conditional on W has a normal distribution with

mean zero and variance Z�Z/n.
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Fig 1. Plot of the asymptotic Type I error of the high dimensional Wald test in a linear model
with independent design. The horizontal axis denotes a where γ∗ = ap−1/21p and the vertical
axis denotes the rejection probability F (α, a) under the null hypothesis.

Observe that, in practice, rejecting the hypothesis that certain regression
coefficient is zero is typically interpreted as evidence supporting new scientific
discovery, e.g., treatment effect. However, due to the non-robustness to the lack
of sparsity as demonstrated above, researchers could, with high probability,
obtain “discoveries” that do not exist. Therefore, new inferential tools are called
for that do not reject true hypotheses too often regardless of whether the sparsity
condition holds.

1.3. Notation and organization

Throughout the article, we use bold upper-case letters for matrices and lower-
case letters for vectors. Moreover, � denotes the matrix transpose and Ip de-
notes the p × p identity matrix. For a vector v ∈ R

k, vj denotes its jth entry

and its �q-norm is defined as follows: ‖v‖q = (
∑k

i=1 |vi|q)1/q for q ∈ (0,∞),

‖v‖∞ = max1≤i≤k |vi| and ‖v‖0 =
∑k

i=1 1{vi = 0}, where 1 denotes the in-
dicator function. For any matrix A, σmin(A) and σmax(A) denote the mini-
mal and maximal singular values of A. For two sequences an, bn > 0, we use
an � bn to denote that there exist positive constants C1, C2 > 0 such that
∀n, an ≤ C1bn and bn ≤ C2an. We also introduce two definitions that will
be used frequently. The sub-Gaussian norm of a random variable X is defined
as ‖X‖ψ2 = supq≥1 q

−1/2(E|X|q)1/q, whereas the sub-Gaussian norm of a ran-

dom vector Y ∈ R
k is ‖Y‖ψ2 = sup‖v‖2=1 ‖v�Y‖ψ2 . A random variable or a

vector is said to be sub-Gaussian if its sub-Gaussian norm is finite. Moreover,
a random variable X is said to have an exponential-type tail with parameter
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(b, γ) if ∀x > 0, P (|X| > x) ≤ exp [1− (x/b)γ ]. This is a generalization of the
sub-Gaussian property; see Vershynin (2010).

The rest of the paper is organized as follows. Section 2 discusses the main
idea behind the proposed CorrT procedure. It introduces the moment construc-
tion technique and a construction of a self-normalizing test statistic related to
that moment of interest. Subsection 2.1 designs tuning-adaptive estimators that
are particularly useful for estimation in potentially non-sparse models. Theoret-
ical results are presented in Section 3, including robustness to lack of sparsity,
sparsity-adaptive property and relation to the oracle. Section 4 shows numerical
examples and contrasts the outcomes with two state-of-the-art methods. The
detailed proofs of the main results and that of a number of auxiliary results are
collected in the Appendix.

2. Correlation test: CorrT

In standard doubly robust methods as proposed by Neyman (1959); Robins,
Rotnitzky and Zhao (1994), the test for a particular parameter of interest is
constructed by solving the estimating equations with respect to that parameter
of interest; the solution would provide a direct and consistent way of construct-
ing confidence intervals or hypothesis tests (1.4). However, in high-dimensional
setting, we abandon this approach and construct a test statistic directly mim-
icking the estimating equations. There is significant advantage of doing so when
the model parameter or feature correlation can be extremely dense.

2.1. Self-adaptive and sparsity-adaptive estimation

We begin by providing estimates for the unknown parameters γ∗ and θ∗, which
will be used to construct the CorrT test.

One approach to estimating these parameters is to apply one of the many
methods designed for sparse problems; e.g., the Lasso estimator, Dantzig selec-
tor, self-tuning methods by Belloni, Chernozhukov and Wang (2011), Sun and
Zhang (2012) and Gautier and Tsybakov (2013), and many more. Although
these methods often work well in sparse models, they are extremely sensitive
to the model misspecification and the level of sparsity. Here, we provide adap-
tive and stable estimators that can be used in conjunction with (1.4). Our new
algorithms introduce problem-specific constraints for sparsity-inducing regular-
ization. This construction delivers an adaptivity in the following sense. When
the estimation target fails to be sparse, the size of the estimated residuals is sta-
ble and does not diverge too quickly with the sample size due to the constraints;
when the estimation target is sparse, the estimator automatically achieves con-
sistency through the �1-regularization.

Our method is based on the solution path of the following linear program.
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For a > 0, let

γ̃(a) := argmin
γ∈Rp

‖γ‖1

s.t. ‖n−1X�(V−Xγ)‖∞ ≤ η0a

‖V−Xγ‖∞ ≤ ‖V‖2/ log2 n
n−1V�(V−Xγ) ≥ ρnn

−1‖V‖22,

(2.1)

where the constants η0 = 1.1n−1/2Φ−1(1− p−1n−1) and ρn = 0.01/
√
logn. The

first inequality in (2.1), much like the Dantzig selector, provides a necessary
gradient condition guaranteeing that the gradient of the loss is close to zero.
Observe that constant a is different from (Eε2i )

1/2 as the model is heteroscedastic
in nature. Optimal choice of the constant a is driven by (2.2). The constant η0 is
scale-free and is derived from moderate deviation results of self-normalized sums.
The second and third inequalities introduce stability in estimation, whenever the
model parameter is grossly non-sparse.

Estimation of the “variance” is extremely important for any testing problem.
Since we consider a heteroscedastic model, the variance of the error terms might
not be informative as E(x2

i,jε
2
i ) �= E(x2

i,j)E(ε2i ). For this reason, we invoke
moderate deviation results for self-normalized sums and would like a to target
the quantity a0,γ , where

a20,γ = max
1≤j≤p

n−1
n∑

i=1

x2
i,jε

2
i .

This quantity mimics the celebrated White (1980)’s heteroscedasticity-robust
standard error. Hence, we treat the unknown quantity a0,γ as a parameter,
which is chosen to be the largest element in the set Sγ defined as

Sγ =

⎧⎨⎩a ≥ 0 :
3

2
a ≥

√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(vi − x�

i γ̃(a))
2 ≥ 1

2
a

⎫⎬⎭ . (2.2)

In other words, âγ = argmax{a : a ∈ Sγ}. The requirements in the set Sγ

can be viewed as a data-dependent way of detecting sparsity and the tuning
parameter a.

Our final estimator is then defined as the following combination

γ̂ = γ̃(âγ)1{Sγ �= ∅}+ γ̃(2‖X‖∞‖V‖2/
√
n)1{Sγ = ∅}. (2.3)

When γ∗ is sparse, we show that Sγ �= ∅ with probability approaching one

and that the �1-norm in the objective function, the constraint on ‖n−1X�(V−
Xγ)‖∞ and the definition of Sγ induce the self-adapting property by adjusting

âγ to be close to
√
max1≤j≤p E[x2

i,jε
2
i ]. Thus, for sparse γ∗, γ̃(âγ) is consistent

and behaves like other sparsity-based estimations, such as Lasso or Dantzig
selector with ideal choice of tuning parameters.
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When γ∗ is not sparse, the constraints in the definition of γ̃(·) guarantee
that ‖X�(V−Xγ̂)‖∞/‖V−Xγ̂‖2 is not growing too fast; see Lemma 3 in the
Appendix. Hence, the resulting estimator γ̂ is not only stable but also is able to
automatically “detect” sparseness and exploit it to achieve estimation accuracy.

The estimation of θ∗ is done in a similar manner. We define a → θ̃(a) by

θ̃(a) = argmin
θ∈Rp

‖θ‖1

s.t. ‖n−1X�(Z−Xθ)‖∞ ≤ η0a

‖Z−Xθ‖∞ ≤ ‖Z‖2/ log2 n
n−1Z�(Z−Xθ) ≥ ρnn

−1‖Z‖22,

(2.4)

where η0 and ρn are as defined before. Let âθ = argmax{a : a ∈ Sθ}, where

Sθ =

⎧⎨⎩a ≥ 0 :
3

2
a ≥

√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(zi − x�

i θ̃(a))
2 ≥ 1

2
a

⎫⎬⎭ .

The final estimator is then defined as

θ̂ = θ̃(âθ)1{Sθ �= ∅}+ θ̃(2‖X‖∞‖Z‖2/
√
n)1{Sθ = ∅}. (2.5)

2.2. CorrT test

We now introduce the test statistic. The main difference between the proposed
test related to other high-dimensional tests is that its asymptotic distribution is
not affected by misspecification (e.g., in terms of heteroscedasticity and sparsity)
of models (1.1) and (1.3). Motivated by the success of the test proposed by Zhu
and Bradic (2017), our approach mimics the plug-in nature of their test while
automatically tailoring normalization of the test to the appropriate level.

Let γ̂ and θ̂ be defined in (2.3) and (2.5), respectively. We propose to consider
the following correlation test (CorrT) statistic

Tn(β0) =
ε̂�û√∑n
i=1 ε̂

2
i û

2
i

, (2.6)

where ε̂ = V −Xγ̂, û = Z −Xθ̂. The notation Tn(β0) indicates that the test
statistic is constructed with the knowledge of the null hypothesis H0 : β = β0.
Whenever possible we suppress its dependence on β0 and use Tn instead.

Self-normalizing nature of the test statistics also has an advantage that it
allows us to derive an analytical critical value for the test; we show that Tn(β0),
under the null hypothesis, converges in distribution to N(0, 1). Hence, a test
with nominal size α ∈ (0, 1) rejects the hypothesis (1.2) if and only if |Tn(β0)| >
Φ−1(1− α/2).

We briefly discuss the mechanism of our test and outline the reason for its
robustness to the lack of sparsity in γ∗ or θ∗; in fact the method is blind to
the choice of the sparse parameter and provides valid inference when either of
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the two models (1.1) and (1.3) is sparse. The product structure in (2.6) helps to

decouple the bias introduced by γ̂ or θ̂, allowing us to establish uncorrelatedness
between the estimated residuals ε̂ and u under the null hypothesis H0. We can
show, without assuming sparsity of γ∗, that

n−1/2ε̂�û = n−1/2ε̂�u+OP (
√

log p‖θ̂ − θ∗‖1).

Under the null hypothesis, the first term on the right hand side has zero expec-
tation and the second term vanishes fast enough due to sparse θ∗. On the other
hand, without assuming sparsity of θ∗, we can show that

n−1/2ε̂�û = n−1/2ε�û+OP (
√

log p‖γ̂ − γ∗‖1).

Under the null hypothesis, the first term on the right hand side has zero expec-
tation and the second term vanishes fast enough due to sparse γ∗.

The construction of γ̂ and θ̂ as in (2.3) and (2.5) is fundamentally critical
to establishing limiting distribution of the leading term in the decomposition
above. We note that commonly used estimators in sparse regression of Y against
X and Z do not deliver such de-correlation and, for non-sparse γ∗ or θ∗, do not
possess tractable properties.

2.3. Computational aspects: Parametric simplex method

The proposed method allows for efficient implementation. We point out that
both optimization problems (2.1) and (2.4) can be written in the form of a
parametric linear program, where the “additional unknown parameter”, a, is
present only as an upper bound of the linear constraints. It is well-known that,
if a problem can be cast as a parametric linear program, then the parametric
simplex method can be used to obtain the optimal solution. Computational
burden of obtaining the solution paths a → γ̃(a) is the same of the burden of
computing the solution for one value of a; see Vanderbei (2014) and Pang, Liu
and Vanderbei (2014). We now explicitly formalize the optimization problem
(2.1) as parametric linear programs; the formulation of (2.4) is analogous. Let

a > 0, and denote with γ̃(a) = b̂+(a)−b̂−(a), where b̂(a) = (b̂+(a)�, b̂−(a)�)�

is defined as the solution to the following parametric right hand side linear
program

b̂(a) = argmax
b∈R2p

M�
1 b subject to M2b ≤ M3 +M4a, (2.7)

where the matrices M1 ∈ R
2p×1,M2 ∈ R

(2p+2n+1)×2p,M3 ∈ R
2p+2n+1,M4 ∈

R
2p+2n+1 are taken to be M1 = −12p×1,

M2 =

⎛⎜⎜⎜⎜⎝
n−1X�X −n−1X�X

−n−1X�X n−1X�X
X −X
−X X

n−1V�X −n−1V�X

⎞⎟⎟⎟⎟⎠, M3 =

⎛⎜⎜⎜⎜⎝
n−1X�V

−n−1X�V
V+ 1n×1‖V‖2/ log2 n
−V+ 1n×1‖V‖2/ log2 n

(1− ρn)n
−1V�V

⎞⎟⎟⎟⎟⎠,
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M4 =

⎛⎜⎜⎜⎜⎝
η01p×1

η01p×1

0n×1

0n×1

0

⎞⎟⎟⎟⎟⎠
It is known that the solution of a parametric simplex algorithm is a piecewise

linear and convex function of a.

3. Theoretical properties

In this section we present theoretical properties of the proposed method and
consider an asymptotic regime in which p and the sparsity level of γ∗ or θ∗ are
allowed to grow to infinity faster than n.

Suppose that we have n independent and identically distributed (i.i.d) ob-
servations, indexed i = 1, . . . , n. For each observation, we have access to the re-
sponse variable yi along with a set of auxiliary covariateswi = (zi,x

�
i )

� ∈ R
p+1.

Here, xi, zi and yi denote the i-th row of X, the i-th entry of Z and of Y, re-
spectively. The j-th entry of xi will be denoted by xi,j . Similar notations will
be used for ui, vi and εi, which are the i-th entry of u, V and ε, respectively.

In order to establish the theoretical claims, we impose the following regularity
condition.

Condition 1. There are constants κ1, ..., κ5 > 0 such that the following hold.
(i) Let ΣW = E[w1w

�
1 ] ∈ R

p×p satisfy κ1 ≤ σmin(ΣW ) ≤ σmax(ΣW ) ≤ κ2

and ‖wi‖ψ2 ≤ κ2. (ii) In addition, 0 < 1/κ3 < E(ε2i ) < κ3, E(ziεi) = 0 and
E(xiεi) = 0. (iii) E(ui | xi, εi) = 0, P (κ4 < σ2

u,i < κ5) = 1 and ‖ui‖ψ2 ≤ κ5,

where σ2
u,i = E(u2

i | xi, εi).

A few comments are immediate. For generality, we set up Condition 1 in an
abstract way. We notice that in the context of our main problems of interest
requiring Condition 1 is not particularly stringent. Unlike Zhu and Bradic (2017)
or Janson, Barber and Candes (2017) – among references that allow dense model
parameters – we require only sub-Gaussian designs.

In addition, we consider a non-sparse model that allows for conditional het-
eroscedasticity. If the errors εi are being considered as independent of the fea-
tures, non-sparse models were studied by Zhu and Bradic (2017). However,
it has been observed (e.g. Ma and Zhu (2013); Belloni, Chernozhukov and
Hansen (2014)) that heteroscedasticity could have severe consequences for high-
dimensional models. In particular, the Lasso or Dantzig selector become very
unstable in this context. Heteroscedasticity in this paper refers to conditional
heteroscedasticity, which means that the conditional variance of εi depends on
the features. A natural example is that of εi = σ(xi)ξi, where σ(·) is a measur-
able function and ξi is independent of xi with E(ξi) = 0 and E(ξ2i ) = 1. Even
for low-dimensional models, heteroscedasticity has been known to cause several
complications (for example, Gauss-Markov theorem no longer applies) with a
large literature on constructing valid inference in the presence of heteroscedas-
ticity, see e.g., Park (1966); Harvey (1976); White (1980).
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Conditional heteroscedasticity is also allowed in the auxiliary model, therefore
allowing for feature heteroscedasticity; for example, variance of one feature may
directly depend on many other features in the model. This includes a wide
spectrum of dependence structures among the features.

Our next assumption controls the size of the two models.

Condition 2. For some constant κ6 > 0,

‖γ∗‖2 ≤ κ6 and sθ = o(n1/2/(log(p ∨ n))5/2),

where sθ = ‖θ∗‖0.
The rate for sθ is slightly stronger than the conditions in Belloni, Cher-

nozhukov and Hansen (2014) and Ning et al. (2017) who impose o(
√
n/ log p)

and in Van de Geer et al. (2014) who impose o(n/ log p). However, we do not
impose that the original model is sparse as long as a row of the precision ma-
trix θ∗ is sparse enough. This can be interpreted as the cost of allowing for
non-sparse γ∗ as well as general heteroscedatic model errors. Moreover, the va-
lidity of CorrT is also guaranteed for dense θ∗ and sparse γ∗; see Theorem 3.
Therefore, our test can detect automatically which one of the two (γ∗ or θ∗) is
sparse and utilize it for effective inference; hence, the practitioner does not need
knowledge of which of the two is sparse when applying our method.

Additionally, in studying the estimation problem for signals with many non-
zero entries, it is common to consider parameters in bounded convex balls, e.g.
Donoho and Johnstone (1994), Raskutti, Wainwright and Yu (2011) and Janson,
Barber and Candes (2017). Notice that the bounded �2-norm itself does not
impose direct constraints on the sparsity, see e.g., Janson, Barber and Candes
(2017).

3.1. Size properties: Validity regardless of sparsity

Given these assumptions, we are now ready to provide an asymptotic charac-
terization of the proposed CorrT test.

Theorem 2. Let Conditions 1 and 2 hold. Then under the null hypothesis (1.2),

∀α ∈ (0, 1), lim
n,p→∞

P
(
|Tn(β0)| > Φ−1(1− α/2)

)
= α, (3.1)

where Tn(β0) is defined in Equation (2.6).

Theorem 2 formally establishes that the new CorrT test is asymptotically
exact in testing β∗ = β0 while allowing p � n. In particular, CorrT is robust
to dense γ∗ or θ∗, in the sense that even under dense γ∗ or θ∗, the proposed
procedure does not generate false positive results. Compared to existing meth-
ods, we have moved away from the unverifiable model sparsity assumption and
hence can handle more realistic problems.

Remark 1. Our result is theoretically intriguing as it circumvents limitations of
the “inference based on estimation” principle. This principle relies on accurate
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estimation, which is challenging, if not impossible, for non-sparse and high-
dimensional models. To see the difficulty, consider the full model parameter
π∗ := (β∗,γ∗�)� ∈ R

p+1. The minimax rate of estimation in terms of �2-loss
for parameters in a (p+1)-dimensional �q-ball with q ∈ [0, 1] and of radius rn is
rn(n

−1 log p)1−q/2 (see Raskutti, Wainwright and Yu (2011)). Theorem 2 says
that CorrT is valid even when π∗ cannot be consistently estimated. For example,
suppose that log p � nc for a constant c > 0 and π∗

j = 1/
√
p for j = 1, . . . , p+1.

Then, as n → ∞, ‖π∗‖q(n−1 log p)1−q/2 → ∞ for any q ∈ [0, 1], suggesting
potential failure in estimation.

Instead of solely relying on estimation of π∗, we impose the null hypothesis
in our inference procedure and fully exploit its implication. With sophistication
in constructing the test, the inaccuracy in π∗ does not impair the validity (Type
I error control) of our approach.

With an almost analogous argument as in the proof of Theorem 2, we can
show the following result.

Theorem 3. Let Conditions 3 and 4 in Appendix A hold. Then under the null
hypothesis (1.2),

∀α ∈ (0, 1), lim
n,p→∞

P
(
|Tn(β0)| > Φ−1(1− α/2)

)
= α, (3.2)

where Tn(β0) is defined in Equation (2.6).

By Theorem 3, the asymptotic validity of CorrT still holds if we replace sθ
with sγ := ‖γ∗‖0 in the statement of Condition 2. This means that as long as
one of γ∗ and θ∗ is sparse, CorrT delivers valid inference. In this sense, CorrT
automatically detects and adapts to sparse structures from different sources in
the data, either in the model parameter or the covariance matrix of features;
prior knowledge of the exact source is not needed.

We note that confidence sets for β∗ can be constructed by inverting the CorrT
test. Let 1− α be the nominal coverage level. We define

C1−α :=
{
β : |Tn(β)| ≤ Φ−1(1− α/2)

}
. (3.3)

Theorem 2 guarantees the validity of this confidence set.

Corollary 4. Under Conditions 1 and 2, the confidence set C1−α, (3.3), has
the exact coverage asymptotically,

lim
n,p→∞

P (β∗ ∈ C1−α) = 1− α.

Moreover, the same conclusion holds if we replace Conditions 1 and 2 with
Conditions 3 and 4.

Corollary 4 implies that the confidence set (3.3) provides exact asymptotic
coverage even when the nuisance parameter γ∗ or θ∗ is non-sparse in that
sγ/p → 1 or sθ/p → 1 with p � n. To the best of our knowledge, this re-
sult is unique in the existing literature. As we step further into the non-sparse
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regime (as we take more and more entries to be none-zero), existing results
could provide confidence sets with coverage probability far below the nominal
level. In the example discussed in Section 1.2 with sγ = p, Figure 1 indicates
that the 99% confidence interval based on debiasing method can have coverage
probability around 20%.

We would also like to point out that Theorem 2 holds uniformly over a large
parameter space and over a range of null hypotheses. To formally state the result,
we define the nuisance parameter ξ∗ = (γ∗,θ∗, F ), where F is the distribution
of (xi, εi, ui). Notice that the distribution of the observed data {(yi, xi, zi)}ni=1

is determined by (β∗, ξ∗). The probability distribution under (β∗, ξ∗) is denoted
by P(β∗,ξ∗). The space for the nuisance parameter we consider is

Ξ(sθ) =
{
ξ = (γ,θ, F ) : Condition 1 holds with κ1, . . . , κ5 > 0, ‖γ‖2 ≤ κ6

and ‖θ‖0 ≤ sθ
}
,

where κ1, . . . , κ6 > 0 are constants. We have the following result.

Corollary 5. If sθ = o
(√

n/(log(p ∨ n))5
)
, then ∀α ∈ (0, 1),

lim sup
n,p→∞

sup
(β,ξ)∈R×Ξ(sθ)

∣∣P(β,ξ)

(
|Tn(β)| > Φ−1(1− α/2)

)
− α

∣∣ = 0.

Corollary 5 says that Theorem 2 holds uniformly in a large class of distribu-
tions. An analogous result can be stated for Theorem 3.

3.2. Power properties

In this subsection, we investigate the power properties of CorrT. Let us ob-
serve that it is still unclear what statistical efficiency means for inference in
non-sparse high-dimensional models. Various minimax results on both estima-
tion (Raskutti, Wainwright and Yu, 2011) and inference (Ingster, Tsybakov and
Verzelen, 2010) suggest that no procedures are guaranteed to accurately iden-
tify non-sparse parameters. In light of these results, it appears that, for dense
high-dimensional models, it is quite difficult, if possible at all, to obtain tests
that are powerful uniformly over a large class of distributions, e.g., a bounded �2
ball for γ∗. However, our test does have desirable power properties for certain
classes of models of practical interest. First, we show that our test is efficient
for sparse models. Second, we show that our test has the optimal detection rate
O(n−1/2) for important dense models.

3.2.1. Adaptivity: Efficiency under sparsity

In Section 1.2, we have demonstrated that the lack of robustness could cause
serious problems for existing inference methods designed for sparse problems.
A certain oracle procedure with the knowledge of sγ = ‖γ∗‖0 would proceed as
follows: (1) use existing sparsity-based methods for sparse models in order to
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achieve efficiency in inference and (2) resort to certain conservative approaches
to retain validity for dense problems. However, the sparsity level sγ is rarely
known in practice. Hence, an important question is whether or not it is possible
to design a procedure that can automatically adapt to the unknown sparsity
level sγ and match the above oracle procedure in the following sense. We say
that a procedure for testing the hypothesis (1.2) is sparsity-adaptive if (i) this
procedure does not require knowledge of sγ , (ii) provides valid inference under
any sγ and (iii) achieves efficiency with sparse γ∗.

In this subsection, we show that the CorrT test possesses such sparsity-
adaptive property. It is clear from Section 2 that CorrT does not require knowl-
edge of sγ . In Section 3.1, we show that CorrT provides valid inference without
any assumption on sγ . We now show the third property, efficiency under sparse
γ∗. To formally discuss our results, we consider testing H0 : β∗ = β0 versus

H1,h : β∗ = β0 + h/
√
n. (3.4)

where h ∈ R is a fixed constant. H1,h in (3.4) is called a Pitman alternative
and is typically used to assess the asymptotic efficiency of tests; see Van der
Vaart (2000) and Lehmann and Romano (2006) for classical treatments on local
power.

Theorem 6. Let Conditions 1 and 2 hold together with log p = o(
√
n). Let

ΣX = E[xix
�
i ] ∈ R

(p−1)×(p−1). Suppose that ‖γ∗‖0 = o(
√
n/ log2(p ∨ n)),

min1≤j≤p E[x2
1,jε

2
1] ≥ τ and Eu2

1/
√

Eε21u
2
1 → κ for some constants τ, κ > 0.

Then, under H1,h in (3.4),

lim
n,p→∞

Pβ∗
(
|Tn(β0)| > Φ−1(1− α/2)

)
= Ψ(h, κ, α),

where Ψ(h, κ, α) = Φ
(
−Φ−1(1− α/2) + hκ

)
+Φ

(
−Φ−1(1− α/2)− hκ

)
.

Theorem 6 establishes the power properties of the proposed CorrT test.

Remark 2. In the case of homoscedastic errors with σ2
ε = Eε21 and σ2

u =
Eu2

1, we can compare the local power of CorrT with that of existing methods. In
particular we consider the local power of Van de Geer et al. (2014) and note that
similar analysis applies to Belloni, Chernozhukov and Hansen (2014) and Ning

et al. (2017). Let b̂Lasso denote the debiased Lasso estimator defined in Van de
Geer et al. (2014). Under homoscedasticity, our condition of Eu2

1/
√
Eε21u

2
1 → κ

translates into σu/σε → κ. Applying Theorem 2.3 of Van de Geer et al. (2014)

to our setup, we obtain
√
n(̂bLasso − β∗) →d N(0, κ−2). Hence, a natural test,

referred to as Van de Geer et al. (2014) test, is to reject H0 in (1.2) if and

only if |̂bLasso − β0| > κ−1Φ−1(1− α/2)/
√
n. Under H1,h (3.4), the asymptotic

normality of b̂Lasso implies that
√
n(̂bLasso−β0) →d N(h, κ−2). Hence, it is not

hard to see that the power of Van de Geer et al. (2014) test against H1,h (3.4) is

asymptotically equal to Ψ(k, κ, α) defined in Theorem 6. Since b̂Lasso is shown
to be a semi-parametrically efficient estimator for β∗, CorrT is asymptotically
equivalent to tests based on efficient estimators.
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Moreover, results from Javanmard and Montanari (2014b) suggest that our
test is also minimax optimal whenever the model is homoscedastic. By Theorem
2.3 therein (adapted to the Gaussian setting), a minimax optimal α level test
for testing β∗ = β0 against H1,h in (3.4) has power at most

Φ
(
anhσuσ

−1
ε − Φ−1(1− α/2)

)
(3.5)

+ Φ
(
−anhσuσ

−1
ε − Φ−1(1− α/2)

)
+ Fn−sγ+1(n− sγ + ln).

In the display above ln =
√
n logn, an =

√
(n− sγ + ln)/n and Fk(x) =

P (Wk ≥ x), where Wk denotes a random variable from χ2(k), the chi-squared
distribution with k degrees of freedom. By the Bernstein’s inequality applied to
the sum of i.i.d χ2(1) random variables, one can easily show that Fn−sγ+1(n−
sγ + ln) = o(1). Hence, as n → ∞, the limit of the bound in (3.5) is equal to
Ψ(k, κ0, α) defined in Theorem 6.

However, Theorem 6 also holds under a heteroscedastic model (1.1). Observe
that the only condition regarding heteroscedasticity is related to the second
moment between the design and the errors, summarized by κ. Hence, the local
power only depends on κ even though heteroscedasticity allows a very rich class
of dependence between εi and ui.

Theorems 2 and 6 establish the sparsity-adaptive property discussed at the
beginning of Section 3.2.1: CorrT is shown to automatically detect sparse struc-
tures in γ∗ and utilize them to optimize power, while maintaining validity even
in the absence of sparsity.

3.2.2. Extremely dense models

One important class of non-sparse models is what we shall refer to as the “ex-
tremely dense models”. In these models, a potentially important case is that the
entries of the model are all small individually but are strong collectively as the
dimension of the model explodes. In our testing problem (1.2), this translates
into an extremely dense nuisance parameter γ∗ with ‖γ∗‖0 = p � n. Consistent
estimation of such extremely dense nuisance parametrs might not be possible.
However, we are able to discuss the power of the proposed test in the presence
of a particular dense nuisance parameter and obtain a strong result indicating
that the proposed test controls Type II errors extremely well. To the best of our
knowledge, the next result is unique.

Theorem 7. Let Conditions 1 and 2 hold together with log p = o(
√
n). Let

ΣX = E[xix
�
i ] ∈ R

(p−1)×(p−1). Suppose that min1≤j≤p Var [x1,j(x
�
1 γ

∗ + ε1)] ≥
τ , ‖ΣXγ∗‖∞ ≤

√
τ(2n)−1 log(p ∨ n)/25 and Eu2

1/
√
E(x�

1 γ
∗ + ε1)2u2

1 → κ for
some constants τ, κ > 0. Then, under H1,h in (3.4),

lim
n,p→∞

Pβ∗
(
|Tn(β0)| > Φ−1(1− α)

)
= Ψ(h, κ, α),

where Ψ(h, κ, α) is defined in Theorem 6.
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We can draw a few conclusions from Theorem 7. For n, p → ∞ with√
log p/n = o(1), the Type II error of the proposed CorrT test, against al-

ternatives with deviations larger than O(n−1/2), converges to zero.

For the case of independent columns of the design matrix and the case
of Toeplitz designs, the condition ‖ΣXγ∗‖∞ = O(

√
(log p)/n) is satisfied if

‖γ∗‖∞ = O(
√

(log p)/n) as long as γ∗ lies in a bounded �2-ball. More generally,

‖γ∗‖∞ = O(
√

(log p)/n) is a sufficient condition under any covariance matrix
ΣX satisfying max1≤j≤p ‖ΣX,j‖1 = O(1) (a condition sometimes imposed for
consistent estimation of covariance matrices).

Theorem 7 offers new insight into the inference of dense models. When we test
the full parameter (β∗,γ∗) against an alternative, the minimax test might not
have power against “fixed alternative” (deviation bounded away from zero) if the
parameter is not sparse; see Ingster, Tsybakov and Verzelen (2010). Theorem 7
says that the problem of testing single entries of a potentially dense model is an
entirely different problem; we can indeed have power against alternatives of the
order O(n−1/2), just like the case of fixed p. Hence, this rate is optimal. This
would also imply that any confidence intervals computed by inverting the test
Tn are optimal regardless of the size of sparsity of γ∗.

3.2.3. Hybrid high-dimensional model

To showcase wide applicability of our method and to provide the bridge between
sparse and dense models, we can consider what is perhaps a more practical
scenario for the nuisance parameter γ∗. Under the so-called “sparse + dense”
model, γ∗ is the sum of a sparse vector and an extremely dense vector. The
estimation of high-dimensional models with this hybrid sparsity are discussed by
Chernozhukov et al. (2017b), who derive bounds for prediction errors. However,
their results only concern with estimation, and thus the statistical inference of
these models even in moderately high dimensions is still an open problem. The
following result offers the first solution to this issue.

Theorem 8. Let Conditions 1 and 2 hold together with log p = o(
√
n). Let

ΣX = E[xix
�
i ] ∈ R

(p−1)×(p−1). Suppose that γ∗ = π∗ +μ∗ for π∗ and μ∗ such

that (1) ‖π∗‖0 = o(
√
n/ log5/2(p ∨ n)), (2) (π∗ +μ∗)�ΣXμ∗ +E(ε21) ≥ τ1, (3)

min1≤j≤p V ar[x1,j(x
�
1 μ

∗+ε1)] ≥ τ2 , (4) ‖ΣXμ∗‖∞ ≤
√

τ2(2n)−1 log(p ∨ n)/25

and (5) Eu2
1/
√
E(x�

1 μ
∗ + ε1)2u2

1 → κ, where τ1, τ2, κ > 0 are constants. Then,
under H1,h in (3.4),

lim
n,p→∞

Pβ∗
(
|Tn(β0)| > Φ−1(1− α)

)
= Ψ(h, κ, α),

where Ψ(h, κ, α) is defined in Theorem 6.

Theorem 8 says that when high-dimensional models have parameters with the
hybrid structure, testing single entries can have power in detecting deviations
larger than O(n−1/2), the optimal rate even for low-dimensional models.
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Condition (4) of Theorem 8 is a natural restriction on the interaction between
the sparse part and the dense part of the model. When ΣX = Ip, condition
(4) is automatically satisfied if π∗ and μ∗ have disjoint supports. Since (π∗ +

μ∗)�ΣXμ∗ +E(ε21) = ‖Σ1/2
X (π∗ +μ∗/2)‖22 +E(ε21)−‖Σ1/2

X μ∗‖22/4, a sufficient

condition for condition (4) is ‖Σ1/2
X μ∗‖22 ≤ 2E(ε21).

4. Numerical examples

In this section we evaluate the finite-sample performance of the proposed method
via Monte Carlo simulations. We also illustrate CorrT using a dataset on breast
cancer trials.

4.1. Simulation examples

We simulate the linear model Y = Wπ∗ + ε as follows. The design matrix
W ∈ R

n×p consists of i.i.d rows from one of the following distributions:

LTD Light-tailed design: N(0,Σ(ρ)) with the (i, j) entry of Σ(ρ) being ρ|i−j|.

HTD Heavy-tailed design: each row has the same distribution as Σ
1/2
(ρ) U, where

U ∈ R
p contains i.i.d random variables with Student’s t-distribution with

3 degrees of freedom (the third moment does not exist.)

We consider both uncorrelated designs (ρ = 0) and the correlated designs (ρ =
−1/2). The error term ε ∈ R

n is drawn as a vector of i.i.d random variables
from either N(0, 1) (light-tailed error, or LTE) or Student’s t-distribution with
3 degrees of freedom (heavy-tailed error, or HTE). Let s = ‖π∗‖0 denote the
size of the model sparsity and we vary simulations settings from extremely
sparse s = 3 to extremely large s = p. We set the model parameters as follows:
π∗

j = 2/
√
n for 2 ≤ j ≤ 4, π∗

j = 0 for j > max{s, 4} and other entries of
π∗ are i.i.d random variables uniformly distributed on (0, 4/

√
n). We test the

hypothesis H0 : π∗
3 = 2/

√
n and the rejection probability represents the Type I

error.
We compare our method with the debiasing method of Van de Geer et al.

(2014) and the score algorithm of Ning et al. (2017). For both approaches, we
choose the scaled Lasso to estimate π∗ and treat the true precision matrix
and variance of the model as known. In a certain sense these procedures are
quasi-oracle as they use part of the information on the (typically unknown) true
probability distribution of the data. We do this primarily to reduce the arbi-
trariness of choosing tuning parameters (and hence the quality of inference) in
implementing these methods. Moreover, these methods should not be expected
to behave better under their original setting with unknown Σ(ρ) and noise level
than under our “ideal setting”. All the rejection probabilities are computed
using 100 random samples. All the tests we consider have a nominal size of 5%.

We collect the result in Table 1, where we clearly observe instability of the
competing debiasing and score methods. Their Type-I error diverges steadily
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Table 1

Average Type I error of the CorrT test, Debias (De-biasing test) and Score test over 100
repetitions with n = 200 and p = 500. Rows represent different sparsity levels, whereas

columns represent different design and error setting.

LTD + LTE, ρ = 0 LTD + LTE, ρ = − 1
2

HTD + LTE, ρ = 0

CorrT Debias Score CorrT Debias Score CorrT Debias Score

s = 1 0.05 0.05 0.05 0.06 0.03 0.06 0.04 0.14 0.09
s = 3 0.02 0.03 0.03 0.16 0.05 0.18 0.07 0.17 0.09
s = 5 0.02 0.02 0.02 0.08 0.06 0.07 0.03 0.05 0.03
s = 10 0.07 0.09 0.10 0.09 0.08 0.11 0.07 0.08 0.10
s = 20 0.05 0.11 0.10 0.05 0.06 0.12 0.08 0.13 0.11
s = 50 0.04 0.13 0.11 0.08 0.16 0.23 0.10 0.25 0.18
s = 100 0.05 0.27 0.24 0.02 0.19 0.16 0.07 0.28 0.20
s = n 0.03 0.36 0.37 0.16 0.34 0.35 0.05 0.33 0.37
s = p 0.05 0.57 0.56 0.07 0.42 0.47 0.04 0.54 0.55

LTD + HTE, ρ = 0 LTD + HTE, ρ = − 1
2

HTD + HTE, ρ = 0

CorrT Debias Score CorrT Debias Score CorrT Debias Score

s = 1 0.03 0.01 0.02 0.06 0.05 0.04 0.04 0.06 0.05
s = 3 0.06 0.06 0.05 0.11 0.03 0.11 0.09 0.15 0.08
s = 5 0.04 0.06 0.06 0.08 0.07 0.08 0.04 0.05 0.05
s = 10 0.04 0.02 0.02 0.09 0.06 0.12 0.02 0.12 0.02
s = 20 0.09 0.08 0.08 0.04 0.05 0.09 0.07 0.16 0.11
s = 50 0.03 0.18 0.21 0.05 0.11 0.08 0.02 0.17 0.16
s = 100 0.03 0.21 0.21 0.05 0.22 0.19 0.07 0.29 0.21
s = n 0.07 0.38 0.36 0.05 0.20 0.24 0.05 0.35 0.33
s = p 0.05 0.59 0.61 0.04 0.44 0.41 0.09 0.52 0.54

away from 5% with growing sparsity s; in extreme cases, Type I error rate could
reach 50%, close to a random guess. In contrast, CorrT remains stable even
when the model sparsity level is equal to p. This is still true as we change the
correlation among the features and the thickness of tails in the distribution of
the designs and errors.

We also investigate the power properties of testing H0 : π∗
3 = 2/

√
n. The

data is generated by the same model as in Table 1, except that the true value
of π3 is now π∗

3 = 2/
√
n + h/

√
n. Table 2 presents full power curves with

various values of h, which measures the magnitude of deviations from the null
hypothesis. Hence the far left presents Type I error (h = 0) whereas other points
on the curves correspond to Type II errors (h �= 0). In all the power curves, we
use the design matrices have a Toeplitz covariance matrix Σ(ρ) with ρ = −1/2.
The two plots in the first row of Table 1 correspond to extremely sparse models
with s = 3: LTD + LTE structure on the left and LTD + HTE on the right. In
both figures, we observe that CorrT compares equally to the existing methods.
The second row corresponds to the case of s = n; we clearly observe that the
CorrT outperforms both debiasing and score tests by providing firm Type I
error and also reaching full power quickly. Lastly, we present power curves for
s = p; for these extremely dense models, debiasing and score methods can have
Type I error close to 50% whereas CorrT still provides valid inference. CorrT
still achieves full power against alternatives that are 1/

√
n away from the null.
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Table 2

Power properties of the CorrT test across different sparsity settings in high dimensional
linear models. We consider extremely sparse, s = n and s = p cases presented through top to
bottom row. We also consider design setting with light tailed and heavy tailed distributions,
left to right columns. We compare CorrT (red) with de-biased (green) and score test (blue).

4.2. An application to transNOAH breast cancer trial data

We now use real data to illustrate the proposed method. The sample was se-
lected from the transNOAH breast cancer trial (GEO series GSE50948), avail-
able for download at “http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE50948”. Genome-wide gene expression profiling was performed using
micro RNA from biopsies of 114 pre-treated patients with HER2+ breast can-
cer. The dataset contains gene expression values of about 20000 genes located
on different chromosomes.

Clinically, breast cancer is classified into hormone receptor (HR)-positive,
HER2+ and triple-negative breast cancer. The “HER2-positive” subtype of
breast cancer over-expresses the human epidermal growth factor receptor 2
(HER2). BRCA1 is a human tumor suppressor gene that is normally expressed

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50948
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50948
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Table 3

Value of the Test Statistic of transNOAH breast cancer trial data set concerning 114 HER+
cancer patients with 20000 genes mapped.

Gene Biological association Test Statistic
CorrT Debias Score

IGF2R breast cancer tumor suppressor -4.692 -4.285 -4.445
Nmi endogenously associated with BRCA1 -4.239 -2.956 -2.669

RBBP4 breast cancer -4.186 -3.314 -2.806
NARS2 breast cancer -4.163 -5.000 -4.983

B3GALNT1 lung cancer 1.151 2.082 2.065
C3orf62 lung cancer -1.274 -2.143 -2.139
LTB lung cancer -0.131 -2.107 -2.143
TNFAIP1 lung cancer 1.231 2.181 2.118

CCPG1 prostate cancer -1.597 -2.154 -2.251
LRRIQ3 colorectal cancer -1.025 -2.480 -2.240
LOC100507537 bladder cancer -0.137 -1.966 -1.135
ELOVL4 ataxia -1.354 -2.152 -2.136

in the cells of breast and other tissues, where they help repair damaged DNA.
Research suggests that the BRCA1 proteins regulate the activity of other genes
including tumor suppressors and regulators of the cell division cycle. However,
the association between BRCA1 and other genes is not completely understood.
Moreover, it is believed that BRCA1 may regulate pathways that remove the
damages in DNA introduced by the certain drugs. Thus understanding associa-
tions between BRCA1 and other genes provides a potentially important tool for
tailoring chemotherapy in cancer treatment. HER2+ breast cancer is biologi-
cally heterogeneous and developing successful treatment is highly important. We
apply the method developed in Section 2 to this dataset with the goal of testing
particular associations between BRCA1 and a few other genes conditional on all
remaining genes present in the study. Simply applying Lasso procedure results
in an estimate of all zeros.

Results are reported in Table 3. Therein we report the test statistic of the
proposed test, CorrT, as well as the debiasing test and the score test. We observe
that there are a number of genes where the three tests report largely different
values – namely CorrT reports a non-significant finding whereas the debiasing
and the score test report significant findings. These genes include B3GALNT1,
C3orf62, TNFAIP1 and LTB gene that have been previously linked to the lung
cancer (Bosse et al., 2016; Wang et al., 2016; Zhang et al., 2017; Poczobutt
et al., 2016), as well as CCPG1, LRRIQ3 and LOC100507537 linked to prostate,
colorectal and bladder cancer, respectively (Tang et al., 2016; Arriaga et al.,
2017; Terracciano et al., 2017). Such findings would indicate that this dataset
likely does not follow a sparse model and that previous methods might have
reported false positives. Observe that even mutations related to diseases other
than cancer, such as ataxia and ELOVL4 gene, are being reported as significant
by the debiasing and the score tests but are found insignificant by CorrT.

Chromatin regulators have been known to act as a guide for cancer treatment
choice (Kitange et al., 2016). Here we identify retinoblastoma binding protein
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RBBP4, a chromatin modeling factor, as being highly associated with BRCA1
in all HER2+ patients. This indicates that early detection and chemoterapy
treatment should target RBBP4.

Results of Table 3 demonstrate that a partial or complete loss of NARS2
is a significant event that can be associated with the HER2+ breast cancer.
Significance of this gene was confirmed in Holm et al. (2012) where a signifi-
cant correlation was found between the gene CCND1 (a known trigger of the
ER positive breast cancer) and NARS2. Our analysis enriches these findings
and shows statistically significant association between NARS2 and BRCA1 for
HER2+ cancer cells.

Lastly, Table 3 showcases significance of a known breast tumor suppressor
gene IGF2R (Oates et al., 1998). Mannose 6-phosphate/IGF2 receptor
(M6P/IGF2R) is mutated in breast cancer, resulting in loss of IGF2 degradation
(Ellis et al., 1998) and leading to its usage as a sensitivity marker for radiation,
chemotherapy, and endocrine therapy. Germ-line mutations in BRCA1 predis-
pose individuals to breast and ovarian cancers. A novel endogenous association
of BRCA1 with Nmi (N-Myc-interacting protein) in breast cancer cells was de-
tected in Li, Lee and Avraham (2002). Nmi was found to interact specifically
with BRCA1, both in-vitro and in-vivo, by binding to two major domains in
BRCA1. Table 3 showcases significance of the association between Nmi and
BRCA1 gene.

In the above analysis, our method confirms existing knowledge and also de-
livers new discoveries in medicine. This provides evidence that our methods can
be useful for scientific research involving high-dimensional datasets.

5. Conclusion

In summary, our procedure achieves the optimal detection rate while adapting to
any level of sparsity or lack thereof. Therefore CorrT is extremely useful for ap-
plied scientific studies where a priori knowledge of sparsity level is unknown.
Since there are currently no procedures for testing the sparsity assumption
CorrT is exceptionally practical. It possesses the regime-encompassing property
in that it behaves optimally in all three regimes: sparse, dense and hybrid and
does so automatically without user interference while allowing heteroscedastic
errors, therefore, providing a comprehensive tool for significance testing.

Appendices

Appendix A: Assumptions for Theorem 3

Condition 3. There are constants κ′
1, ..., κ

′
5 > 0 such that the following hold.

(i) κ′
1 ≤ σmin(ΣW ) ≤ σmax(ΣW ) ≤ κ′

2 and ‖wi‖ψ2 ≤ κ′
2. (ii) In addition,

0 < 1/κ′
3 < E(u2

i ) < κ′
3, E(ziεi) = 0 and E(xiεi) = 0. (iii) E(εi | xi, ui) = 0,

P (κ′
4 < σ2

ε,i < κ′
5) = 1 and ‖εi‖ψ2 ≤ κ′

5, where σ2
ε,i = E(ε2i | xi, ui).
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Condition 4. For some constant κ′
6 > 0,

‖θ∗‖2 ≤ κ6 and sγ = o
(
n1/2/(log(p ∨ n))5/2

)
,

where sγ = ‖γ∗‖0.

Appendix B: Proofs of theoretical results

B.1. Proof of Theorem 1

Proof of Theorem 1. The proof proceeds in two steps. We first show that
P (θ̂ = 0) → 1 and then prove the desired result.

Step 1: Prove that P (θ̂ = 0) → 1
We show that, with probability approaching one, the vector of all zeros,

satisfies the KKT condition of the Lasso optimization problem (see Lemma 2.1
of Bühlmann and Van de Geer (2011)), i.e.,

P
(
‖n−1W�Y‖∞ ≤ 16

√
n−1 log p

)
→ 1. (B.1)

Let ξi,j = ap−1/2
∑p

l=1,l �=j xi,l + εi, where xi,l denotes the l-th entry of xi.
Notice that

(1) {xi,j}ni=1 and {ξi,j}ni=1 are independent by construction of the model
(design have i.i.d. rows) ,

(2) yi = ap−1/2xi,j + ξi,j by the definition of the model and ξi,j and (3)
Eξ2i,j = a2(1− p−1) + 1 for ∀1 ≤ i ≤ n and ∀1 ≤ j ≤ p.

Notice that x2
i,j is a chi-squared random variable with one degree of free-

dom. Since x2
i,j − 1 is a chi-squared random variable right it has bounded sub-

exponential norm, Proposition 5.16 of Vershynin (2010) and the union bound
imply that for some constants c1, c2 > 0 and for any z > 0

P

(
max
1≤j≤p

∣∣∣∣∣n−1/2
n∑

i=1

(x2
i,j − 1)

∣∣∣∣∣ > z
√

log p

)

≤
p∑

j=1

P

(∣∣∣∣∣n−1/2
n∑

i=1

(x2
i,j − 1)

∣∣∣∣∣ > z
√

log p

)

≤ 2p exp

[
−c1 min

{
z2 log p

c22
,
z
√
log p

c1n−1/2

}]
.

It follows that there exists a constant c3 > 0 such that

P (An) → 1 with An =

{
max
1≤j≤p

∣∣∣∣∣n−1
n∑

i=1

x2
i,j − 1

∣∣∣∣∣ > c3
√
n−1 log p

}
.

(B.2)
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Since {xi,j}ni=1 is independent of {ξi,j}ni=1, (see comment (1) above) we have
that n−1/2

∑n
i=1 xi,jξi,j conditional on {xi,j}ni=1 is Gaussian with mean zero and

variance n−1
∑n

i=1 x
2
i,jσ

2
ξ , where σ2

ξ = a2(1− p−1) + 1.

Let w > 0 satisfy 2 logw =
(
1.452 log p

)
/
(
1 + c3

√
n−1 log p

)
. Then, on the

event An,

P

(∣∣∣n−1/2
n∑

i=1

xi,jξi,j

∣∣∣ > 1.45σξ

√
log p

∣∣∣∣∣ {xi,j}ni=1

)

= P

⎛⎝
∣∣∣n−1/2

∑n
i=1 xi,jξi,j

∣∣∣
σξ

√
n−1

∑n
i=1 x

2
i,j

>
1.45

√
log p√

n−1
∑n

i=1 x
2
i,j

∣∣∣∣∣∣ {xi,j}ni=1

⎞⎠
= 1− Φ

⎛⎝ 1.45
√
log p√

n−1
∑n

i=1 x
2
i,j

⎞⎠
(i)

≤ 1− Φ

⎛⎝ 1.45
√
log p√

1 + c3
√

n−1 log p

⎞⎠
(ii)
= 1− Φ

(√
2 logw

)
.

(iii)

≤ w−1

(iv)
= exp

⎛⎝− 1.452 log p

2
(
1 + c3

√
n−1 log p

)
⎞⎠ ,

where (i) holds by the definition of An, (ii) holds by the definition of w, (iii)
holds by Lemma 1 and (iv) holds by the definition of w.

By the law of iterated expectations and the union bound, we have that

P

(
max
1≤j≤p

∣∣∣∣∣n−1/2
n∑

i=1

xi,jξi,j

∣∣∣∣∣ > 1.45σξ

√
log p

)
(B.3)

≤ p exp

⎛⎝ −1.452 log p

2
(
1 + c3

√
n−1 log p

)
⎞⎠+ P (Ac

n)
(i)
= o(1), (B.4)

where (i) holds by p → ∞, n−1 log p → 0 and (B.2). Notice that

P
(
‖n−1/2W�Y‖∞ > 1.5

√
(a2 + 1) log p

)
(i)
= P

(
max
1≤j≤p

∣∣∣∣∣n−1/2
n∑

i=1

xi,jξi,j + ap−1/2n−1/2
n∑

i=1

x2
i,j

∣∣∣∣∣ > 1.5
√
(a2 + 1) log p

)

≤ P

(
max
1≤j≤p

∣∣∣∣∣n−1/2
n∑

i=1

xi,jξi,j

∣∣∣∣∣ > 1.45σξ

√
log p

)
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+ P

(
max
1≤j≤p

∣∣∣∣∣ap−1/2n−1/2
n∑

i=1

x2
i,j

∣∣∣∣∣ > (1.5√a2 + 1− 1.45σξ

)√
log p

)
(ii)
= o(1) + P

(
max
1≤j≤p

∣∣∣∣∣n−1
n∑

i=1

x2
i,j

∣∣∣∣∣ > a−1
√
p/n

(
1.5
√
a2 + 1− 1.45σξ

)√
log p

)
(iii)
= o(1),

where (i) holds by yi = ap−1/2xi,j + ξi,j , (ii) holds by (B.4) and (iii) holds by
(B.2) and√

p/n
(
1.5
√
a2 + 1− 1.45σξ

)√
log p �

√
p(log p)/n → ∞.

Since 1.5
√
a2 + 1 ≤ 16 ∀a ∈ [−10, 10], we have proved (B.1). Hence, P (θ̂ =

0) → 1.

Step 2: Establish the desired result
Observe that Ez2i y

2
i = Ey2i = ‖γ∗‖22 + 1 = a2 + 1. Then, by the central limit

theorem

n−1/2
n∑

i=1

ziyi →d N(0, a2 + 1).

Since P (θ̂ = 0) → 1 (by step 1),
√
n(β̃ − β∗) = n−1/2Z�Y = n−1/2

∑n
i=1 ziyi

with probability approaching one. Hence,

√
n(β̃ − β∗) →d N(0, a2 + 1).

Since (Θ̂Σ̂W Θ̂)1,1 = n−1Z�Z = n−1
∑n

i=1 z
2
i , the law of large numbers

implies that (Θ̂Σ̂W Θ̂)1,1 = 1 + oP (1). By Slutzsky’s lemma, we have

√
n(β̃ − β∗)√
(Θ̂Σ̂W Θ̂)1,1

→d N(0, a2 + 1). (B.5)

Notice that

P (β∗ ∈ CI1−α) = P

⎛⎝−Φ−1
(
1− α

2

)
≤

√
n(β̃ − β∗)√
(Θ̂Σ̂W Θ̂)1,1

≤ Φ−1
(
1− α

2

)⎞⎠
(i)
= Φ

(
Φ−1

(
1− α

2

)
/
√
a2 + 1

)
− Φ

(
−Φ−1

(
1− α

2

)
/
√
a2 + 1

)
(ii)
= 2Φ

(
Φ−1

(
1− α

2

)
/
√

a2 + 1
)
− 1,

where (i) holds by (B.5) and (ii) holds by the identity Φ(−z) = 1 − Φ(z) for
z ≥ 0. The proof is complete.
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B.2. Proof of Theorem 2

The proof of Theorem 2 is a consequence of a series of lemmas presented below.

Lemma 1. For any w ≥ 5, Φ−1(1 − w−1) ≤
√
2 logw. For any w ≥ 14,

Φ−1(1− w−1) ≥
√
logw.

Proof of Lemma 1. By Lemma 2 on page 175 of Feller (1968), we have that for
any z > 0

(z−1 − z−3) exp(−z2/2)√
2π

≤ 1− Φ(z) ≤ exp(−z2/2)√
2πz

. (B.6)

Fix an arbitrary w ≥ 5. Since
√
2π · 1 · exp(12/2) < 5, the continuity of

z →
√
2πz exp(z2/2) implies that there exists z0 ≥ 1 with w =

√
2πz0 exp(z

2
0/2).

By (B.6), we have 1− Φ(z0) ≤ w−1. In other words,

Φ−1
(
1− w−1

)
≤ z0

(i)
<
√

2 logw,

where (i) holds by w =
√
2πz0 exp(z

2
0/2) > exp(z20/2) (since z0 ≥ 1). The first

result follows.
To see the second result, we observe the elementary inequality x−1 − x−3 ≥

x−2 for any x ≥ (
√
5 + 1)/2. Hence, (B.6) implies that for z ≥ (

√
5 + 1)/2,

1− Φ(z) ≥ (z−1 − z−3) exp(−z2/2)√
2π

≥ 1√
2πz2 exp(z2/2)

.

In other words, for z ≥ (
√
5 + 1)/2,

Φ−1

(
1− 1√

2πz2 exp(z2/2)

)
≥ z.

Now let w = exp(z2). Then z =
√
logw and we have that for w ≥ 14 >

exp[(
√
5 + 1)2/4],

Φ−1

(
1− 1√

2π
√
w logw

)
≥
√

logw.

It is straight-forward to verify that for any w ≥ 14, 1/(
√
2π

√
w logw) ≥ 1/w

and hence

Φ−1

(
1− 1

w

)
≥ Φ−1

(
1− 1√

2π
√
w logw

)
.

The second result follows from the above two displays. The proof is complete.

Lemma 2. Let Condition 1 hold. Suppose that H0 in (1.2) holds. Then, with
probability tending to one, γ∗ lies in the feasible set of the optimization problem
(2.1) for a = a∗,γ, where a2∗,γ = n−1 max1≤j≤p

∑n
i=1 x

2
i,jε

2
i .
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Proof of Lemma 2. Under H0 in (1.2), Y−Zβ0 = Xγ∗ + ε. Then, it suffices to
verify the following claims:

(a) P
(
‖n−1X�ε‖∞ ≤ η0a∗,γ

)
→ 1.

(b) P
(
‖ε‖∞ ≤ ‖V‖2/ log2 n

)
→ 1.

(c) P
(
n−1V�ε ≥ n−1‖V‖22ρn

)
→ 1.

We proceed in three steps with each step corresponding to one of the above
claims. In the rest of the proof, we denote by vi the i-th entry of V.

Step 1: Establish the claim (a)
Fix δ ≥ 2. For 1 ≤ j ≤ p, define Ln,j =

∑n
i=1 E|xi,jεi|2+δ = nE|x1,jε1|2+δ

and Bn,j =
∑n

i=1 E(xi,jεi)
2 = nE(x1,jε1)

2. Since x1,j and ε1 have bounded sub-
Gaussian norms, Ln,j/n is bounded above; since E(x1,jε1)

2 is bounded away
from zero and infinity, Bn,j/n is bounded away from zero and infinity. Hence,
there exists a constant K1 > 0 such that for 1 ≤ j ≤ p,

Bn,j/L
1/(2+δ)
n,j ≥ nδ/(2+δ)K1.

Let an = Φ−1(1−p−1n−1). By Theorem 7.4 of Peña, Lai and Shao (2008), there
exists an absolute constant A > 0 such that for 1 ≤ j ≤ p,

P

⎛⎝ ∑n
i=1 xi,jεi√∑n
i=1 x

2
i,jε

2
i

≥ an

⎞⎠ ≤ [1− Φ(an)]

[
1 +A

(
1 + an

nδ/(2+δ)K1

)2+δ
]

and

P

⎛⎝−
∑n

i=1 xi,jεi√∑n
i=1 x

2
i,jε

2
i

≥ an

⎞⎠ ≤ Φ(−an)

[
1 +A

(
1 + an

nδ/(2+δ)K1

)2+δ
]
.

Since Φ(−an) = 1−Φ(an) = p−1n−1 and an = Φ−1(1−p−1n−1) ≤
√

2 log(pn)
(due to Lemma 1), the above two displays imply that, for 1 ≤ j ≤ p,

P

⎛⎝ |
∑n

i=1 xi,jεi|√∑n
i=1 x

2
i,jε

2
i

≥ an

⎞⎠ ≤ 2p−1n−1

⎡⎣1 +A

(
1 +

√
2 log(pn)

nδ/(2+δ)K1

)2+δ
⎤⎦ .

By the union bound, we have that

P

(
max
1≤j≤p

|
∑n

i=1 xi,jεi|√∑n
i=1 x

2
i,jε

2
i

≥ an

)
≤ 2n−1

⎡⎣1 +A

(
1 +

√
2 log(pn)

nδ/(2+δ)K1

)2+δ
⎤⎦ (i)

= o(1),

(B.7)
where (i) holds by log p = o(n) and δ ≥ 2. Since η0 = 1.1n−1/2an, we have that

P

⎛⎝ max
1≤j≤p

∣∣n−1/2
∑n

i=1 xi,jεi
∣∣√∑n

i=1 x
2
i,jε

2
i

≥ η0

⎞⎠ = o(1).
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Claim (a) follows by the fact that

n−1‖X�ε‖∞
a∗,γ

=
max1≤j≤p

∣∣n−1/2
∑n

i=1 xi,jεi
∣∣

max1≤j≤p

√∑n
i=1 x

2
i,jε

2
i

≤ max
1≤j≤p

∣∣n−1/2
∑n

i=1 xi,jεi
∣∣√∑n

i=1 x
2
i,jε

2
i

.

Step 2: Establish the claim (b)
By the law of large numbers,

n−1‖V‖22 = oP (1) + Ev21 = oP (1) + E(x�
1 γ

∗)2 + Eε21 ≥ oP (1) + Eε21.

Since Eε21 is bounded away from zero, there exists a constantM > 0 such that
P (‖V‖2/

√
n ≥ M) → 1. On the other hand, εi has bounded sub-Gaussian norm

and thus by the union bound, ‖ε‖∞ = OP (
√
logn). Since

√
n/ log2 n �

√
logn,

claim (b) follows.

Step 3: Establish the claim (c)
By the law of large numbers,

n−1V�ε = oP (1) + Ev1ε1 = oP (1) + Eε21.

Again, since Eε21 is bounded away from zero, there exists a constantM ′ > 0 such
that P (n−1V�ε ≥ M ′) → 1. On the other hand, due to n−1‖V‖22 = Ev21+oP (1),
ρn = o(1) and Ev21 = O(1), we have that n−1‖V‖22ρn = oP (1). Claim (c) follows.

We have showed the claims (a)-(c). The proof is complete.

Lemma 3. Let Condition 1 hold. Let σ̂ε = ‖V −Xγ̂‖2/
√
n. Suppose that H0

in (1.2) holds. Then, with probability tending to one, we have that
(1) ‖n−1X�(V−Xγ̂)‖∞/σ̂ε ≤ 2‖X‖∞η0ρ

−1
n and

(2) ‖V−Xγ̂‖∞/σ̂ε ≤
√
n/(ρn log

2 n).

Proof of Lemma 3. We define a2∗,γ = max1≤j≤p n
−1
∑n

i=1 x
2
i,jε

2
i and a0,γ =

‖X‖∞‖V‖2/
√
n. We first show that P (2a0,γ ≥ a∗,γ) → 1. By the law of large

numbers,

n−1
n∑

i=1

(4v2i − ε2i ) = E(4v2i − ε2i ) + oP (1) = 3σ2
ε + 4E(x�

i γ
∗)2 + oP (1), (B.8)

where σ2
ε = Eε2i . Hence,

P
(
4a20,γ ≤ a2∗,γ

)
= P

(
4n−1‖X‖2∞‖V‖22 ≤ max

1≤j≤p
n−1

n∑
i=1

x2
i,jε

2
i

)

= P

(
4n−1‖V‖22 ≤ max

1≤j≤p
n−1

n∑
i=1

‖X‖−2
∞ x2

i,jε
2
i

)

≤ P

(
4n−1‖V‖22 ≤ n−1

n∑
i=1

ε2i

)
(i)

≤ P
(
3σ2

ε + 4E(x�
i γ

∗)2 + oP (1) ≤ 0
) (ii)
= o(1),
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where (i) follows by (B.8) and (ii) follows by the fact that σε is bounded away
from zero. In other words, P (2a0,γ ≥ a∗,γ) → 1.

Notice that the feasible set of the optimization problem (2.1) is increasing in
a. By Lemma 2, γ∗ lies in the feasibility set of the optimization problem (2.1)
for a = a∗,γ with probability approaching one. Hence, P (2a0,γ ≥ a∗,γ) → 1
implies

P (A) → 1,

where A denotes the event that γ∗ lies in the feasibility set of the optimization
problem (2.1) for a = 2a0,γ . Observe that on the event A, γ̂ is well defined.

By the last constraint in (2.1), we have that on the event A,

n−1/2‖V‖2σ̂ε = n−1‖V‖2‖V−Xγ̂‖2 ≥ n−1V�(V−Xγ̂) ≥ ρnn
−1‖V‖22.

Hence, on the event A ,

‖V‖2 ≤
√
nρ−1

n σ̂ε. (B.9)

Define the event M = {Sγ = ∅}. On the event M
⋂
A, γ̂ = γ̃(2a0,γ) and

thus

‖n−1X�(V−Xγ̂)‖∞ ≤ 2η0a0,γ = 2η0‖X‖∞‖V‖2/
√
n

(i)

≤ 2η0‖X‖∞ρ−1
n σ̂ε,
(B.10)

where (i) follows by (B.9).
On the event Mc

⋂
A, Sγ �= ∅, γ̂ = γ̃(âγ) for some σ̂γ ∈ Sγ and therefore,

1

2
âγ

(i)

≤

√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(vi − x�

i γ̂)
2

≤ ‖X‖∞

√√√√n−1

n∑
i=1

(vi − x�
i γ̂)

2 = ‖X‖∞σ̂ε, (B.11)

where (i) follows by the definition of Sγ in (2.2). Notice that on the event
Mc

⋂
A,

‖n−1X�(V−Xγ̂)‖∞
(i)

≤ η0âγ
(ii)

≤ 2‖X‖∞η0σ̂ε (B.12)

where (i) follows by the first constraint in (2.1) and the fact that γ̂ = γ̃(âγ) and
(ii) follows by (B.11). Since P (A) → 1 and ρn ≤ 1, part (1) follows by (B.10)
and (B.12).

In regards to part (2), notice that on the event A,

‖V−Xγ̂‖∞
(i)

≤ ‖V‖2/ log2 n
(ii)

≤
√
nσ̂ε

ρn log
2 n

,

where (i) follows by the second constraint in (2.1) and (ii) follows by (B.9).
Part (2) follows.
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Lemma 4. Let Condition 1 hold. Then, with probability tending to one, θ∗

lies in the feasible set of the optimization problem (2.4) for a = a∗,θ, where
a2∗,θ = max1≤j≤p n

−1
∑n

i=1 x
2
i,ju

2
i .

Proof of Lemma 4. The argument is identical to the proof of Lemma 2, except
thatV, γ∗, a∗,γ and {εi}ni=1 are replaced by Z, θ∗, a∗,θ and {ui}ni=1, respectively.
Since Z = Xθ∗ + u holds regardless of whether or not H0 holds, the same
reasoning in the proof of Lemma 2 applies.

Lemma 5. Let Condition 1 hold. If s/p → 0 and s log p = o(n), Then there
exists a constant K > 0 such that

P

(
min

A⊂{1,··· ,p}, |A|≤s
min

‖vAc‖1≤‖vA‖1

‖n−1/2Xv‖2
‖vJ‖2

> K

)
→ 1.

Proof of Lemma 5. We invoke Theorem 6 of Rudelson and Zhou (2013) with

(A, q, p, s0, k0, δ) = (Σ
1/2
X , p, p, s, 1, 1/2). Clearly, RE(s, 3,A) condition holds;

see Definition 1 in Rudelson and Zhou (2013).

Let Ψ = XΣ
−1/2
X . Notice that rows of Ψ are independent vectors with mean

zero and variance Ip and hence are isotropic random vectors; see Definition 5 of
Rudelson and Zhou (2013). By Condition 1, rows of Ψ are also ψ2 vectors for
some constant α > 0.

By the well-behaved eigenvalues ofΣX in Condition 1, we have thatm defined
in the statement of Theorem 6 of Rudelson and Zhou (2013) satisfies m ≤
min{Cs, p} for some constant C > 0. Since s/p → 0 and s log p = o(n), we have
that, for large n,

n ≥ 2000mα4

δ2
log

(
60ep

mδ

)
.

By the well-behaved eigenvalues of ΣX , K(s, 1,A) defined in Rudelson and
Zhou (2013) is bounded below by a constant C0 > 0. Since X = ΨA, it follows,
by Theorem 6 of therein (in particular Equation (14) therein), that for large n,

P

(
min

A⊂{1,··· ,p}, |A|≤s
min

‖vAc‖1≤‖vA‖1

‖n−1/2Xv‖2
‖vJ‖2

> (1− δ)/C0

)
≥ 1− 2 exp(−δ2n/2000α4).

The proof is complete.

Lemma 6. Consider vectors H ∈ R
n and b, b̂ ∈ R

p and a matrix M ∈ R
n×p.

Suppose that for some σ, η > 0, ‖n−1M�(H−Mb)‖∞ ≤ ησ and ‖n−1M�(H−
Mb̂)‖∞ ≤ ησ. Assume that

min
A⊂{1,··· ,p}, |A|≤s

min
‖vAc‖1≤‖vA‖1

‖n−1/2Mv‖2
‖vJ‖2

> K (B.13)

for some K > 0. If ‖b‖0 ≤ s and ‖b̂‖1 ≤ ‖b‖0, then

‖b̂− b‖1 ≤ 4K−2ησs
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and∣∣∣∣∣∣
√√√√ max

1≤j≤p
n−1

n∑
i=1

M2
i,j(Hi −M�

i b̂)2 −

√√√√ max
1≤j≤p

n−1

n∑
i=1

M2
i,j(Hi −M�

i b)2

∣∣∣∣∣∣
≤ 4‖M‖∞σK−1η

√
s,

where Mi,j, M
�
i and Hi denote the (i, j) entry of M, the i-th row of M and the

i-th entry of H, respectively and ‖M‖∞ = max1≤j≤p, 1≤i≤n |Mi,j |.
Proof of Lemma 6. The argument closely follows the proof of Theorem 7.1 of
Bickel, Ritov and Tsybakov (2009). Define J = support(b) and Δ = b̂ − b.

Since ‖b̂‖1 ≤ ‖b‖0, it follows that ‖b̂J‖1 + ‖ΔJc‖1 = ‖b̂J‖1 + ‖b̂Jc‖1 ≤ ‖bJ‖1
and thus ‖ΔJc‖1 ≤ ‖ΔJ‖1, implying that

‖ΔJ‖1 ≤ ‖Δ‖1 ≤ 2‖ΔJ‖1. (B.14)

By the triangular inequality, we have

‖n−1M�MΔ‖∞ ≤ ‖n−1M�(H−Mb)‖∞ + ‖n−1M�(H−Mb̂)‖∞ ≤ 2ησ.
(B.15)

Therefore,

n−1Δ�M�MΔ
(i)

≤ ‖Δ‖1‖n−1M�MΔ‖∞
(ii)

≤ 4ησ‖ΔJ‖1
(iii)

≤ 4ησ
√
s‖ΔJ‖2,

(B.16)
where (i) follows by Holder’s inequality, (ii) follows by (B.14) and (B.15) and
(iii) follows by Holder’s inequality and |J | ≤ s. Since ‖ΔJc‖1 ≤ ‖ΔJ‖1 and
|J | ≤ s, we have that n−1Δ�M�MΔ ≥ K2‖ΔJ‖22 (due to the assumption in
(B.13)). This and the above display imply that

‖ΔJ‖2 ≤ 4K−2ησ
√
s. (B.17)

The first claim follows by Holder’s inequality: ‖ΔJ‖1 ≤ √
s‖ΔJ‖2 ≤

4K−2ησs.
To show the second claim, we define ‖ · ‖M,j on R

n by

‖a‖M,j =

√√√√n−1

n∑
i=1

M2
i,ja

2
i

for a = (a1, ..., an)
�. For any a, b ∈ R

n, we define aM,j = (M1,ja1, ...,Mn,jan)
� ∈

R
n and bM,j = (M1,jb1, ...,Mn,jbn)

� ∈ R
n and notice that

‖a+ b‖M,j = ‖aM,j + bM,j‖2
(i)

≤ ‖aM,j‖2 + ‖bM,j‖2 = ‖a‖M,j + ‖b‖M,j ,

where (i) follows by the triangular inequality for the Euclidean norm in R
n.

Hence, ‖ · ‖M,j is a semi-norm for any 1 ≤ j ≤ p. The semi-norm property of
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‖ · ‖M,j for all 1 ≤ j ≤ p implies that

max
1≤j≤p

∣∣∣‖H−Mb̂‖M,j − ‖H−Mb‖M,j

∣∣∣ ≤ max
1≤j≤p

‖MΔ‖M,j

=

√√√√n−1

n∑
i=1

M2
i,j(M

�
i Δ)2

≤ ‖M‖∞

√√√√n−1

n∑
i=1

(M�
i Δ)2

= ‖M‖∞
√
n−1Δ�M�MΔ

(i)

≤ 4‖M‖∞K−1ησ
√
s,

where (i) follows by (B.16) and (B.17). The second claim follows by observing∣∣∣∣ max
1≤j≤p

‖H−Mb̂‖M,j − max
1≤j≤p

‖H−Mb‖M,j

∣∣∣∣
≤ max

1≤j≤p

∣∣∣‖H−Mb̂‖M,j − ‖H−Mb‖M,j

∣∣∣ .
The proof is complete.

Lemma 7. Let Condition 1 hold. Then ‖θ̂ − θ∗‖1 = OP

(
n−1/2sθ log(p ∨ n)

)
and ‖X�(Z−Xθ̂)‖∞ = OP (

√
n log(p ∨ n)).

Proof of Lemma 7. We define a2∗,θ = max1≤j≤p n
−1
∑n

i=1 x
2
i,ju

2
i and the events

A1 = {θ∗ lies in the feasible set of the optimization problem (2.4) for a= a∗,θ.}

A2 =

{
min

A⊂{1,··· ,p}, |A|≤s
min

‖vAc‖1≤‖vA‖1

‖n−1/2Xv‖2
‖vJ‖2

> K

}
A3 = {a∗,θ ∈ Sθ}
A4 = {âθ ≤ 3a∗,θ} ,

where K > 0 is the constant defined in Lemma 5. By Lemmas 4 and 5,

P
(
A1

⋂
A2

)
→ 1. (B.18)

We proceed in three steps. We first show that P (A3) → 1 and then that
P (A4) → 1. Finally, we shall show the desired results.

Step 1: Establish that P (A3) → 1

Notice that, on the event A1

⋂
A2, ‖n−1X�(Z − Xθ̃(a∗,θ))‖∞ ≤ η0a∗,θ,

‖n−1X�(Z − Xθ∗)‖∞ ≤ η0a∗,θ and

‖θ̃(a∗,θ)‖1 ≤ ‖θ∗‖1. Then we can apply Lemma 6 with

(H,M,b, b̂, σ, s, η) = (Z,X,θ∗, θ̃(a∗,θ), a∗,θ, sθ, η0)
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and obtain that on the event A1

⋂
A2,∣∣∣∣∣∣

√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(zi − x�

i θ̃(a∗,θ))
2

−

√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(zi − x�

i θ
∗)2

∣∣∣∣∣∣ ≤ 4a∗,θ‖X‖∞K−1η0
√
sθ.

Notice that a2∗,θ = max
1≤j≤p

n−1
∑n

i=1 x
2
i,j(zi − x�

i θ
∗)2. Thus, the above display

implies that∣∣∣∣∣∣∣∣
√

max
1≤j≤p

n−1
∑n

i=1 x
2
i,j(zi − x�

i θ̃(a∗,θ))
2

a∗,θ
− 1

∣∣∣∣∣∣∣∣ ≤ 4‖X‖∞K−1η0
√
sθ

(i)
= oP (1),

where (i) holds by η0 ≤ 1.1
√
2n−1 log(pn) (due to Lemma 1), ‖X‖∞ =

OP (
√

log(pn)) (due to the sub-Gaussian property and the union bound) and
the rate condition for sθ. Therefore,

P (A3) = P

⎛⎜⎜⎝1

2
≤

√
max
1≤j≤p

n−1
∑n

i=1 x
2
i,j(zi − x�

i θ̃(a∗,θ))
2

a∗,θ
≤ 3

2

⎞⎟⎟⎠→ 1. (B.19)

Step 2: Establish that P (A4) → 1

On the event A3, Sθ �= ∅ and thus θ̂ = θ̃(σ̂θ) for some âθ ≥ a∗,θ (since âθ
is the maximal element of Sθ). Notice that the feasible set of the optimization

problem (2.4) is nondecreasing in a and thus the mapping of a → ‖θ̃(a)‖1 is non-
increasing. Therefore, on the event A1

⋂
A2

⋂
A3, ‖θ̃(âθ)‖1 ≤ ‖θ̃(a∗,θ)‖1. By

‖θ̃(a∗,θ)‖1 ≤ ‖θ∗‖1 (on the eventA1), it follows that on the eventA1

⋂
A2

⋂
A3,

‖θ̃(âθ)‖1 ≤ ‖θ∗‖1, ‖n−1X�(V− Zθ̃(âθ))‖∞ ≤ η0âθ

and ‖n−1X�(V− Zθ∗)‖∞ ≤ η0a∗,θ ≤ η0âθ.

Hence, we can apply Lemma 6 with (H,M,b, b̂, σ, s, η) = (Z,X,θ∗, θ̃(âθ),
âθ, sθ, η0) and obtain that on the event A1

⋂
A2

⋂
A3,∣∣∣∣∣∣

√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(zi − x�

i θ̃(âθ))
2 − a∗,θ

∣∣∣∣∣∣ /âθ
=

∣∣∣∣∣∣
√√√√ max

1≤j≤p
n−1

n∑
i=1

x2
i,j(zi − x�

i θ̃(âθ))
2 −

√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(zi − x�

i θ
∗)2

∣∣∣∣∣∣ /âθ
≤ 4‖X‖∞K−1η0

√
sθ = oP (1).
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In other words,√√√√ max
1≤j≤p

n−1

n∑
i=1

x2
i,j(zi − x�

i θ̃(âθ))
2 = a∗,θ + oP (1)âθ.

Step 3: Establish the desired results
Now notice that on the event A1

⋂
A2

⋂
A3

⋂
A4,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

‖θ̃(âθ)‖1
(i)

≤ ‖θ∗‖1

‖n−1X�(V− Zθ̃(âθ))‖∞
(ii)

≤ η0âθ
(iii)

≤ 3η0a∗,θ

‖n−1X�(V− Zθ∗)‖∞
(iv)

≤ η0a∗,θ ≤ 3η0a∗,θ.

where (i) is proved in Step 2, (ii) holds by the definition of Sθ and (iii) and (iv)
hold by the definitions of A3 and A1, respectively. Hence, we can apply Lemma
6 with (H,M,b, b̂, σ, s, η) = (Z,X,θ∗, θ̃(âθ), 3a∗,θ, sθ, η0) and obtain that on
the event A1

⋂
A2

⋂
A3

⋂
A4,

‖θ̃(σ̂θ)− θ∗‖1 ≤ 12K−2η0a∗,θsθ = 13.2n−1/2K−2Φ−1(1− n−1p−1)a∗,θsθ
(i)

≤ 13.2n−1/2K−2
√
2 log(pn)a∗,θsθ, (B.20)

where (i) follows by Lemma 1. We notice that

a2∗,θ = n−1 max
1≤j≤p

n∑
i=1

x2
i,ju

2
i ≤ ‖X‖2∞n−1

n∑
i=1

u2
i

(i)
= ‖X‖2∞[E(u2

1) + oP (1)]

(ii)
= OP (log(pn))[E(u2

1) + oP (1)]

= OP (log(pn)),

where (i) follows by the law of large numbers and (ii) follows by ‖X‖∞ =
OP (

√
log(pn)) (due to the sub-Gaussian property and the union bound). The

first result follows by (B.20), the above display and P (A1

⋂
A2

⋂
A3

⋂
A4) → 1.

For the second result, we notice that on the event A1

⋂
A2

⋂
A3

⋂
A4,

‖n−1X�(Z−Xθ̂)‖∞
(i)

≤ η0âθ
(ii)

≤ 3η0a∗,θ
(iii)
= OP (n

−1/2 log(p ∨ n))

where (i) follows by the first constraint in (2.4) and the fact that θ̂ = θ̃(âθ)
on the event A3, (ii) follows by the definition of A4 and (iii) follows by a∗,θ =

OP (
√

log(pn)) (proved above) and η0 = O(
√

n−1 log(pn)) (due to Lemma 1).
This proves the second result.

Proof of Theorem 2. Let H0 hold. By Lemmas 2 and 7, we have that, with
probability tending to one, the optimization problems (2.1) and (2.4) are feasible
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and thus the test statistic Tn(β0) is well defined. Recall that V = Y−Zβ0. Since
H0 in (1.2) holds, we have

V = Xγ∗ + ε. (B.21)

Define a2∗,γ = max1≤j≤p

∑n
i=1 x

2
i,jε

2
i . Let A denote the event that (i) γ∗ lies in

the feasible set of the optimization problem (2.1) for a = a∗,γ , (ii) ‖n−1X�(V−
Xγ̂)‖∞/σ̂ε ≤ 2‖X‖∞η0ρ

−1
n and (iii) ‖V − Xγ̂‖∞/σ̂ε ≤ √

n/(ρn log
2 n). By

Lemmas 2 and 3,

P (A) → 1. (B.22)

Define ξi = n−1/2σ̂−1
ε ε̂iui1{A}, D̃2 =

∑n
i=1 ξ

2
i and D̂2 = σ̂−2

ε n−1
∑n

i=1 ε̂
2
i û

2
i ,

where ε̂i = vi − x�
i γ̂ and ûi = zi − x�

i θ̂. We define

T̃n =
D̃

D̂
×
∑n

i=1 ξi

D̃︸ ︷︷ ︸
Tn,1

+
n−1/2(V −Xγ̂)�X(θ∗ − θ̂)

σ̂εD̂︸ ︷︷ ︸
Tn,2

.

By straight-forward computation, one can verify that on the event A,
Tn(β0) = T̃n. By (B.22), it suffices to show that T̃n →d N(0, 1) under H0.

We do so in two steps. First, we show that D̃/D̂ = 1+ oP (1) and Tn,2 = oP (1);
second, we show Tn,1 →d N(0, 1).

Step 1: show that D̃/D̂ = 1 + oP (1) and Tn,2 = oP (1)
Notice that on the event A,∣∣∣D̂2 − D̃2

∣∣∣ = σ̂−2
ε

∣∣∣∣∣n−1
n∑

i=1

ε̂2i (û
2
i − u2

i )

∣∣∣∣∣ ≤
(

max
1≤i≤n

∣∣û2
i − u2

i

∣∣) σ̂−2
ε n−1

n∑
i=1

ε̂2i

= ‖X(θ̂ − θ∗)‖2∞
≤ ‖X‖2∞‖θ̂ − θ∗‖21
(i)
= OP (log(pn))OP

(
s2θn

−1 log2(p ∨ n)
)

= oP (1), (B.23)

where (i) follows by Lemma 7 and ‖X‖∞ = OP (
√

log(pn)) (due to the bounded
sub-Gaussian norm of entries in X and the union bound). Let σ2

u,i = E(u2
i |

X, ε). Observe that (B.22) implies

P

(∣∣∣∣∣D̃2 − n−1
n∑

i=1

σ2
u,i

∣∣∣∣∣ = σ̂−2
ε

∣∣∣∣∣n−1
n∑

i=1

ε̂2i (u
2
i − σ2

u,i)1{A}
∣∣∣∣∣
)

→ 1. (B.24)

Define qi = (u2
i −σ2

u,i)ε̂
2
i σ̂

−2
ε 1{A} and dn =

(
n−1σ̂−2

ε max1≤i≤n ε̂
2
i

)
1{A}. By

the definition of A,

dn = n−1‖V−Xγ̂‖2∞σ̂−2
ε 1{A}

(i)

≤ 1

ρ2n log
4 n

, (B.25)
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where (i) follows by the definition of A.
Let Fn,0 be the σ-algebra generated by (ε,X). By assumption, {ui}ni=1 is

independent across i conditional on Fn,0. Notice that (V,X) only depends on
(ε,X) (due to (B.21)) and that γ̂ and σ̂ε are computed using only (V,X).
Therefore, {ε̂i}ni=1, σ̂ε and 1{A} are Fn,0-measurable.

Let K > 0 be a constant that upper bounds the sub-exponential norm of
u2
i − σ2

u,i conditional on Fn,0; such a constant K exists because ui has bounded

sub-Gaussian norm conditional on Fn,0. Since E(u2
i − σ2

u,i | Fn,0) = 0 and

{u2
i −σ2

u,i}ni=1 is independent across i conditional on Fn,0, we apply Proposition
5.16 of Vershynin (2010) to the conditional probability measure P (· | Fn,0) and
obtain that there exists a universal constant c > 0 such that on the event A,
∀t > 0,

P

(∣∣∣n−1
n∑

i=1

qi

∣∣∣ > t

∣∣∣∣∣Fn,0

)
≤ 2 exp

[
−cmin

{
t2

K2n−2
∑n

i=1 ε̂
4
i σ̂

−4
ε

,
t

Kdn

}]
(i)

≤ 2 exp

[
−cmin

{
t2

K2d2n
,

t

Kdn

}]
(ii)

≤ 2 exp

[
−cmin

{
t2ρ4n log

8 n

K2
,
tρ2n log

4 n

K

}]
,

where (i) follows by

n∑
i=1

ε̂4i σ̂
−4
ε ≤ σ̂−2

ε

(
max
1≤i≤n

ε̂2i

)(
σ̂−2
ε

n∑
i=1

ε̂2i

)
= nσ̂−2

ε max
1≤i≤n

ε̂2i = n2dn

and (ii) follows by (B.25). By (B.22) and ρn log
2 n → ∞, the above display

implies that

P

(∣∣∣∣∣D̃2 − n−1
n∑

i=1

σ2
u,i

∣∣∣∣∣ > t

)
≤ P (Ac)+P

(∣∣∣n−1
n∑

i=1

qi

∣∣∣ > t

)
= o(1) ∀t > 0.

The above display implies that

D̃2 − n−1
n∑

i=1

σ2
u,i = oP (1). (B.26)

It follows by (B.23) that

D̂2 = n−1
n∑

i=1

σ2
u,i + oP (1). (B.27)

Since P (c1 ≤ n−1
∑n

i=1 σ
2
u,i ≤ c2) → 1 for some constants c1, c2 > 0, we have

that

D̃

D̂
=

√
n−1

∑n
i=1 σ

2
u,i + oP (1)

n−1
∑n

i=1 σ
2
u,i + oP (1)

= 1 + oP (1).



Non-sparse hypothesis testing 3349

We observe that

|Tn,2| ≤
n−1/2‖(V −Xγ̂)�X‖∞‖θ̂ − θ∗‖1

σ̂εD̂

(i)

≤ 2
√
n‖X‖∞η0ρ

−1
n ‖θ̂ − θ∗‖1

D̂

(ii)
=

2
√
n‖X‖∞η0ρ

−1
n OP

(
sθn

−1/2 log(p ∨ n)
)√

n−1
∑n

i=1 σ
2
u,i + oP (1)

= oP (1), (B.28)

where (i) follows by the definition of A and (ii) follows by (B.27) and Lemma 7.

Step 2: show that Tn,1 →d N(0, 1)
Define Fn,i as the σ-algebra generated by (X, ε, u1, ..., ui). Since E(ui+1 |

Fn,i) = 0 (by assumption), we have that {(ξi,Fn,i)}ni=1 is a martingale difference
array, i.e., E(ξi+1 | Fn,i) = 0. We invoke the martingale central limit theorem.
By Theorem 3.4 of Hall and Heyde (1980), it suffices to verify the following
conditions.

(a) max1≤i≤n |ξi| = oP (1).
(b) Emax1≤i≤n ξ

2
i = o(1).

(c)
∑n

i=1 ξ
2
i = n−1

∑n
i=1 σ

2
u,i + oP (1).

(d) limδ→0 lim infn→∞ P
(
n−1

∑n
i=1 σ

2
u,i > δ

)
= 1.

Notice that

E

(
max
1≤i≤n

ξ2i

)
≤ E

[
n−1σ̂−2

ε ‖V −Xγ̂‖2∞
(

max
1≤i≤n

u2
i

)
1{A}

]
(i)

≤ 1

ρ2n log
4 n

E

(
max
1≤i≤n

u2
i

)
(ii)
=

1

ρ2n log
4 n

O(log n) = o(1),

where (i) follows by the definition ofA and (ii) follows by the uniformly bounded
sub-exponential norm of u2

i and Corollary 2.6 of Boucheron, Lugosi and Massart
(2013). This proves claim (b). Notice that claim (a) follows by claim (b). By the

definition of D̃, claim (c) follows by (B.26). Claim (d) follows by the assumption
that P (c1 ≤ n−1

∑n
i=1 σ

2
u,i ≤ c2) → 1 for some constants c1, c2 > 0.

The proof is complete.

B.3. Proof of Corollary 5

Proof of Corollary 5. Similar to the comment made in regards to the Corol-
lary 2.1 of Van de Geer et al. (2014), the proof of Corollary 5 is exactly the
same as in Theorem 2 once we notice the following.

Take an arbitrary sequence (β0n, ξn) ∈ R×Ξ(sθ). Notice that the properties
of the test statistic Tn(β0n) depend onX, Z andV exclusively. Moreover observe
that under H0, V = Xγ + ε.
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Moreover, in the arguments in the proof of Lemmas 2-7 and Theorem 2, we
use bounds that hold in finite samples with universal constants as well as law of
large numbers and martingale central limit theorem for triangular arrays. Hence,
Lemmas 2-7 and the arguments in the proof of Theorem 2 still go through when
ξn is a sequence.

B.4. Proof of Theorems 6 and 7

Proof of Theorem 6. It suffices to notice that Theorem 6 is a special case of
Theorem 8 in which the decomposition now reads γ∗ = π∗ + μ∗ with π∗ = γ∗

and μ∗ = 0. The result then follows by Theorem 8.

Proof of Theorem 7. It suffices to notice that Theorem 7 is a special case of
Theorem 8 in which the decomposition now reads γ∗ = π∗ + μ∗ with π∗ = 0
and μ∗ = γ∗. The result then follows by Theorem 8.

B.5. Proof of Theorem 8

The following result is due to Borovkov (2000) and pointed out by Merlevède,
Peligrad and Rio (2011).

Lemma 8. Suppose that W1, ...,Wn are i.i.d random variables such that EW1 =
0, EW 2

1 ≥ C1 and P (|W1| > t) ≤ C2 exp(−C3t
α) for any t > 0, where

C1, C2, C3 > 0 and α ∈ (0, 1) are constants. Then for any z > 0,

P

(∣∣∣∣∣n−1
n∑

i=1

Wi

∣∣∣∣∣ > z

)
≤ n exp (−M1(nz)

α) + exp
(
−M2(nz)

2
)
,

where M1,M2 > 0 are constants depending only on C1, C2, C3 and α.

Proof. Notice that |W1|α has bounded sub-exponential norm. Hence,
E exp(D1|W1|α) ≤ D2 for some constants D1, D2 > 0. Hence, by Equation
(1.4) of Merlevède, Peligrad and Rio (2011), we have that for any z > 0,

P

(∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ > nz

)
≤ n exp (−D3(nz)

α) + exp
(
−D4(nz)

2
)
.

The proof is complete.

Lemma 9. Suppose that {(wi,1, . . . , wi,p)}ni=1 is an i.i.d sequence of p-dimen-
sional random vectors with mj = E(w1,j) and log p = o(

√
n).

Suppose that min1≤j≤p V ar(wi,j) ≥ 2K1 and for all 1 ≤ j ≤ p, the sub-
exponential norm of w1,j is upper bounded by K2, where K1,K2 > 0 are con-

stants. If max1≤j≤p |mj | ≤ DΦ(1− p−1n−1)/
√
n with D ≤ 0.04

√
K1, then

P

(
max
1≤j≤p

∣∣∣∣∣n−1
n∑

i=1

wi,j

∣∣∣∣∣ ≥ η0A

)
→ 0,

where A2 = max1≤j≤p n
−1
∑n

i=1 w
2
i,j .
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Proof. Define t = Φ(1 − p−1n−1) and ξi,j = wi,j −mj as well as the following
events

M1 =

⎧⎨⎩ max
1≤j≤p

∑n
i=1 ξi,j√∑n
i=1 ξ

2
i,j

≤ t

⎫⎬⎭
M2 =

{
min

1≤j≤p
n−1

n∑
i=1

ξ2i,j ≥ K1

}⋂{
min

1≤j≤p
n−1

n∑
i=1

w2
i,j ≥ K1

}

M3 =

{
max
1≤j≤p

∣∣∣∣∣n−1
n∑

i=1

ξi,j

∣∣∣∣∣ ≤ K3

√
n−1 log p

}

M4 =

⎧⎨⎩ max
1≤j≤p

⎛⎝Dt+ t

√√√√n−1

n∑
i=1

ξ2i,j − 1.05t

√√√√n−1

n∑
i=1

w2
i,j

⎞⎠ ≤ 0

⎫⎬⎭ ,

where K3 > 0 is a constant to be chosen. The proof proceeds in two steps. We
first prove that M1, M2, M3 and M4 occur with probability approaching one
and then show the desired result.

Step 1: show that M1, M2, M3 and M4 occur with probability ap-
proaching one

Fix any δ ≥ 2. Notice that Eξ2i,j is bounded away from zero and E|ξi,j |2+δ is
bounded away from infinity. As in the proof of Lemma 2 (Step 1), Theorem 7.4
of Peña, Lai and Shao (2008) implies that there exist constants A,C1 > 0 such
that for any 1 ≤ j ≤ p,

P

⎛⎝ |
∑n

i=1 ξi,j |√∑n
i=1 ξ

2
i,j

≥ t

⎞⎠ ≤ 2Φ(−t)

[
1 +A

(
1 + t

nδ/(2+δ)C1

)2+δ
]
.

By the union bound, we have that

P (M1) = P

⎛⎝ max
1≤j≤p

|
∑n

i=1 ξi,j |√∑n
i=1 ξ

2
i,j

≥ t

⎞⎠
≤ 2pΦ(−t)

[
1 +A

(
1 + t

nδ/(2+δ)C1

)2+δ
]

(i)
= o(1),

where (i) follows by the fact that Φ(−t) = 1−Φ(t) = p−1n−1 and t = Φ−1(1−
p−1n−1) ≤

√
2 log(pn) (due to Lemma 1). By the bounded sub-exponential

norm of ξi,j , there exist constants C2, C3 > 0 such that for any 1 ≤ j ≤ p and
any z > 0, P (ξ21,j > z) ≤ C1 exp(−C2

√
n). Hence,

P

(
n−1

n∑
i=1

ξ2i,j ≤ K1

)
= P

(
n−1

n∑
i=1

(ξ2i,j − Eξ2i,j) ≤ K1 − Eξ2i,j

)
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≤ P

(
n−1

n∑
i=1

(ξ2i,j − Eξ2i,j) ≤ −K1

)
(i)

≤ n exp
(
−C3

√
nK1

)
+ exp

(
−C4(nK1)

2
)

for some constants C3, C4 > 0, where (i) follows by Lemma 8. By the union
bound and log p = o(

√
n), we have that

P

(
min

1≤j≤p
n−1

n∑
i=1

ξ2i,j ≤ K1

)
≤

p∑
j=1

P

(
n−1

n∑
i=1

ξ2i,j ≤ K1

)

≤ pn exp
(
−C3

√
nK1

)
+ p exp

(
−C4(nK1)

2
)
= o(1).

Similarly, the above display holds if ξi,j is replaced by wi,j . Hence,

P (M2) → 1.

Moreover, notice that

P

(
max
1≤j≤p

∣∣∣∣∣n−1
n∑

i=1

ξi,j

∣∣∣∣∣ ≥ K3

√
n−1 log p

)

≤
p∑

j=1

P

(∣∣∣∣∣n−1
n∑

i=1

ξi,j

∣∣∣∣∣ ≥ K3

√
n−1 log p

)
(i)

≤ 2p exp

[
−cmin

(
K2

3 log p

K2
2

,
K3

√
n log p

K2

)]
for some universal constant c > 0, where (i) follows by Proposition 5.16 of
Vershynin (2010). Hence, for K3 = 2K2/

√
c,

P (M3) → 1.

Recall the elementary inequality that for any a, b ≥ 0, a+ b+1/2 ≥ √
a+

√
b

and thus ∣∣∣√a−
√
b
∣∣∣ = |a− b|

√
a+

√
b
≥ |a− b|

a+ b+ 1/2
. (B.29)

Moreover, observe that

tn−1
√

log p = Φ−1(1−n−1p−1)n−1
√
log p

(i)
= O

(
n−1

√
(log p)(log(pn))

)
(ii)
= o(1),

(B.30)
where (i) follows by Lemma 1 and (ii) holds by log p = o(

√
n).

Hence, on the event M1

⋂
M2

⋂
M3,√√√√n−1

n∑
i=1

w2
i,j

(i)

≥

√√√√n−1

n∑
i=1

ξ2i,j −
∣∣n−1

∑n
i=1(w

2
i,j − ξ2i,j)

∣∣
1/2 + n−1

∑n
i=1(w

2
i,j + ξ2i,j)
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=

√√√√n−1

n∑
i=1

ξ2i,j −
∣∣n−1

∑n
i=1(2mjξi,j +m2

j )
∣∣

1/2 + n−1
∑n

i=1(2ξ
2
i,j + 2mjξi,j +m2

j )

=

√√√√n−1

n∑
i=1

ξ2i,j −
∣∣m2

j + 2mj

(
n−1

∑n
i=1 ξi,j

)∣∣
1/2 +m2

j + 2
(
n−1

∑n
i=1 ξ

2
i,j

)
+ 2mj (n−1

∑n
i=1 ξi,j)

(ii)

≥

√√√√n−1

n∑
i=1

ξ2i,j −
m2

j + 2|mj |K3

√
n−1 log p

1/2 +m2
j + 2K1 − 2 |mj |K3

√
n−1 log p

≥

√√√√n−1

n∑
i=1

ξ2i,j −
D2t2n−1 + 2Dtn−1K3

√
log p

1/2 + 2K1 − 2Dtn−1K3

√
log p

(iii)

≥

√√√√n−1

n∑
i=1

ξ2i,j −
D2t2n−1 + 2Dtn−1K3

√
log p

1/2 +K1
, (B.31)

where (i) follows by the previous elementary inequality in (B.29), (ii) follows by
the definitions of M2 and M3, (iii) follows by the fact that 2Dtn−1K3

√
log p <

K1 for large n (due to (B.30)). Now we have that on the event M1

⋂
M2

⋂
M3,

max
1≤j≤p

⎛⎝Dt+ t

√√√√n−1

n∑
i=1

ξ2i,j − 1.05t

√√√√n−1

n∑
i=1

w2
i,j

⎞⎠ /t

(i)

≤ max
1≤j≤p

⎛⎝Dt− 0.05t

√√√√n−1

n∑
i=1

w2
i,j + t

D2t2n−1 + 2Dtn−1K3

√
log p

1/2 +K1

⎞⎠ /t

(ii)

≤D − 0.05
√
K1 +

D2t2n−1 + 2Dtn−1K3

√
log p

1/2 +K1

(iii)
= D − 0.05

√
K1 + o(1).

where (i) follows by (B.31), (ii) follows by the definition of M2 and (iii) follows
by (B.30).

Since D ≤ 0.04
√
K1, the above display implies that

P (M4) = P

⎛⎝ max
1≤j≤p

⎛⎝Dt+ t

√√√√n−1

n∑
i=1

ξ2i,j − 1.05t

√√√√n−1

n∑
i=1

w2
i,j

⎞⎠ ≤ 0

⎞⎠→ 1.

Step 2: prove the desired result

The desired result now follows by the following observation

P

(∣∣∣∣∣n−1
n∑

i=1

wi,j

∣∣∣∣∣ ≥ η0A

)
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= P

⎛⎝ max
1≤j≤p

∣∣∣∣∣√nmj + n−1/2
n∑

i=1

ξi,j

∣∣∣∣∣ ≥ 1.1t max
1≤j≤p

√√√√n−1

n∑
i=1

w2
i,j

⎞⎠
≤ P

⎛⎝Dt+ max
1≤j≤p

∣∣∣∣∣
n∑

i=1

ξi,j

∣∣∣∣∣ ≥ 1.1t max
1≤j≤p

√√√√n−1

n∑
i=1

w2
i,j

⎞⎠
≤ P

⎛⎝Dt+ max
1≤j≤p

∣∣∣∣∣
n∑

i=1

ξi,j

∣∣∣∣∣ ≥ 1.1t max
1≤j≤p

√√√√n−1

n∑
i=1

w2
i,j and M1

⎞⎠+ P (Mc
1)

≤ P

⎛⎝Dt+ max
1≤j≤p

t

√√√√n−1

n∑
i=1

ξ2i,j ≥ 1.1t max
1≤j≤p

√√√√n−1

n∑
i=1

w2
i,j

⎞⎠+ P (Mc
1)

≤ P

⎛⎝Dt+ max
1≤j≤p

t

√√√√n−1

n∑
i=1

ξ2i,j ≥ 1.1t max
1≤j≤p

√√√√n−1

n∑
i=1

w2
i,j and M4

⎞⎠
+ P (Mc

1) + P (Mc
4)

≤ P

⎛⎝1.05t max
1≤j≤p

√√√√n−1

n∑
i=1

w2
i,j ≥ 1.1t max

1≤j≤p

√√√√n−1

n∑
i=1

w2
i,j

⎞⎠
+ P (Mc

1) + P (Mc
4)

= P (Mc
1) + P (Mc

4)
(i)
= o(1),

where (i) holds by Step 1.

Lemma 10. Let the conditions in the statment of Theorem 8 hold. Suppose that
H1,h in (3.4) holds. Define γh,n = π∗+n−1/2hθ∗ and ε(h),i = x�

i μ
∗+n−1/2hui+

εi. Then, with probability tending to one, γh,n lies in the feasible set of the opti-
mization problem (2.1) for a = ah,γ , where a

2
h,γ = n−1 max1≤j≤p

∑n
i=1 x

2
i,jε

2
(h),i.

Moreover, max1≤j≤p |n−1
∑n

i=1 xi,jε(h),i| = OP (n
−1/2 log(p ∨ n)).

Proof of Lemma 10. Let V = Y − Zβ0 and ε(h) = (ε(h),1, . . . , ε(h),n)
�. In the

rest of the proof, we denote by vi the i-th entry of V. Notice that under H1,h

in (3.4),

vi = yi − ziβ0 = n−1/2hzi + x�
i γ

∗ + εi = n−1/2h(x�
i θ

∗ + ui) + x�
i γ

∗ + εi

= x�
i γh,n + ε(h),i.

Then for the first result, it suffices to verify the following claims:

(a) P
(
‖n−1X�ε(h)‖∞ ≤ η0a∗,γ

)
→ 1.

(b) P
(
‖ε(h)‖∞ ≤ ‖V‖2/ log2 n

)
→ 1.

(c) P
(
n−1V�ε(h) ≥ n−1‖V‖22ρn

)
→ 1.
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We proceed in four steps corresponding to above three claims as well as the
second result.

Step 1: Establish claim (a)
We apply Lemma 9. Let wi,j = xi,jε(h),i and notice that

V ar(w1,j) = V ar[x1,j(x
�
1 μ

∗ + ε1 + n−1/2hu1)]

= n−1h2Eu2
1 + V ar[x1,j(x

�
1 μ

∗ + ε1)]
(i)

≥ 2K1 with K1 = τ2/2,

where (i) holds by the assumption of Theorem 8. Then

max
1≤j≤p

|Ew1,j | = ‖ΣXμ∗‖∞
(i)

≤ 1

25
√
2

√
τ2n−1 log p

(ii)

≤ 1

25
√
2

√
τ2n−1Φ−1(1− p−1)

<
1

25
√
2

√
τ2n−1Φ−1(1− n−1p−1)

= 0.04
√
K1Φ

−1(1− n−1p−1)/
√
n,

where (i) holds by the assumption of Theorem 8 and (ii) follows by Lemma 1.
Since both xi,j and ε(h),i have bounded sub-Gaussian norms, it follows that wi,j

has a bounded sub-exponential norm. Therefore, claim (a) follows by Lemma 9.

Step 2: Establish claim (b)
By the law of large numbers

n−1‖V‖22 − Ev21 = n−1
n∑

i=1

(v2i − Ev2i ) = oP (1). (B.32)

Notice that Ev21 = E(x�
1 (γh,n +μ∗))2 + n−1h2Eu2

i +Eε21 ≥ Eε21 is bounded
away from zero. Hence, there exists a constant M > 0 such that P (‖V‖2 ≥√
nM) → 1. On the other hand, ε(h),i has a bounded sub-Gaussian norm and

thus ‖ε(h)‖∞ = OP (
√
logn). Since

√
n/ log2 n �

√
logn, claim (b) follows.

Step 3: Establish claim (c)
Notice that

n−1V�ε(h) = E[v1ε(h),1] + n−1
n∑

i=1

(viε(h),i − E[viε(h),i])

(i)
= E[v1ε(h),1] + oP (1)

= (π∗ + n−1/2hθ∗ + μ∗)�ΣXμ∗ + E(ε21) + n−1h2E(u2
1) + oP (1)

(ii)
= (π∗ + μ∗)�ΣXμ∗ + E(ε21) + oP (1),
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where (i) holds by the law of large numbers and (ii) holds by the fact that
‖θ∗‖2, ‖μ∗‖2, the eigenvalues of ΣX and E(u2

1) are bounded. By assumption,
(π∗ + μ∗)�ΣXμ∗ + E(ε21) is bounded below by a positive constant. Hence, we
have that

P (n−1V�ε(h) ≥ M ′) → 1

for some constant M ′ > 0. By (B.32) and the boundedness of E(v21), we have
that n−1‖V‖22ρn = OP (ρn) = oP (1). Hence, claim (c) follows.

We have showed the claims (a)-(c), completing the proof for the first result.

Step 4: Establish the second result
By claim (a) above and η0 ≤ 1.1

√
2n−1 log(pn) (due to Lemma 1), it suf-

fices to show that a∗,γ = OP (
√
log(pn)), which is obtained by the following

observation

a2∗,γ = max
1≤j≤p

n−1
n∑

i=1

x2
i,jε

2
(h),i ≤ ‖X‖2∞n−1

n∑
i=1

ε2(h),i
(i)
= ‖X‖2∞(Eε2(h),1 + oP (1))

(ii)
= OP (log(pn))OP (1),

where (i) follows by the law of large numbers and (ii) follows by the sub-
Gaussian properties of entries in X and the union bound. We have proved the
second result.

Lemma 11. Let the conditions in the statment of Theorem 8 hold. Suppose that
H1,h in (3.4) holds. Then ‖γ̂−γh,n‖1 = OP

(
n−1/2(‖π∗‖0 + ‖θ∗‖0) log(p ∨ n)

)
,

where γh,n = π∗ + n−1/2hθ∗.

Proof of Lemma 11. Define V = Y − Zβ0, ε(h),i = x�
i μ

∗ + n−1/2hui + εi and
a2h,γ = n−1 max1≤j≤p

∑n
i=1 x

2
i,jε

2
(h),i as well as the following events

A1 =
{
γh,n lies in the feasible set of the optimization

problem (2.1) for a = ah,γ .
}

A2 =

{
min

A⊂{1,··· ,p}, |A|≤s
min

‖vAc‖1≤‖vA‖1

‖n−1/2Xv‖2
‖vJ‖2

> K

}
A3 = {ah,γ ∈ Sγ}
A4 = {âγ ≤ 3ah,γ} ,

where K > 0 is the constant defined in Lemma 5. By Lemmas 10 and 5,

P
(
A1

⋂
A2

)
→ 1.

Notice that ‖γh,n‖0 ≤ ‖π∗‖0 + ‖θ∗‖0 = o(
√
n/ log p). The rest of the proof

proceeds with essentially the same arguments as in the proof of Lemma 7: show
P (A3) → 1, P (A4) → 1 and then the desired result. The only difference is that

(Z,θ∗, θ̃(a∗,θ), θ̃(âθ), sθ) is replaced by (V,γh,n, γ̃(ah,γ), θ̃(âγ), ‖π∗‖0+‖θ∗‖0).
We omit the details to avoid repetition.
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Proof of Theorem 8. Define γh,n = π∗ + n−1/2hθ∗ and ε(h) = (ε(h),1, . . . ,

ε(h),n)
� with ε(h),i = εi + n−1/2hui + x�

i μ
∗. Recall that V = Y− Zβ0. Notice

that under H1,h in (3.4),

V = n−1/2hZ+Xγ∗ + ε = Xγh,n + ε(h).

Let D̂2 = n−1
∑n

i=1 û
2
i ε̂

2
i and D2 = E[(x�

i μ
∗ + εi)

2u2
i ], where ε̂i = vi − x�

i γ̂

and ûi = zi − x�
i θ̂. Notice that

Tn(β0) =
n−1/2(V−Xγ̂)�(Z−Xθ̂)

D̂
. (B.33)

The rest of proof proceeds in two steps which establish the behavior of the
numerator and the denominator, respectively.

Step 1: Establish that n−1/2(V−Xγ̂)�(Z−Xθ̂)/D →d N(hκ, 1)
Observe that

n−1/2(V−Xγ̂)�(Z−Xθ̂)

= n−1/2ε�(h)u︸ ︷︷ ︸
A1

+ n−1/2ε�(h)X(θ∗ − θ̂)︸ ︷︷ ︸
A2

+ n−1/2(γh,n − γ̂)�X�(Z−Xθ̂)︸ ︷︷ ︸
A3

.

(B.34)

Notice that

|A3| ≤ ‖n1/2(γh,n − γ̂)‖1‖n−1X�(Z−Xθ̂)‖∞
(i)
= OP

(
n−1/2(‖π∗‖0 + ‖θ∗‖0) log(p ∨ n)

)
‖n−1X�(Z−Xθ̂)‖∞

(ii)

≤ OP

(
n−1/2(‖π∗‖0 + ‖θ∗‖0) log(p ∨ n)

)
OP (log(p ∨ n)) = oP (1),

(B.35)

where (i) follows by Lemma 11 and (ii) follows by Lemma 7.
For A2, we observe that

|A2| ≤ ‖n−1/2X�ε(h)‖∞‖(θ∗ − θ̂)‖1
(i)
= OP (log(p ∨ n))‖(θ∗ − θ̂)‖1
(ii)
= OP (log(p ∨ n))OP (n

−1/2sθ log(p ∨ n)) = oP (1), (B.36)

where (i) follows by the second result in Lemma 10 and (ii) follows by Lemma 7.
For A1, we notice that

A1 = n−1/2
n∑

i=1

ε(h),iui = hn−1
n∑

i=1

u2
i + n−1/2

n∑
i=1

ui(x
�
i μ

∗ + εi)
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(i)
= hE(u2

1) + oP (1) + n−1/2
n∑

i=1

ui(x
�
i μ

∗ + εi), (B.37)

where (i) follows by the law of large numbers. Now we combine (B.35), (B.36)
and (B.37) with (B.34) to obtain

n−1/2(V−Xγ̂)�(Z−Xθ̂)

D
=

hE(u2
1) + oP (1) + n−1/2

∑n
i=1 ui(x

�
i μ

∗ + εi)

D

(i)
= hκ+

n−1/2
∑n

i=1 ui(x
�
i μ

∗ + εi)

D
+ oP (1)

(ii)

→d N(hκ, 1), (B.38)

where (i) follows by the fact that D is bounded away from zero and the assump-
tion that E(u2

1)/D → κ and (ii) follows by the central limit theorem.

Step 2: Establish that D̂/D = 1 + oP (1)

Since ûi − ui = x�
i (θ

∗ − θ̂), we have that

max
1≤i≤n

|û2
i − u2

i | = max
1≤i≤n

|ûi + ui| · |x�
i (θ̂ − θ∗)|

≤ max
1≤i≤n

(
|2ui|+ |x�

i (θ̂ − θ∗)|
)
|x�

i (θ̂ − θ∗)|

≤ (2‖u‖∞ + ‖X‖∞‖θ̂ − θ∗‖1)‖X‖∞‖θ̂ − θ∗‖1
(i)

≤ OP

(
n−1s2θ log

3(p ∨ n)
)
, (B.39)

where (i) follows by Lemma 7 and the sub-Gaussian property of ui and xi

(which, by the union bound, implies ‖u‖∞ = OP (
√
logn) and ‖X‖∞ =

OP (
√

log(pn))). Similarly, using Lemma 11, we can obtain

max
1≤i≤n

|ε̂2(h),i − ε2(h),i| = OP

(
n−1(‖π∗‖0 + ‖μ∗‖0)2 log3(p ∨ n)

)
. (B.40)

Now we observe∣∣∣∣∣n−1
n∑

i=1

(ε̂2(h),iû
2
i − ε2(h),iu

2
i )

∣∣∣∣∣
≤
(

max
1≤i≤n

û2
i

) ∣∣∣∣∣n−1
n∑

i=1

(ε̂2(h),i − ε2(h),i)

∣∣∣∣∣+
(

max
1≤i≤n

ε2(h),i

) ∣∣∣∣∣n−1
n∑

i=1

(û2
i − u2

i )

∣∣∣∣∣
≤
(

max
1≤i≤n

û2
i

)(
max
1≤i≤n

∣∣∣ε̂2(h),i − ε2(h),i

∣∣∣)+

(
max
1≤i≤n

ε2(h),i

)(
max
1≤i≤n

∣∣û2
i − u2

i

∣∣)
≤
(

max
1≤i≤n

u2
i + max

1≤i≤n

∣∣û2
i − u2

i

∣∣)( max
1≤i≤n

∣∣∣ε̂2(h),i − ε2(h),i

∣∣∣) (B.41)

+

(
max
1≤i≤n

ε2(h),i

)(
max
1≤i≤n

∣∣û2
i − u2

i

∣∣)
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(i)
=
[
OP (log n) +OP

(
n−1s2θ log

3(p ∨ n)
)]

OP

(
n−1(‖π∗‖0 + ‖μ∗‖0)2 log3(p ∨ n)

)
+OP (logn)OP

(
n−1s2θ log

3(p ∨ n)
)

=oP (1), (B.42)

where (i) follows by (B.39) and (B.40) together with maxi u
2
i = OP (log n) and

maxi ε
2
(h),i = OP (logn) (due to the sub-Gaussian norms of ui and ε(h),i and the

union bound). The law of large numbers implies that

n−1
n∑

i=1

ε2(h),iu
2
i = oP (1) + Eε2(h),1u

2
1

= oP (1) + Eu2
1(x

�
i μ

∗ + εi)
2 + n−1h2Eu2

1 = oP (1) +D.

Therefore, (B.42) and the above display imply that

D̂2 −D2 = n−1
n∑

i=1

(ε̂2(h),iû
2
i − ε2(h),iu

2
i ) + n−1

n∑
i=1

ε2(h),iu
2
i −D = oP (1).

Since D is bounded away from zero, we have

D̂

D
=

√
D2 + oP (1)

D
= 1 + oP (1). (B.43)

Now we combine (B.38) and (B.43) with (B.33) to obtain that

Tn(β0) →d N(hκ, 1).

Therefore,

P
(
|Tn(β0)| > Φ−1(1− α/2)

)
→ P

(
|hκ+ ζ| > Φ−1(1− α/2)

)
,

where ζ ∼ N(0, 1). By elementary computations, we have

P
(
|hκ+ ζ| > Φ−1(1− α/2)

)
= Ψ(h, κ, α).

The proof is complete.
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Merlevède, F., Peligrad, M. and Rio, E. (2011). A Bernstein type in-
equality and moderate deviations for weakly dependent sequences. Probability
Theory and Related Fields 151 435–474. MR2851689

Neale, B. M., Rivas, M. A., Voight, B. F., Altshuler, D., Devlin, B.,
Orho-Melander, M., Kathiresan, S., Purcell, S. M., Roeder, K.

and Daly, M. J. (2011). Testing for an unusual distribution of rare variants.
PLoS genetics 7 e1001322.

Newey, W. K. (1994). The asymptotic variance of semiparametric estimators.
Econometrica 62 1349–1382. MR1303237

Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypothe-
ses. The Harald Cramer Volume, ed. by U. Grenander 213–234. MR0112201

Ning, Y., Liu, H. et al. (2017). A general theory of hypothesis tests and con-
fidence regions for sparse high dimensional models. The Annals of Statistics
45 158–195. MR3611489

Oates, A. J., Schumaker, L. M., Jenkins, S. B., Pearce, A. A., Da-

Costa, S. A., Arun, B. and Ellis, M. J. (1998). The mannose 6-
phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), a putative
breast tumor suppressor gene. Breast cancer research and treatment 47 269–
281.

Pang, H., Liu, H. and Vanderbei, R. J. (2014). The fastclime package for
linear programming and large-scale precision matrix estimation in R. Journal
of Machine Learning Research 15 489–493.

Park, R. E. (1966). Estimation with heteroscedastic error terms. Econometrica
34 888.

Peña, V. H., Lai, T. L. and Shao, Q.-M. (2008). Self-normalized processes:
Limit theory and Statistical Applications. Springer Science & Business Media.
MR2488094

Poczobutt, J. M., Nguyen, T. T., Hanson, D., Li, H., Sippel, T. R.,

http://www.ams.org/mathscinet-getitem?mr=2135927
http://www.ams.org/mathscinet-getitem?mr=3021389
http://www.ams.org/mathscinet-getitem?mr=2851689
http://www.ams.org/mathscinet-getitem?mr=1303237
http://www.ams.org/mathscinet-getitem?mr=0112201
http://www.ams.org/mathscinet-getitem?mr=3611489
http://www.ams.org/mathscinet-getitem?mr=2488094


Non-sparse hypothesis testing 3363

Weiser-Evans, M. C., Gijon, M., Murphy, R. C. and Nemenoff, R. A.

(2016). Deletion of 5-lipoxygenase in the tumor microenvironment promotes
lung cancer progression and metastasis through regulating T cell recruitment.
The Journal of Immunology 196 891–901.

Raskutti, G., Wainwright, M. J. and Yu, B. (2011). Minimax rates of es-
timation for high-dimensional linear regression over-balls. IEEE Transactions
on Information Theory 57 6976–6994. MR2882274

Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regres-
sion coefficients when some regressors are not always observed. Journal of the
American Statistical Association 89 846–866. MR1294730

Robins, J. M. and Rotnitzky, A. (1995). Semiparametric efficiency in mul-
tivariate regression models with missing data. Journal of the American Sta-
tistical Association 90 122–129. MR1325119

Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995). Analysis of semi-
parametric regression models for repeated outcomes in the presence of
missing data. Journal of the American Statistical Association 90 106–121.
MR1325118

Robins, J. M. and Rotnitzky, A. (2001). Comments. Statistica Sinica 920–
936.

Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998). Semipara-
metric regression for repeated outcomes with nonignorable nonresponse. Jour-
nal of the American Statistical Association 93 1321–1339. MR1666631

Rubin, D. B. and van der Laan, M. J. (2008). Empirical efficiency maxi-
mization: Improved locally efficient covariate adjustment in randomized ex-
periments and survival analysis. The International Journal of Biostatistics 4.
MR2399288

Rudelson, M. and Zhou, S. (2013). Reconstruction from anisotropic random
measurements. IEEE Transactions on Information Theory 59 3434–3447.
MR3061256

Sun, T. and Zhang, C.-H. (2012). Scaled sparse linear regression. Biometrika
99 879–898. MR2999166

Tang, N.-Y., Chueh, F.-S., Yu, C.-C., Liao, C.-L., Lin, J.-J., Hsia, T.-

C., Wu, K.-C., Liu, H.-C., Lu, K.-W. and Chung, J.-G. (2016). Benzyl
isothiocyanate alters the gene expression with cell cycle regulation and cell
death in human brain glioblastoma GBM 8401 cells. Oncology reports 35
2089–2096.

Tchetgen, E. J. T. and Shpitser, I. (2012). Semiparametric theory for
causal mediation analysis: efficiency bounds, multiple robustness, and sen-
sitivity analysis. The Annals of Statistics 40 1816. MR3015045

Terracciano, D., Ferro, M., Terreri, S., Lucarelli, G., D’Elia, C.,
Musi, G., de Cobelli, O., Mirone, V. and Cimmino, A. (2017). Urinary
long non-coding RNAs in non-muscle invasive bladder cancer: new architects
in cancer prognostic biomarkers. Translational Research.
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