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Abstract: The logistic regression model is the most popular model for an-
alyzing binary data. In the absence of any prior information, an improper
flat prior is often used for the regression coefficients in Bayesian logistic
regression models. The resulting intractable posterior density can be ex-
plored by running Polson, Scott and Windle’s (2013) data augmentation
(DA) algorithm. In this paper, we establish that the Markov chain un-
derlying Polson, Scott and Windle’s (2013) DA algorithm is geometrically
ergodic. Proving this theoretical result is practically important as it ensures
the existence of central limit theorems (CLTs) for sample averages under a
finite second moment condition. The CLT in turn allows users of the DA
algorithm to calculate standard errors for posterior estimates.
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1. Introduction

Let (Y1, Y2, . . . , Yn) denote the vector of Bernoulli random variables and xi be
the p × 1 vector of known covariates associated with the ith observation for
i = 1, . . . , n. Let β ∈ R

p be the unknown vector of regression coefficients.
A generalized linear model can be built (McCulloch, Searle and Neuhaus, 2011)
with a link function that connects the expectation of Yi with the covariate xi.
One popular link function is the logit link function, F−1(·), where F is the
cumulative distribution function of the standard logistic random variable, that
is F (t) ≡ et/(1 + et) for t ∈ R. The logit link function leads to the logistic
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regression model,

F−1 (P (Yi = 1)) = log

(
P (Yi = 1)

1− P (Yi = 1)

)
= xT

i β.

The popularity of the logistic regression model is due to the fact that P (Yi = 1)
has a closed form expression of xT

i β, and it is easy to interpret β in terms of
odds ratio.

Let y = (y1, y2, . . . , yn)
T be the vector of observed Bernoulli response vari-

ables. The likelihood function for β is

L (β|y) =
n∏

i=1

[
exp

(
xT
i β

)]yi

1 + exp
(
xT
i β

) .
In a Bayesian framework, when there is no prior information available about

the parameters, noninformative priors are generally used. A popular method of
analyzing binary data is by fitting a Bayesian logistic regression model with a
flat prior on β. If the prior density of β, π (β) ∝ 1, the posterior density of β is

π (β|y) = L (β|y)π (β)

c (y)
=

1

c (y)

n∏
i=1

[
exp

(
xT
i β

)]yi

1 + exp
(
xT
i β

) , (1)

provided the marginal density

c (y) =

∫
Rp

n∏
i=1

[
exp

(
xT
i β

)]yi

1 + exp
(
xT
i β

)dβ < ∞.

Chen and Shao (2001) discuss the necessary and sufficient conditions for pro-
priety of the posterior density (1), that is, when c(y) < ∞. These conditions
are given in A.1. Throughout this paper, we assume that the posterior density
(1) is proper.

The posterior density (1) is intractable in the sense that means with respect
to this density are not available in closed form. Markov chain Monte Carlo
(MCMC) algorithms are generally used for exploring this posterior density. The
data augmentation (DA) algorithm proposed in Albert and Chib (1993) for
the Bayesian probit regression model is widely used. For the logistic regression
model, there have been many attempts to produce such a DA algorithm (Holmes
and Held, 2006; Frühwirth-Schnatter and Frühwirth, 2010). Recently, Polson,
Scott and Windle (2013) (denoted as PS&W hereafter) have proposed a new DA
algorithm for the logistic regression model based on latent variables following
the Pólya-Gamma (PG) distribution. As mentioned in Choi and Hobert (2013),
PS&W’s algorithm is the first DA algorithm for the logistic regression that is
truly analogous to Albert and Chib’s (1993) DA algorithm. PS&W’s DA algo-
rithm, like Albert and Chib’s (1993) DA for the probit model, in every iteration
makes two draws — one draw from a p−dimensional normal distribution for β
and the other draw for the latent variables. We now describe these two steps.
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Let X denote the n×p design matrix with ith row xT
i . Let R+ = (0,∞) and

for (ω1, ω2, . . . , ωn) ∈ R
n
+, define Ω to be the n × n diagonal matrix with ith

diagonal element ωi. Finally let PG(1, b) denote the Pólya-Gamma distribution
defined in Section 2 with parameters 1 and b. A single iteration of PS&W’s
algorithm uses the following two steps to move from β′ to β.

PS&W’s algorithm:

1: Draw ω1, . . . , ωn independently with ωi ∼ PG
(
1,
∣∣xT

i β′∣∣).
2: Draw β ∼ N

((
XTΩX

)−1
XTκ,

(
XTΩX

)−1
)
, where κ = (κ1, . . . , κn)

T with κi =

yi − 1/2.

PS&W provided an efficient method for sampling from the Pólya-Gamma
distribution. It can be shown that the transition density of the Markov chain
underlying the above DA algorithm is strictly positive everywhere, which im-
plies the chain is Harris ergodic (Asmussen and Glynn, 2011). Thus the sample
averages based on the DA chain can be used to consistently estimate posterior
means. However, in order to provide standard errors for these estimates one
needs to show the existence of Markov chain CLTs for these estimators. A stan-
dard method of establishing Markov chain CLT is by proving the chain to be
geometrically ergodic (Roberts and Rosenthal, 1997). Geometric ergodicity also
allows consistent estimation of asymptotic variances in Markov chain CLTs by
batch means or spectral variance methods (Flegal and Jones, 2010). This in turn
allows the MCMC users to decide how long to run MCMC simulations (Jones
and Hobert, 2001). Thus proving geometric ergodicity has important practical
benefits. In this paper, we prove that the Markov chain underlying PS&W’s DA
algorithm is geometrically ergodic.

Choi and Hobert (2013) considered normal priors on the regression param-
eters and proved uniform ergodicity of the corresponding Pólya-Gamma DA
Markov chain by establishing a minorization condition. Choi and Román (2017)
considered the one-way logistic ANOVA model under a flat prior on group
(treatment) main effects and showed that the Markov operator corresponding
to Pólya-Gamma sampler is trace-class. The assumption of the one-way logis-
tic ANOVA model is restrictive and has limited applications. Here, we analyze
the convergence rate of PS&W’s DA algorithm for Bayesian logistic regression
models with a general form of the design matrix under a flat prior on regres-
sion coefficients. In particular, we establish that PS&W’s DA algorithm for the
Bayesian logistic regression model under the improper flat prior is always geo-
metrically ergodic. The conditions we need are only the conditions of Proposition
1 in A.1, which guarantee the posterior propriety. Since we use drift condition
to prove geometric ergodicity of the DA algorithm and hence CLTs for sample
average estimators, the techniques used here are different from that of Choi and
Hobert (2013) and Choi and Román (2017).

The rest of the paper is organized as follows. In Section 2, we describe
PS&W’s Gibbs sampler. Section 3 contains a brief discussion on geometric rate
of convergence for Markov chains and a proof of geometric ergodicity of PS&W’s
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Gibbs sampler. Some concluding remarks are given in Section 4. Finally, the ap-
pendix contains some technical results.

2. PS&W’s Gibbs sampler

In PS&W’s DA algorithm, latent variables with the Pólya-Gamma distribution
are introduced. The probability density function for a Pólya-Gamma random
variable with parameters a > 0 and b ≥ 0 is,

f (w|a, b) = cosha (b/2)
2a−1

Γ(a)

∞∑
n=0

(−1)
n Γ(n+ a)

Γ(n+ 1)

(2n+ a)√
2πw3

e−
(2n+a)2

8w − b2

2 w, w > 0.

(2)
We write W ∼ PG(a, b). (Recall that the hyperbolic cosine function cosh is
defined as cosh(t) = (et + e−t) /2.)

Choi and Hobert (2013) developed a new way to formulate PS&W’s DA
algorithm, which we briefly describe now. Let ω = (ω1, . . . , ωn)

T be the la-
tent variables. Assume that, conditional on β, Yi and ωi are independent with
Yi ∼ Bernoulli(F (xT

i β)) and ωi ∼ PG(1, |xT
i β|). Also, conditional on β, let

{(Yi, ωi), i = 1, . . . , n} be n independent pairs. Then the complete posterior
density of β and ω is

π (β,ω|y) =
[
∏n

i=1 P (Yi = yi|β)]
[∏n

i=1 f(ωi|1, |xT
i β|)

]
π(β)

c(y)
. (3)

Clearly from (1) we see that,∫
Rn

π (β,ω|y) dω = π (β|y) ,

that is, the β marginal density of the augmented posterior density π(β,ω|y) is
our target posterior density π(β|y).

Let p (ωi) be the probability function of PG(1, 0) and κi = yi−1/2, as defined
before. It can be checked that,

π (β,ω|y) ∝
n∏

i=1

exp
[
κix

T
i β − ωi

(
xT
i β

)2
/2
]
p (ωi) . (4)

PS&W’s DA algorithm is simply a two-variable Gibbs sampler that, in each
iteration, alternates draws from the two conditional distributions of π(β,ω|y).
Below we present the conditional densities of ω given β, y and β given ω, y.

From (3) we see that

ωi|β,y ind∼ PG
(
1,
∣∣xT

i β
∣∣) , for i = 1, . . . , n, (5)

that is, the conditional distribution of ω given β, y is independent of y. Thus
the conditional density of ω given β, y is

π (ω|β,y) ∝
n∏

i=1

exp
[
−ωi

(
xT
i β

)2
/2
]
p (ωi) . (6)
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From (4), it is easy to see that the conditional density of β is

π (β|ω,y) ∝ exp

[
−1

2
βTXTΩXβ + βTXTκ

]
, (7)

where κ = (κ1, . . . , κn)
T
. Thus the conditional distribution of β is multivariate

normal. In particular,

β|ω,y ∼ N
((

XTΩX
)−1

XTκ,
(
XTΩX

)−1
)
. (8)

3. Geometric ergodicity of Pólya-Gamma Gibbs sampler

Let {β(m),ω(m)}∞m=0 denote the Markov chain associated with PS&W’s DA
algorithm. In Bayesian logistic regression models, inferences on β are made
based on the {β(m)}∞m=0 sub-chain. As mentioned in the introduction, the DA
Markov chain is Harris ergodic. Let h : Rp → R be a real valued function of
β with

∫
Rp |h(β)|π(β|y)dβ < ∞, then the posterior mean E(h(β)|y) can be

consistently estimated by h̄m =
∑m−1

i=0 h(β(i))/m for any starting value β(0)

(see A.1 for a discussion on the existence of finite moments for (1)). We can
build a CLT for h̄m if there exists a constant σ2

h ∈ (0,∞) such that,

√
m
(
h̄m − E(h(β)|y)

) d→ N
(
0, σ2

h

)
as m → ∞. (9)

Mere Harris ergodicity of the Markov chain {β(m)}∞m=0 does not ensure that
the CLT in (9) holds. It turns out that the geometric rate of convergence
defined below guarantees the CLT under a finite second moment condition
(Roberts and Rosenthal, 1997). Also it turns out that all the three Markov
chains {β(m),ω(m)}∞m=0, {β(m)}∞m=0 and {ω(m)}∞m=0 have the same rate of con-
vergence (Roberts and Rosenthal, 2001). Thus geometric ergodicity is a soli-
darity property of these three Markov chains. In this article we analyze the
{ω(m)}∞m=0 sub-chain denoted as Ψ = {ω(m)}∞m=0. Let ω

′ be the current state
and ω be the next state, then the Markov transition density (Mtd) of Ψ is

k (ω|ω′) =

∫
Rp

π (ω|β,y)π (β|ω′,y) dβ, (10)

where π(·|·,y)’s are the conditional densities defined in (6) and (7). Note that the
Mtd of the {β(m)}∞m=0 sub-chain (that is, when ω is updated first) is similarly
given by

k̃ (β|β′) =

∫
R

n
+

π (β|ω,y)π (ω|β′,y) dω.

Let B denote the Borel σ-algebra of Rn
+ and K(·, ·) be the Markov transition

function corresponding to the Mtd k(·|·) in (10), that is, for any set A ∈ B,
ω′ ∈ R

n
+ and any j = 0, 1, . . . ,

K(ω′, A) = Pr(ω(j+1) ∈ A|ω(j) = ω′) =

∫
A

k(ω|ω′)dω. (11)
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Then the m-step Markov transition function is Km(ω′, A) = Pr(ω(m+j) ∈
A|ω(j) = ω′). Let Π(·|y) be the probability measure with density π(ω|y), where
π(ω|y) =

∫
Rp π(β,ω|y)dβ and π(β,ω|y) is the joint density defined in (3). The

Markov chain Ψ is geometrically ergodic if there exists a constant 0 < t < 1
and a function H : Rn

+ 
→ [0,∞) such that for any ω ∈ R
n
+, and m ≥ 1,

||Km(ω, ·)−Π(·|y)||TV := sup
A∈B

|Km(ω, A)−Π(A|y)| ≤ H(ω)tm. (12)

Harris ergodicity of Ψ implies that ||Km(ω, ·)−Π(·|y)||TV ↓ 0 as m → ∞, while
(12) guarantees its exponential rate of convergence. Since the Markov chains
{β(m)}∞m=0 and {ω(m)}∞m=0 have the same rate of convergence, (12) implies
{β(m)}∞m=0 is geometrically ergodic. Roberts and Rosenthal (1997) show that
since {β(m)}∞m=0 is reversible, if (12) holds then there exists a CLT, that is, for
any h : Rp → R with E[h(β)2|y] < ∞, (9) holds. Also, under (12) a consistent
estimator of σ2

h can be found by batch means or spectral variance methods
(Flegal and Jones, 2010). The following theorem shows that the Markov chain
Ψ converges at a geometric rate.

Theorem 1. If the posterior density π(β|y) given in (1) is proper, the Markov
chain Ψ is geometrically ergodic.

Remark 1. The conditions in Theorem 1 are the same as the necessary and
sufficient conditions for posterior propriety given in A.1. Besides these two con-
ditions, geometric ergodicity of Ψ does not need any other conditions.

Proof of Theorem 1. We prove geometric ergodicity of Ψ by establishing a drift
condition. In particular, we consider the drift function

V (ω) = α

n∑
i=1

1

ωi
+

n∑
i=1

1√
ωi

+

n∑
i=1

ωi, (13)

where α is a positive constant and show that for any ω,ω′ ∈ R
n
+, there exist

some constants ρ ∈ (0, 1) and L0 > 0 such that

E [V (ω) |ω′] ≤ ρV (ω′) + L0. (14)

In (14) the expectation is with respect to the Mtd k(ω|ω′) defined in (10).
Note that V (ω) is unbounded off compact sets, that is, for any a > 0, the set
{ω : V (ω) ≤ a} is compact. We now show that ω-chain is a Feller chain, which
means K (ω, O) is a lower semi-continuous function on R

n
+ for each fixed open

set O. Consider a sequence ωm with ωm → ω as m → ∞. Note that,

lim inf
m→∞

K (ωm, O) = lim inf
m→∞

∫
O

k (ω|ωm) dω

= lim inf
m→∞

∫
O

[∫
Rp

π(ω|β,y)π(β|ωm,y)dβ

]
dω

≥
∫
O

∫
Rp

π(ω|β,y) lim inf
m→∞

π(β|ωm,y)dβdω,
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where the inequality follows from Fatou’s lemma. Since π(β|ω,y) is a continuous
function in ω and ωm → ω,

lim inf
m→∞

K (ωm, O) ≥
∫
O

∫
Rp

π(ω|β,y)π(β|ω,y)dβdω

= K (ω, O) .

Thus by Meyn and Tweedie (1993) (chap. 15), (14) implies that the Markov
chain Ψ is geometrically ergodic.

Now we establish (14). From the definition of the Mtd of Ψ in (10), it follows
that

E [V (ω) |ω′] = E {E [V (ω) |β,y] |ω′,y} , (15)

where E [·|β,y] denotes the expectation with respect to π(·|β,y) given in (6)
and E {·|ω′,y} denotes the expectation with respect to π(·|ω′,y) given in (7).

We first evaluate the inner expectation in (15), that is the expectation of
V (ω) with respect to π (ω|β,y). From (5), we know ωi|β,y ∼ PG

(
1, |xT

i β|
)
.

Thus by Lemma 1 and Lemma 2 given in A.2, we have

E (ωi|β,y) =
1

2
∣∣xT

i β
∣∣ exp

(∣∣xT
i β

∣∣)− 1

exp
(∣∣xT

i β
∣∣)+ 1

≤ 1

4
,

E

(
1

ωi
| β,y

)
≤ 2

∣∣xT
i β

∣∣+ L1, and

E

(
1√
ωi

| β,y
)

≤
√
2
∣∣xT

i β
∣∣1/2 + L2,

where L1 ≡ L(1), L2 ≡ L(1/2) and L(·) is a function defined in Lemma 2. Then

E [V (ω) | β,y] ≤ 2α

n∑
i=1

∣∣xT
i β

∣∣+√
2

n∑
i=1

∣∣xT
i β

∣∣1/2 + αnL1 + nL2 +
n

4
. (16)

Now we consider the outer expectation in (15), that is, the expectation with
respect to π(β|ω′,y). Let

μi = xT
i

(
XTΩ′X

)−1
XTκ,

and
σ2
i = xT

i

(
XTΩ′X

)−1
xi,

where Ω′ is the diagonal matrix with elements ω′
i’s. From (8) we know that

xT
i β|ω′,y ∼ N

(
μi, σ

2
i

)
. Then

∣∣xT
i β

∣∣ has a folded normal distribution. Let G(·)
denote the cumulative distribution function of the standard normal random
variable. So

E
(∣∣xT

i β
∣∣ | ω′,y

)
= σi

√
2

π
e−μ2

i /2σ
2
i + μi

(
1− 2G

(
−μi

σi

))
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≤ σi

√
2

π
+ |μi| . (17)

By the inequality in Roy and Hobert (2010) [Lemma 3],

σ2
i = xT

i

⎛
⎝ω′

ixix
T
i +

∑
j �=i

ω′
jxjx

T
j

⎞
⎠

−1

xi

=
1

ω′
i

xT
i

⎛
⎝xix

T
i +

∑
j �=i

ω′
j

ω′
i

xjx
T
j

⎞
⎠

−1

xi ≤
1

ω′
i

. (18)

Also,

n∑
i=1

|μi| =
n∑

i=1

∣∣∣xT
i

(
XTΩ′X

)−1
XTκ

∣∣∣ = lTX
(
XTΩ′X

)−1
XTκ,

where l = (l1, . . . , ln) with li = 1 if μi ≥ 0 and li = −1 if μi < 0. By Cauchy-
Schwarz inequality, we have

n∑
i=1

|μi| =
∣∣∣lTX (

XTΩ′X
)−1/2 (

XTΩ′X
)−1/2

XTκ
∣∣∣

≤
√
lTX (XTΩ′X)

−1
XT l

√
κTX (XTΩ′X)

−1
XTκ . (19)

Now

lTX
(
XTΩ′X

)−1
XT l

=lT (Ω′)
−1/2

(Ω′)
1/2

X
(
XTΩ′X

)−1
XT (Ω′)

1/2
(Ω′)

−1/2
l

≤lT (Ω′)
−1

l =
n∑

i=1

1

ω′
i

, (20)

where the inequality follows from the fact that I − (Ω′)1/2 X
(
XTΩ′X

)−1
XT

(Ω′)1/2 is a positive semidefinite matrix.
Since the posterior density (1) is assumed proper, the two conditions of Propo-

sition 1 given in A.1 hold. Thus by Lemma 3 presented in A.3 and the facts
xix

T
i = ziz

T
i , κixi = −(1/2)zi, there exists a constant ρ1 ∈ (0, 1) such that

κTX
(
XTΩ′X

)−1
XTκ =

1

4
1TZ

(
ZTΩ′Z

)−1
ZT1 ≤ 1

4
ρ1

n∑
i=1

1

ω′
i

, (21)

where Z is defined in A.1, and 1 is the n× 1 vector of 1’s.
Using (18) - (21), from (17) we have

E

(
n∑

i=1

∣∣xT
i β

∣∣ |ω′,y

)
≤ 1

2

√
ρ1

n∑
i=1

1

ω′
i

+

√
2

π

n∑
i=1

1√
ω′
i

. (22)
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Using the inequality 2ab ≤ a2 + b2, we have for any c1 > 0,

E
(√

2
∣∣xT

i β
∣∣1/2 |ω′,y

)
= E

(
2

√
2

2c1
c1
∣∣xT

i β
∣∣1/2 |ω′,y

)

≤ c21E
(∣∣xT

i β
∣∣ |ω′,y

)
+

1

2c21
. (23)

Using (22) and (23), we have

E

(
√
2

n∑
i=1

∣∣xT
i β

∣∣1/2 |ω′,y

)
≤ c21

n∑
i=1

E
(∣∣xT

i β
∣∣ |ω′,y

)
+

n

2c21

≤ 1

2
c21
√
ρ1

n∑
i=1

1

ω′
i

+ c21

√
2

π

n∑
i=1

1√
ω′
i

+
n

2c21
. (24)

Combining (16), (22) and (24), from (15) we have

E [V (ω) | ω′] ≤α
√
ρ1

(
1 +

c21
2α

) n∑
i=1

1

ω′
i

+

√
2

π

(
2α+ c21

) n∑
i=1

1√
ω′
i

+
n

2c21
+ αnL1 + nL2 +

n

4
.

We now show that there exist c1 and α such that
√
ρ1
(
1 + c21/ (2α)

)
< 1 and√

2/π
(
2α+ c21

)
< 1, that is

c21
2

√
ρ1

1−√
ρ1

< α <
1

2

(√
π

2
− c21

)
. (25)

So we need to show there exists c1 such that
√

π
2 − c21 > c21

√
ρ1/

(
1−√

ρ1
)
.

Thus for any c1 with c21 <
√

π/2
(
1−√

ρ1
)
, we can choose α satisfying (25). So

there exist c1 and α such that

E [V (ω) |ω′] ≤ ρV (ω′) + L0,

where

ρ = max

{
√
ρ1

(
1 +

c21
2α

)
,

√
2

π

(
2α+ c21

)}
< 1,

L0 =
n

2c21
+ αnL1 + nL2 +

n

4
.

4. Summary

In this article, we prove the geometric rate of convergence for the Polson, Scott
and Windle’s (2013) Pólya-Gamma Gibbs sampler for the Bayesian logistic re-
gression with a flat prior on the regression coefficients β. The conditions for
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geometric ergodicity are the same as the necessary and sufficient conditions for
posterior propriety. That means, the Gibbs sampler is always geometrically er-
godic if the posterior distribution is proper. If the posterior is improper, the
Gibbs sampler is not even positive recurrent and the usual sample average es-
timator is inconsistent for the posterior mean (Athreya and Roy, 2014). Thus
our result guarantees availability of a CLT for the time average estimator as
long as it is consistent. Roy and Hobert (2007) established a similar result
for Albert and Chib’s (1993) DA algorithm for the Bayesian probit regression
model with a flat prior on β. The latent variables in Albert and Chib’s (1993)
DA algorithm are normal random variables and their conditional (posterior) dis-
tributions are truncated normal. Since the latent variables in Polson, Scott and
Windle’s (2013) DA algorithm have the non-standard PG distribution, it turns
out the drift function, inequalities, techniques used in our proof are quite differ-
ent from those of Roy and Hobert (2007). One potential future work is to study
the convergence properties of the Pólya-Gamma Gibbs sampler for Bayesian
logistic mixed models under improper priors for both regression coefficients and
variance components.

Appendix

A.1. Chen and Shao’s (2001) conditions for posterior propriety

Let X denote the n× p design matrix with the ith row xT
i and Z be the n× p

matrix with the ith row zT
i = cix

T
i , where ci = 1 if yi = 0 and ci = −1 if yi = 1

for i = 1, . . . , n. The following proposition gives the necessary and sufficient
conditions for propriety of the posterior density (1).

Proposition 1. (Chen and Shao, 2001). The marginal density c(y) is finite if
and only if

1. X is a full rank matrix;
2. There exists a vector e = (e1, . . . , en)

T
with strictly positive components

such that ZTe = 0p.

Remark 2. Roy and Hobert (2007) provide a method for checking the second
condition in Proposition 1. This method can be easily implemented using publicly
available software packages.

Remark 3. Since the moment generating function of the logistic distribution
exists from Chen and Shao (2001)[Theorem 2.3], it follows that under the two
conditions of Proposition 1,

∫
Rp e

δ‖β‖π(β|y)dβ < ∞ for some δ > 0 and∫
Rp ‖β‖rπ(β|y)dy < ∞ for all r ≥ 0.

A.2. Some useful properties of Pólya-Gamma distribution

Lemma 1. If ω ∼ PG (1, b), E (ω) ≤ 1
4 .
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Proof. From Polson, Scott and Windle (2013), we know that

E (ω) =
1

2b

eb − 1

eb + 1
.

Consider the function f (x) = (ex − 1)/ [x(ex + 1)], then

f ′ (x) =
2xex − e2x + 1

[x (ex + 1)]
2 .

Consider another function f1 (x) = 2xex − e2x + 1. We have

f ′
1 (x) = 2ex (1 + x− ex) .

We know that 1 + x − ex ≤ 0 for x ≥ 0. So f ′
1 (x) ≤ 0 for x ≥ 0. Hence

f1 (x) ≤ f1 (0) = 0. Therefore, f ′ (x) ≤ 0 for x ≥ 0. Then for x ≥ 0, f (x) ≤
limx→0 f(x) = 1/2. So E (ω) ≤ 1/4.

Lemma 2. If ω ∼ PG (1, b), for 0 < s ≤ 1,

E
(
ω−s

)
≤ 2sbs + L (s) ,

where L (s) is a constant depending on s.

Proof. From (2), the probability density function of PG (1, b) is,

f (x|1, b) = cosh (b/2)
∞∑

n=0

(−1)
n (2n+ 1)√

2πx3
e−

(2n+1)2

8x − b2

2 x.

We consider the two cases, b = 0 and b �= 0 separately.
Case 1: b = 0. Since 0 < s ≤ 1, for any x > 0, x−s ≤ x−1 + 1. Thus

E
(
ω−s

)
≤
∫ ∞

0

(
x−1 + 1

)
f (x|1, 0) dx =

∫ ∞

0

x−1f (x|1, 0) dx+ 1.

Now ∫ ∞

0

x−1f (x|1, 0) dx =

∞∑
n=0

(−1)
n (2n+ 1)√

2π

∫ ∞

0

x−5/2e−
(2n+1)2

8x dx

= 23
∞∑

n=0

(−1)
n 1

(2n+ 1)
2 = 8C,

where C is Catalan’s constant. Hence E (ω−s) ≤ 8C + 1.
Case 2: b �= 0. Note that,

E
(
ω−s

)
=

∫ ∞

0

x−sf (x|1, b) dx

= cosh (b/2)

∞∑
n=0

(−1)
n (2n+ 1)√

2π

∫ ∞

0

1√
x3

x−se−
(2n+1)2

8x − b2

2 xdx.
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According to Olver et al. (2010)[10.32.10], we have∫ ∞

0

1√
x3

x−se−
(2n+1)2

8x − b2

2 xdx =

∫ ∞

0

x−s− 3
2 e−

(2n+1)2

8x − b2

2 xdx

= 2Ks+ 1
2

(
b (2n+ 1)

2

)
·
(

2b

2n+ 1

)s+ 1
2

,

where Kν(x) is the modified Bessel function of the second kind. For x > 0,
according to Olver et al. (2010)[10.32.8],

Ks+ 1
2
(x) =

√
π
(
1
2x
)s+1/2

Γ (s+ 1)

∫ ∞

1

e−xt
(
t2 − 1

)s
dt

=

√
π
(
1
2x
)s+1/2

Γ (s+ 1)
e−x

∫ ∞

0

e−xt
(
t2 + 2t

)s
dt

≤
√
π
(
1
2x
)s+1/2

Γ (s+ 1)
e−x

∫ ∞

0

e−xt
(
t2s + 2sts

)
dt

=

√
π
(
1
2x
)s+1/2

Γ (s+ 1)
e−x

(
Γ (2s+ 1)

x2s+1
+ 2s

Γ (s+ 1)

xs+1

)

=
√
πe−x

[
Γ (2s+ 1)

Γ (s+ 1)
2−s−1/2x−s−1/2 + 2−1/2x−1/2

]
.

Thus

2Ks+ 1
2

(
b (2n+ 1)

2

)
·
(

2b

2n+ 1

)s+ 1
2

≤2
√
π exp (−nb− b/2)

[
Γ (2s+ 1)

Γ (s+ 1)

2s+1/2

(2n+ 1)
2s+1 +

2s+1/2bs

(2n+ 1)
s+1

]
.

Recall that cosh(b/2) = (eb/2 + e−b/2)/2. Thus

E

(
1

ωs

)
≤ 1 + e−b

2

∞∑
n=0

(−1)
n
e−nb

[
Γ (2s+ 1)

Γ (s+ 1)

2s+1

(2n+ 1)
2s +

2s+1bs

(2n+ 1)
s

]
.

Also,

∞∑
n=0

(
−e−b

)n
(2n+ 1)

s = 2−sΦ

(
−e−b, s,

1

2

)
= 2−s 1

Γ (s)

∫ ∞

0

ts−1e−
1
2 t

1 + e−b−t
dt,

and

∞∑
n=0

(
−e−b

)n
(2n+ 1)

2s = 2−2sΦ

(
−e−b, 2s,

1

2

)
=

2−2s

Γ (2s)

∫ ∞

0

t2s−1e−
1
2 t

1 + e−b−t
dt ≤ 1, (26)
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where Φ(·) is the Lerch transcendent function. The inequality in (26) follows
from the fact that 1 + e−b−t ≥ 1. Thus we have,

E

(
1

ωs

)
≤
(
1 + e−b

) bs

Γ (s)

∫ ∞

0

ts−1e−
1
2 t

1 + e−b−t
dt+ 2s+1Γ (2s+ 1)

Γ (s+ 1)
.

For fixed s > 0, let

f (b) ≡
(
1 + e−b

) bs

Γ (s)

∫ ∞

0

ts−1e−
1
2 t

1 + e−b−t
dt− 2sbs.

Using the Dominated Convergence Theorem (DCT), we can show that f (b) is a
continuous function of b. DCT can also be used to show that limb→∞ f (b) = 0
and f (0) = 0. So |f (b)| can be bounded by a positive constant value f0. Thus
we have

E

(
1

ωs

)
≤ 2sbs + 2s+1Γ (2s+ 1)

Γ (s+ 1)
+ f0.

Combining the two cases b = 0 and b �= 0, we have

E

(
1

ωs

)
≤ 2sbs + L (s) ,

where L (s) = max
{
2s+1 Γ(2s+1)

Γ(s+1) + f0, 8C + 1
}
.

A.3. A matrix result

Lemma 3. For fixed ω = (ω1, . . . , ωn) ∈ R
n
+, define Ω to be the n×n diagonal

matrix whose ith diagonal element is ωi. Let 1 be the n× 1 vector of 1’s. For a
full rank n×p matrix Z, if there exists a positive n×1 vector e = (e1, e2, . . . , en)
such that ZTe = 0, then there exists a constant ρ1 ∈ [0, 1) such that

1TZ
(
ZTΩZ

)−1
ZT1≤ρ1

n∑
i=1

1

ωi
.

Proof. Let λ = (λ1, . . . , λn)
T ∈ R

n
+, where λi = (1/

√
ωi)/

√∑n
i=1(1/ωi), and

Λ = diag (λ1,, . . . , λn). Define

S =
{
x = (x1, . . . , xn)

T
: xi ∈ (0,∞) for i = 1, . . . , n, ‖x‖ = 1

}
,

and

S∗ =
{
x = (x1, . . . , xn)

T
: xi ∈ [0,∞) for i = 1, . . . , n, ‖x‖ = 1

}
.

The set S∗ is a compact set. Note that

sup
ω∈R

n
+

1TZ
(
ZTΩZ

)−1
ZT1∑n

i=1 1/ωi
= sup

λ∈S
1TZ

(
ZTΛ−2Z

)−1
ZT1. (27)
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Now we study the supremum of 1TZ
(
ZTΛ−2Z

)−1
ZT1 over λ ∈ S. We know

that 1TZ
(
ZTΛ−2Z

)−1
ZT1 is a continuous function of λ in S. For λ ∈ S∗\S,

there exists a sequence
{
λm ≡ (λ1,m, . . . , λn,m)T ∈ S

}∞
m=1

such that limm→∞
λm = λ. We define the function f(·) on S∗ as

f (λ) ≡
{
1TZ

(
ZTΛ−2Z

)−1
ZT1 λ ∈ S

limm→∞ 1TZ
(
ZTΛ−2

m Z
)−1

ZT1 λ ∈ S∗\S,

where Λm = diag(λ1,m, . . . , λn,m) and limm→∞ λm = λ ∈ S∗\S with λm ∈ S.
Then f (λ) is a continuous function on S∗. Also

sup
λ∈S

1TZ
(
ZTΛ−2Z

)−1
ZT1 ≤ sup

λ∈S∗
f (λ) . (28)

We will now show that supλ∈S∗ f (λ) < 1. First we show that for any λ ∈ S,

f(λ) < 1. Define Z̃ ≡ Λ−1Z, then

1TZ
(
ZTΛ−2Z

)−1
ZT1

=1TΛΛ−1Z
(
ZTΛ−2Z

)−1
ZTΛ−1Λ1

=1TΛZ̃
(
Z̃T Z̃

)−1

Z̃TΛ1 = λT Z̃
(
Z̃T Z̃

)−1

Z̃Tλ. (29)

Since by the assumption of Lemma 3, there exists a positive vector e such that

ZTe = 0, we have Z̃TΛe = ZTΛ−1Λe = ZTe = 0. Thus Z̃
(
Z̃T Z̃

)−1
Z̃TΛe

= 0. In other words, Λe is an eigenvector of Z̃
(
Z̃T Z̃

)−1
Z̃T corresponding

to eigenvalue zero. Since eTΛλ =
∑n

i=1 λ
2
i ei > 0, and Z̃

(
Z̃T Z̃

)−1
Z̃T is an

idempotent matrix, it implies that λ cannot be an eigenvector of Z̃
(
Z̃T Z̃

)−1
Z̃T

corresponding to eigenvalue 1 (Bernstein, 2005, Proposition 4.5.4). Thus λT

Z̃
(
Z̃T Z̃

)−1
Z̃Tλ < 1, that is by (29), f(λ) < 1 for any λ ∈ S.

Next we show that or any λ ∈ S∗\S, f(λ) < 1. Define Z̃m ≡ Λ−1
m Z.

Now, we will show that limm→∞ Z̃m

(
Z̃T

mZ̃m

)−1
Z̃T

m exists. Define Pm ≡ Z̃m(
Z̃T

mZ̃m

)−1
Z̃T

m. We will show that each element in Pm is bounded by 1. Let

Z ≡
(
z1, . . . , zn

)T
, then Z̃m =

(
λ−1
1,mz1, . . . , λ

−1
n,mzn

)T
. The (i, j)th element

of Pm is λ−1
i,mλ−1

j,mzT
i

(
Z̃T

mZ̃m

)−1
zj . For i = j, using the inequality in Roy and

Hobert (2010) [Lemma 3], the ith diagonal element of Pm is

λ−2
i,mzT

i

(
Z̃T

mZ̃m

)−1

zi = λ−2
i,mzT

i

⎛
⎝λ−2

i,mziz
T
i +

n∑
j=1,j �=i

λ−2
j,mzjz

T
j

⎞
⎠

−1

zi ≤ 1.

For i �= j, by Cauchy–Schwartz inequality∣∣∣∣λ−1
i,mλ−1

j,mzT
i

(
Z̃T

mZ̃m

)−1

zj

∣∣∣∣
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≤
√

λ−2
i,mzT

i

(
Z̃T

mZ̃m

)−1

zi

√
λ−2
j,mzT

j

(
Z̃T

mZ̃m

)−1

zj ≤ 1.

Since each element of Pm is a bounded, continuous function of λm over S, its

limit asm → ∞ exists and is bounded. Thus, limm→∞ Z̃m

(
Z̃T

mZ̃m

)−1
Z̃T

m exists,
and we denote it as P . For a matrix A, define ‖A‖2 = supx:‖x‖=1 ‖Ax‖. Since
‖Pm‖2 ≤ ‖P ‖2 + ‖Pm − P ‖2 and ‖P ‖2 ≤ ‖Pm‖2 + ‖Pm − P ‖2, we have

|‖Pm‖2 − ‖P ‖2| ≤ ‖Pm − P ‖2 . (30)

Since for all m, ‖Pm‖2 = 1, being its largest eigenvalue and ‖Pm − P ‖2 → 0 as
m → ∞, (30) implies that ‖P ‖2 = 1. Thus the maximum eigenvalue of P is 1.
Then for any λ ∈ S∗\S with limm→∞ λm = λ, we have

lim
m→∞

1TZ
(
ZTΛ−2

m Z
)−1

ZT1

= lim
m→∞

λT
mZ̃m

(
Z̃T

mZ̃m

)−1

Z̃T
mλm = λTPλT . (31)

Since ZTe = 0, then Z̃T
mΛme = ZTΛ−1

m Λme = 0. Define Λme = ẽm =

(ẽm1, ẽm2, . . . , ẽmn)
T
, where ẽmi = λi,mei and ẽ = (λ1e1, . . . , λnen)

T
. Thus we

have limm→∞ ẽm = ẽ and

P ẽ = lim
m→∞

Z̃m

(
Z̃T

mZ̃m

)−1

Z̃T
mΛme = 0.

Thus ẽ is an eigenvector of P corresponding to eigenvalue 0. We also know that
λT ẽ =

∑n
i=1 λ

2
i ei > 0. So using similar arguments as before, λ cannot be an

eigenvector for P corresponding to eigenvalue 1. Thus λTPλ < 1, which by
(31) implies f(λ) < 1 for any λ ∈ S∗\S.

Therefore for any λ ∈ S∗, f (λ) < 1. Since S∗ is a compact set, and f (λ) is
a continuous function of λ over S∗, we have

sup
λ∈S∗

f (λ) = f
(
λ̃
)
, for some λ̃ ∈ S∗.

Therefore supλ∈S∗ f (λ) < 1, which by (27) and (28) in turn implies that

sup
ω∈R

n
+

1TZ
(
ZTΩZ

)−1
ZT1∑n

i=1 1/ωi
< 1.

Let ρ1 = supω∈R
n
+

1TZ(ZTΩZ)
−1

ZT 1∑n
i=1 1/ωi

, so we have

1TZ
(
ZTΩZ

)−1
ZT1≤ρ1

n∑
i=1

1

ωi
.
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