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Abstract: We propose a new definition of effective sample size. Although
the recent works of Griffith (2005, 2008) and Vallejos and Osorio (2014)
provide a theoretical framework to address the reduction of information in
a spatial sample due to spatial autocorrelation, the asymptotic properties
of the estimations have not been studied in those studies or in previously
ones. In addition, the concept of effective sample size has been developed
primarily for spatial regression processes with a constant mean. This pa-
per introduces a new definition of effective sample size for general spatial
regression models that is coherent with previous definitions. The asymp-
totic normality of the maximum likelihood estimation is obtained under an
increasing domain framework. In particular, the conditions for which the
limiting distribution holds are established for the Matérn covariance fam-
ily. Illustrative examples accompany the discussion of the limiting results,
including some cases where the asymptotic variance has a closed form. The
asymptotic normality leads to an approximate hypothesis testing that es-
tablishes whether there is redundant information in the sample. Simulation
results support the theoretical findings and provide information about the
behavior of the power of the suggested test. A real dataset in which a tran-
sect sampling scheme has been used is analyzed to estimate the effective
sample size when a spatial linear regression model is assumed.
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1. Introduction

This paper introduces a new definition of effective sample size for spatial re-
gression processes. By definition (Cressie, 1993, p. 16), the effective sample size
(ESS), which in this paper will be denoted as n∗, is the number of equivalent
independent observations associated with a spatial sample of size n. The correct
computation of the ESS is important due to the possible existing duplicated in-
formation in the data, and it has many implications for the subsequent analysis
and inference of spatial models (Clifford et al., 1989; Dutilleul, 1993; Dutilleul
et al., 2008). A similar problem has been reported by Box (1954a,b) for ap-
proximating the distribution of a quadratic form. This approach was later used
by Clifford et al. (1989) to assess the spatial association between two spatial
processes. Directly related to the content of this paper is the work of Griffith
(2005), who defined the effective sample size for georeferenced data for simple
and multiple means and applied the methodology to soil samples in Syracuse,
NY (Griffith, 2008). Alternatively, Faes et al. (2009) proposed another way of
computing the ESS based on the Fisher information quantity, which is applicable
to linear models with replicates. In a Bayesian context, model selection proce-
dures often depend explicitly on the sample size of the experiment. Extensions
of the Bayesian information criteria (BIC) for non-iid vectors require a defini-
tion of effective sample size that also applies in such cases (Berger et al., 2014).
Although discoveries about ESS are still disperse in the literature, standard
books on spatial statistics have mentioned the problem of how many uncorre-
lated samples provide the same precision as correlated observations (Cressie,
1993; Haining, 1990; Schabenberger and Gotway, 2005; Griffith and Paelinck,
2011; Dale and Fortin, 2009). Some applications involving the computation of
the ESS can be found in Thiébaux and Zwiers (1984); de Gruijter and ter Braak
(1990); Cogley (1999). Practical guidelines for ESS determination can be found
in Lenth (2001).

Any given formula to quantify the reduction of information from a spatial
sample should depend on the covariance matrix. Consequently, the estimation
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of the ESS and posterior asymptotics rely on the estimation of the covariance
matrix, which is a subject that has been extensively studied in the literature;
however, in the context of spatial statistics, there are no formal treatments
regarding the estimation and limiting properties of the ESS. Vallejos and Osorio
(2014) proposed a definition of ESS and developed several examples to show
the behavior of such a definition. The restricted maximum likelihood (REML)
estimation of the ESS was addressed as an application of the conditions stated
in Cressie and Lahiri (1993) for the estimation of the variance components
of a spatial linear process. If the random field

{
Y (s) : s ∈ D ⊂ R

d
}
has been

observed on the set of n spatial sites Dn = {s1, s2, . . . , sn} ⊂ D, then a model
of the form

Y = 1μ+ ε,

where Y = (Y (s1), . . . , Y (sn))
�, ε = (ε(s1), . . . , ε(sn))

� ∼ N (0,R(θ)), θ ∈
R

q, 1 = (1, . . . , 1)�, and μ ∈ R, was assumed to define the ESS as

n∗ = 1�R(θ)−11, (1.1)

which is the Fisher information quantity with respect to μ.
Here, we consider a regression of a response Y given the predictors xj =

(xj(s1), xj(s2), . . . , xj(sn))
�, j = 1, . . . , p, such that X = (x1,x2, . . . ,xp), and

Y = Xβ + ε, (1.2)

where β is a vector parameter of size p. The information matrix of β in (1.2)
is I(β) = X�R(θ)−1X. To obtain a formula for the effective sample size of
Y , several issues should be addressed in advance, for example, how to reduce
the Fisher information matrix about β to a single number, lying on the interval
[1, n], which is a desirable property among others established by Vallejos and
Osorio (2014). One way to generalize (1.1) is to consider a weighted version of
the ESS of the form

n∗ =

p∑
i=1

vix
�
i R(θ)−1xi, (1.3)

where vi are suitable weights to be determined. Combining Equations (1.1) and
(1.3), we can build a definition of the ESS of Y through

n∗ =
n · tr(X�R(θ)−1X)

tr(X�X)
, (1.4)

where tr(·) denotes the trace operator. This definition is consistent with that
given in Vallejos and Osorio (2014) in the sense that for X = 1, we recover

(1.1), but for X = (1,x2) and X̃ = (1,x3), with x3 = kx2 and k ∈ R \ {0},
the effective sample size (1.4) for X and X̃ respectively are

n∗
1 = n

(
1�R−11+ x�

2 R
−1x2

n+ x�
2 x2

)
,

n∗
2 = n

(
1�R−11+ k2x�

2 R
−1x2

n+ k2x�
2 x2

)
,
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and it is affected by the scales of the variables because n∗
1 = n∗

2 if and only if
k2 = 1. In addition, the simple intraclass and Toeplitz correlation structures re-
spectively described by R(ρ) = (1−ρ)I+ρJ with J = 11�, −1/(n−1) < ρ < 1,
and R(ρ)ij = ρ|i−j|, if i �= j, or R(ρ)ij = 1, otherwise, for |ρ| < 1, (correla-
tion function of an AR(1) process) show a nondecreasing pattern as a func-
tion of ρ, when x2 is a random sequence in the [0, 1], as shown in Figure
1. The behavior of the effective sample size is similar for other choices of
x2. This is a considerable difference from the constant mean case, in which
the patterns of both correlation structures decrease for increasing values of
ρ ∈ [0, 1].

On the basis of model (1.2), we first provide a new definition of effective
sample size as a function of the correlation structure of a process that does
not depend on the scale of the variables. For most correlations used in spatial
statistics, the ESS decreases when the correlation increases. We then present
several examples and preliminary results that support the given definition. In
particular, the problem of computing the ESS for variables that are normal
after applying a logarithm transformation is addressed via Taylor approxi-
mations of the elements of the correlation structure. We next turn to study-
ing the limiting distribution of the maximum likelihood (ML) estimator of
θ under an increasing domain framework. The conditions given by Mardia
and Marshall (1984) to obtain the asymptotic distribution of the ML esti-
mator of θ are established, and the limiting distribution of the ESS is ob-
tained using the delta method. In particular, these conditions are particular-
ized for a Gaussian random field with the Matérn covariance, as well as for
CAR and directional CAR processes. The asymptotic variance in each case is
derived. An approximate hypothesis testing for the null hypothesis H0 : n∗ = n
is developed. Although under a suitable definition of ESS, if Σ(θ) = σ2I,
n∗ = n, this type of test does not exactly correspond to the test of the form
Σ(θ) = σ2I, and cannot be compared with the existing proposals, mainly due
to the lack of replicates in the spatial case. However, for the alternative hy-
pothesis of the form H1 : n∗ < n, the procedure admits testing for informa-
tion reduction due to the presence of autocorrelation. Simulation studies and a
real data example support the theoretical findings and provide a closer insight
into the estimation of the effective sample size. The broader impacts result-
ing from this research lie in its contributions to understanding the reduction
of information due to the effect of autocorrelation in a spatial statistics con-
text.

The remainder of this paper is organized as follows. In Section 2, we present
the definition of effective sample size for spatial regression models accompanied
by several illustrative examples for models commonly used in spatial statis-
tics. More examples to illustrate how the ESS looks like for SAR, multivari-
ate CAR, and partitioned normal models are provided in Appendix A. In Sec-
tion 3, we present three propositions that characterize the ESS. In Section 4,
we develop the asymptotics for the ML estimation of the ESS for an increas-
ing domain. In Section 5, the hypothesis testing for H1 : n∗ < n is presented
with illustrative examples. The performance of the asymptotic methods is ex-
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Fig 1. (a) ESS for the intraclass correlation; (b) ESS for the Toeplitz correlation.

plored via two Monte Carlo simulation studies in Section 6. The estimation
of the effective sample size for a macroalgae dataset collected off the central
coast of Chile is discussed in Section 7. We conclude the paper with a discus-
sion in Section 8. We relegate all technical proofs to Appendix B. The pro-
grams that were used to analyze the data and the dataset can be obtained from
http://spatialpack.mat.utfsm.cl.

http://spatialpack.mat.utfsm.cl
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2. The effective sample size

To avoid the scale problem mentioned in Section 1, we consider a spatial re-
gression model such as (1.2) with X = (1,x2, . . . ,xp) such that x�

j xj = n for

all j = 2, . . . , p , where xj = (xj(s1), xj(s2), . . . , xj(sn))
�
. Then, the effective

sample size of Y is defined as

n∗ =
tr(X�R(θ)−1X)

p
=

1

p

p∑
j=1

x�
j R(θ)−1xj . (2.1)

This definition is consistent with that given in Vallejos and Osorio (2014) be-
cause if X = 1 in (2.1), n∗ = 1�R(θ)−11. If R(θ) = I, then n∗ = n.

Now, we explore how the ESS appears for different correlation structures.

Example 1. Assume that Y ∼ N (Xβ,R(ρ)), where R(ρ) = (1 − ρ)I + ρJ
with J = 11� and −1/(n − 1) < ρ < 1. Suppose that the columns of X have
Euclidean norm equal to

√
n. Then,

n∗
IC

=
1

p

⎛⎝ n

1 + (n− 1)ρ
+

1

1− ρ

p∑
j=2

[
n−

n2x2
jρ

1 + (n− 1)ρ

]⎞⎠ . (2.2)

In particular, if X = (1,x2) with x2 = (x1, . . . , xn)
� and xi = i, then ‖x2‖2 =

n(n+ 1)(2n+ 1)/6, x2
2 = n2(n+ 1)2/4, and (2.2) becomes

n∗
IC

=
n

2

(
1

1 + (n− 1)ρ
+

(n2 − 5n− 2)ρ+ 2(2n+ 1)

2(1− ρ)(1 + (n− 1)ρ)(2n+ 1)

)
.

Let a =
∑p

j=2(1 − x2
j ). Because x�

j xj/n − x2
j ≥ 0 and x�

j xj = n for all

j = 2, . . . , p, we have that 0 ≤ 1 − x2
j ≤ 1, therefore 0 ≤ a ≤ p − 1 < p.

Expanding (2.2) in term of a we obtain,

n∗
IC

=
1

p

(
n(p− a)

1 + (n− 1)ρ
+

na

1− ρ

)
. (2.3)

Clearly, n∗
IC

in (2.3) is a convex function, if and only if, −1/(n − 1) < ρ <
1. Moreover, n∗

IC
is the sum of two convex functions defined in the interval

(−1/(n− 1), 1), one strictly increasing function tending to infinity when ρ →
1−, and another strictly decreasing function tending to infinity when ρ →
−1/(n− 1)

+
. Thus, there exist a unique critical point that can be obtained

by solving the equation
dn∗

IC

dρ
= 0

in the interval (−1/(n− 1), 1), which is a global minimum of n∗
IC

given by

ρ0 = 1− n

n− 1 +

√
(p− a)(n− 1)

a

.
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Example 2. Suppose that Y ∼ N (Xβ,R(ρ)), where R(ρ) is the AR(1) cor-
relation structure, and that the columns of X have an Euclidean norm equal to√
n. Then,

n∗
AR

=
1

p

⎛⎝n(1− ρ) + 2ρ

(1 + ρ)
+

1

1− ρ2

p∑
j=2

[
n+ ρ2

n−1∑
i=2

x2
i,j − 2ρ

n−1∑
i=1

xi,jxi+1,j

]⎞⎠ .

(2.4)
Because R−1(ρ) =

(
I− ρB + ρ2A

)
/(1 − ρ2), where A = diag {0, 1, . . . , 1, 0}

and B = (bij) with bij = 1 if |i − j| = 1 and 0 otherwise, a matrix version of
Equation (2.4) is

n∗
AR

=
1

p

⎛⎝n(1− ρ) + 2ρ

(1 + ρ)
+

1

1− ρ2

p∑
j=2

[
n+ ρ2x�

j Axj − ρx�
j Bxj

]⎞⎠ . (2.5)

Let a =
∑p

j=2 x
�
j Axj , b =

∑p
j=2 x

�
j Bxj and c = n(p−1). Clearly a > 0, c > 0

and b ∈ R. Then

n∗
AR

=
1

p

(
(2− n)ρ+ n

(1 + ρ)
+

aρ2 − bρ+ c

1− ρ2

)
,

=
1

p

(
(2− n) +

2(n− 1)

(1 + ρ)
+

aρ2 − bρ+ c

1− ρ2

)
,

=
1

2p

(
2(2− n− a) +

4(n− 1) + a+ b+ c

1 + ρ
+

a− b+ c

1− ρ

)
. (2.6)

In order to prove that n∗
AR

in (2.6) is convex, note that by using the triangular
and Young’s inequality we have that a+b ≥ a−|b|, a−b ≥ a−|b| and a−|b| ≥ −c.
Indeed, the latter inequality is coming because

a− |b| =

p∑
j=2

[
n−1∑
i=2

x2
i,j − 2

∣∣∣∣∣
n−1∑
i=1

xi,jxi+1,j

∣∣∣∣∣
]
,

≥
p∑

j=2

[
n−1∑
i=2

x2
i,j − 2

n−1∑
i=1

|xi,jxi+1,j |
]
,

≥
p∑

j=2

[
n−1∑
i=2

x2
i,j −

n−1∑
i=1

(
x2
i,j + x2

i+1,j

)]
,

= −
p∑

j=2

n∑
i=1

x2
i,j ,

= −n(p− 1),

= −c.

Then a+ b+ c ≥ 0 and a− b+ c ≥ 0. Therefore, the function (4(n− 1)+ a+ b+
c)/(1 + ρ) is convex if and only if ρ > −1, and the function (a− b+ c)/(1− ρ)
is convex if and only if ρ < 1. In consequence, n∗

AR
is a convex function if only
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if −1 < ρ < 1. Moreover, n∗
AR

corresponds to the sum of two convex functions
defined in the interval (−1, 1), similarity to case developed in Example 1, there
exist only one critical point of n∗

AR
in the interval (−1, 1) corresponding to a

global minimum, that can be obtained by solving the equation

dn∗
AR

dρ
= 0. (2.7)

A simple calculation shows that

dn∗
AR

dρ
=

1

2p

(
−4(n− 1) + a+ b+ c

(1 + ρ)2
+

a− b+ c

(1− ρ)2

)
.

If b �= −2(n− 1), then the only solution of (2.7) in the interval (−1, 1) is

ρ0 =
2(n− 1) + (a+ c)−

√
(a+ c)2 + 4(n− 1)(a+ c)− 4b(n− 1)− b2

2(n− 1) + b
.

If b = −2(n − 1), the only solution of (2.7) in the interval (−1, 1) is ρ0 = 0,
and thus n∗

AR
(0) = n. This means that the lowest possible value for n∗

AR
is n.

However, this case is valid for very specific covariates. In fact, consider X =
(1,x2), and x2 = (x1, . . . , xn)

�. If xi · xi+1 = −1, then b = −2(n − 1). Note
that xi · xi+1 = −1 implies that xi+1 = xi−1, which is a difference equation,
whose general solution is xi = C1 + C2(−1)i, where C1 = (x2

1 − 1)/2x1, and
C2 = −(x2

1 + 1)/2x1, because x2 = −1/x1. Now,
∑n

i=1 x
2
i = n implies that

|x1| = 1, for each n ∈ N (when n is odd there is another solution, namely |x1| =√
(n− 1)/(n+ 1) ). Therefore, we conclude that xi = (−1)i or xi = (−1)i+1.

A model for which the effective sample size is greater than n is described in
Equation (3.2).

A convex pattern of functions n∗
IC

and n∗
AR

can be observed in Figure 1,
where Y ∼ N ((1,x)β,R(ρ)),R(ρ) is the intraclass (Figure 1(a)) or the Toeplitz
AR(1) correlation structure (Figure 1(b)), n = 25, 50, 100, ρ ∈ [0, 1], and the
covariate was simulated as a uniform random variable in the interval [0, 1].

The ESS for some covariance structures is explored next.

Example 3. Consider a CAR model of the form Y ∼ N (Xβ,Σ) with Σ =
τ2(Dw − ρW )−1, where the columns of X have norm

√
n, W = (wij) is a

contiguity matrix, and Dw = diag(wi+) with wi+ =
∑

j wij . Let R−1
CAR

=

CΣ−1C , where C = diag(σ1, σ2, . . . , σn) and σi = Σ
1/2
ii . Then,

n∗
CAR

=
1

τ2p

⎛⎝ p∑
k=1

n∑
i=1

x2
ikσ

2
iwi+ − ρ

p∑
k=1

n∑
i=1

n∑
j=1

xikxjkσiσjwij

⎞⎠ . (2.8)

Example 4. Let
{
Y (s) : s ∈ D ⊂ R

d
}

be a random field observed on Dn.
Suppose that Y = (Y (s1), . . . , Y (sn))

� ∼ N (Xβ,Σ(θ)), where Σ(θ)ij =
C(‖si − sj‖,θ), with θ = (σ2, τ2, φ) such that

C(h,θ) =

{
τ2 + σ2 ; h = 0,
σ2ρ(h, φ) ; h > 0,
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Table 1

Correlation functions used in Example 1.

Model Correlation function

Spherical ρ(h, φ) =

⎧⎨⎩ 1− 1.5
h

φ
+ 0.5

(
h

φ

)3

; h < φ

0 ; otherwise

Exponential ρ(h, φ) = exp

(
−h

φ

)
Matérn, κ = 1.5 ρ(h, φ) =

(
1 +

h

φ

)
exp

(
−h

φ

)
Matérn, κ = 2.5 ρ(h, φ) =

[
1 +

h

φ
+

1

3

(
h

φ

)2
]
exp

(
−h

φ

)
Gaussian ρ(h, φ) = exp

[
−
(
h

φ

)2
]

and ρ(h, φ) is a correlation function (for instance, ρ(h, φ) can be any of the
correlation functions listed in Table 1). Then, the elements of R(θ) are

R(θ)ij =

⎧⎨⎩ 1 ; i = j,
σ2ρ(h, φ)

τ2 + σ2
; i �= j.

For illustrative purposes, we plotted the ESS versus φ for n = 100, where the
sites s1, s2, . . . , s100 were generated from uniform random variables in the region
[0, 1]× [0, 1], while σ2 = 1 and τ2 = 0.1. Figure 2 shows that the ESS decays as
a function of φ ∈ (0, 1), as expected.

Fig 2. ESS for the correlation functions shown in Table 1.

The ESS for other related processes is provided in Appendix A.
We want to emphasize that the examples described above are strongly de-

pendent on the knowledge we have about the covariance parameters. This has
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been addressed in Vallejos and Osorio (2014). As an illustration, consider the
intraclass correlation model of the form

Y (s) = μ+ Z0 + Z(s), (2.9)

where Z0 is a random variable with variance ρ, Z(s) is a sequence of non-
correlated (pure nugget) variables with variance equal to (1 − ρ), and Z0 and
Z(s) are independent. To get any information about μ it is necessary to have
some knowledge about the variance of Z0. Moreover, the estimation of μ is
dispairing when model (2.9) has an additional variance parameter σ2.

3. Preliminary results

From definition (2.1), the following propositions for the ESS can be obtained.

Proposition 1. Let R(θ), θ ∈ R
q be a correlation matrix, and X be a matrix

of order n× p as in (2.1), n ≥ 1. Then, n∗ > 1.

There is no upper bound for the ESS in the general case, although compu-
tational experiments provide empirical evidence in favor of the upper bound n.
The next result provides the maximum number of covariates allowed in a spatial
regression process for the intraclass correlation structure, and it also provides
an upper bound for the ESS.

Proposition 2. Suppose that Y ∼ N (Xβ,R(ρ)), where R(ρ) is the intraclass
correlation matrix and the covariates are the eigenvectors of R(ρ). Then,

n∗
IC

≤ n ⇔ p ≤ n

1 + (n− 1)ρ
.

As an example, assume that n = 10 and ρ = 0.6. Then, n/(1+(n−1)ρ) ≈ 1.56.
Now, ρ = 1 ⇒ p = 1; thus, under perfect correlation, we can include only one
covariate in the model. Moreover, if ρ = 0.25, p ≤ 4n/(n+ 3) → 4 as n → ∞.

An immediate consequence of Proposition 2 is the equivalence

n∗
IC

> n ⇔ ρ >
1

p
− p− 1

p(n− 1)
, (3.1)

which provides a range for the correlation for a fixed number of covariates to
include in a regression model. For instance, if p = 2, ρ ≤ 1/2−1/(2(n−1)) → 1/2
when n → ∞. This helps to explain the behavior shown in Figure 1(a).

It should be stressed that there are examples where the effective sample size
is greater than n. Let us consider the model

Y ∼ N (Xβ,R(ρ)), (3.2)

where R(ρ) is the AR(1) correlation structure, X = (1,x2) with covariate
x2 = (x1, . . . , xn)

�, and xi = (−1)i. Then the constants used in Example 2 are
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a = n−2, b = −2(n−1), and c = n. Therefore, a+b+c = 0, a−b+c = 4(n−1),
and by Equation (2.6)

n∗
AR

=
1

4

(
4(2− n) +

4(n− 1)

1 + ρ
+

4(n− 1)

1− ρ

)
,

=
(n− 2)ρ2 + n

1− ρ2
. (3.3)

Because in this case b = −2(n− 1), from Example 2, we have that n∗
AR

≥ n, for
all ρ ∈ (−1, 1); and n∗

AR
= n, if and only if, ρ = 0.

For models with constant mean there are specific correlation structures (with
negative autocorrelation) for which the effective sample size is greater than n
(Richardson, 1990). For models with non-constant mean, the example describe
in (3.2) alert us that the properties of the effective sample size also depend on
the structure of the covariates.

In practice, the normality assumption could be not satisfied. One way to ad-
dress this problem is a transformation approach. Box and Cox (1964) proposed
the transformation

Zδ(si) =

⎧⎨⎩ (Y (si) + δ2)
δ1 − 1

δ1
; δ1 �= 0

ln(Y (si) + δ2) ; δ1 = 0

where Y (·) is the original variable and δ = (δ1, δ2)
� is an unknown parameter

vector to be estimated to achieve normality of Z(·). Given the vector of spa-
tial observations (Z(s1), . . . , Z(sn))

�, δ can be estimated by maximizing the
likelihood function

L(δ) = −n

2
ln

(
1

n

n∑
i=1

(Zδ(si)− Z̄(si)
2

)
+ (δ1 − 1)

n∑
i=1

ln(Y (si) + δ2).

Alternatively, an estimation for δ can be obtained by finding the optimal value
that maximizes the correlation between Φ−1 ((i− 0.5)/n) and Z(i), where Φ−1

is the inverse of the cumulative distribution function of Z(si) and Z(i) is the
order statistic associated with Z(si), for i = 1, . . . , n (Kutner et al., 2004).

Proposition 3. Suppose that Z = (Z(s1), . . . , Z(sn))
� ∼ N (μZ ,ΣZ) and

Z(si) = ln(Y (si) + δ2), i = 1, . . . , n,

where Y = (Y (s1), . . . , Y (sn))
�

is the original spatial sample. Let RZ and RY

be the correlation matrices of Z and Y , respectively. If (μZ)i = μi, (ΣZ)ij = σij

and σii = σ̃2, i, j = 1, . . . , n, then (RY )ii = (RZ)ii = 1 and

(RY )ij = c · (RZ)ij · kij + o
(
|σ̃2|m

)
, for all i �= j,

where c =
σ̃2

exp(σ̃2)− 1
, kij = 1 +

σij

2
+ · · ·+

σm−1
ij

m!
, for all i �= j, and kii = 1.

Furthermore, as m → ∞, (RY )ij =
c

σ̃2
(eσij − 1).
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Observe that RY = Km �RZ , where � denotes the Hadamard product and
Km is the matrix with elements kij . In particular, K1 = 11�. Thus, for m = 1,

n∗(Y ) =
n

p
tr
(
X�R−1

Y X
)
=

n

p
tr
(
X�R−1

Z X
)
= n∗(Z).

4. Estimation and asymptotics under increasing domain

Let
{
Y (s) : s ∈ D ⊂ R

d
}
be a Gaussian random field such that Y (·) is observed

on Dn ⊂ D. It is assumed that Dn is a non-random set satisfying ‖s − t‖ ≥
γ > 0 for all s, t ∈ Dn. This ensures that the sampling set is increasing as
n increases. Denote Y = (Y (s1), . . . , Y (sn))

� and assume that E[Y ] = Xβ,
cov(Y (t), Y (s)) = σ(t, s;θ), X is n × p with rank(X) = p, β ∈ R

p, θ ∈ Θ,
where Θ is an open set of ∈ R

q. Let Σ = Σ(θ) be the covariance matrix of Y
such that the ij-th element of Σ is σij = σ(si, sj ;θ). The estimation of θ and
β can be made by ML estimation, maximizing

L = L(β,θ) = Conts− 1

2
ln |Σ| − 1

2
(Y −Xβ)

�
Σ−1 (Y −Xβ) . (4.1)

Let L
(1)
n = ∇L = (L�

β ,L
�
θ )

� and

L(2)
n =

(
Lββ Lβθ

Lθβ Lθθ

)
be the gradient vector and Hessian matrix, respectively, obtained from (4.1).

Let Bn = −E[L
(2)
n ] be the Fisher information matrix with respect to β and θ.

Then, Bn = diag(Bβ,Bθ), where Bβ = −E[Lββ] and Bθ = −E[Lθθ].
For a twice differentiable covariance function σ(·, ·;θ) on Θ with continuous

second derivatives, Mardia and Marshall (1984) provided sufficient conditions
on Σ and X such that the limiting distribution of (β�,θ�)� is normal as is
stated in the following result.

Theorem 1. Let λ1 ≤ · · · ≤ λn be the eigenvalues of Σ, and let those of Σi =
∂Σ

∂θi
and Σij =

∂2Σ

∂θi∂θj
be λi

k and λij
k , k = 1, . . . , n, such that |λi

1| ≤ · · · ≤ |λi
n|

and |λij
1 | ≤ · · · ≤ |λij

n | for i, j = 1, · · · , q. Suppose that as n → ∞
(i) limλn = C < ∞, lim |λi

n| = Ci < ∞ and lim |λij
n | = Cij < ∞ for all

i, j = 1, . . . , q.
(ii) ‖Σi‖−2 = O(n− 1

2−δ) for some δ > 0, for i = 1, . . . , q.

(iii) For all i, j = 1, . . . , q, aij = lim
[
tij/(tiitjj)

1
2

]
exists,

where tij = tr
(
Σ−1ΣiΣ

−1Σj

)
and A = (aij) is nonsingular.

(iv) lim(X�X)−1 = 0.

Then, (β̂
�
, θ̂

�
)�

L−→ N
(
(β�,θ�)�,B−1

n

)
as n → ∞, in an increasing domain

sense.
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For the application of Theorem 1, the matrix X can be chosen in such a
way that condition (iv) is satisfied. When the process Y (·) has a stationary
covariance function on R

d with σ(si, sj ;θ) = σ(si − sj ;θ) and Dn represents
a regular but not necessarily rectangular grid with a fixed distance between
any pair of locations, conditions (i) and (ii) are satisfied if σk, σk,i

and σk,ij

are absolutely summable over Z
d for all i, j = 1, . . . , p, where σk, k ∈ Z

d,
is the covariance for lag k = (k1, . . . , kd) of the lattice, σk,i

= ∂σk/∂θi, and

σk,ij
= ∂2σk/∂θi∂θj (Mardia and Marshall, 1984). These conditions are es-

tablished next for a particular parametrization of the Matérn covariance func-
tion.

Theorem 2. Let
{
Y (s) : s ∈ D ⊂ R

d
}

be a covariance stationary Gaussian
process sampled on a regular lattice of fixed spacing, with the Matérn covariance

structure σm(h;σ2, φ) = σ2 exp

(
−h

φ

)
Pm

(
h

φ

)
, where ν = m + 1

2 , m ∈ N0,

h = ‖s− t‖ with s, t ∈ Dn and

Pm(x) =

m∑
i=0

aix
i, with ai =

2i

i!

(
m
i

)/(
2m
i

)
.

Let θ̂ be the ML estimator of θ = (σ2, φ)�. Then, θ̂
L−→ N

(
θ,B−1

θ

)
, as n → ∞,

where

Bθ =
1

2

⎛⎜⎜⎝
n

σ4

tr (V )

σ2φ2

tr (V )

σ2φ2

tr
(
V 2

)
φ4

⎞⎟⎟⎠ ,

V = (Q� P )
−1/2

(
Q�H �

[
P − Ṗ

])
(Q� P )

−1/2
, H = (hij) with hij =

‖si−sj‖, Q = (qij), P = (pij), Ṗ = (p′ij), qij = exp(−hij/φ), pij = Pm(hij/φ),
and p′ij = P ′

m(hij/φ), for all i, j = 1, . . . , n.

Next, we establish the asymptotic normality of the ML estimate for the ef-
fective sample size (2.1).

Theorem 3. Let X be a normalized design matrix as in Equation (2.1), and

let θ̂ be the ML estimator of θ as in Theorem 1. If θ̂ − θ
L−→ Nq(0,B

−1
θ ), as

n → ∞, and g(θ) = tr
(
X�R−1(θ)X

)
/p, then

g(θ̂)− g(θ)
L−→ N

(
0,∇�g(θ)B−1

θ ∇g(θ)
)
, as n → ∞.

Let
{
Y (s) : s ∈ D ⊂ R

d
}
be a random field observed on n sites on a space

such that E[Y ] = Xβ. Assume that there are two valid covariance functions
denoted as σ1(·, ·,θ1), θ1 ∈ R

q1 and σ2(·, ·,θ2), θ2 ∈ R
q2 . Then, we can state

the following result.
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Theorem 4. Assume that σ1(·, ·,θ1) and σ2(·, ·,θ2) satisfy conditions (i)−(iii)
of Theorem 1. Then, the covariance function

σ(si, sj ,θ) = σ1(si, sj ,θ1) + σ2(si, sj ,θ2), i, j = 1, . . . , n , (4.2)

where θ = (θ�
1 ,θ

�
2 )

�, satisfies conditions (i) and (ii) of Theorem 1.

It is not immediate to establish condition (iii) of Theorem 1. It is sufficient
to prove that limn→∞ |An| �= 0, where

An =

(
A11 A12

A�
12 A22

)
,

All is obtained from θl, l = 1, 2, while A12 is obtained from tr(Σ−1ΣiΣ
−1Σj)

for i = 1, . . . , q1 and j = q1+1, . . . , q1+q2. By hypothesis limn→∞ |All| = al �= 0,
l = 1, 2. It follows that

lim
n→∞

|An| = a1 · a2 ·
∣∣∣Iq2 −A

−1/2
22 A�

12A
−1
11 A12A

−1/2
22

∣∣∣
= a1 · a2 ·

∣∣∣Iq1 −A
−1/2
11 A12A

−1
22 A

�
12A

−1/2
11

∣∣∣ .
Thus, limn→∞ |An| �= 0 if and only if

∣∣∣Iq2 −A
−1/2
22 A�

12A
−1
11 A12A

−1/2
22

∣∣∣ �= 0

or
∣∣∣Iq1 −A

−1/2
11 A12A

−1
22 A

�
12A

−1/2
11

∣∣∣ �= 0. However, it is not straightforward to

establish any of these conditions for a general case.

5. Hypothesis testing

As a consequence of the limiting distribution of the ESS established in Theorem
3, an approximate hypothesis testing for the ESS is constructed. Consider the
null hypothesis

H0 : g(θ) = n0,

versus one of the following three alternative hypotheses H1 : g(θ) �= n0, H1 :
g(θ) < n0 or H1 : g(θ) > n0, where 1 < n0 < n. When n0 = n, this hypoth-
esis testing problem is relevant because it leads to the case when Σ = σ2I.
For the Matérn covariance function, the parameter φ controls the range of spa-
cial association such that if φ = 0, then Σ = σ2I. Thus, the test about the
parameter φ, H0 : φ = 0 versus H1 : φ > 0 implies the test about the ef-
fective sample size H0 : g(θ) = n versus H1 : g(θ) < n. For a given size
α, the critical regions Cα for the three alternative hypotheses are respectively

Cα =
{
g(θ̂) : |g(θ̂)− n0| > zα/2

√
σ2
g

}
, Cα =

{
g(θ̂) : g(θ̂)− n0 < z1−α

√
σ2
g

}
,

Cα =
{
g(θ̂) : g(θ̂)− n0 > zα

√
σ2
g

}
, where zα denotes the upper quantile of

the standard normal distribution and σ2
g = var(g(θ)).

The following two examples illustrate the computation of σ2
g for a Gaussian

random field with the exponential covariance function and for the CAR and
DCAR processes.
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Example 5. Let {Y (s) : s ∈ Z
2} be a stationary Gaussian process having

an exponential covariance function. Let n = NM be the sample size and Σ =
σ2Q(φ) be the covariance matrix of Y = (Y (s1), . . . , Y (sn))

�, where the ij-th
element of Q is qij = exp(−‖si − sj‖/φ). Let X be an n× p normalized matrix

and θ = (σ2, φ). By Theorem 2 (m = 0), the asymptotic normality of θ̂ is
granted, g(φ) = tr(X�Q(φ)−1X)/p, and

σ2
g = [g′(φ)]2 var[φ̂],

where g′(φ) = − 1

pφ2
tr
{
X�Q−1(Q�H)Q−1X

}
and var[φ̂] is the element

located in position 22 of the inverse of

Bθ =
1

2

⎛⎜⎝
n

σ4

1

σ2φ2
tr
(
Q−1(Q�H)

)
1

σ2φ2
tr
(
Q−1(Q�H)

) 1

φ4
tr
((

Q−1(Q�H)
)2)

⎞⎟⎠ .

Because |Bθ| =
2n2

σ4φ4
S2, where S2 is given by

S2 =
1

n
tr
((

Q−1(Q�H)
)2)−

(
1

n
tr
(
Q−1(Q�H)

))2

,

we have that var[φ̂] =
φ4

2nS2
. Consequently,

σ2
g =

tr2
(
X�Q−1(Q�H)Q−1X

)
2np2S2

.

When n0 = n, it is meaningful to compare the tests

H0 : g(φ) = n versus H1 : g(φ) < n, (5.1)

H0 : φ = 0 versus H1 : φ > 0, (5.2)

where the critical region for (5.2) is Cα =
{
φ̂ : φ̂ < z−1

α

√
nS2

}
.Moreover, under

H0, the test (5.2) implies that Σ = σ2I. Thus, the test (5.2) is an alternative to
the hypothesis testing problem H0 : Σ = σ2I versus H1 : Σ �= σ2I, commonly
studied when there are replicates (Ledoit and Wolf, 2002).

Example 6. Let Y ∼ Nn (Xβ,Σ) be a DCAR process with

Σ = τ2
(
I− δ1W̃

(1) − δ2W̃
(2)
)−1

D−1,

where D is as in Section A.3 and W̃ (1) and W̃ (2) are the normalized direc-
tional contiguity matrices satisfying W = W̃ (1) + W̃ (2). Kyung and Ghosh
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(2010) proved that the conditions of Theorem 1 for this model are satisfied
for an increasing domain asymptotic scheme. For θ = (τ2, δ1, δ2), the Fisher
information matrix is

Bθ =
1

2τ4

⎛⎝ n tr (G1) tr (G2)
tr (G1) tr

(
G2

1

)
tr (G1G2)

tr (G2) tr (G1G2) tr
(
G2

2

)
⎞⎠ , (5.3)

with Gk = W̃ (k)DΣ, k = 1, 2. Moreover, var
[
τ̂2, δ̂1, δ̂2

]
= B−1

θ , where

B−1
θ =

2τ4(M1 −M2)

a
,

with a = n tr
(
G2

1

)
tr
(
G2

2

)
+ 2 tr (G1) tr (G2) tr (G1G2) − n tr2 (G1G2)

− tr
(
G2

1

)
tr2 (G2)− tr

(
G2

2

)
tr2 (G1) and

M1 =

⎛⎝ tr
(
G2

1

)
tr
(
G2

2

)
tr (G2) tr (G1G2) tr (G1) tr (G1G2)

tr (G2) tr (G1G2) n tr
(
G2

2

)
tr (G1) tr (G2)

tr (G1) tr (G1G2) tr (G1) tr (G2) n tr
(
G2

1

)
⎞⎠ ,

M2 =

⎛⎝ tr2 (G1G2) tr (G1) tr
(
G2

2

)
tr (G2) tr

(
G2

1

)
tr (G1) tr

(
G2

2

)
tr2 (G2) n tr (G1G2)

tr
(
G2

1

)
tr (G2) n tr (G1G2) tr2 (G1)

⎞⎠ .

Equation (5.3) implies that n∗ = g(τ2, δ1, δ2) =
1

τ2p
tr
(
X�CA(δ1, δ2)DCX

)
,

where C = diag
(
Σ

1/2
ii

)
, i = 1, . . . , n and A(δ1, δ2) = I − δ1W̃

(1) − δ2W̃
(2).

Defining gτ2 =
∂g

∂τ2
, gδi =

∂g

∂δi
, i = 1, 2,

gτ2 = − 1

τ4p
tr
(
X�CA(δ1, δ2)DCX

)
+

2

τ2p
tr
(
X�Cτ2A(δ1, δ2)DCX

)
,

(5.4)

gδ1 = − 1

τ2p
tr
(
X�CW̃ (1)DCX

)
+

2

τ2p
tr
(
X�Cδ1A(δ1, δ2)DCX

)
, (5.5)

gδ2 = − 1

τ2p
tr
(
X�CW̃ (2)DCX

)
+

2

τ2p
tr
(
X�Cδ2A(δ1, δ2)DCX

)
, (5.6)

where Cτ2 = diag
(
∂(Σ

1/2
ii )/∂τ2

)
, Cδk = diag

(
∂(Σ

1/2
ii )/∂δk

)
, i = 1, . . . , n,

k = 1, 2, Σii = τ2Aii(δ1, δ2)/wi+ and Aii is as before, we have that

σ2
g =

2τ4b

a
, (5.7)

where
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b = g2τ2

[
tr
(
G2

1

)
tr
(
G2

2

)
− tr2 (G1G2)

]
+ g2δ1

[
n tr

(
G2

2

)
− tr2 (G2)

]
+ g2δ2

[
n tr

(
G2

1

)
− tr2 (G1)

]
− 2gτ2gδ1

[
Tr (G2) tr (G1G2)− tr (G1) tr

(
G2

2

)]
− 2gτ2gδ2

[
tr (G1) tr (G1G2)− tr (G2) tr

(
G2

1

)]
− 2gδ1gδ2 [tr (G1) tr (G2)− n tr (G1G2)] ,

and gτ2 , gδ1 and gδ2 are as in Equations (5.4), (5.5), and (5.6), respectively.
If δ1 = δ2 = ρ, then

σ2
g =

τ4
(
g2τ2 tr

((
W̃DΣ

)2
)
− 2gτ2gρ tr

(
W̃DΣ

)
+ ng2ρ

)
n tr

((
W̃DΣ

)2
)
− tr2

(
W̃DΣ

) ,

where

gτ2 =
∂g

∂τ2
= − 1

τ4p
tr
(
X�CA(ρ)DCX

)
+

2

τ2p
tr
(
X�Cτ2A(ρ)DCX

)
,

gρ =
∂g

∂ρ
= − 1

τ2p
tr
(
X�CW̃DCX

)
+

2

τ2p
tr
(
X�CρA(ρ)DCX

)
,

with A(ρ) = I − ρW̃ .

6. Numerical experiments

In this section, we conducted two Monte Carlo simulation studies. The first
one is designed to observe the performance of the ML estimates of the ESS for
different correlation structures and sample sizes. The second study is dedicated
to exploring the power function of the test stated in Section 5 as a function of
the sample size.

The first experiment involves the generation of 500 replicates from a Gaussian
random field, sampled on a regular lattice of size n = r × r, for r = 8, 16, 32,
where the sites s1, . . . , sn are of the form si = (xi, yi). Each replicate was
generated from the model

Y (si) = β0 + β1xiyi + ε(si),

where cov(ε(si), ε(sj)) = σ2ρ(‖si − sj‖, φ) for four correlation functions ρ(·, φ)
given in Table 1, with β0 = 2, β1 = 0.1, σ2 = 2, and φ = 1. The spherical
correlation was not included because it does not satisfy the conditions of The-
orem 1. Table 2 displays the simulation estimates and mean square error (in
parentheses) for the parameters β0, β1, σ

2 and φ. In addition, n∗, n∗/n and
its estimates were included to make the estimates comparable when n varies.
n∗/n represents the proportion of equivalent independent observations associ-
ated with a spatial sample of size n. There is empirical evidence to support the
consistency of the estimates of n∗ and n∗/n. In practice, the size of the grid
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Table 2

Monte Carlo estimates based on 500 replicates. The true parameters are β0 = 2, β1 = 0.1,
σ2 = 2 and φ = 1, and the numbers in brackets are the root mean square error of the

simulation estimates.

Covariance n n∗ n∗/n β̂0 β̂1 σ̂2 φ̂ n̂∗ n̂∗/n

Exponential

8× 8 16.06 0.251
2.0340 0.0992 1.7738 0.8161 24.31 0.3800
(0.5574) (0.0207) (0.4541) (0.3519) (14.41) (0.2252)

16× 16 51.32 0.200
1.9906 0.1000 1.9501 0.9581 58.13 0.2271
(0.2943) (0.0030) (0.2390) (0.1748) (17.59) (0.0687)

32× 32 180.78 0.177
2.0065 0.1000 1.9941 0.9947 184.90 0.1806
(0.1588) (0.0004) (0.1175) (0.0780) (24.79) (0.0242)

Gaussian

8× 8 24.65 0.385
2.0169 0.0996 1.8940 0.9742 26.32 0.4113
(0.4528) (0.0183) (0.4504) (0.1017) (5.15) (0.0805)

16× 16 89.88 0.351
2.0211 0.0999 1.9810 0.9980 90.56 0.3537
(0.2449) (0.0025) (0.2086) (0.0389) (6.32) (0.0247)

32× 32 342.55 0.335
2.0071 0.1000 1.9893 0.9976 344.46 0.3364
(0.1141) (0.0003) (0.1141) (0.0192) (12.50) (0.0122)

Matérn

8× 8 8.12 0.127
2.0012 0.1003 1.6425 0.8966 9.63 0.1505
(0.7590) (0.0248) (0.7557) (0.2064) (2.78) (0.0435)

m = 1 16× 16 21.90 0.086
1.9812 0.1001 1.8737 0.9651 23.50 0.0918
(0.4453) (0.0044) (0.4868) (0.1067) (3.75) (0.0146)

32× 32 69.87 0.068
2.0032 0.1000 1.9677 0.9907 71.40 0.0697
(0.2437) (0.0007) (0.2214) (0.0509) (6.29) (0.0061)

Matérn

8× 8 6.73 0.105
1.9804 0.1002 1.6293 0.9248 7.2624 0.1135
(0.8072) (0.0239) (0.8888) (0.1540) (0.9761) (0.0153)

m = 2 16× 16 15.81 0.062
1.9971 0.1000 1.8181 0.9633 16.84 0.0658
(0.5473) (0.0048) (0.7972) (0.0964) (2.92) (0.0114)

32× 32 46.35 0.045
2.0036 0.0999 2.0549 0.9955 46.96 0.0459
(0.3040) (0.0008) (1.4618) (0.0651) (3.33) (0.0033)

could be considerably large. We explore this by performing the same simula-
tion experiment for r = 64, 128, and 256 (not shown here), obtaining the same
results with respect to the consistency of the estimates; however, the computa-
tional cost have increased considerably. In Figure 3, we show the average user
time that the system takes to compute the ML estimate of the ESS based on
100 replicates. A breaking point in the slope of the curves for n ≥ 40× 40 is ob-
served regardless of the type of covariance function that is used. In the Gaussian
case, there are 32 observations for which the user time was greater than three
hours for the gird sizes 40× 40 and 48× 48, making it not comparable with the
other covariance functions. In practice, the computation of the effective sample
size can be performed on a regular computer for grid sizes of less than 32× 32.
Our simulation experiments were developed using a server HP ProLiant DL360
Gen9 E5-2630v3 2.4 GHz 8-core 1P 16 GB-R P440ar 500 W PS Base SAS.

The second simulation study is designed to explore the power of the hy-
pothesis testing problem H0 : n∗ = n versus H1 : n∗ < n. The true value
of the n∗ is denoted by n∗

0. Based on 500 replicates of a Gaussian random
field, the empirical power function was computed for r = 8, 16, 32. For r = 8,
n∗
0 = 38.67, 60.41, 20.69, 15.26, for r = 16, n∗

0 = 142.02, 240.02, 67.82, 45.84, and
for r = 32, n∗

0 = 142.02, 240.02, 67.82, 45.84, for the exponential, Gaussian and
Matérn (m = 1, 2) covariance functions, respectively. In contrast to a usual hy-
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Fig 3. User time in seconds for the exponential, Matérn (m = 1,m = 2), and Gaussian
correlation functions based in each case on 100 replicates from a Gaussian random field.

pothesis testing, the value of n∗
0 is variable. The effect of this behavior is shown

in Figure 4. For large values of n, the power function become small, regardless
of the covariance structure that is used. In all cases, the Gaussian covariance
function has the worst behavior in terms of power, whereas the Matérn model
with m = 2 has the best.

7. Real data analysis

We analyzed the macroalgae dataset from Acosta et al. (2016), which consists
of 427 observations related to the density of Lessonia trabeculata (scientific
name of macroalgae in the study) per 20 m2. This dataset was collected by
the Fisheries Research Institute (IFOP in Spanish) in a protected area near
Quintero, Chile. In Acosta et al. (2016), the effective sample size computations
were obtained under the assumption of a constant mean Gaussian process using
26 perpendicular line transects to the coastline to study those species located
at a depth of no more than 20 m because the experts are knowledgeable of the
existence of species with different sizes. In addition to the density, the depth was
measured for 144 georeferenced sites (see Figure 5). We examined the effective
sample size for the subset of 144 sites for which both the density and depth
are available. Acosta et al. (2016) found a high asymmetry (Fisher asymmetry
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Fig 4. Empirical power functions for the test H0 : n∗ = n versus H1 : n∗ < n, for the
exponential, Gaussian and Matérn (m = 1, 2) covariance functions. r = 8, 16, 32.

coefficient equal to 0.803); then, the logarithm transformation

Z(si) = ln(Y (si) + δ)

was applied to the original dataset, where δ is the value that maximizes the
correlation (0.9878) between the percentiles of the normal distribution and the

order statistics Z(i), obtaining δ̂ = 0.588 (Acosta et al., 2016, Appendix 2). The
Fisher asymmetry coefficient for the 144 observations is −0.00176.

Let Z(·) be a random field and assume that Z = (Z(s1), . . . , Z(s144)) is a
Gaussian random vector such that E[Z] = Xβ, where X is the design matrix
and Σij = cov(Z(si), Z(sj)) = τ2 + σ2 if i = j, and Σij = cov(Z(si, sj)) =
τ2 + σ2ρ(‖si − sj‖, φ) if i �= j, where ρ(·) is one of the functions presented in
Table 1. A preliminary model might be

E[Z(si)] = β0 + β1(xi − x̄) + β2(yi − ȳ) + β3d(si),

where si = (xi, yi), x̄ =
∑

xi/n, ȳ =
∑

yi/n and d(si) is the depth at the site
si, i = 1, . . . , 144. For each of the covariance structures listed in Table 1, the ML
estimates of the parameters were computed, obtaining that the overall F test led
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Fig 5. Study area in the central coast of Chile, including 144 observations collected by using
a transect lines scheme. This area was chosen because the species are located at a depth of no
more than 20 meters and because the experts are knowledgeable of the existence of species with
different sizes. The region to be sampled has an area from north to south that is approximately
2.12 km long. In addition, a free access area 1 km long was considered in the study.

us to a significant model with a p-value in each case of less than 0.05. However,
the t-tests on single regression coefficients yielded nonsignificant estimates for
β1 and β2 and significant estimates for β3, regardless of the covariance function
used. Then, we consider the reduced trend model of the form

E[Z(si)] = β0 + β1d(si). (7.1)

The overall F test, AIC coefficient, mean square error, n∗ and the ML estimates
for the parameters of model (7.1) are presented in Table 3. The Gaussian co-
variance structure minimized the AIC and the MSE. For this case, the effective
sample size of the transformed variable is 27.5, which is equal to the estimate
obtained by using the Taylor approximation of order 1. In Acosta et al. (2016),
the obtained ESS value was 66.1 for the Gaussian covariance, but the sample
size in that case was 427; therefore, the results are not comparable.

The modeling of the density of Lessonia trabeculata constitutes a valuable
advance in the design of protocols in IFOP that can be applied in the future
when they plan to collect new datasets in the same study area for this or other
variables of interest, under similar conditions to those described in this paper,
where the inclusion of covariates plays an important role when constructing the
spatial regression model to be used.
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Table 3

Parameter estimation and summary of principal statistics of the regression model (7.1).
The value in parentheses is the p-value of t-test.

Model F AIC MSE n∗
Z β̂0 β̂1 σ̂2 φ̂ τ̂2

Exponential 0.030 23.62 25.63 20.22
0.067 0.018

0.219 100.00 0.009
(0.719) (0.102)

Matérn
0.008 17.84 25.09 24.13

0.056 0.022
0.225 42.02 0.024

κ = 1.5 (0.755) (0.061)

Matérn
0.006 17.25 24.99 25.21

0.056 0.023
0.226 30.12 0.026

κ = 2.5 (0.751) (0.054)

Gaussian 0.002 15.94 24.83 27.51
0.054 0.024

0.224 81.65 0.028
(0.751) (0.037)

8. Discussion

This paper extended the known methodology for effective sample size com-
putations for general spatial regression models. The approach, equipped with
powerful computational machinery, is appropriate for large spatial datasets, and
it provides formulas for a number of spatial processes. We conjecture that the
n∗ in (2.1) is increasing in n. This is suggested by a comprehensive simulation
study that we performed. However, at this stage, we can only provide a proof
with additional hypotheses.

The definition of ESS can easily be extended to more general models. For
instance, for a nonlinear model of the form (Golub and Pereyra, 1973)

Y = X(α)β + ε, (8.1)

where ε ∼ N (0,R(θ)), β ∈ R
p, α ∈ R

r is a conditionally linear parameter
(Soo and Bates, 1992), X(·) is normalized by columns up to

√
n design matrix

and R(·) is as before, it is straightforward to obtain

n∗ = n ·
tr
(
X�(α)R−1(θ)X(α)

)
+
∑r

i=1 β
�X�

i (α)R−1(θ)Xi(α)β

np+
∑r

i=1 β
�X�

i (α)Xi(α)β
.

where Xi(α) = ∂X(α)
∂αi

, i = 1, . . . , r. After simple algebra, we have that

n∗ = λn∗
β + (1− λ)n∗

α,

where n∗
β = tr

(
X�(α)R−1(θ)X(α)

)
/p and

n∗
α = n ·

r∑
i=1

‖Xi(α)β‖2R−1/

r∑
i=1

‖Xi(α)β‖2,

which correspond to the effective sample size associated with the linear and con-
ditionally linear parameters respectively, and λ = np/(np+

∑r
i=1 ‖Xi(α)β‖2).

The asymptotic results provide support for the inference when using the ML
estimates for processes defined on rectangular grids. The conditions of Theo-
rem 1 are not easy to establish for a particular covariance function. The results
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and examples developed here highlight the limitation of the technique. For a non-
linear model as in Equation (8.1), the conditions of Theorem 1 are not sufficient
to guarantee the normality assumption of the ML estimate of (β�,α�,θ�)�.
A hypothesis ensuring that the Fisher information matrix converges to a nonsin-
gular matrix is needed. Such a condition is assumed for the Fisher information
matrix associated with the mean of a nonlinear model in Crujeiras and Van
Keilegom (2010).

The hypothesis testing discussed in Section 5 provides a framework for testing
whether there is redundant information in the spatial sample of size n due to
autocorrelation. Although the test is simple, for more sophisticated models, the
computation of the asymptotic variance is a challenging problem.

We make specific recommendations regarding the calculation of the effective
sample size in practice.

(a) The computation of the ESS requires the estimation of the covariance
function. To select a good isotropic model, the classical cross-validation
techniques might be used to choose from among the competing models.
However, Stein (1999) noted that making parametric estimates of semi-
variograms match the empirical one is a considerable flaw in classical geo-
statistics (Gelfand et al., 2010).

(b) At the first stage, we suggest addressing the hypothesis testing problem
H0 : n∗ = n H1 : n∗ < n, to elucidate whether there is a reduction
of information. Then other values for n0 (e.g., n/2 or n/3) can be used
to quantify the percentage of reduction with respect to the original sam-
ple size. For a single mean spatial regression model, the ESS might be
greater than n when there is negative autocorrelation (Richardson, 1990).
Hence, the alternative hypothesis H1 : n∗ > n is not very meaningful as a
description of a conventional situation in spatial statistics.
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Appendix A: ESS for related models

A.1. ESS for SAR models

Consider an SAR model of the form

Y = Xβ + e,

e = Be+ ν,

where B is a fixed matrix of spatial interactions, the columns of X have been
normalized, E[ν] = 0, and Σν = diag(σ̃2

1 , . . . , σ̃
2
n). Then, V[Y ] = Σ = (I −

B)−1Σν(I −B�)−1, R−1
SAR

= CΣ−1C with C = diag(σ1, σ2, . . . , σn) and σi =

Σ
1/2
ii is the ii-th element of Σ. If B = ρW , where W is any contiguity matrix

and Σν = σ2I, the effective sample size is

n∗
SAR

=
1

p
tr(X�R−1

SAR
X)

=
1

σ2p

(
tr(X�C2X)− 2ρ tr(X�CWCX) + ρ2 tr(X�CW�WCX)

)
.

n∗
SAR

is a quadratic function of ρ, where the coefficient of ρ2 is positive; thus,
n∗
SAR

is decreasing when ρ ≤ ρ0, where ρ0 is given by

ρ0 =
tr(X�CWCX)

tr(X�CW�WCX)
.

A.2. ESS for multivariate CAR models

Suppose that Φ� = (Φ1,Φ2, . . . ,Φn), where each Φi is a matrix of size m× 1.
A multivariate CAR (MCAR) process is described by Gelfand and Vounatsou
(2003) as

Φi|Φj �=i,Σi ∼ N

⎛⎝∑
j

BijΦj ,Σi

⎞⎠ , i = 1, . . . , n,

where each Bij and Σi are of size m × m. Brook’s lemma provides the joint
density of Φ given by

f(φ|{Σi}) ∝ exp

(
−1

2
φ�Γ−1(I − B̃)φ

)
,

where Γ is a block diagonal matrix with blocks Σi, and B̃ is nm × nm with
(i, j)th block Bij . Given the contiguity matrix W = (wij), define Bij =
bijIm×m, with bij = wij/wi+, wi+ =

∑
j wij . Additionally, consider Σi =

w−1
i+Σ. Then, B̃ = B ⊗ I, Γ = D−1

w ⊗ Σ, where Dw = diag(wi+), and
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Γ−1(I−B̃) = (Dw−W )⊗Σ−1. Since (Dw−W ) could be singular, we consider
Σ−1

Φ = (Dw − ρW ) ⊗ Σ−1, where ρ is a parameter that can be considered as

the autocorrelation that stabilizes the covariance matrix (Banerjee et al., 2004,
Sections 3.3 and 7.4). This model is consequently called MCAR(ρ,Σ).

Let Y � = (Y 1, . . . ,Y n), where each Y i ism×1 and Y is n×m. LetX, β, and
Φ be of sizes n×p, p×1, and n×m, respectively, such that Φ ∼ MCAR(ρ,Σ).
Y = 1�

m ⊗ Xβ + Φ implies that Y ∼ N
(
1�
m ⊗Xβ, (Dw − ρW )−1 ⊗Σ

)
,

or equivalently in vectorial form, Ỹ = (1m ⊗ X)β + Φ̃ implies that Y ∼
N

(
(1m ⊗X)β,Σ

Ỹ

)
, where Ỹ = vec(Y ), Φ̃ = vec(Φ), and Σ

Ỹ
= Σ ⊗

(Dw − ρW )−1. If the columns of X have norm
√
n, we have that

tr((1m ⊗X)�(1m ⊗X)) = tr(1�
m1m ⊗X�X) = m tr(X�X) = mpn .

Finally, setting C = diag
(
(Σ

Ỹ
)
1/2
ii

)
and R−1 = C

(
Σ−1 ⊗ (Dw − ρW )

)
C,

we obtain

n∗
MCAR

=
1

mp
tr
(
(1�

m ⊗X�)R−1(1m ⊗X)
)
. (A.1)

If X = 1n, n
∗
MCAR

= 1�
nmC

(
Σ−1 ⊗ (Dw − ρW )

)
C1mn/m. In addition, if Σ

is diagonal, the CAR specification is recovered, i.e., n∗
MCAR = n∗

CAR.

A.3. ESS for DCAR models

The directional conditionally autoregressive processes (DCAR) were defined by
Kyung and Ghosh (2010) as an extension of the CAR processes for which the
correlation between the process observed in different sites can change with the

direction. The contiguity matrix is W = W (1) +W (2), where W (1) =
(
w

(1)
ij

)
and W (2) =

(
w

(2)
ij

)
are directional weighted matrices satisfying wij = w

(1)
ij +

w
(2)
ij , and w

(1)
ij = 1 if j ∈ N ∗

i1, w
(2)
ij = 1 if j ∈ N ∗

i2, where N ∗
i1 and N ∗

i2 are as
in Kyung and Ghosh (2010). The vector Y follows a DCAR process if Y ∼
N (Xβ,Σ), where Σ = τ2

(
I− δ1W

(1) − δ2W
(2)
)−1

D−1, D = diag (wi+) and

wi+ =
∑

j wij . If the columns of X have norm
√
n, R−1

DCAR
= CΣ−1C with

C = diag(σ1, σ2, . . . , σn) , and σi = Σ
1/2
ii , then

n∗
DCAR

=
1

τ2p

⎡⎣ p∑
k=1

n∑
i=1

x2
ikσ

2
iwi+ − δ1

p∑
k=1

n∑
i=1

n∑
j=1

xikxjkσiσjw
(1)
ij wi+

− δ2

p∑
k=1

n∑
i=1

n∑
j=1

xikxjkσiσjw
(2)
ij wi+

⎤⎦ (A.2)

If δ1 = δ2 = ρ, then the ESS for the DCAR and CAR models coincide.
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A.4. ESS for a partitioned normal model

We assume that Y1 is n× 1 and Y2 is m× 1 such that

Ỹ =

(
Y1

Y2

)
∼ N

((
X1β1

X2β2

)
,R

)
, with R =

(
R11 R12

R�
12 R22

)
,

where Xi is n× pi and βi is pi × 1 for i = 1, 2. Suppose that the columns of X1

and X2 have been normalized by
√
n and

√
m, respectively. We define

X̃ =

(
X1 0
0 X2

)
, and β̃ =

(
β1

β2

)
.

Then,

n∗
Ỹ

= (n+m)
tr
(
X̃�R−1X̃

)
tr
(
X̃�X̃

)
=

(n+m)

np1 +mp2

(
tr
(
X�

1 R11X1

)
+ tr

(
X�

2 R22X2

))
, (A.3)

where

R−1 =

(
R11 R12

R21 R22

)
, R11 =

(
R11 −R12R

−1
22 R

�
12

)−1
,

R22 = R−1
22 +R−1

22 R
�
12R

11R12R
−1
22 , R12 = −R11R12R

−1
22 ,

R21 = (R12)�.

Some specific cases are the following:

1. If R12 = 0, then R11 = R−1
11 , R

22 = R−1
22 , and

n∗
Ỹ

=
(n+m)

np1 +mp2

(
p1n

∗
Y1

+ p2n
∗
Y2

)
, where n∗

Yi
= tr

(
X�

i R−1
ii Xi

)
/pi, i =

1, 2. In particular, if X1 = X2 = 1, we have that n∗
Ỹ

= tr
(
1�R−1

11 1
)
+

tr
(
1�R−1

22 1
)
= n∗

Y1
+ n∗

Y2
.

2. If p1 = p2 = p, then n∗
Ỹ

=
1

p

(
tr
(
X�

1 R11X1

)
+ tr

(
X�

2 R22X2

))
.

3. If n = m, then n∗
Ỹ

=
2

p1 + p2

(
tr
(
X�

1 R11X1

)
+ tr

(
X�

2 R22X2

))
.

Appendix B: Proofs

Proof of Proposition 1. Since R(θ) is a correlation matrix, let λ1, λ2, . . . , λn be
the eigenvalues of R(θ); then, λi > 0, i = 1, 2, . . . , n, and λ1 + λ2 + · · ·+ λn =
tr(R(θ)) = n. Thus, the maximum eigenvalue of R(θ), say λ(n), satisfies that

λ(n) < n or λ−1
(n) > n−1. That is, the minimum eigenvalue of R−1(θ) is λ−1

(n).
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Now, assume that x�
j xj = n for all j; then, x�

j R
−1(θ)xj ≥ λ−1

(n)x
�
j xj ≥ n−1n =

1, ∀ j = 1, . . . , p . This implies that

n∗ =
1

p
tr(X�R−1(θ)X) =

1

p

p∑
j=1

x�
j R

−1(θ)xj >
1

p

p∑
j=1

1 = 1.

Proof of Proposition 2. Consider the intraclass correlation matrix R(ρ) as in
Example 1. The eigenvalues of R(ρ) are λmax = 1 + (n − 1)ρ with algebraic
dimension 1 and λmin = 1 − ρ with algebraic dimension n − 1. Denote the
normalized eigenvalues of R(ρ) as vλ such that the vector associated with λmax

is vmax = 1. Assume that the covariates of the model are the eigenvectors
associated with λmin. Then, v

�
λR

m(ρ)vλ = λmv�
λ vλ = nλm and

n∗
IC

=
1

p

⎛⎝1�R−1(ρ)1+

p∑
j=2

v�
minj

R−1(ρ)vminj

⎞⎠ =
n

p

(
1

λmax
+

p− 1

λmin

)
.

Note that
n

p

(
1

λmax
+

p− 1

λmin

)
≤ n ⇔ λmin + (p− 1)λmax

λmaxλmin
≤ p. Thus, since

λmax − λmin = nρ and 1 − λmin = ρ, we have that p ≤ λmax − λmin

λmax(1− λmin)
=

n

1 + (n− 1)ρ
.

Proof of Proposition 3. Because Z(si) is normally distributed, Y (si) has a log-
normal distribution with

E[Y (si)] = eμi+0.5σ̃2 − δ2, (B.1)

cov(Y (si), Y (sj)) = eμi+μj+σ̃2

(eσij − 1) , (B.2)

for i, j = 1, . . . , n. For i = j, one obtains that

cor(Y (si), Y (si)) =
e2μi+σ̃2

(
eσ̃

2 − 1
)

e2μi+σ̃2
(
eσ̃2 − 1

) = 1,

while that for i �= j, using a Taylor expansion for eσij , one obtains

cor(Y (si), Y (sj)) =
eμi+μj+σ̃2

(eσij − 1)

eμi+μj+σ̃2
(
eσ̃2 − 1

)
=

σij

eσ̃2 − 1

(
1 +

σij

2
+ · · ·+

σm−1
ij

m!

)
+

1

eσ̃2 − 1
o
(
|σ̃2|m

)
=

σ̃2

eσ̃2 − 1

σij

σ̃2
kij + o

(
|σ̃2|m

)
= c · (RZ)ij · kij + o

(
|σ̃2|m

)
,
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where cor(Z(si), Z(sj)) = (RZ)ij =
σij

σ̃2
, kij = 1 +

σij

2
+ · · · +

σm−1
ij

m!
, i �= j,

kii = 1, and c =
σ̃2

exp(σ̃2)− 1
. Furthermore, if m → ∞, we have that

cor(Y (si), Y (sj)) =
eσij − 1

eσ̃2 − 1
=

c

σ̃2
(eσij − 1).

Proof of Theorem 2.

Lemma 1. Let Pm(y) =
∑m

i=0 aiy
i, be a polynomial of degree m ∈ N. Then,

for d < ∞,

∫
Rd

Pm(‖x‖) exp(−‖x‖)dx =
2πd/2

Γ(d/2)

m∑
i=0

aiΓ(i+ d) < ∞,

where Γ(·) is the gamma function.

Proof. Applying polar coordinates on R
d, with r = ‖x‖, one has∫

Rd

Pm(‖x‖) exp(−‖x‖)dx = cd

∫ ∞

0

Pm(r) exp(−r)rd−1dr

= cd

∫ ∞

0

m∑
i=0

air
i exp(−r)rd−1dr

=
2πd/2

Γ(d/2)

m∑
i=0

aiΓ(d+ i),

where cd =
2πd/2

Γ(d/2)
represents the surface area of the unit sphere Sd−1.

Lemma 2. For d < ∞ and m ≥ 0 fixed,∫
Rd

‖x‖m exp(−‖x‖2)dx =
πd/2Γ

(
d+m
2

)
2Γ

(
d
2

) < ∞.

Proof. The result is obtained by emulating the proof of Lemma 1.

Proof of Theorem 2 (continued). We assume that X is suitable chosen such that
lim(X�X)−1 = 0 holds, and hence, condition (iv) in Theorem 1 holds. The
proof of conditions (i)− (iii) is divided into two parts.

Case 1: m < ∞ fixed. To prove conditions (i) and (ii), we use the summability
of the covariances. Precisely, define σk = σm(‖k‖;σ2, φ). Then,
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σk = σ2Pm

(
‖k‖
φ

)
exp

(
−‖k‖

φ

)
,

σk,σ2 = Pm

(
‖k‖
φ

)
exp

(
−‖k‖

φ

)
,

σk,φ = σ2

(
‖k‖
φ2

)[
Pm

(
‖k‖
φ

)
− P ′

m

(
‖k‖
φ

)]
exp

(
−‖k‖

φ

)
,

σk,σ2σ2 = 0,

σk,σ2φ
=

(
‖k‖
φ2

)[
Pm

(
‖k‖
φ

)
− P ′

m

(
‖k‖
φ

)]
exp

(
−‖k‖

φ

)
,

σk,φφ = σ2

{(
‖k‖
φ2

)2 [
Pm

(
‖k‖
φ

)
− 2P ′

m

(
‖k‖
φ

)
+ P ′′

m

(
‖k‖
φ

)]
−
(
2‖k‖
φ3

)[
Pm

(
‖k‖
φ

)
− P ′

m

(
‖k‖
φ

)]}
exp

(
−‖k‖

φ

)
,

where P ′
m(x) =

m−1∑
i=0

(i+1)ai+1x
i and P ′′

m(x) =

m−2∑
i=0

(i+2)(i+1)ai+2x
i. Moreover,

∑
k∈Zd

|σk| ≤
∫
Rd

σ2Pm

(
‖x‖
φ

)
exp

(
−‖x‖

φ

)
dx

= σ2φ

∫
Rd

Pm(‖z‖) exp(−‖z‖)dz

< ∞,∑
k∈Zd

|σk,σ2 | ≤
∫
Rd

Pm

(
‖x‖
φ

)
exp

(
−‖x‖

φ

)
dx

= φ

∫
Rd

Pm(‖z‖) exp(−‖z‖)dz

< ∞,∑
k∈Zd

|σk,φ
| ≤

∫
Rd

σ2

φ

(
‖x‖
φ

) ∣∣∣∣Pm

(
‖x‖
φ

)
− P ′

m

(
‖x‖
φ

)∣∣∣∣ exp(−‖x‖
φ

)
dx

= σ2

∫
Rd

‖z‖ |Pm(‖z‖)− P ′
m(‖z‖)| exp (−‖z‖) dz

≤ σ2

∫
Rd

‖z‖ [Pm(‖z‖) + P ′
m(‖z‖)] exp(−‖z‖)dz

< ∞,

∑
k∈Zd

|σk,σ2σ2 | = 0,
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∑
k∈Zd

|σk,σ2φ
| ≤

∫
Rd

1

φ

(
‖x‖
φ

) ∣∣∣∣Pm

(
‖x‖
φ

)
− P ′

m

(
‖x‖
φ

)∣∣∣∣ exp(−‖x‖
φ

)
dx

=

∫
Rd

‖z‖ |Pm(‖z‖)− P ′
m(‖z‖)| exp (−‖z‖) dz

≤
∫
Rd

‖z‖ [Pm(‖z‖) + P ′
m(‖z‖)] exp (−‖z‖) dz

< ∞,

∑
k∈Zd

|σk,φφ| ≤
∫
Rd

σ2

φ2

∣∣∣∣∣
(
‖x‖
φ

)2 [
Pm

(
‖x‖
φ

)
− 2P ′

m

(
‖x‖
φ

)
+ P ′′

m

(
‖x‖
φ

)]

−2

(
‖x‖
φ

)[
Pm

(
‖x‖
φ

)
− P ′

m

(
‖x‖
φ

)]∣∣∣∣ exp(−‖x‖
φ

)
dx

=
σ2

φ

∫
Rd

∣∣‖z‖2 [Pm (‖z‖)− 2P ′
m (‖z‖) + P ′′

m (‖z‖)]

−2‖z‖ [Pm (‖z‖)− P ′
m (‖z‖)]| exp (−‖z‖) dz

≤ σ2

φ

{∫
Rd

‖z‖2 [Pm (‖z‖) + 2P ′
m (‖z‖) + P ′′

m (‖z‖)] exp (−‖z‖) dz

+2

∫
Rd

‖z‖ [Pm (‖z‖) + P ′
m (‖z‖)] exp (−‖z‖) dz

}
< ∞.

All of the above expressions have been obtained by using Lemma 1. Now, we
establish condition (iii). The Fisher information matrix is given by

Bθ =
1

2

(
tr
(
Σ−1Σσ2Σ−1Σσ2

)
tr
(
Σ−1Σσ2Σ−1Σφ

)
tr
(
Σ−1Σσ2Σ−1Σφ

)
tr
(
Σ−1ΣφΣ

−1Σφ

) ) ,

whereΣ−1Σσ2 = I/σ2 andΣ−1Σφ = 1
φ2 (Q� P )

−1
(Q�H � [P − P ′]). Since

Q� P is symmetric and positive definite, it follows that

tr
(
(Q� P )

−1
(Q�H � [P − P ′])

)
= tr

(
(Q� P )

−1/2
(Q�H � [P − P ′]) (Q� P )

−1/2
)

= tr (V ) ,

and

Bθ =
1

2

⎛⎜⎜⎝
n

σ4

tr (V )

σ2φ2

tr (V )

σ2φ2

tr
(
V 2

)
φ4

⎞⎟⎟⎠ .
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Now, A = limn→∞ An, where

An =

⎛⎜⎜⎝ 1
tr (V )√
n tr (V 2)

tr (V )√
n tr (V 2)

1

⎞⎟⎟⎠ . (B.3)

By algebra of limits, A is nonsingular if limn→∞ det(An) �= 0. This is satisfied
because

|An| = 1− tr2 (V )

n tr (V 2)
=

n tr
(
V 2

)
− tr2 (V )

n tr (V 2)
=

∑n
i=1(λi − λ̄)2∑n

i=1 λ
2
i

,

where λi are the eigenvalues of V and λ̄ is the arithmetic average of λs, which
are different real numbers because V is symmetric and V �= cI. Additionally,
|λi| < C for all i, which implies that λ̄ < ∞; thus, limn→∞ |An| = 1.

Case 2: m → ∞. In this case,

σ∞(h;σ2, φ) = σ2 exp

(
−
(
h

φ

)2
)
,

and

Bθ =
1

2

⎛⎜⎜⎜⎜⎝
n

σ4

2 tr
(
Ṽ
)

σ2φ3

2 tr
(
Ṽ
)

σ2φ3

4 tr
(
Ṽ

2
)

φ6

⎞⎟⎟⎟⎟⎠ ,

where Ṽ = Q−1/2(Q�H�H)Q−1/2,H = (hij),Q = (qij) with hij = ‖si−sj‖
and qij = exp(−(hij/φ)

2), for all i, j = 1, . . . , n.
Conditions (i) and (ii) are proved in a similar way because Lemma 2 implies

that σk, σk,σ2 , σk,φ
, σk,σ2σ2 , σk,φφ

and σk,σ2φ
are absolutely summable, where

σk,σ2 = exp

(
−
(
‖k‖
φ

)2
)
,

σk,φ =
2σ2‖k‖2

φ3
exp

(
−
(
‖k‖
φ

)2
)
,

σk,σ2σ2 = 0,

σk,φφ
=

2σ2‖k‖2(2− 3φ2)

φ6
exp

(
−
(
‖k‖
φ

)2
)
,

σk,σ2φ
=

2‖k‖2
φ3

exp

(
−
(
‖k‖
φ

)2
)
.

Condition (iii) is granted by replacing V with Ṽ , which is also symmetric,

Ṽ �= cI, and the eigenvalues of Ṽ are all distinct real numbers and bounded.
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Proof of Theorem 3. Because of the invariance property of the ML estimator of
θ, g(θ̂) is the ML estimator of g(θ). Since g(θ) is a continuous and differentiable
function for all θ ∈ Θ, the result follows by direct application of the delta method
to g(θ).

Proof of Theorem 4. Denote Σ(1) and Σ(2) as the covariance matrices obtained
from σ1(si, sj ,θ1) and σ2(si, sj ,θ2), respectively, for the vector Y . Then, Σ =

Σ(1) +Σ(2). Denote by α1 ≤ · · · ≤ αn, |αi
1| ≤ · · · ≤ |αi

n|, and |αij
1 | ≤ · · · ≤ |αij

n |
the ordered eigenvalues of Σ(1), Σ

(1)
i , and Σ

(1)
ij , respectively, for i, j = 1, . . . , q1,

and similarly we denote γ1 ≤ · · · ≤ γn, |γi
1| ≤ · · · ≤ |γi

n|, and |γij
1 | ≤ · · · ≤ |γij

n |
the ordered eigenvalues of Σ(2), Σ

(2)
i , and Σ

(2)
ij , for i, j = q1+1, . . . , q1+q2, and

λ1 ≤ · · · ≤ λn, |λi
1| ≤ · · · ≤ |λi

n|, and |λij
1 | ≤ · · · ≤ |λij

n | the ordered eigenvalues
of Σ, Σi, and Σij , for i, j = 1, . . . , q1 + q2.

Proof of Condition (i). Condition (i) is granted for λn by applying the triangular
inequality for the spectral norm denoted by || · ||e. Then

lim
n→∞

λn = lim
n→∞

‖Σ‖e

= lim
n→∞

‖Σ(1) +Σ(2)‖e

≤ lim
n→∞

‖Σ(1)‖e + lim
n→∞

‖Σ(2)‖e
= lim

n→∞
αn + lim

n→∞
γn

< ∞,

and similarly for λi
n and λii

n .

Proof of Condition (ii). It is straightforward to see that Σi = Σ
(1)
i for i =

1, . . . , q1 and Σi = Σ
(2)
i for i = q1+1, . . . , q1+ q2. Since ‖Σ(1)

i ‖−2 = O(n− 1
2−δ1)

for some δ1 > 0, and ‖Σ(2)
i ‖−2 = O(n− 1

2−δ2) for some δ2 > 0, It is sufficient

to set δ = min{δ1, δ2} > 0 such that ‖Σi‖−2 = O(n− 1
2−δ) for all i = 1, . . . ,

q1 + q2.
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THIÉBAUX, H. J. and ZWIERS, F. W. (1984). Interpretation and estimation
of effective sample size. J. Climate Appl. Meteor. 23, 800–811.

VALLEJOS, R. and OSORIO, F., (2014). Effective sample size for spatial pro-
cess models. Spat. Stat. 9 66–92. MR3326832

http://www.ams.org/mathscinet-getitem?mr=2659845
http://www.ams.org/mathscinet-getitem?mr=1926169
http://www.ams.org/mathscinet-getitem?mr=1963395
http://www.ams.org/mathscinet-getitem?mr=0738334
http://www.ams.org/mathscinet-getitem?mr=1076010
http://www.ams.org/mathscinet-getitem?mr=2134116
http://www.ams.org/mathscinet-getitem?mr=1697409
http://www.ams.org/mathscinet-getitem?mr=3326832

	Introduction
	The effective sample size
	Preliminary results
	Estimation and asymptotics under increasing domain
	Hypothesis testing
	Numerical experiments
	Real data analysis
	Discussion
	Acknowledgments
	ESS for related models
	ESS for SAR models
	ESS for multivariate CAR models
	ESS for DCAR models
	ESS for a partitioned normal model

	Proofs
	References

