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Abstract: Statisticians increasingly face the problem to reconsider the
adaptability of classical inference techniques. In particular, diverse types
of high-dimensional data structures are observed in various research areas;
disclosing the boundaries of conventional multivariate data analysis. Such
situations occur, e.g., frequently in life sciences whenever it is easier or
cheaper to repeatedly generate a large number d of observations per subject
than recruiting many, say N , subjects. In this paper, we discuss inference
procedures for such situations in general heteroscedastic split-plot designs
with a independent groups of repeated measurements. These will, e.g., be
able to answer questions about the occurrence of certain time, group and
interactions effects or about particular profiles.

The test procedures are based on standardized quadratic forms involving
suitably symmetrized U-statistics-type estimators which are robust against
an increasing number of dimensions d and/or groups a. We then discuss
their limit distributions in a general asymptotic framework and additionally
propose improved small sample approximations. Finally, the small sample
performance is investigated in simulations and applicability is illustrated
by a real data analysis.
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1. Introduction

In our current century of data, statisticians increasingly face the problem to re-
consider the adaptability of classical inferential techniques. In particular, diverse
types of high-dimensional data structures are observed in various research ar-
eas; disclosing the boundaries of conventional multivariate data analysis. Here,
the curse of high dimensionality or the large d small N problem is especially
encountered in life sciences whenever it is easier (or cheaper) to repeatedly gen-
erate a large number d of observations per subject than recruiting many, say N ,
subjects. Similar observations can be made in industrial sciences with subjects
replaced by units. Such designs, where experimental units are repeatedly ob-
served under different conditions or at different time points, are called repeated
measures designs or (if two or more groups are observed) split-plot designs. In
these trials, one likes to answer questions about the occurrence of certain group
or time effects or about particular profiles. Conventionally, for d < N , corre-
sponding null hypotheses are inferred with Hotelling’s T 2 (one or two sample
case) or Wilks’s Λ, see e.g. Davis [14][Section 4.3] or Johnson & Wichern [24]
[Section 6.8]. Besides normality, these procedures heavily rely on the assumption
of equal covariance matrices and particularly break down in high-dimensional
settings with N < d. While there exist several promising approaches to ade-
quately deal with the problem of covariance heterogeneity in the classical case
with d < N (see e.g. Box [6], Geisser & Greenhouse [17], Greenhouse & Geisser
[18], Huynh & Feldt [23], Lecoutre [30], Vallejo & Ato [40], Ahmad et al. [1], Ken-
ward & Roger [27], Brunner et al. [9], Pesarin & Salmaso [35], Skene & Kenward
[38], Konietschke et al. [29], Happ et al. [20], Harden [21], Friedrich et al. [16])
most procedures for high-dimensional repeated measures designs rely on certain
sparsity conditions (see e.g. Bai & Saranadasa [2], Chen & Qin [11], Katayama
et al. [26], Nishiyama et al. [33], Secchi et al. [37], Cai et al. [10], Harrar &
Kong [22] and the references cited therein). In particular, in an asymptotic
(d,N) → ∞ framework, typical assumptions restrict the way the sample size
N and/or various powers of traces of the underlying covariances increase with
respect to d. These type of sparsity conditions guarantee central limit theorems
that lead to approximations of underlying test statistics by a fixed limit dis-
tribution. However, as illustrated in Pauly et al. [34] for one-sample repeated
measures these conditions can in general not be regarded as regularity assump-
tions. In particular, they may even fail for classical covariance structures. To
this end, the authors proposed a novel approximation technique that showed
considerably accurate results and investigated its asymptotic behavior in a flex-



Inference for high-dimensional split-plot-designs 2745

ible and non-restrictive (d,N) → ∞ framework. Here, no assumptions regarding
the dependence between d and N or the covariance matrix were made. In the
current paper, we follow this approach and extend the results of Pauly et al.
[34] to general heteroscedastic split-plot designs with a independent groups of
repeated measurements. To even allow a large number of groups as in Bathke
& Harrar [3], Bathke et al. [4] or Zhan & Hart [43], we do not only consider the
case with a fixed number a ∈ N of samples but additionally allow for situations
with a → ∞. The latter case is of particular interest if most groups are rather
small (as in screening trials) such that a classical test would essentially possess
no power for fixed a. Here increasing the number of groups implies increasing
the total sample size from which a power increase might be expected as well.
This leads to one of the following asymptotic frameworks

a ∈ N fixed and (d,N) → ∞,

d ∈ N fixed and (a,N) → ∞,

or (a, d,N) → ∞

which we handle simultaneously in the sequel. For all considerations, the ade-
quate and dimension-stable estimation of traces of certain powers of combined
covariances turned out to be a major problem. It is tackled by introducing sym-
metrized estimates of U -statistics-type which possess nice asymptotic properties
under all asymptotic frameworks given above.

The paper is organized as follows. The statistical model together with the
considered hypotheses of interest are introduced in Section 2. The test statis-
tic and its asymptotic behavior is investigated in Section 3, where also novel
dimension-stable trace estimators are introduced. Additional approximations
for small sample sizes are theoretically discussed in Section 4 and their perfor-
mance is studied in simulations in Section 5. Afterwards, the new methods will
be applied to analyze a high-dimensional data set from a sleep-laboratory trial
in Section 6. The paper closes with a discussion and an outlook. All proofs in
this paper are shifted to the Appendix.

2. Statistical model and hypotheses

We consider a split-plot design given by a independent groups of d-dimensional
random vectors

Xi,j = (Xi,j,1, . . . , Xi,j,d)
� ind∼ Nd (μi,Σi) j = 1, . . . , ni, i = 1, . . . , a (1)

with mean vectors E(Xi,1) = μi = (μi,t)
d
t=1 ∈ Rd and positive definite co-

variance matrices Cov(Xi,1) = Σi. Here j = 1, . . . , ni denotes the individual
subject or unit in group i = 1, . . . , a, ni, a ∈ N, where no specific structure of the
group-specific covariance matrices Σi is assumed. In particular, they are even
allowed to differ completely. Altogether we have a total number of N =

∑a
i=1 ni

random vectors representing observations from independent subjects. Within
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this framework, a factorial structure on the factors group or time can be incor-
porated by splitting up indices. Also, a group-specific random subject effect can
be incorporated as outlined in Pauly et al. [34][Equation (2.2)].

Writing μ = (μ�
1 , . . . ,μ

�
a )

�, linear hypotheses of interest in this general
split-plot model are formulated as

H0(H) : Hμ = 0 (2)

for a proper hypothesis matrix H. It is of the form H = HW ⊗ HS , where
HW and HS refer to whole-plot (group) and/or subplot (time) effects. For
theoretical considerations it is often more convenient to reformulate H0(H) by
means of the corresponding projection matrix T = H�[HH�]−H, see e.g.
Pauly et al. [34]. Here (·)− denotes some generalized inverse of the matrix and
H0(H) can equivalently be written as H0(T ) : Tμ = 0. It is a simple exercise
to prove that the matrix T is of the form T = TW ⊗T S for projection matrices
TW and T S , see Lemma A.1 (p.2766) in the Appendix. Typical examples are
given by

(a) No group effect: Ha
0 :
(
P a ⊗ 1

dJd

)
μ = 0,

(b) No time effect: Hb
0 :
(
1
aJa ⊗ P d

)
μ = 0,

(c) No interaction effect between time and group: Hab
0 : (P a ⊗ P d)μ = 0,

where Jd is the d-dimensional matrix only containing 1s and P d := Id−Jd/d
is the centring matrix. For interpretational purposes it is sometimes helpful to
decompose the component-wise means as

μi,t = μ+ αi + βt + (αβ)it, i = 1, . . . , a, t = 1, . . . , d,

where αi ∈ R represents the i-th group effect, βt ∈ R the time effect at time
point t and (αβ)it ∈ R the (i, t)-interaction effect between group and time with
the usual side conditions

∑
i αi =

∑
t βt =

∑
i,t(αβ)it = 0. With this notation

the above null hypothesis can be rewritten as (a) Ha
0 : αi ≡ 0 for all i, (b)

Hb
0 : βt ≡ 0 for all t and (c) Hab

0 : (αβ)it ≡ 0 for all i, t, respectively.
These and other hypotheses will be utilized in the data analysis Section 6.

3. The test statistic and its asymptotics

We derive appropriate inference procedures for H0(T ) and analyze their asymp-
totic properties under the following asymptotic frameworks

a ∈ N fixed and min(d, n1, . . . , na) → ∞, (3)

d ∈ N fixed and min(a, n1, . . . , na) → ∞, (4)

or min(a, d, n1, . . . , na) → ∞, (5)

as N → ∞. Here, no dependency on how the dimension d = d(N) in (3) and
(5) or the number of groups a = a(N) in (4)–(5) converges to infinity with
respect to the sample sizes ni and N is postulated. In particular, we cover high-
dimensional (d > ni or even d > N) as well as low-dimensional settings. For
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a lucid presentation of subsequent results and proofs we additionally assume
throughout that

ni

N
→ ρi ∈ (0, 1), i = 1, . . . , a. (6)

However, by turning to convergent subsequences, all main results can be shown
to hold under the more general condition

0 < lim inf ni/N ≤ lim supni/N < 1, (i = 1, . . . , a).

It is convenient to measure deviations from the null hypothesis H0(T ) : Tμ = 0
by means of the quadratic form

QN = N ·X�
TX, (7)

where X
�
= (X

�
1 , . . .X

�
a ) with Xi = n−1

i

∑ni

j=1 Xi,j , i = 1, . . . , a, denotes the
vector of pooled group means.

Since QN is in general asymptotically degenerated under (3)–(5) we study its
standardized version. To this end, note that under the null hypothesis it holds
that

√
N · TX

H0∼ Nad

(
0ad,T

[
a⊕

i=1

N

ni
Σi

]
T

)
,

due to assumption (1). Thus, it follows from classical theorems about moments of
quadratic forms, see e.g. Mathai & Provost [32] or Theorem A.4 in the Appendix,
that its mean and variance under the null hypothesis can be expressed as

EH0 (QN ) = tr

(
T

[
a⊕

i=1

N

ni
Σi

])
=

a∑
i=1

N

ni
(TW )ii tr (T SΣi) , (8)

VarH0 (QN ) = 2 tr

⎛⎝(T [ a⊕
i=1

N

ni
Σi

])2
⎞⎠ (9)

= 2

a∑
i=1

a∑
r=1

N2

ninr
(TW )ir(TW )ri tr (T SΣiT SΣr)

= 2

a∑
i=1

a∑
r=1

N2

ninr
(TW )ir

2
tr (T SΣiT SΣr) (10)

= 4

a∑
i,r=1,r<i

N2

ninr
(TW )ir

2
tr (T SΣiT SΣr)

+ 2

a∑
i=1

N2

n2
i

(TW )ii
2
tr
(
(T SΣi)

2
)
.

Henceworth we investigate the asymptotic behaviour (under H0(T )) of the

standardized quadratic form W̃N = {QN − EH0(QN )}/VarH0 (QN )
1/2

. Denot-
ing by V N :=

⊕a
i=1

N
ni
Σi the inversely weighted combined covariance matrix,
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the representation theorem for quadratic forms given in Mathai & Provost
[32][p.90], implies that

W̃N =
QN − EH0(QN )

VarH0 (QN )
1/2

D
=

ad∑
s=1

λs√∑ad
�=1 λ

2
�

(
Cs − 1√

2

)
. (11)

Here ‘
D
=’ denotes equality in distribution, λs are the eigenvalues of TV NT in

decreasing order, and (Cs)s is a sequence of independent χ2
1-distributed random

variables. Note, that the eigenvalues λs also depend on the dimension d and
the sample sizes ni. Transferring the results of [34] for the one-group design
with a = 1 to our general setting, we obtain the subsequent asymptotic null
distributions of the standardized quadratic form for all asymptotic settings (3)–
(5).

Theorem 3.1. Let βs = λs

/√∑ad
�=1 λ

2
� for s = 1, . . . , ad. Then W̃N has, under

H0(T ), and one of the frameworks (3)–(5) asymptotically

a) a standard normal distribution if and only if

β1 = max
s≤ad

βs → 0 as N → ∞,

b) a standardized
(
χ2
1 − 1

)
/
√
2 distribution if and only if

β1 → 1 as N → ∞,

c) the same distribution as the random variable
∑∞

s=1 bs (Cs − 1) /
√
2, if

for all s ∈ N βs → bs as N → ∞,

for a decreasing sequence (bs)s in [0, 1] with
∑∞

s=1 b
2
s = 1.

It is worth to note that the influence of the different asymptotic frameworks
is hidden in the corresponding conditions on the sequence of standardized eigen-
values (βs)s, which depend on both, a and d.

Moreover, for the specific one-group case with a = 1 the equivalent statements
in a) and b) even complement the results of Pauly et al. [34] who only proved
the sufficient part.

While Theorem 3.1 studies the asymptotic null distribution of W̃N , it is of
additional interest to study its behaviour under local alternatives. To this end,
we adopt two local situations already considered in Chen & Qin [11] for the case
a = 2 and H0 = P 2 ⊗ 1

dJd to our present design.

Theorem 3.2.

i) Under the local alternative H1(T ) : Tμ 
=0ad it holds with N ·μ�TV NTμ∈
O
(
tr
(
(TV N )

2
))

that

W̃N
D
= WN (H0) +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1).
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Here, WN (H0) denotes a statistic that possesses the same distribution as

W̃N under H0, i.e. L(WN (H0)) = L(W̃N |H0).
ii) Under the local alternative H1(T ) : Tμ 
= 0ad it holds with N · μ�Tμ ∈

O
(√

tr
(
(TV N )

2
))

and β1 → 0, that

W̃N
D
=

√√√√1 + 2N
μ�TV NTμ

tr
(
(TV N )

2
) ·WN (H0) +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1).

Consulting the results of Theorems 3.1 and 3.2 it is easy to calculate asymp-
totic power functions of W̃N -tests. In particular, for a = 2, H0 = P ⊗ 1

dJd and
β1 → 0 we obtain the power functions stated in Chen & Qin [11]; noting that
their asymptotic framework is contained in ours if β1 → 0.

Since the eigenvalues λs and standardized eigenvalues βs are unknown in
general we cannot apply the result directly. In particular, we are not even able
to calculate the test statistic W̃N , not to mention to choose its correct limit
distribution. To this end, we first introduce novel unbiased estimates of the un-
known traces involved in (8)–(10) and discuss their mathematical properties.
Plugging them into (8)–(10) leads to the calculation of adequately standard-
ized test statistics. Finally, the choice of proper critical values is discussed in
Section 4.

3.1. Symmetrized trace estimators

Here we derive unbiased and ratio-consistent estimates for the unknown traces
tr (T SΣi) , tr ((T SΣi)

2
) and tr (T SΣiT SΣr) , i 
= r, given in (8)–(10). Since

it is not obvious that the usual plug-in estimates that are based on empiri-
cal covariance matrices are useful in high-dimensional settings we follow the
approach of Brunner et al. [8] and Pauly et al. [34] and directly estimate the
traces. Different to the one-sample design studied therein, we face the prob-
lem of additional nuisance parameters – the mean vectors μi. To avoid their
estimation we adopt Tyler’s symmetrization trick from M -estimates of scatter
(see e.g. Croux et al. [13], Dümbgen [15] or Tyler et al. [39]) to the present
situation, see also Brunner [7] and Harden [21]. In particular, we consider dif-
ferences of observation pairs (�1, �2), �1 
= �2, from the same group which fulfill
(Xi,�1 −Xi,�2) ∼ Nd (0d, 2Σi) and introduce the following novel estimators for
i = 1, . . . , a :

Ai,1 =
1

2 ·
(
ni

2

) ni∑
�1,�2=1
�1>�2

(Xi,�1 −Xi,�2)
�
T S (Xi,�1 −Xi,�2) , (12)

Ai,r,2 =
1

4 ·
(
ni

2

)(
nr

2

) ni∑
�1,�2=1
�1>�2

nr∑
k1,k2=1
k1>k2

[
(Xi,�1 −Xi,�2)

�
T S (Xr,k1 −Xr,k2)

]2
,

(13)
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Ai,3 =
1

24
(
ni

4

) ni∑
�1,�2=1
�1>�2

ni−1∑
k2=1

k2 �=�1,�2

ni∑
k1=k2+1
�2,�1 �=k1

[
(Xi,�1 −Xi,�2)

�
T S (Xi,k1 −Xi,k2)

]2
,

(14)

A4 =

a∑
i=1

(
N

ni

)2

(TW )ii
2
Ai,3 + 2

a−1∑
i=1

a∑
r=i+1

N2

ninr
(TW )ir

2
Ai,r,2. (15)

Here and throughout the paper expressions of the kind a 
= b 
= c mean that
the indices are pairwise different. In this sense all estimators (12)–(15) are sym-
metrized U-statistics, where the kernel is given by a specific quadratic or bilinear
form. Their properties are analyzed below.

Lemma 3.3. For any μ ∈ Rad and i 
= r = 1, . . . , a it holds that

1. ÊH0(QN ) :=
∑a

i=1
N
ni
(TW )iiAi,1 is an unbiased and ratio-consistent esti-

mator for EH0(QN ).

2. A4 is an unbiased and ratio-consistent estimator for tr
(
(TV N )

2
)
.

3. Ai,1, Ai,r,2 and Ai,3 are unbiased and ratio-consistent estimators for

tr (T SΣi), tr (T SΣiT SΣr) and tr
(
(T SΣi)

2
)
, respectively.

Remark 3.4. (a) Recall that an R-valued estimator θ̂N is ratio-consistent for

a sequence of real parameters θN if θ̂N/θN → 1 in probability as N → ∞. Here
the estimators and parameters may depend on a = a(N) and/or d = d(N).

(b) Studying the proof of Lemma 3.3 given in the Appendix, we see that
all these estimators are even (dimension-)stable in the sense of Brunner et al.

[8], i.e. they fulfill |E(θ̂N/θN − 1)| ≤ bN and Var(θ̂N/θN ) ≤ cN for sequences
bN , cN ↓ 0 not depending on a and d.

It follows from Lemma 3.3 that

V̂ arH0(QN ) := 2

a∑
i=1

(
N

ni

)2

(TW )ii
2
Ai,3+4

a−1∑
i=1

a∑
r=i+1

N2

ninr
(TW )ir

2
Ai,r,2 = 2A4

is an unbiased estimator of V arH0(QN ). This motivates to study the standard-
ized quadratic form

WN =
QN − ÊH0(QN )

V̂ arH0(QN )1/2

for testing H0(T ). Its asymptotic behaviour (under H0(T ) : Tμ = 0ad) is sum-
marized below.

Theorem 3.5.

a) Under H0(T ) : Tμ = 0ad and one of the frameworks (3)–(5) the statistic

WN has the same asymptotic limit distribution as W̃N , if the respective
conditions (a)–(c) from Theorem 3.1 are fulfilled.
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b) Under the asymptotic frameworks (3)–(5) the statistic WN has the same

asymptotic limit distribution as W̃N , if the respective local alternative con-
dition a) or b) from Theorem 3.2 is fulfilled.

The result shows that it is not reasonable to approximate the unknown dis-
tribution of the test statistic with a fixed distribution to obtain a valid test pro-
cedure. For example, choosing z1−α, the (1−α)-quantile of the standard-normal
distribution (α ∈ (0, 1)), as critical value would lead to a valid asymptotic level
α test ψz = 1{WN > z1−α} in case of β1 → 0, i.e. EH0(ψz) → α. However,
for β1 → 1 we would obtain EH0(ψz) → P (χ2

1 >
√
2z1−α + 1) which may lead

to an asymptotically liberal (α = 0.01 or 0.05) or conservative (α = 0.1) test
decision, see Table 1. Contrary, choosing c1−α = (χ2

1;1−α − 1)/
√
2 as critical

value (where χ2
1;1−α denotes the (1 − α)-quantile of the χ2

1-distribution) for
the test ψχ = 1{WN > c1−α}, it follows that EH0(ψχ) → α if β1 → 1 but
EH0(ψχ) → 1 − Φ(c1−α) for β1 → 0, where Φ denotes the cumulative distribu-
tion function of N (0, 1). Again we obtain an asymptotically liberal (α = 0.1) or
extremely conservative (α = 0.05 or 0.01) test decision, see the last column of
Table 1.

Table 1

Asymptotic levels of the tests ψz and ψχ with fixed critical values under the null hypothesis
and all asymptotic frameworks (3)–(5).

chosen True asymptotic level of the test
level α ψz (β1 → 0) ψz (β1 → 1) ψχ (β1 → 0) ψχ (β1 → 1)
0.10 0.10 0.09354 0.11391 0.10
0.05 0.05 0.06819 0.02226 0.05
0.01 0.01 0.03834 0.00003 0.01

Hence, an indicator (i.e. estimator) for whether β1 → 0, β1 → 1 or betwixt
would be desirable. Nevertheless, even if the tests with fixed critical values are
asymptotically correct (ψz in case of β1 → 0 or ψχ in case of β1 → 1), their true
type-I error control may be poor for small sample sizes, see the simulations in
Section 5.1.

Thus, in any case, it seems more appropriate to approximate WN by a se-
quence of standardized distributions as already advocated in Pauly et al. [34]
for the case of a = 1. We will propose such approximations in the next sections,
where also a check criterion for β1 → 0 or β1 → 1 is presented.

4. Better approximations

To motivate the subsequent approximation, recall from (11) that W̃N is of
weighted χ2

1-form. Following Zhang [44] it is reasonable to approximate statis-
tics of this form by a standardized (χ2

f −1)/
√
2f -distribution, while f is selected

such that the first three moments coincide. Straightforward calculations show
that this is achieved by approximating with
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KfP =
χ2
fP

− fP√
2fP

such that fP =
tr3
(
(TV N )

2
)

tr2
(
(TV N )

3
) , (16)

where fP is called the Pearson approximation. In case of a = 1 this simplifies to
the method presented in Pauly et al. [34]. There it has already been seen that
the approximation (16) performs much better for smaller sample sizes and/or
dimensions than the above approaches with a fixed distribution. We will later
rediscover this observation in Section 5 for our present design with general a.
The next theorem gives a mathematical reason for this approximation.

Theorem 4.1. Under the conditions of Lemma 3.1 and one of the frameworks
(3)–(5) we have that KfP given in (16) has, under H0 : Tμ = 0ad, asymptoti-
cally

a) a standard normal distribution if β1 → 0 as N → ∞,
b) a standardized

(
χ2
1 − 1

)
/
√
2 distribution if β1 → 1 as N → ∞.

Thus, compared to the approximation with a fixed limit distribution, the
KfP -approach would at least be asymptotically correct whenever β1 → γ ∈
{0, 1}, while always providing a three moment approximation to the test statis-
tic. To apply this result, an estimator for f in (16) is needed. Since we have

already found A4 as unbiased and ratio-consistent estimator for tr((TV N )
2
), it

remains to find an adequate one for tr((TV N )
3
). A combination of both will

then lead to a proper estimator for fP and τP = fP
−1, respectively. Again

we prefer a direct estimation of the involved traces. To this end, we introduce
random vectors

Z(�1,�2,...,�2a) :=

(√
N

n1
(X1,�1 −X1,�2)

�
, . . . ,

√
N

na

(
Xa,�2a−1 −Xa,�2a

)�)�

with 1 ≤ �2i−1 
= �2i ≤ ni for all i = 1 . . . , a. Note, that this vectors are mul-
tivariate normally distributed with E(Z(�1,�2,...,�2a−1,�2a)) = 0ad and covariance

matrix Cov
(
Z(�1,�2,...,�2a−1,�2a)

)
= 2
⊕a

i=1
N
ni
Σi = 2V N . Utilizing their par-

ticular form, it is shown in the Appendix, that a cyclic combination of these
random vectors yields an unbiased estimator for tr((TV N )

3
). In particular,

writing Z(�1,�2) for Z(�1,�2,�1,�2,...,�1,�2) we have

E

(
Z(1,2)

�TZ(3,4)Z(3,4)
�TZ(5,6)Z(5,6)

�TZ(1,2)

)
= 8 tr((TV N )

3
). (17)

This motivates the definition of (for ni ≥ 6)

C5 =

n1∑
�1,1,...,�6,1=1
�1,1 �=···�=�6,1

. . .

na∑
�1,a,...,�6,a=1
�1,a �=···�=�6,a

∏3
m=1 Λm(�1,1, . . . , �6,a)

8 ·
∏a

i=1
ni!

(ni−6)!

, (18)

where

Λ1(�1,1, . . . , �6,a) = Z(�1,1,�2,1,...,�1,a,�2,a)
�TZ(�3,1,�4,1,...,�3,a,�4,a),

Λ2(�1,1, . . . , �6,a) = Z(�3,1,�4,1,...,�3,a,�4,a)
�TZ(�5,1,�6,1,...,�5,a,�6,a),
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Λ3(�1,1, . . . , �6,a) = Z(�5,1,�6,1,...,�5,a,�6,a)
�TZ(�1,1,�2,1,...,�1,a,�2,a).

Its properties together with a consistent estimator for fP are summarized below.

Lemma 4.2. (a) The estimator C5 given in (18) is unbiased for tr((TV N )
3
).

(b) Suppose that a ∈ N is fixed. Then τ̂P := C2
5/A

3
4 is a consistent esti-

mator for τP = 1/fP as min(d, n1, . . . , na) → ∞, i.e. we have convergence in
probability

τ̂P − τP =
C2

5

A3
4

−
tr2
(
(TV N )

3
)

tr3
(
(TV N )

2
) P−→ 0. (19)

(c) Now suppose that a → ∞ and that there exists some q > 1 which fulfills
min(n1, . . . , na) = O (aq). Then (19) even holds under the asymptotic frame-
works (4) - (5).

Theorem 4.3. Suppose (19). Then, Theorem 4.1 remains valid if we replace

fP by its estimator f̂P = 1/τ̂P .

Remark 4.4. (a) Using similar arguments as in the proof of Lemma 8.1. of
Pauly et al. [34] we obtain the equivalences β1 → 0 ⇔ τP → 0 and β1 → 1 ⇔
τP → 1. Thus, τ̂P can also be used as check criterion for these two cases.

(b) It is also possible to derive a consistent estimator for τCQ= 1/fCQ =

tr((TV N )
4
)/tr2((TV N )

2
), a key quantity in Chen & Qin [11], see the Ap-

pendix for details concerning the estimator. The corresponding approximation
by the sequence KfCQ

even shares the same asymptotic properties of the Pearson
approximation (16) stated in Theorem 4.1 and Theorem 4.3. However, it only
provides a two moment approximation which turned out to perform worse in
simulations (results not shown).

(c) In the Appendix, we additionally present an unbiased estimator C7 for

tr((TV N )
3
) such that C2

7/A
3
4 is consistent for τP in all asymptotic frame-

works (3) - (5). Particularly, the extra condition min(n1, . . . , na) = O (aq) is
not needed. However, it is computationally more expensive compared to C5 and
thus omitted here.

In practical applications, the computation costs for C5 are nevertheless rather
high. This leads to disproportional waiting times for p-values of the correspond-
ing approximate test ϕN = 1{WN > Kf̂P ;1−α}, where the critical value is

given as (1− α)-quantile of Kf̂P
. Therefore, we propose a certain subsampling-

type method. Since the unbiasedness of C5 clearly stems from (17), it seems
reasonable to proceed as follows: For each i = 1, . . . , a and b = 1, . . . , B we
independently draw random subsamples {σ1i(b), . . . , σ6i(b)} of length 6 from
{1, . . . , ni} and store them in a joint random vector σ(b) = (σ11(b), . . . , σ6a(b)).
Then, a subsampling-version of the estimator C5 is given by

C�
5 = C�

5 (B) =
1

8 ·B

B∑
b=1

Λ1(σ(b)) · Λ2(σ(b)) · Λ3(σ(b)).
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Letting B = B(N) → ∞ as N → ∞ it is easy to see (cf. the Appendix for
details), that C�

5 has the same asymptotic properties as C5. In particular, it is

stated in the Appendix that τ̂�P := 1/f̂�
P := C�2

5 /A3
4 is a consistent estimator

for τP and that the approximation Kf̂�
P
has the same weak limits as Kf̂P

stated

in Theorem 4.3. This leads to ϕ�
N = 1{WN > Kf̂�

P ;1−α} which is an asymptot-

ically exact test whenever β1 → γ ∈ {0, 1}. The finite sample, dimension and
group size performance of this approximation are investigated in the subsequent
section.

5. Simulations

In the previous sections, we considered the asymptotic properties of the proposed
inference methods which are valid for large sample and fixed or possibly large
dimension and/or group sizes. Here we investigate the small sample properties of
our proposed approximation procedure ϕ�

N = 1{WN > Kf̂�
P ;1−α} in comparison

to the statistical tests ψz = 1{WN > z1−α} and ψχ = 1{WN > c1−α} based on
fixed critical values.

Furthermore, we consider versions of the Chen & Qin [11] test ψCQ =
1{TCQ/σ̂ > z1−α} which was originally only developed for the high-dimensional
two-sample mean comparison. Their procedure is based on the test statistic

TCQ =

∑n1

�1 �=�2
X�

1�1X1�2

n1(n1 − 1)
+

∑n2

k1 �=k2
X�

2k1
X2k2

n2(n2 − 1)
− 2

∑n1

�=1

∑n2

k=1 X
�
1�X2k

n1n2
,

and the variance estimator

σ̂ =
2

n1(n1 − 1)
t̂r(Σ2

1) +
2

n2(n2 − 1)
t̂r(Σ2

2) +
4

n1n2

̂tr (Σ1Σ2)

using

t̂r(Σ2
i ) =

1

ni(ni − 1)
· tr

⎛⎝ ni∑
j �=k

(Xij −Xi(j,k))X
�
ij(Xik −Xi(j,k))X

�
ik

⎞⎠ ,

̂tr(Σ1Σ2) =
1

n1n2
· tr
(

n1∑
�=1

n2∑
k=1

(X1� −Xi(�))X
�
1�(X2k −X2(k))X

�
2k

)
.

Here, Xi(j,k) denotes the i-th sample mean after excluding Xij and Xik, and
Xi(�) is the i-th sample mean without Xi�.

It is apparent, that ψCQ and ψz use the same critical z-value. In particu-
lar, Chen & Qin [11] have proven that ψCQ is asymptotically valid if β1 → 0,
i.e. in the same situation as ψz. Its behaviour has, however, not been inves-
tigated in the case of β1 � 0. As the enumerator TCQ of the Chen-Qin test
statistic is basically ours (with T = P 2 ⊗ 1

2Jd) after subtracting the mixed

terms
∑n1

�1=1 X
�
1�1X1�1 ,

∑n2

k1=1 X
�
2k1

X2k1 , the key difference is the choice of
variance estimator. While ours is of symmetrized U-statistics-type, σ̂ is more of
a jackknife-type estimator and it is of interest to see how both compare in our
general setting.



Inference for high-dimensional split-plot-designs 2755

In particular, we below compare all testing procedures in simulation studies
with respect to

(a) their type-I error rate control under the null hypothesis (Section 5.1) and
(b) their power behaviour under various alternatives (Section 5.2).

All simulations were performed with the help of the R computing environment
(R Development Core Team, 2013), each with nsim = 104 simulation runs.

5.1. Asymptotic distribution and type-I error control

First, we study the speed of convergence, i.e. type-I error control, of the three
different tests under the null hypothesis. To be in line with the simulation results
presented in Pauly et al. [34] for the case a = 1 we also multiplied the statistic
WN by

√
N/(N − 1) to avoid a slightly liberal behaviour.

Due to the abundance of different split-plot designs and the more method-
ological focus of the paper, we restrict our simulation study to three specific null
hypotheses and a high dimensional and heteroscedastic two-sample setting.

In particular, we investigate the type-I error behaviour of all four tests for
the null hypotheses

• Ha
0 :
(
P 2 ⊗ 1

dJd

)
μ = 02d,

• Hb
0 :
(
1
2J2 ⊗ P d

)
μ = 02d and

• Hab
0 : (P a ⊗ P d)μ = 02d.

Since the Chen & Qin [11] test ψCQ is only applicable for Ha
0 , we additionally

translate their procedure to also test the other two hypotheses Hb
0 and Hab

0 .
This is possible by recognizing that Hb

0 :
(
1
aJa ⊗ P d

)
μ = 02·d can be written

as E(P dX11) = E(P dX21) while H
ab
0 : (P a ⊗ P d)μ = 02·d can be expressed by

E(P dX11) = −E(P dX21). Thus, carrying out ψCQ in the transformed vectors
Y ik = P dXik (for Hb

0) and Y 1k = P dX1k, Y 2k = P dX2k (for Hab
0 ), k =

1, . . . , ni, i = 1, 2, respectively, allows us to also use their procedure for testing
Hb

0 and Hab
0 . The resulting test will again be denoted as ψCQ.

In all cases sample sizes were chosen from n1 ∈ {10, 20, 50} and n2 ∈
{15, 30, 75} combined with various choices of dimensions d ∈ {5, 10, 20, 40, 70,
100, 150, 200, 300, 450, 600, 800}. For the covariance matrices a heteroscedastic
setting with autoregressive structures (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|

was chosen and for each simulation run B(N) = 500·N, N = n1+n2, subsamples
were drawn.

Note that these settings imply β1 → 1 for Ha
0 and β1 → 0 for Hb

0 , H
ab
0 , see

the Appendix for details.
Thus, ϕ�

N is asymptotically exact in both cases while ψχ and ψz possess the
asymptotic behaviour given in Table 1. In particular, the z-test ψz should be
rather liberal for testing for Ha

0 and ψχ strongly conservative for Hb
0 . All these

theoretical findings can be recovered in our simulations: The results for Ha
0 ,

displayed in Figure 1, show an inflated type-I error level control of ψz around 8%
for smaller samples sizes (N = 25). For larger sample sizes (N = 125) it stabilizes
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Fig 1. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin under the null hypothesis Ha
0 :
(
P 2 ⊗ 1

d
Jd

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|. The sample

sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

in the region of its asymptotic level of 7.2%± 0.3%. The other z-test ψCQ leads
to nearly the same results. For both tests, the error control is only slightly
affected by the varying dimensions under investigation. In comparison, (in this
situation) the two asymptotically correct tests ϕ�

N and ψχ are slightly liberal
for smaller sample sizes and more or less asymptotically correct for moderate
(N = 50) to larger sample sizes. Here, it is astonishing that both procedures
are nearly superposable, suggesting a fast convergence of the degrees of freedom

estimator f̂P .
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Fig 2. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin under the null hypothesis Hb
0 :
(
1
2
J2 ⊗ P d

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|. The sample

sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

The results for Hb
0 , presented in Figure 2, are slightly different. In particular,

all the tests ψχ, ψz and ψCQ depending on fixed critical values are more affected
by the underlying dimension: For smaller d < 100 the true level is considerably
larger than their asymptotic level given in Table 1; resulting in a rather liberal
behaviour of ψz and ψCQ and close to exact type-I error control for ψχ. This ef-
fect is decreased with increasing sample sizes with clear advantages for ψCQ over
ψz. Moreover, for larger dimension (d ≥ 200) all tests approach their asymptotic
level. In comparison, the procedure ϕ�

N based on the Kf̂� approximation shows
a fairly good α level control through all dimension and sample size settings.
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Fig 3. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin, under the null hypothesis Hab
0 :

(
1
2
J2 ⊗ P d

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|. The sample

sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

In case of the interaction hypothesis Hab
0 (Figure 3) similar observations can

be made: The proposed approximation test ϕ�
N controls the type-I error level

fairly well over all settings while ψχ exhibits a rather conservative behaviour,
particularly for increasing d. The behaviour of the two z-tests ψz and ψCQ is
now almost equal: Both show a quite liberal behaviour for smaller dimensions
d which decreases for larger d. To sum up, judging from Figures 1–3, ϕ�

N seems
to be the method of choice regardless of whether β1 → 0 or β1 → 1.

To also get an idea about the behaviour of all procedures in between those
two cases we finally investigate a situation with β1 → b1 /∈ {0, 1}. To this
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Fig 4. Simulated type-I error rates (α = 5%) for the statistic WN ·
√

N/(N − 1) compared
with the critical values of a standard normal, standardized χ2

1 and Kf -distribution and the

test ψCQ of Chen & Qin, under the null hypothesis Hb
0 :
(
1
2
J2 ⊗ P d

)
μ = 0 for increasing

dimension and covariance matrices (Σ1)i,j = 0.6|i−j|/d and (Σ2)i,j = 0.65|i−j|/d. The sam-

ple sizes are increased from left (n1 = 10, n2 = 15) to right (n1 = 20, n2 = 30) to bottom
(n1 = 50, n2 = 75).

end, we again test for the hypothesis Hb
0 but now consider covariance matrices

(Σ1)i,j = 0.6|i−j|/d and (Σ2)i,j = 0.65|i−j|/d for the two groups. Here, b1 ≈ 0.76,
see Table 5 in the Appendix for details.

The simulation results are displayed in Figure 4. It is apparent that the
behaviour of the two z-tests ψz and ψCQ is now considerably different for d ≤
200: While ψz behaves fairly liberal for all dimensions and sample size settings
with error rates between 6.8% and 8.5% (d ≤ 50), ψCQ is pretty conservative
for smaller dimensions (d ≤ 100) with error rates close to 0% (d ≤ 20) and
finally coincides with ψz for larger d > 200. This large differences for smaller
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d may be explained by the different variance estimators involved in WN and
ψCQ. In contrast, ϕ�

N and ψχ exhibit close to identical error rates for all choices
of d and sample sizes. While both are slightly liberal for the smallest sample
sizes the type-I error rate is close to the asymptotic level for N = 50 and even
improves with increasing dimension and sample size. Because of this, we can
also recommend ϕ�

N in this situation.

5.2. Power performance

For ease of presentation and due to its favorable type-I error control we only
examined the power of ϕ�

N based on the test statistic WN and estimated critical
values from KfP .

Again a heteroscedastic two group split-plot design with autoregressive co-
variance structures ( (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|) was selected. The

alpha level (5%) and the null hypotheses were restricted toHa
0 :
(
P 2 ⊗ 1

dJd

)
μ =

0 and Hb
0 :
(
1
2J2 ⊗ P d

)
μ = 0. The investigated alternatives were

• a trend alternative for both hypotheses with μ2 = 0d and μ1,t = t·δ/d, 1 ≤
t ≤ d and additionally

• a shift alternative for Ha
0 with μ2 = 0d and μ1 = 1d · δ and

• a one-point alternative for Ha
0 and Hb

0 , with μ2 = 0d and μ1 = e1 · δ,

each with increased δ ∈ [0, 3]. Moreover, we only considered the moderate sample
size setting with n1 = 20 and n2 = 30 together with three choices of dimensions
d = {10, 40, 100}. Because of this sample sizes, a critical value based on fP
is chosen and the results can be found in Figures 5–7. It can be readily seen
that the power depends on the type of alternative: For the trend (Figure 5) and
the shift alternative (Figure 7) the power gets larger with increasing dimension.
This is essentially apparent for the shift alternative, where the power increases
considerably from d = 10 to d = 40. Contrary, for the one-point alternative the
power becomes smaller for higher dimensions d (Figure 6). However, this is as
expected since a difference in one single component can be detected more easily
for smaller d.

Especially for testing Ha
0 in the one-point alternative the power is poor even

for d = 10. However this is completely in line with the result from Theorem 3.2:
Calculating the corresponding values involved in the local alternative we get

• N ·μ�TTμ√
tr((TV N )2)

= O
(
N
d2

)
for Ha

0 and

• N ·μ�TTμ√
tr((TV N )2)

= O
(

N√
d

)
for Hb

0 .

This explains the power decrease with increasing dimension which is more
pronounced when testing Ha

0 in comparison to testing for Hb
0 .
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Fig 5. Simulated power curves for the statistic WN ·
√

(N − 1)/N in 104 simulation runs for

different dimensions with n1 = 20, n2 = 30 and an autoregressive structure((Σ1)i,j = 0.6|i−j|

and (Σ2)i,j = 0.65|i−j|).

6. Analysis of a sleep laboratory data set

Finally, the new methods are exemplified on the sleep laboratory trial reported
in Jordan et al. [25]. In this two-armed repeated measures trial, the activity of
prostaglandin-D-synthase (β-trace) was measured every 4 hours over a period of
4 days. The grouping factor was gender and the above d = 24 repeated measures
were observed on ni = 10 young healthy women (group i = 1) and men (group
i = 2). Since each day presented a certain sleep condition the repeated measures
are structured by two crossed fixed factors:

• intervention (with 4 levels: normal sleep, sleep deprivation, recovery sleep
and REM sleep deprivation) and

• time (with the 6 levels/time points 24h, 4h, 8h, 12h, 16h and 20h).

Due to d > ni we are thus dealing with a high-dimensional split-plot design
with a = 2 groups and d = 24 repeated measurements. The time profiles of each
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Fig 6. Simulated power curves for the statistic WN ·
√

(N − 1)/N in 104 simulation runs for

different dimensions with n1 = 20, n2 = 30 and an autoregressive structure((Σ1)i,j = 0.6|i−j|

and (Σ2)i,j = 0.65|i−j|).

subject are displayed in Figure 8 (for the female group 1) and Figure 9 (for the
male group 2). We note, that group-specific profile analysis could already be
performed by the methods given in Pauly et al. [34]. In particular, they found a
significant intervention and a borderline time effect for the male group. For the
current two-sample design additional questions concern (1) whether there is a
gender effect, i.e. the time profiles of the groups differ, and if so (2) whether they
differ with respect to certain interventions. Moreover, investigations regarding
(3) a general effect of time and (4) interactions between the different factors are
of equal interest. Utilizing the notation from Section 2, the corresponding null
hypotheses can be formalized via adequate contrast matrices. In particular, we
are interested in testing the null hypotheses

(a) No gender effect: Ha
0 :
(
P 2 ⊗ 1

24J24

)
μ = 0,

(b) No time effect: Hb
0 :
(
1
2J2 ⊗ P 24

)
μ = 0,

(c) No interaction effect between time and group: Hab
0 : (P 2 ⊗ P 24)μ = 0,
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Fig 7. Simulated power curves for the statistic WN ·
√

(N − 1)/N in 104 simulation runs for

different dimensions with n1 = 20, n2 = 30 and an autoregressive structure((Σ1)i,j = 0.6|i−j|

and (Σ2)i,j = 0.65|i−j|).

(d) No time effect for intervention �, � ∈ {1, . . . , 4}:
Ht�

0 :
(
P 2 ⊗

((
el · e�l

)
⊗ P 6

))
μ = 0,

(e) No effect between interventions � and k, � 
= k ∈ {1, . . . , 4}:
H�×k

0 :
(
P 2 ⊗

((
e� · e�� − e� · e�k

)
⊗ 1

6J6

))
μ = 0,

where e� denotes the �− th d-dimensional unit vector with all entries zero but
the �-th one. Applying the test ϕ�

N based on the standardized quadratic form
WN as test statistic and the proposed Kf̂�

P
-approximation with B = 50000 ·N =

100, 000 subsamples we obtain the results summarized in Table 2.
There it can be readily seen that most hypotheses cannot be rejected at

level α = 5%. In particular, there is no evidence for an overall gender effect,
so that we have not performed post-hoc analyses on the interventions. Only a
highly significant time effect, as well as a significant effect between the first two
interventions (normal sleep and sleep deprivation), could be detected. However,
applying a multiplicity adjustment (Bonferroni or Holm) only the time effect
remained significant.
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Fig 8. Prostaglandin-D-synthase (ß-trace) of 10 young women during 4 days under different
sleep conditions.

Fig 9. Prostaglandin-D-synthase (ß-trace) of 10 young men during 4 days under different
sleep conditions.
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Table 2

Analysis of the sleep lab trial from Figures 8–9: Shown are the values of the test statistic
WN and the estimator f̂�

P as well as the p-values of the test ϕ�
N = 1{WN > Kf̂�

P
;1−α} for

different null hypotheses of interest.

Hypothesis WA
N f̂�

P p-value
Ha

0 -0.45671 1.19030 0.55832

Hb
0 6.24114 7.07832 0.00008

Hab
0 0.74578 7.21217 0.20120

Ht1
0 -0.795083 461.874 0.784463

Ht2
0 -0.591851 360.048 0.71764

Ht3
0 -0.43381 223.24000 0.65845

Ht4
0 -1.18382 426.083 0.88385

H1×2
0 2.37921 155.89025 0.01285

H1×3
0 0.23757 156.64141 0.39240

H1×4
0 –0.49984 143.57718 0.68099

H2×3
0 -0.72716 91.83337 0.75968

H2×4
0 -0.56510 79.78169 0.70183

H3×4
0 -0.66704 130.56430 0.74046

7. Conclusion & outlook

In this paper we have investigated inference procedures for general split-plot
models, allowing for unbalanced and/or heteroscedastic covariance settings as
well as a factorial structure on the whole- and sub-plot factors. Inspired by
the work of Pauly et al. [34] for one group repeated measures designs the test
statistics were based on standardized quadratic forms. However, different to their
work novel symmetrized U -statistics were introduced to adequately handle the
problem of additional nuisance parameters in the multiple sample case.

To jointly cover low and highdimensional models as well as situations with a
small or large number of groups, we conducted an in-depth study of their asymp-
totic behaviour under a unified asymptotic framework. In particular, the number
of groups a and dimensions d may be fixed as in classical asymptotic settings, or
even converge to infinity. Here we do neither postulate any assumptions on how
d and/or a and the underlying sample sizes converge to infinity nor any sparsity
conditions on the covariance structures since such assumptions are usually hard
to check for a practical data set at hand. As a consequence, it turned out that the
test statistic possess a whole continuum of asymptotic limits that depends on
the eigenvalues of the underlying covariances. We thus argued that an approxi-
mation by a fixed critical value is not adequate and proposed an approximation
by a sequence of standardized χ2-distributions with estimated degrees of free-
dom. For computational efficiency, we additionally provided a subsampling-type
version of the degrees of freedom estimator. Our approach provides a reasonably
good three-moment approximation of the test statistic and is even asymptoti-
cally exact if the influence of the largest eigenvalue is negligible (leading to a
standard normal limit) or decisive (leading to a standardized χ2

1 limit).

Apart from these asymptotic considerations, we evaluated the finite sample
and dimension performance of our approximation technique. In particular, for
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varying combinations of sample sizes and dimensions, we compared its power
and type-I error control with test procedures based on fixed critical values.
In all designs it showed a quite accurate error control over all low- (d ≤ 10) to
highdimensional situations (with up to d = 800). In comparison, its performance
was considerably better than that of the other tests which partially disclosed a
rather liberal or conservative behaviour.

In future research, we like to extend the current results to general highdimen-
sional MANOVA designs, where we also like to relax the involved assumption
of multivariate normality and/or even test simultaneously for mean and covari-
ance effects as recently proposed in Liu et al. [31]. These investigations, however,
require completely different (e.g., martingale) techniques and estimators of the
involved traces. Moreover, we also plan to conduct more detailed simulations
(especially for larger group sizes a and other covariance matrices) in a more
applied paper.
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Appendix A: Basics

In Section 2 of the main paper we claimed that the unique projection matrix T
which describes the equivalent null hypotheses as H = HS ⊗HW is given by
the product of two projection matrices T S ⊗ TW . We start with the proof of
this claim:

Lemma A.1. Let be H = HW ⊗ HS with H ∈ Rad×ad,HW ∈ Ra×a,HS ∈
Rd×d. For each hypothesis Hμ = 0ad with such a matrix H exist projectors
T ∈ Rad×ad,TW ∈ Ra×a,T S ∈ Rd×d which can be used to formulate the same
null hypothesis Tμ = 0ad with T = TW ⊗ T S.

Proof. It is known that the projector T = H�[HH�]−H fulfills Tμ = 0ad ⇐⇒
Hμ = 0ad. For this reason and utilizing well known rules (see for example Rao
& Mitra [36]) for generalized inverses we obtain

T = H�[HH�]−H

= (HW ⊗HS)
�[(HW ⊗HS)(HW ⊗HS)

�]−(HW ⊗HS)

= (H�
W ⊗H�

S )[(HW ⊗HS)(H
�
W ⊗H�

S )]
−(HW ⊗HS)

= (H�
W ⊗H�

S )[(HWH�
W )⊗ (HSH

�
S )]

−(HW ⊗HS)

= (H�
W ⊗H�

S )([HWH�
W )]− ⊗ [HSH

�
S ]

−)(HW ⊗HS)

= (H�
W ⊗H�

S )([HWH�
W )]−HW ⊗ [HSH

�
S ]

−HS)

= H�
W [HWH�

W ]−HW ⊗H�
S [HSH

�
S ]

−HS
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= TW ⊗ T S .

Thus, TW := H�
W [HWH�

W ]−HW and T S := H�
S [HSH

�
S ]

−HS are projec-
tors, i.e. idempotent and symmetric.

For proofing our main results we have to compare various traces of powers of
combinations underlying covariance matrices. To this end, we will particularly
apply the following inequalities:

Lemma A.2. For positive real numbers a,b and a symmetric matrix A ∈ Rd×d

it holds

tr2
(
Aa+b

)
≤ tr

(
A2a
)
tr
(
A2b
)
.

For A ∈ Rd×d symmetric with eigenvalues λ1, . . . , λd ≥ 0 it holds that

tr
(
A2
)
≤ tr2 (A) .

If Σi ∈ Rd×d is positive definite and symmetric and T ∈ Rd×d is idempotent
and symmetric it holds for every k ∈ N that

tr
(
(TΣi)

2k
)
≤ tr2

(
(TΣi)

k
)
.

Proof. The first part is an application of the Cauchy–Bunyakovsky–Schwarz
inequality, with the Frobenius inner product. Therefore

tr2
(
Aa+b

)
= tr2

(
AaAb

)
= tr2

(
AaAb�

)
≤
(√

tr
(
AaAa�

)
·
√
tr
(
AbAb�

))2

= tr (AaAa) · tr
(
AbAb

)
= tr

(
A2a
)
tr
(
A2b
)
.

The second part just uses the binomial theorem together with the condition
λt ≥ 0 for t = 1, . . . , d:

tr(A2) =

d∑
t=1

λ2
t ≤

d∑
t1=1

λ2
t1 +

d∑
t1=1

d∑
t2=1,t2 �=t1

λt1λt2 =

(
d∑

t=1

λt

)2

= tr2(A).

Finally, the last inequality follows from the second one, if we show that all
conditions are fulfilled. With idempotence of T and invariance of the trace under
cyclic permutations, it follows for all k ∈ N that

tr
(
(TΣi)

2k
)
= tr

(
T 2Σi · · · · · T 2Σi

)
= tr

(
(TΣiT )

2k
)
.

Thus, it is sufficient to consider this term. Since TΣiT is symmetric all
powers are symmetric too and it follows with k′ = �k/2� that
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∀x ∈ Rd : x� (TΣiT )
k
x = x� (TΣiT )

k′
TΣk−2k′

i T (TΣiT )
k′
x

=
[
T (TΣiT )

k′
x
]�

Σk−2k′

i

[
T (TΣiT )

k′
x
]
≥ 0

since Σi and Id are positive definite and k − 2k′ ∈ {0, 1}. So both conditions of
the second inequation are shown and

tr
(
(TΣi)

2k
)
= tr

([
(TΣiT )

k
]2)

≤ tr2
(
(TΣiT )

k
)
= tr2

(
(TΣi)

k
)
.

Furthermore, an inequality for traces which contain Σi and Σr is needed.

Lemma A.3. Let Σi,Σr ∈ Rd×d be positive definite and symmetric matrices
and suppose that T ∈ Rd×d is idempotent and symmetric. Then it holds for
i 
= r that

tr
(
(TΣiTΣr)

2
)
≤ tr2 (TΣiTΣr) .

Proof. As shown before TΣiT and TΣrT are symmetric and positive semidefi-
nite. For this reason, it exists a symmetric matrix W with WW = TΣrT . Due
to the fact that all matrices are symmetric, it holds

(WTΣiTW )� = W�T�Σ�
i T

�W� = WTΣiTW

and because TΣiT is positive semidefinite also

∀x ∈ Rd x�WTΣiTWx = (Wx)�TΣiT (Wx) = y�TΣiTy ≥ 0.

This allows to use the inequalities from above for this matrix, and again utilizing
the invariance of the trace under cyclic permutations we obtain

tr
(
(TΣiTΣr)

2
)

= tr (TΣiTTΣrT · TΣiTTΣrT ) = tr (TΣiTWWTΣiTWW )

= tr (WTΣiTWWTΣiTW ) = tr
(
(WTΣiTW )

2
)

≤ tr2 (WTΣiTW ) = tr2 (TΣiTWW ) = tr2 (TΣiTTΣrT )

= tr2 (TΣiTΣr) .

To standardize the quadratic form we also have to calculate its moments.
Here, the following theorem helps:

Theorem A.4. Let T ∈ Rd×d be a symmetric matrix and X ∼ Nd (μX ,ΣX) ,
where ΣX is positive definite. Then with r ∈ N it holds,

E

((
X�TX

)r)
=

r−1∑
r1=0

(
r − 1

r1

)
g(r−1−r1)

r1−1∑
r2=0

(
r1 − 1

r2

)
g(r1−1−r2) . . .
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with g(k) = 2kk!
[
tr
(
(TΣ)

k+1
)
+ (k + 1)μX (TΣ)

k
TμX

]
for k ∈ N and g(0) =

tr (TΣX) + μX
�TμX .

Proof. The proof can be found on page 53 in Mathai & Provost [32].

Corollary A.5. Let T ∈ Rd×d be a symmetric matrix and X ∼ Nd (0d,ΣX)
and Y ∼ Nd (0d,ΣY ) independent, where ΣX ,ΣY ∈ Rd×d are positive definite.
Then we have for all ni, nr, N ∈ N that

E

((
X�TX

)1)
= tr (TΣX) ,

E

((
X�TX

)2)
= 2 tr

(
(TΣX)

2
)
+ tr2 (TΣX)

A.2
= O

(
tr2 (TΣX)

)
,

Var
(
X�TX

)
= O

(
tr2 (TΣX)

)
,

E

((
X�TY

)1)
= 0,

E

((
X�TY

)2)
= tr (TΣXTΣY ) ,

E

((
X�TY

)3)
= 0,

E

((
X�TY

)4)
= 6 tr

(
(TΣXTΣY )

2
)
+ 3 tr2 (TΣXTΣY ) ,

Var
(
X�TY

)
= tr (TΣXTΣY ) ,

Var

((
X�TY

)2)
= 6 tr

(
(TΣXTΣY )

2
)
+ 2 tr2 (TΣXTΣY ) ,

4N

n2
in

2
r

Var

((
X�TY

)2)A.3
= O

(
tr2

((
N

ni
TΣX · N

nr
TΣY

)2
))

.

Moreover, for ΣX = ΣY

Var
(
X�TY

)
= tr (TΣXTΣX) = O

(
tr2 (TΣXTΣX)

)
,

Var

((
X�TY

)2)A.2
= O

(
tr2 (TΣXTΣX)

)
.

Proof. Using the inequalities for traces and with the bilinear form written as

X�TY =
1

2

(
X
Y

)�(
0 T
T 0

)(
X
Y

)
,

(
X
Y

)
∼ N2d

((
μX

μY

)
,

(
ΣX ΣXY

ΣXY ΣY

))
all equations follows with the previous theorem.
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Lemma A.6. Let Xn ∈ L2 be a real random variable with E(Xn) = μ, bn,d
a sequence with limn,d→∞ bn,d =0, and furthermore ca,d,nmin a sequence with
lima,d,nmin→∞ ca,d,nmin = 0 then it holds

• Var (Xn) ≤ bn,d ⇒ Xn is an consistent estimator for μ, if n, d → ∞,
• Var (Xn) ≤ ca,d,nmin ⇒ Xn is an consistent estimator for μ, if a, d,

nmin → ∞.

For μ 
= 0 they are especially ratio-consistent.

Proof. For arbitrary ε > 0 the Tschebyscheff inequality leads to

P (|Xn − μ| ≥ ε) ≤
E
(
|Xn − μ|2

)
ε2

=
Var (Xn)

ε2
≤ bn,d

ε2
.

Consider the limit for n, d → ∞ justifies the consistency and using this for Xn/μ
leads to ratio-consistency. The second part follows identically.

This result is especially true if bn,d or ca,d,nmin only depends on n resp.
nmin. For completeness we state a straightforward application of the Cauchy–
Bunyakovsky–Schwarz inequality:

Lemma A.7. For real random variables X,Y ∈ L2 it holds

Cov (X,Y ) ≤
√
Var (X)

√
Var (Y )

and so for X,Y identically distributed

Cov (X,Y ) ≤ Var (X).

The next result gives equivalent conditions for β1 → γ ∈ {0, 1}:
Lemma A.8. Let be λ� again the eigenvalues of TV NT sorted so that λ1 is
the biggest one. Then it follows

lim
N,d→∞

β1 = 1 ⇔ lim
N,d→∞

tr2
(
(TV N )

3
)

tr3
(
(TV N )

2
) = 1 ⇔ lim

N,d→∞

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) = 1,

lim
N,d→∞

β1 = 0 ⇔ lim
N,d→∞

tr2
(
(TV N )

3
)

tr3
(
(TV N )

2
) = 0 ⇔ lim

N,d→∞

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) = 0.

Moreover we know 0 ≤ tr2((TV N )3)
tr3((TV N )2)

= τP ≤ 1. This Lemma also holds if

limN,d→∞ is replaced by lima,N → ∞ or lima,d,N→∞.

Proof. This follows from Lemma 8.1 given in the supplement in Pauly et al.
[34][page 21] since their result does not depend on the concrete matrix, i.e. can
be directly applied for V N . Moreover, the different asymptotic frameworks do
not influence the proof since they are hidden within the above convergences.
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To prove the properties of the subsampling-type estimators some auxiliaries
are needed. In particular, the following lemma allows us to decompose the vari-
ances and to use conditional terms for the calculation.

Lemma A.9. Let X be a real random variable and denote by F a σ-field. Then
it holds that

Var(X) = E (Var (X|F)) + Var (E (X|F)) .

Proof. With the rules for conditional expectations we calculate

E (Var (X|F)) = E
(
E
(
X2|F

))
− E

(
[E (X|F)]

2
)
= E
(
X2
)
− E

(
[E (X|F)]

2
)
,

Var (E (X|F)) = E

(
[E (X|F)]

2
)
− [E (E (X|F))]

2
= E

(
[E (X|F)]

2
)
− [E (X)]

2
.

The result follows by sum up this both parts.

We will apply the result for certain amounts (i.e. numbers) of pairs below.
There, for each i = 1, . . . , a and b = 1, . . . , B we independently draw random
subsamples {σ1i(b), . . . , σmi(b)} of lengthm from {1, . . . , ni} and store them in a
joint random vector σ(b,m) = (σ1(b,m), . . . ,σa(b,m)) = (σ11(b), . . . , σma(b)).
Besides we define Nk = {1, . . . , k}.

Lemma A.10. Let M(B,σ(b,m)) be the amount of pairs (k, �) ∈ N2
B, which

fulfill σi(k,m) and σi(�,m) have totally different elements for all i = 1, ..., a
and analogue M(B,σi(b,m)). As long as m ≤ ni for all i ∈ Na, it holds

E
(
|N2

B \M(B,σ(b,m))|
)

B2
= 1−

(
1− 1

B

)
·

a∏
i=1

(
ni−m

m

)(
ni

m

)
and

E
(
|N2

B \M(B,σi(b,m))|
)

B2
= 1−

(
1− 1

B

)
·
(
ni−m

m

)(
ni

m

)
where | · | denotes the number of elements.

Let M(B, (σi(b,m),σr(b,m))) be the amount of pairs (k, �) ∈ N2
B fulfilling

σi(k,m) and σi(�,m) and moreover σr(k,m) and σr(�,m) have totally different
elements. If m ≤ ni it holds

E
(
|N2

B \M(B, (σi(b,m),σr(b,m)))|
)

B2
= 1−

(
1− 1

B

)
·
(
ni−m

m

)(
ni

m

) ·
(
nr−m

m

)(
nr

m

) .

Proof. Because M(B,σ(b,m)) never contains pairs of the kind (k, k) the max-
imal number of elements is B2 − B. The fact that two vectors a, b ∈ Rn have
no element in common, even at different components, is denoted as a 
=! b.

The number of totally different pairs can be seen as a binomial distribution
with B2 −B elements, and to calculate the necessary probability independence
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is used. With the fact that all combinations in this situation have the same
probability it follows that

P (σ(k,m) 
=! σ(�,m)) = P

(
a⋂

i=1

(σi(k,m) 
=! σi(�,m))

)

=

a∏
i=1

P (σi(k,m) 
=! σi(�,m)) =

a∏
i=1

(
ni

m

)
·
(
ni−m

m

)(
ni

m

)2 =

a∏
i=1

(
ni−m

m

)(
ni

m

) .

If two times m elements are picked from Nni there are
(
ni

m

)2
possibilities, where

in
(
ni

m

)
·
(
ni−m

m

)
of them both m-tuples are totally different. This leads to the

stated probability and with the mean of the binomial distribution we get

E (|M(B,σ(b,m))|)) = (B2 −B) ·
a∏

i=1

(
ni−m

m

)(
ni

m

) .

All in all we calculate

E
(
|N2

B \M(B,σ(b,m))|
)

B2
=

|N2
B| − E (|M(B,σ(b,m))|)

B2

= 1−
(
1− 1

B

)
·

a∏
i=1

(
ni−m

m

)(
ni

m

) .

For M(B, (σi(b,m),σr(b,m))) and M(B,σi(b,m)) less multiplications are
necessary, so the results follow.

If B(N) → ∞ (for example B could be chosen proportional to N) these terms
converge to zero, disregarding the number of groups or of m.

Appendix B: Proofs of Section 3

Proof of Theorem 3.1 (p.2748). The proof of this lemma is very similar to the
one from Pauly et al. [34][Theorem 2.1]. Due to the fact that a finite sum of
multivariate normally distributed random variables is again multivariate nor-
mally distributed, the representation theorem can be used to (distributionally

equivalently) express the quadratic form as WN =
∑ad

s=1
λs√∑ad
�=1 λ2

�

(
Cs−1√

2

)
.

The only differences to Pauly et al. [34][Theorem 2.1] are that in the case of
more groups the eigenvalues do not only depend on d but also on the ni and a
and that there are more terms to sum. The first point has only an influence on
the limit of the βs. The higher number of summands does not matter because we
observe the asymptotic under the asymptotic frameworks (4)–(5), for which at
least a or d converge to infinity. The proofs from Pauly et al. [34][Theorem 2.1]
only need the representation from above, a number of summations which goes
to infinity and the conditions on the limits of the βs. Since these are fulfilled
the proof can be conducted in the same way.

Finally, it remains to prove the if and only if result stated in a) and b) for
which we underline the dependence of βi on N by writing βi(N).
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Part (a) Suppose that QN
D→ Z ∼ N (0, 1). Then this convergence also holds

for all subsequences N ′ of N , i.e. QN ′
D→ Z, for all N ′ → ∞. Now we consider

β1(N). Due to β1(N) ∈ [0, 1] there exists an arbitrary convergent subsequence
which we denote as β1(N

′) → b1 ∈ [0, 1].

We define Z ′(N ′) := QN ′ − β1(N
′) · (C1 − 1)/

√
2. From Lévy’s continuity

theorem it follows that ϕQN′ (t) → ϕZ(t) for all t ∈ R for the corresponding
characteristic function. Due to independence we calculate for all t ∈ R:

ϕQN′ (t) = ϕβ1(N ′)·(C1−1)/
√
2+Z′(N ′)(t) = ϕβ1(N ′)·(C1−1)/

√
2(t) + ϕZ′(N ′)(t).

Because ϕQN′ (t) → ϕZ(t) and ϕβ1(N ′)·(C1−1)/
√
2(t) → ϕb1·(C1−1)/

√
2(t) holds for

all t ∈ R, we also know that ϕZ′(N ′)(t) converges to some ϕΥ(t). Moreover there
exists a random variable Υ with the characteristic function ϕΥ(t) and therefore

Z ′(N ′)
D→ Υ. All in all we have

QN ′
D→ b1 · (C1 − 1)/

√
2 + Υ and QN ′

D→ Z ∼ N (0, 1)

while b1 · (C1 − 1)/
√
2 and Υ are independent. With Cramér’s Theorem (see

Cramér [12]), the sum of a scaled standardized χ2
1-distributed random variable

and another independent random variable can never be normally distributed.
Therefore b1 = 0 follows for all convergent subsequences of β1(N) and so
β1(N) → 0.

Part (b) Now assume that for N → ∞, we have QN
D→ (C1 − 1)/

√
2 with

C1 ∼ χ2
1. Then we can obvious exclude β1(N)2 → 0, because in this case

the asymptotic distribution of the quadratic form would be a standard normal

distribution by part (a). The characteristic function of WN = QN−tr(TV N )√
2 tr((TV N )2)

is,

e.g., given in Witting & Müller-Funke [42], Section 5. With the help of Lévy’s
continuity theorem this leads for all t ∈ R to

ϕWN
(t) =

ad∏
�=1

(
1− 2iβ�(N)t√

2

)−1/2

exp

(
−it

β�(N)√
2

)

→
(
1− 2it√

2

)−1/2

exp

(
− it√

2

)
= ϕ(C1−1)/

√
2(t).

Thus, applying the continuous mapping theorem we have for all t ∈ R

∣∣∣ ad∏
�=1

(
1− 2iβ�(N)t√

2

)−1/2

exp

(
− iβ�(N)t√

2

) ∣∣∣−4

=

ad∏
�=1

∣∣∣1− 2iβ�(N)t√
2

∣∣∣2
=

ad∏
�=1

(
1 +

4β�(N)2t2

2

)
→ 1 +

4

2
t2 =

∣∣∣ (1− 2i√
2
t

)−1/2

exp

(
− i√

2
t

) ∣∣∣−4

.
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In the special case t = 1 this means

ad∏
�=1

(1 + 2β�(N)2) → 3.

But we can size up the product by

ad∏
�=1

(1 + 2β�(N)2) ≥ 1 + 2 ·
ad∑
�=1

β�(N)2 + 4β1(N)2

(
ad∑
�=2

β�(N)2

)
= 1 + 2 · 1 + 4β1(N)2

(
1− β1(N)2

)
= 3 + 4β1(N)2

(
1− β1(N)2

)
≥ 3.

Now we again consider an arbitrary convergent subsequence β1(N
′) → b1 ∈

(0, 1]. Since the above inequality, also holds for all subsequences, the product
only converges if limN→∞ β1(N

′)2(1− β1(N
′)2) = b21(1− b21) = 0, which implies

b1 = 1. Due to β1(N) ∈ [0, 1] we deduce β1(N) → 1.

Proof of Theorem 3.2 (p.2748). First we consider the distribution of the stan-

dardized quadratic form W̃N under H1 : Tμ 
= 0 with Z ∼ Nad(0,V N )

QN = NX
�
TX=N(X − μ+ μ)�T (X − μ+ μ)

D
= Z�TZ +Z�√NTμ+

√
Nμ�TZ +Nμ�T�Tμ.

For part a) we calculate

W̃N
D
=

Z�TZ + 2
√
Nμ�TZ +Nμ�Tμ− tr (TV N )√

2 tr
(
(TV N )

2
) .

The second summand fulfills

E

⎛⎜⎜⎝ 2
√
Nμ�TZ√

2 tr
(
(TV N )

2
)
⎞⎟⎟⎠ = 0,

Var

⎛⎜⎜⎝ 2
√
Nμ�TZ√

2 tr
(
(TV N )

2
)
⎞⎟⎟⎠ = 2

Nμ�TV NTμ

tr
(
(TV N )

2
) ∈O(1)

under the given local alternative. Thus, by Tschebyscheff inequality this means

W̃N
D
=

Z�TZ − tr (TV N )√
2 tr
(
(TV N )

2
) +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1).
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Now the first part has exactly the same distribution as the standardized quadrat-
ic form Q̃N under the null hypothesis and therefore the result follows.

For part b) we consider again the quadratic form and calculate with Mathai
& Provost [32]

QN
D
=

ad∑
�=1

λ�C̃� C̃� ∼ χ2
1((

√
NONV

−1/2
N Tμ)2�︸ ︷︷ ︸

:=δ2�

),

where ON is the orthogonal matrix which diagonalizes V
1/2
N TV

1/2
N and λ� are

the eigenvalues of V
1/2
N TV

1/2
N in decreasing order. The involved non-central chi-

square distributed random variables have expectation E(C̃�) = 1 + δ2� and vari-

ance Var(C̃�) = 2(1 + 2δ2� ). Defining λ̃� = λ�

√
1 + 2δ2� and β̃� = λ̃�

/√∑ad
k=1 λ̃

2
k

we calculate

W̃N =

ad∑
�=1

λ�√∑ad
k=1 λ

2
k

(
C̃� − (1 + δ2� )√

2

)
+

ad∑
�=1

λ�√∑ad
k=1 λ

2
k

(
δ2�√
2

)

=

√√√√∑ad
k=1 λ̃

2
k∑ad

k=1 λ
2
k

·
ad∑
�=1

λ� ·
√

1 + 2δ2�√∑ad
k=1 λ̃

2
k

(
C̃� − (1 + δ2� )√
2 ·
√
1 + 2δ2�

)
+

ad∑
�=1

β�

(
δ2�√
2

)

=

√√√√1 + 2N
μ�TV NTμ

tr
(
(TV N )

2
) ·

ad∑
�=1

β̃�

(
C̃� − (1 + δ2� )√
2 ·
√
1 + 2δ2�

)
+

N · μ�Tμ√
2 tr
(
(TV N )

2
) .

Now, if β1 → 0 ⇔ β� → 0 ∀l ∈ Nad it holds for arbitrary β̃2
� that

0 ≤ β̃2
� =

λ2
�(1 + 2δ2� )

tr
(
(TV N )

2
)
+ 2
∑ad

k=1 λ
2
kδ

2
k

≤ β2
� + 2

λ2
�δ

2
�

tr
(
(TV N )

2
) = β2

� + 2β�
λ�δ

2
�√

tr
(
(TV N )

2
)

≤ β2
� + 2β�

∑ad
�=1 λ�δ

2
�√

tr
(
(TV N )

2
) = β2

� + 2β�
N · μ�Tμ√
tr
(
(TV N )

2
) → 0.

Because all requirements are fulfilled we can use Theorem 1 from Hajek et al.
[19] to deduce the asymptotic distribution of

ad∑
�=1

β̃�

(
C̃� − (1 + δ2� )√
2 ·
√

1 + 2δ2�

)
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as before. This evidently leads to

W̃N
D
=

√√√√1 + 2N
μ�TV NTμ

tr
(
(TV N )

2
) · Z +

N · μ�Tμ√
2 tr
(
(TV N )

2
) +OP(1)

for a normally distributed random variable Z ∼ N (0, 1). For β1 → 0 we know

that WN (H0)
D→ N (0, 1) and therefore the result follows.

Proof of Lemma 3.3 (p.2750). Remember that with Y i,�,k := T S(Xi,� −Xi,k)
and i 
= r ∈ Na, a > 1 trace estimators were defined by

Ai,1 =
1

2 ·
(
ni

2

) ni∑
�1,�2=1
�1>�2

(Xi,�1 −Xi,�2)
�
T S (Xi,�1 −Xi,�2) ,

Ai,r,2 =
1

4 ·
(
ni

2

)(
nr

2

) ni∑
�1,�2=1
�1>�2

nr∑
k1,k2=1
k1>k2

[
(Xi,�1 −Xi,�2)

�
T S (Xr,k1 −Xr,k2)

]2
,

Ai,3 =
1

4 · 6
(
ni

4

) ni∑
�1,�2=1
�1>�2

ni−1∑
k2=1

k2 �=�1,�2

ni∑
k1=k2+1
k1 �=�1,�2

×
[
(Xi,�1 −Xi,�2)

�
T S (Xi,k1 −Xi,k2)

]2
,

A4 =

a∑
i=1

(
N

ni

)2

(TW )ii
2
Ai,3 + 2

a−1∑
i=1

a∑
r=i+1

N2

ninr
(TW )ir

2
Ai,r,2.

For � 
= k we know Y i,�,k ∼ N (0d, 2T SΣiT S) and for totally different indices
the Y i,�,k are statistically independent. So the previous lemmata can be used
to calculate the moments. The unbiasedness can be shown by calculating the
expectation values for each estimator

E (Ai,1) =
1

2 ·
(
ni

2

) ni∑
�1,�2=1
�1>�2

E

[
Y i,�1,�2

�Y i,�1,�2

]
A.5
= tr (T SΣi) .

The following argument will be used several times in this work with small dif-
ferences, so incidentally it will be more detailed.

We recognize first that Cov
[
Y i,�1,�2

�Y i,�1,�2;Y i,�′1,�
′
2

�Y i,�′1,�
′
2

]
is 0 if all in-

dices are totally different, so just
(
ni

2

) ((
ni

2

)
−
(
ni−2

2

))
combinations remain. In-

stead of calculating the covariances of the remaining quadratic forms it is easier
to use lemmata from above. By using the fact that all quadratic forms are iden-
tically distributed, we can calculate the variances which are all the same so it is
just the number of remaining combinations multiplied with the variances. This
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leads to:

Var (Ai,1) =
1

4 ·
(
ni

2

)2 ni∑
�1,�2=1
�1>�2

ni∑
�′1,�

′
2=1

�′1>�′2

Cov
[
Y i,�1,�2

�Y i,�1,�2 ;Y i,�′1,�
′
2

�Y i,�′1,�
′
2

]

A.7
≤
(
ni

2

)
−
(
ni−2

2

)
4
(
ni

2

) Var
[
Y i,1,2

�Y i,1,2

]
+

(
ni−2

2

)
4
(
ni

2

) · 0

A.5
=

(
ni

2

)
−
(
ni−2

2

)
4
(
ni

2

) O
(
tr2 (2T SΣi)

)
= O

(
n−1
i

)
· O
(
tr2 (T SΣi)

)
.

With these values we know for V N =
⊕a

i=1
N
ni
Σi that

E

(
a∑

i=1

N

ni
(TW )iiAi,1

)
=

a∑
i=1

N

ni
(TW )iiE (Ai,1) = tr (TV N )

and

Var

⎛⎜⎜⎝
a∑

i=1

N
ni
(TW )iiAi,1

E

(
a∑

i=1

N
ni
(TW )iiAi,1

)
⎞⎟⎟⎠ =

a∑
i=1

N2

n2
i
(TW )ii

2
Var(Ai,1)

tr2 (TV N )

≤

a∑
i=1

O
(
n−1
i

)
· O
(
tr2
(

N
ni
(TW )iiT SΣi

))
tr2 (TV N )

Var

⎛⎜⎜⎝
a∑

i=1

N
ni
(TW )iiAi,1

E

(
a∑

i=1

N
ni
(TW )iiAi,1

)
⎞⎟⎟⎠ ≤

O
(

1
nmin

)
· O
(

a∑
i=1

tr2
(

N
ni
(TW )iiT SΣi

))
tr2 (TV N )

Var

⎛⎜⎜⎝
a∑

i=1

N
ni
(TW )iiAi,1

E

(
a∑

i=1

N
ni
(TW )iiAi,1

)
⎞⎟⎟⎠ ≤

O
(

1
nmin

)
· O
(
tr2
(

a∑
i=1

N
ni
(TW )iiT SΣi

))
tr2 (TV N )

= O
(

1

nmin

)
.

So the conditions for an unbiased and ratio-consistent estimator are fulfilled.
The same steps with a different number of remaining combinations leads to

E (Ai,3) =
1

4 · 6
(
ni

4

) ni∑
�1,�2=1
�1>�2

ni−1∑
k2=1

k2 �=�1,�2

ni∑
k1=k2+1
k1 �=�1,�2

E

([
Y i,�1,�2

�Y i,k1,k2

]2)

A.5
=

1

4 · 6
(
ni

4

) · 6(ni

4

)
· tr
(
4 · (T SΣi)

2
)
= tr

(
(T SΣi)

2
)
,
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Var (Ai,3) =

ni∑
�1,�2=1
�1>�2

ni∑
k1,k2=1 k1>k2
�2,�1 �=k1,k2

ni∑
�′1,�

′
2=1

�′1>�′2

ni∑
k′
1,k

′
2=1 k′

1>k′
2

�′2,�
′
1 �=k′

1,k
′
2

×
Cov
(
[Y i,�1,�2

�Y i,k1,k2 ]
2 ; [Y i,�′1,�

′
2

�Y i,k′
1,k

′
2
]2
)

42 · 62 ·
(
ni

4

)2
A.7
≤

6
(
ni

4

)
− 6
(
ni−4

4

)
42 · 6 ·

(
ni

4

) Var

([
Y i,1,2

�Y i,3,4

]2)
A.5
=

(
ni

4

)
−
(
ni−4

4

)
16
(
ni

4

) O
(
tr2
(
(T SΣi)

2
))

= O
(
n−1
i

)
· O
(
tr2
(
(T SΣi)

2
))

,

E (Ai,r,2) =
1

4 ·
(
ni

2

)(
nr

2

) ni∑
�1,�2=1
�1>�2

nr∑
k1,k2=1
k1>k2

E

([
Y i,�1,�2

�Y r,k1,k2

]2)

A.5
=

1

4 ·
(
ni

2

)(
nr

2

) · (ni

2

)
·
(
nr

2

)
· tr (4 ·ΣiT SΣr)

= tr (T SΣiT SΣr) ,

Var

(
2N2

ninr
Ai,r,2

)
=

4N4

n2
in

2
r

n1∑
�1,�2=1
�1>�2

n2∑
k1,k2=1
k1>k2

ni∑
�′1,�

′
2=1

�′1>�′2

nr∑
k′
1,k

′
2=1

k′
1>k′

2

×
Cov

([
Y i,�1,�2

�Y r,k1,k2

]2
;
[
Y i,�′1,�

′
2

�Y r,k′
1,k

′
2

]2)
16 ·
(
ni

2

)2(nr

2

)2
A.7
≤ 4N4

n2
in

2
r

(
ni

2

)(
nr

2

)
−
(
ni−2

2

)(
nr−2

2

)
16 ·
(
ni

2

)(
nr

2

) Var

([
Y i,1,2

�Y r,1,2

]2)
A.5
≤
(
ni

2

)(
nr

2

)
−
(
ni−2

2

)(
nr−2

2

)(
ni

2

)(
nr

2

) · O
(
tr2
(
N

ni
T SΣi

N

nr
T SΣr

))
≤ O

(
1

nmin

)
· O
(
tr2
(
N

ni
T SΣi

N

nr
T SΣr

))
.

Finally, the conditions for A4 have to be checked. With the expectation values
from above we calculate

E (A4)

=
a∑

i=1

N2

n2
i

(TW )ii
2
E(Ai,3) + 2

a−1∑
i=1

a∑
r=i+1

N2

ninr
(TW )ir

2
E (Ai,r,2)

=

a∑
i=1

N2

n2
i

(TW )ii
2
tr
(
(T SΣi)

2
)
+

a−1∑
i=1

a∑
r=i+1

2N2

ninr
(TW )ir

2
tr (T SΣiT SΣr)
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= tr
(
(TV N )

2
)
.

To calculate the variances the following additional inequalities are needed:

Var

(
a∑

i=1

(
N
ni

)2
(TW )ii

2
Ai,3

)
tr2
(
(TV N )

2
)

=

a∑
i=1

Var

((
N
ni

)2
(TW )ii

2
Ai,3

)
tr2
(
(TV N )

2
)

≤
a∑

i=1

O
(
n−1
i

)
·
O
(
(TW )ii

4
tr2
((

T S
N
ni
Σi

)2))
tr2
(
(TV N )

2
)

≤ O
(

1

nmin

) O
(
tr2
(

a∑
i=1

(TW )ii
2
(
T S

N
ni
Σi

)2))
tr2
(
(TV N )

2
) tr2

(
(TV N )

2
)
= O

(
1

nmin

)

and

Var

(
2
∑

r<i∈Na

N2

ninr
(TW )ir

2
Ai,r,2

)
tr2
(
(TV N )

2
)

A.7
≤ 4

∑
i<r∈Na

∑
h<g∈Na

√
Var
(

N2

ninr
(TW )irAi,r,2

)√
Var
(

N2

nhng
(TW )ghAh,g,2

)
tr2
(
(TV N )

2
)

≤

⎛⎜⎜⎝ ∑
i �=r∈Na

√
O
(

1
nmin

)
(TW )ir

2
tr
(
T S

N
ni
ΣiT S

N
nr

Σr

)
tr
(
(TV N )

2
)

⎞⎟⎟⎠
2

≤ O
(

1

nmin

)⎛⎜⎜⎜⎜⎝
O
( ∑

i �=r∈Na

(TW )ir
2
tr
(
T S

N
ni
ΣiT S

N
nr

Σr

))
∑

i,r∈Na

(TW )ir
2
tr
(
T S

N
ni
Σi

N
nr

T SΣr

)
⎞⎟⎟⎟⎟⎠

2

≤ O
(

1

nmin

)
.

Together this leads to

Var

⎛⎝ A4

tr
(
(TV N )

2
)
⎞⎠
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A.7
≤

⎡⎢⎢⎢⎢⎢⎣

√√√√√√√Var

(
2
∑

r<i∈Na

N2

ninr
(TW )ir

2
Ai,r,2

)
tr2
(
(TV N )

2
) +

√√√√√√Var

(
a∑

i=1

N
ni
(TW )ii

2
Ai,3

)
tr2
(
(TV N )

2
)

⎤⎥⎥⎥⎥⎥⎦

2

=

[√
O
(

1

nmin

)
+

√
O
(

1

nmin

)]2
= O

(
1

nmin

)

and therefore A4 is an unbiased and ratio-consistent estimator of tr
(
(TV N )

2
)
.

Moreover, we want to stress that the zero sequences used as upper border for

ÊH0(QN ) and A4 do not depend on the number of groups or dimensions, so this
estimators can be also used for increasing number of groups.

With the expectation values and variances from the beginning it follows
directly that Ai,1, Ai,r,2, Ai,3, A4 are unbiased, ratio-consistent estimators of

tr(T SΣi),tr (T SΣiT SΣr), tr
(
(T SΣi)

2
)
and tr

(
(TV N )2

)
.

It is worth to note that all of this estimators also consistent estimators which
are even dimension-stable in the sense of Brunner et al. [8].

For Ai,r,2 there exists an alternative form which can be implemented substan-
tially more efficient and was considered in Brunner et al. [9]. It uses matrices

of the form M̂ i,r = P ni (T SXi,1, . . . ,T SXi,ni)
� ·(T SXr,1, . . . ,T SXr,nr )P

�
nr
.

Recalling that 1n is the vector of ones and # denotes the Hadamard-Schur-
Product, it can be seen that

Ai,r,2 =
1ni

�
(
M̂ i,r#M̂ i,r

)
1nr

(ni − 1)(nr − 1)
.

For Ai,3 there also exists an alternative formula, which expands much longer,
but is more efficient:

Ai,3 =

ni∑
�1,�2=1
�1 �=�2

[
Xi,�1

�TSXi,�2

]2
ni(ni − 1)

−
ni∑

�1,�2,�3=1
�3 �=�1,�2

[
X�

i,�1
TSXi,�3X

�
i,�2

TS(Xi,�3 +Xi,�1 )
]

ni(ni − 1)(ni − 2)(ni − 3)

+

ni∑
�1,�2,�3=1
�1 �=�2 �=�3

[
X�

i,�1
TSXi,�3X

�
i,�2

TSXi,�2

]
+(2ni +5) ·

[
X�

i,�1
TSXi,�2X

�
i,�1

TSXi,�3

]
ni(ni − 1)(ni − 2)(ni − 3)

−
ni∑

�1,�2,�3=1
�1 �=�2

[
X�

i,�1
TSXi,�2X

�
i,�2

TSXi,�3

]
ni(ni − 1)(ni − 2)(ni − 3)

−
n2
i

[
X

�
i TSXi

] (
n2
iX

�
i TSXi −

∑ni
�1=1

[
X�

i,�1
T sXi,�1

])
ni(ni − 1)(ni − 2)(ni − 3)

.

To finally prove Theorem 3.5 (p.2750) we need another lemma.
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Lemma B.1. For the previously defined estimators it holds for nmin → ∞ that

a∑
i=1

N
ni
(TW )iiAi,1 −

a∑
i=1

N
ni
(TW )ii tr (T SΣi)√

2 tr
(
(TV N )

2
) P−→ 0 independent of d or a.

Proof. We know that

E

⎛⎜⎜⎝ a∑
i=1

N
ni
(TW )ii((Ai,1)− tr (T SΣi))√

2 tr
(
(TV N )

2
)

⎞⎟⎟⎠
=

a∑
i=1

N
ni
(TW )ii (E (Ai,1)− tr (T SΣi))√

2 tr
(
(TV N )

2
) = 0.

Thus,

Var

⎛⎜⎜⎝ a∑
i=1

N
ni
(TW )ii (Ai,1 − tr (T SΣi))√

2 tr
(
(TV N )

2
)

⎞⎟⎟⎠

=

a∑
i=1

N2

n2
i
(TW )ii

2
Var (Ai,1)

2 tr
(
(TV N )

2
)

Proof of 3.3
≤ O

(
1

nmin

) a∑
i=1

N2

n2
i
(TW )ii

2
tr
(
(2T SΣi)

2
)

2 tr
(
(TV N )

2
) = O

(
1

nmin

)
.

In the last step we used the fact that all terms are non-negative and applied
the binomial theorem in the last inequality. It is a zero sequence which only
depends on nmin, so again with Lemma A.6 (p.2770) the result is proved.

Proof of Theorem 3.5 (p.2750). From Lemma A.6 it follows independent of a or

d for nmin → ∞ thatA4/tr
(
(TV N )

2
)

P→ 1 and therefore tr
(
(TV N )

2
)
/A4

P→ 1.

Moreover, it also follows that

√
tr
(
(TV N )

2
)
/A4

P→ 1 and with Lemma B.1

we deduce
∑a

i=1
N
ni

(TW )iiAi,1−tr(TV N )√
2 tr((TV N )2)

P−→ 0.

Thus, we can finally calculate the standardized quadratic form as

WN =
QN −

∑a
i=1

N
ni
(TW )iiAi,1√

2A4
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=

⎛⎜⎜⎝ QN − tr (TV N )√
2 tr
(
(TV N )

2
) −

∑a
i=1

N
ni
(TW )iiAi,1 − tr (TV N )√
2 tr
(
(TV N )

2
)

⎞⎟⎟⎠ ·

√√√√ tr
(
(TV N )

2
)

A4

=

⎛⎜⎜⎝ QN − tr (TV N )√
2 tr
(
(TV N )

2
) −OP(1)

⎞⎟⎟⎠ · (1 +OP(1))

= W̃N + W̃N ·OP(1)−OP(1)−OP(1) ·OP(1).

The last two parts converge in probability to zero, so also in distribution and
with Slutzky W̃N ·OP(1) converges in distribution to zero if one of the conditions
of Theorem 3.1 is fulfilled. Thereby WN has asymptotical the same distribution
as W̃N .

Replacing the traces by their estimators in the above calculation, it follows
with the same arguments that the asymptotic distribution in both cases of local
alternatives does not change, since the estimators are also consistent under the
alternative.

For large numbers of groups many estimators Ai,1, Ai,r,2 and Ai,3 and have
to be calculated which leads to long computation time. In this cases it is better
to again use subsamling-type estimators which leads to A�

i,1, A
�
i,r,2, A

�
i,3 and

therefore to A�
4.

Lemma B.2. With the definitions from above let be

A�
i,1(B) =

1

2 ·B

B∑
b=1

Y i,σi1(b),σi2(b)
�Y i,σi1(b),σi2(b),

A�
i,r,2(B) =

1

4 ·B

B∑
b=1

[
Y i,σi1(b),σi2(b)

�Y r,σr1(b),σr2(b)

]2
,

A�
i,3(B) =

1

4 ·B

B∑
b=1

[
Y i,σi1(b),σi2(b)

�Y i,σi3(b),σi4(b)

]2
,

A�
4(B) =

a∑
i=1

N2

n2
i

(TW )ii
2
A�

i,3(B) + 2

a∑
i=1

a∑
r=1,r<i

N2

ninr
(TW )ir

2
A�

i,r,2(B).

If B(N) → ∞, this estimators and
∑a

i=1 A
�
i,1 have the same properties as

Ai,1, Ai,r,2, Ai,3, A4 and
∑a

i=1 Ai,1 which were defined in Lemma 3.3 (p.2750).

Proof. For A�
i,1(B), this lemma will be proved in detail. For all other terms only

the major steps are shown.

The unbiasedness is clear because the random variables σi1(b), σi2(b) have no
influence on the number of terms of the sum and also the terms are identically
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distributed. Hence,

E
(
A�

i,1(B)
)
=

1

2 ·B

B∑
b=1

E

(
Y i,σi1(b),σi2(b)

�Y i,σi1(b),σi2(b)

)
=

1

2 ·B

B∑
b=1

E

(
Y i,1,2

�Y i,1,2

)
A.5
= tr(T SΣi).

The second part is more complicated. Let F(σi(B,m)) be the smallest σ-
field which contains σi(b,m) ∀b ∈ B, so obvious M(B,σi(b)) is F(σi(B)) -
measurable. Identical for F(σi(B,m),σr(B,m)) and F(σ(B,m)). Similar to
the previous part, the distribution of the bilinear form does not depend on the
index combination. Together with the independence of the normally distributed
vectors and σi1(b), σi2(b) this leads to

Var
(
E
(
A�

i,1(B)
∣∣F(σi(B, 2))

))
= Var (tr (T SΣi)) = 0.

With Lemma A.9 (p.2771) we thus obtain

Var
(
A�

i,1(B)
)
= 0 + E

(
Var
(
A�

i,1(B)|F(σi(B, 2))
))

.

For the calculation of the conditional variance of the sum, it would be useful
finding an upper bound that is based on the variance instead of calculate the
covariances. To achieve this, we calculate the number of index combinations
which leads to a covariance which is zero. This amount is non-deterministic
and we recognize it contains the amount M(B,σi(b, 2)) which was considered
before.

Again not the amount is important but the number of elements which are
contained in M(B,σi(b, 2)) since the bilinear forms are identically distributed.
Therefore the condition of the variance of the bilinear form disappears since
the random indices have no influence on the variance. With the F(σi(B, 2))-
measurability of M(B,σi(b, 2)) it thus follows that

Var
(
A�

i,1(B)
)
= 0 + E

(
Var
(
A�

i,1(B)|F(σi(B, 2))
))

A.7
≤ E

⎛⎝ ∑
(j,�)∈N2

B\M(B,(σi(b,2)))

Var
(
Y i,σi1(j),σi2(j)

�Y i,σi1(j),σi2(j)

∣∣F(σi(B, 2))
)

4B2

⎞⎠
=

1

4B2
E

⎛⎝ ∑
(j,�)∈N2

B\M(B,(σi(b,2)))

Var
(
Y i,1,2

�Y i,1,2

)⎞⎠
A.5
=

E
(
|N2

B \M(B, (σi(b, 2)))|
)

B2
·
O
(
tr2 (T SΣi)

)
4

A.10
=

(
1−
(
1− 1

B

)
·
(
ni−2

2

)(
ni

2

) ) · O
(
tr2 (T SΣi)

)
.
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The other values are calculated in a similar way.

E
(
A�

i,r,2(B)
)
=

1

4 ·B

B∑
b=1

E

([
Y i,σi1(b),σi2(b)

�Y r,σr1(b),σr2(b)

]2)

=
1

4 ·B

B∑
b=1

E

([
Y i,1,2

�Y r,1,2

]2) A.5
= tr(T SΣiT SΣr).

Var
(
E
(
A�

i,r,2(B)|F(σi(B, 2),σr(B, 2))
))

= Var (tr (T SΣiT SΣr)) = 0.

Var
(
A�

i,r,2(B)
)
= 0 + E

(
Var
(
A�

i,r,2(B)|F(σi(B),σr(B, 2))
))

≤
E
(
|N2

B \M(B,σi(b, 2),σr(b, 2))|
)

B2
· Var

([
Y i,1,2

�Y r,1,2

]2)
A.5
≤

E
(
|N2

B \M(B,σi(b, 2),σr(b, 2))|
)

B2
· O
(
tr2
(
N

ni
T SΣi

N

nr
T SΣr

))
A.10
=

(
1−
(
1− 1

B

)
·
(
ni−2

2

)
·
(
nr−2

2

)(
ni

2

)
·
(
nr

2

) )
· O
(
tr2
(
N

ni
T SΣi

N

nr
T SΣr

))

≤
(
1−
(
1− 1

B

)
·
(
nmin−2

2

)2(
nmin

2

)2
)

· O
(
tr2
(
N

ni
T SΣi

N

nr
T SΣr

))
.

E
(
A�

i,3(B)
)
=

1

4 ·B

B∑
b=1

E

([
Y i,σi1(b),σi2(b)

�Y i,σi3(b),σi4(b)

]2)

=
1

4 ·B

B∑
b=1

E

([
Y i,1,2

�Y i,1,2

]2) A.5
= tr

(
(T SΣi)

2
)
.

Var
(
E
(
A�

i,3(B)|F(σi(B, 4))
))

= Var
(
tr
(
(T SΣi)

2
))

= 0.

Var
(
A�

i,3(B)
)

= 0 + E
(
Var
(
A�

i,3(B)|F(σi(B, 4))
))

A.7
≤ E

⎛⎜⎜⎝ ∑
(j,�)∈N2

B\M(B,σi(b,4))

Var

([
Y i,σi1(j),σi2(j)

�Y i,σi3(j),σi4(j)

]2∣∣∣F(σi(B, 4))

)
16B2

⎞⎟⎟⎠
A.5
≤

E
(
|N2

B \M(B,σi(b, 4))|
)

B2
·
O
(
tr2
(
(T SΣi)

2
))

16

A.10
=

(
1−
(
1− 1

B

)
·
(
ni−4

4

)(
ni

4

) ) · O
(
tr2
(
(T SΣi)

2
))

.

E

(
a∑

i=1

N

ni
(TW )iiA

�
i,1

)
=

a∑
i=1

N

ni
(TW )iiE

(
A�

i,1

)
=

a∑
i=1

N

ni
(TW )ii tr (T SΣi) .
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Var

⎛⎜⎜⎝
a∑

i=1

N
ni
(TW )iiA

�
i,1

tr (TV N )

⎞⎟⎟⎠

=

a∑
i=1

N2

n2
i
(TW )ii

2
Var
(
A�

i,1

)
tr2 (TV N )

=

a∑
i=1

(TW )ii
2

(
1−
(
1− 1

B

)
· (

ni−2
2 )

(ni
2 )

)
· O
(
tr2
(
T S

N
ni
Σi

))
tr2 (TV N )

≤

a∑
i=1

(TW )ii
2

(
1−
(
1− 1

B

)
· (

nmin−2
2 )

(nmin
2 )

)
· O
(
tr2
(
T S

N
ni
Σi

))
tr2 (TV N )

≤
(
1−
(
1− 1

B

)
·
(
nmin−2

2

)(
nmin

2

) )
·
O
(
tr2
(

a∑
i=1

N
ni
(TW )iiT SΣi

))
tr2 (TV N )

=

(
1−
(
1− 1

B

)
·
(
nmin−2

2

)(
nmin

2

) ) · O (1) .

For B(N) → ∞ the first factor is a zero sequence and therefore
a∑

i=1

N
ni
(TW )iiA

�
i,1

a ratio-consistent, unbiased estimator of tr (TV N ).

E

⎛⎝ a∑
i=1

N2

n2
i

(TW )ii
2
A�

i,3 +
∑

i �=r∈Na

N2

ninr
(TW )ir

2
A�

i,r,2

⎞⎠
=

a∑
i=1

N2

n2
i

(TW )ii
2
E
(
A�

i,3

)
+
∑

i �=r∈Na

N2

ninr
(TW )ir

2
E
(
A�

i,r,2

)
= tr

(
(TV N )

2
)
.

Var

⎛⎜⎜⎝
a∑

i=1

N2

n2
i
(TW )ii

2
A�

i,3

tr
(
(TV N )

2
)
⎞⎟⎟⎠

=

a∑
i=1

Var
(

N2

n2
i
(TW )ii

2
A�

i,3

)
tr2
(
(TV N )

2
)

≤

a∑
i=1

(TW )ii
4

(
1−
(
1− 1

B

)
· (

ni−4
4 )

(ni
4 )

)
· O
(
tr2
((

T S
N
ni
Σi

)2))
tr2
(
(TV N )

2
)
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≤
(
1−
(
1− 1

B

)
·
(
nmin−4

4

)(
nmin

4

) ) ·

a∑
i=1

(TW )ii
4O
(
tr2
((

T S
N
ni
Σi

)2))
tr2
(
(TV N )

2
)

≤
(
1−
(
1− 1

B

)
·
(
nmin−4

4

)(
nmin

4

) ) ·
O
(
tr2

((
a∑

i=1

N
ni
(TW )iiT SΣi

)2
))

tr2
(
(TV N )

2
)

≤
(
1−
(
1− 1

B

)
·
(
nmin−4

4

)(
nmin

4

) ) · O (1) .

Var

⎛⎜⎝
∑

i �=r∈Na

N2

ninr
(TW )ir

2
A�

i,r,2

tr (TV N )

⎞⎟⎠

≤

⎛⎜⎜⎝ ∑
i �=r∈Na

√
Var
(

N2

ninj
(TW )ir

2
A�

i,r,2

)
tr
(
(TV N )

2
)

⎞⎟⎟⎠
2

≤
(
1−
(
1− 1

B

)
·
(
nmin−2

2

)2(
nmin

2

)2
)
·

⎛⎜⎜⎜⎝
∑

i �=r∈Na

(TW )ir
2

√
O
(
tr2
(

N
ni
T SΣi

N
nr

T SΣr

))
tr
(
(TV N )

2
)

⎞⎟⎟⎟⎠
2

≤
(
1−
(
1− 1

B

)
·
(
nmin−2

2

)2(
nmin

2

)2
)
·

⎛⎜⎜⎝
∑

i �=r∈Na

O
(
(TW )ir

2
tr
(
T S

N
ni
ΣiT S

N
nr

Σr

))
∑

i,r∈Na

(TW )ir
2
tr
(
T S

N
ni
Σi

N
nr

T SΣr

)
⎞⎟⎟⎠

2

≤
(
1−
(
1− 1

B

)
·
(
nmin−2

2

)2(
nmin

2

)2
)

· O(1).

Var

⎛⎜⎜⎝
a∑

i=1

N2

n2
i
(TW )ii

2
A�

i,3 +
∑

i �=r∈Na

N2

ninr
(TW )ir

2
A�

i,r,2

tr2
(
(TV N )

2
)

⎞⎟⎟⎠

A.7
≤

⎡⎢⎢⎢⎢⎢⎣

√√√√√√√Var

(
2
∑

r<i∈Na

N2

ninr
(TW )ir

2
A�

i,r,2

)
tr2
(
(TV N )

2
) +

√√√√√√Var

(
a∑

i=1

N
ni
(TW )ii

2
A�

i,3

)
tr2
(
(TV N )

2
)

⎤⎥⎥⎥⎥⎥⎦

2

≤
(
1−
(
1− 1

B

)
·
(
nmin−2

2

)2(
nmin

2

)2
)

· O(1).
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So again this is a zero sequence, and A�
4 is an unbiased and dimensional stable

(i.e. also ratio consistent) estimator of tr
(
(TV N )

2
)
.

Appendix C: Proofs of Section 4

Lemma C.1. For

Λ1(�1,1, . . . , �6,a) = Z(�1,1,�2,1,...,�1,a,�2,a)
�TZ(�3,1,�4,1,...,�3,a,�4,a),

Λ2(�1,1, . . . , �6,a) = Z(�3,1,�4,1,...,�3,a,�4,a)
�TZ(�5,1,�6,1,...,�5,a,�6,a),

Λ3(�1,1, . . . , �6,a) = Z(�5,1,�6,1,...,�5,a,�6,a)
�TZ(�1,1,�2,1,...,�1,a,�2,a),

we define

C5 =

n1∑
�1,1,...,�6,1=1
�1,1 �=···�=�6,1

· · ·
na∑

�1,a,...,�6,a=1
�1,a �=···�=�6,a

∏3
m=1 Λm(�1,1, . . . , �6,a)

8 ·
∏a

i=1
ni!

(ni−6)!

.

With this notation it follows that

E (C5)= tr
(
(TV N )

3
)
, Var (C5) ≤

(
a∏

i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))
a∏

i=1

(
ni

6

) ·27 tr3
(
(TV N )

2
)
.

Proof. Set

Z̃(�3,1,�4,1,...,�3,a,�4,a) :=
(√

2V
1/2
N

)−1

Z(�3,1,�4,1,...,�3,a,�4,a) ∼ Nad (0ad, Iad) .

It then follows that

E

(
TZ(�3,1,�4,1,...,�3,a,�4,a) ·Z(�3,1,�4,1,...,�3,a,�4,a)

�T�
)

= E

((√
2TV

1/2
N Z̃(�3,1,�4,1,...,�3,a,�4,a)

)(√
2TV

1/2
N Z̃(�3,1,�4,1,...,�3,a,�4,a)

)�)
= 2TV

1/2
N E

(
Z̃(�3,1,�4,1,...,�3,a,�4,a)Z̃

�
(�3,1,�4,1,...,�3,a,�4,a)

)
V

1/2
N

�
T

= 2TV
1/2
N IadV

1/2
N

�
T = 2TV NT .

With the rules for conditional expectation and the involved independence it
follows that

E (C5) =

n1∑
�1,1,...,�6,1=1
�1,1 �=···�=�6,1

· · ·
na∑

�1,a,...,�6,a=1
�1,a �=···�=�6,a
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× E (Λ1(�1,1, . . . , �6,a) · Λ2(�1,1, . . . , �6,a) · Λ3(�1,1, . . . , �6,a))

8 ·
a∏

i=1

ni!
(ni−6)!

=

n1∑
�1,1,...,�6,1=1
�1,1 �=···�=�6,1

· · ·
na∑

�1,a,...,�6,a=1
�1,a �=···�=�6,a

×
E

(
Z(1,2)

�TZ(3,4) ·Z(3,4)
�TZ(5,6) ·Z(5,6)

�TZ(1,2)

)
8 ·

a∏
i=1

ni!
(ni−6)!

=
1

8
E

(
Z(1,2)

�TZ(3,4) ·Z(3,4)
�TZ(5,6) ·Z(5,6)

�TZ(1,2)

)
E (C5) =

1

8
E

(
E

(
Z(1,2)

�TZ(3,4) ·Z(3,4)
�TZ(5,6) ·Z(5,6)

�TZ(1,2)

∣∣ Z(1,2)

))
=

1

8
E

(
Z(1,2)

�
E

(
TZ(3,4) ·Z(3,4)

�TZ(5,6) ·Z(5,6)
�T
)
Z(1,2)

)
=

4

8
E

(
Z(1,2)

�TV NTTV NTZ(1,2)

)
=

1

2
tr((TV NTTV NT )2V N ) = tr

(
(TV N )

3
)
.

Due to the fact that all Xi,j are identically distributed we can neglect the
concrete indices, as long as we maintain the structure of dependence of the
bilinear forms. The last term fulfills the requirements from Korollar A.5 (p.2769)
with Z(1,2) ∼ N (0ad, 2V N ) and the matrix TV NTTV NT .

For the calculation of the variance it is useful to diagonalize the matrix

V
1/2
N

�
TV

1/2
N : There exists an orthogonal matrix P with PV

1/2
N

�
TV

1/2
N P� =

D = diag (λ1, . . . , λad), where λi are the eigenvalues of V
1/2
N

�
TV

1/2
N . We de-

fine J i := PZ̃(i,j) so with the properties of the standard normal distribution
J i ∼ Nad(0ad, Iad), where the J i are independent for different indices. Thus,
we can rewrite

Z(1,2)
�TZ(3,4) = Z̃

�
(1,2)2V

1/2
N

�
TV

1/2
N Z̃(3,4)

= 2Z̃
�
(1,2)P

�DPZ̃(3,4) = 2J�
1 DJ3.

With this argument for all three random variables it follows for the second
moment that

E

([
J�

1 DJ3J
�
3 DJ5J

�
5 DJ1

]2)

= E

⎛⎜⎝[ ad∑
i=1

λiJ1iJ3i

]2 ⎡⎣ ad∑
j=1

λjJ3jJ5j

⎤⎦2 [ ad∑
�=1

λ�J5�J1�

]2⎞⎟⎠
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=

ad∑
i1,j1,�1=1
i2,j2,�2=1

λi1λi2λj1λj2λ�1λ�2

× E (J1i1J3i1J1i2J3i2J3j1J5j1J3j2J5j2J5�1J1�1J5�2J1�2) .

Now we consider the expectation value for the different combinations. If all
indices are equal, it is given by

E
(
J4
11J

4
31J

4
51

)
= 33 = 27.

Moreover, for i1 = i2 
= �1 = �2 and �2 
= j1 = j2 
= i1 it holds that

E
(
J2
11J

2
31J

2
32J

2
52J

2
13J

2
53

)
= 16 = 1.

Next, the case i1 = i2 = j1 = j2 
= �1 = �2 is considered (noting this result can
also be used for both analogue combinations):

E
(
J2
11J

4
31J

2
51J

2
12J

2
52

)
= 31 · 14 = 3.

Finally, we consider the combination i1 = j1 = �1 
= i2 = j2 = �2 and obtain

E

(
[J11J31J12J32J51J52]

2
)
=

2∏
i=1

E
(
J2
1i

)
E
(
J2
3i

)
E
(
J2
5i

)
= 13

2
.

This is also true for i1 = j2 = �1 
= i2 = j1 = �2 and the analogue com-
binations, so, all in all, we have 4 combinations of this kind. All other index
combinations lead to expectation zero because in this combinations at least one
index appears just one time in the product. Thus, due to independence and the
fact that all random variables Ji are centered, it follows that

E

([
J�

1 DJ3J
�
3 DJ5J

�
5 DJ1

]2)
=

ad∑
i=1

λ6
i · 27 +

ad∑
i,j=1
i �=j

λ3
iλ

3
j · 1 · 4 +

d∑
i,j=1
i �=j

λ2
iλ

4
j · 9 +

ad∑
i,j,�=1
i �=j �=�

λ2
iλ

2
jλ

2
�

= 23

ad∑
i=1

λ6
i + 4

⎛⎜⎝ ad∑
i,j=1
i �=j

λ3
iλ

3
j +

ad∑
i=j=1

λ3
iλ

3
j

⎞⎟⎠+ 9

ad∑
i,j=1
i �=j

λ2
iλ

4
j +

ad∑
i,j,�=1
i �=j �=�

λ2
iλ

2
jλ

2
�

= 17

ad∑
i=1

λ6
i + 4

ad∑
i,j=1

λ3
iλ

3
j + 3

ad∑
i,j=1
i �=j

λ2
iλ

4
j

+ 6

⎛⎜⎝ ad∑
i,j=1
i �=j

λ2
iλ

4
j +

ad∑
i=1

λ6
i

⎞⎟⎠+

ad∑
i,j,�=1
i �=j �=�

λ2
iλ

2
jλ

2
�



2790 P. Sattler and M. Pauly

= 17

ad∑
i=1

λ6
i + 4 tr2

(
(TV N )

3
)
+ 3

ad∑
i,j=1
i �=j

λ2
iλ

4
j + 6

ad∑
i,j=1

λ2
iλ

4
j +
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2
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A.2
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(
(TV N )

3
)
+ 3
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i �=j

λ2
iλ

4
j + 6 tr

(
(TV N )

4
)
tr
(
(TV N )

2
)

+
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i �=j �=�

λ2
iλ

2
jλ

2
�

A.2
≤ 21 tr2

(
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3
)
+ 3

ad∑
i,j=1
i �=j

λ2
iλ

4
j + 6 tr3

(
(TV N )

2
)
+
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i,j,�=1
i �=j �=�

λ2
iλ

2
jλ

2
�

A.2
≤ 20 tr2

(
(TV N )

3
)
+ 6 tr3

(
(TV N )

2
)

+
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i �=j �=�
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iλ

2
jλ

2
� + 3
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i,j=1
i �=j

λ2
iλ

4
j +

ad∑
i=1

λ6
i

⎞⎟⎠
= 20 tr2

(
(TV N )

3
)
+ 7 tr3

(
(TV N )

2
)

A.2
≤ 20 tr

(
(TV N )

4
)
tr
(
(TV N )

2
)
+ 7 tr3

(
(TV N )

2
)

A.2
≤ 27 tr3

(
(TV N )

2
)
.

So we can control the variance by

Var(C5)

A.7
≤ Var (Λ1(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ2(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ3(1, 2, 3, 4, 5, 6, . . . , 5, 6))

64 ·
a∏

i=1

(ni
6

)
·
(

a∏
i=1

(ni
6

)
−

a∏
i=1

(ni−6
6

))−1

≤
E

(
[Λ1(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ2(1, 2, 3, 4, 5, 6, . . . , 5, 6) · Λ3(1, 2, 3, 4, 5, 6, . . . , 5, 6)]

2
)

64 ·
a∏

i=1

(ni
6

)
·
(

a∏
i=1

(ni
6

)
−

a∏
i=1

(ni−6
6

))−1

Var(C5) =

E

([
23 · J�

1 DJ3J
�
3 DJ5J

�
5 DJ1

]2)
64 ·

a∏
i=1

(
ni

6

)
·
(

a∏
i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))−1

≤

(
a∏

i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))
a∏

i=1

(
ni

6

) · 27 tr3
(
(TV N )

2
)
.
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With this result, we can construct an estimator for τP step by step:

Lemma C.2. For C5 as previously defined, it holds for fixed a that

C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) P−→ 0 min(d, nmin) → ∞.

It even holds in the asymptotic frameworks (4)–(5) if q > 1 exists with nmin =
O(aq).

Proof. From the previous lemma, we know that

E

⎛⎝ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)
⎞⎠

= E

⎛⎝ C5

tr3/2
(
(TV N )

2
)
⎞⎠−

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) = 0,

Var

⎛⎝ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)
⎞⎠

=
Var(C5)

tr3
(
(TV N )

2
) C.1

≤ 27 ·

(
a∏

i=1

(
ni

6

)
−

a∏
i=1

(
ni−6

6

))
a∏

i=1

(
ni

6

) .

For fixed a this is a zero sequence. If we consider a → ∞ we need the existence of
q > 1 and nmin = O(aq) to guarantee that the upper border is a zero sequence.
So in both cases Lemma A.6 (p.2770) can be used.

Lemma C.3. Moreover C5 holds for fixed a

C2
5

tr3
(
(TV N )

2
) − τP

P−→ 0 d, nmin → ∞.

If q > 1 exists with nmin = O(aq), the convergence even holds in the asymptotic
frameworks (4)–(5).

Proof. With the last lemma it follows for both cases that

C2
5

tr3
(
(TV N )

2
) − τP =

⎛⎝ C5

tr3/2
(
(TV N )

2
)
⎞⎠2

−

⎛⎝ tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)
⎞⎠2

=

⎡⎣ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)
⎤⎦
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×

⎡⎣ C5

tr3/2
(
(TV N )

2
) +

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)
⎤⎦

C2
5

tr3
(
(TV N )

2
) − τP = OP(1) ·

⎡⎣ C5

tr3/2
(
(TV N )

2
) −

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) + 2

√
τP

⎤⎦
= OP(1) ·

[
OP(1) + 2

√
τP
]
=OP(1).

For the last step we used that τP ∈ [0, 1] which is known from Lemma A.8

(p.2770) and hence tr
(
(TV N )

3
)/

tr3/2
(
(TV N )

2
)

=
√
τP ∈ [−1, 1]. As a

product of a bound term and a term which converges to zero in probability,
it also converges to zero in probability and with Slutzky’s Lemma the result
follows.

Proof of Lemma 4.2. From Lemma 3.3 (p.2750) together with Lemma A.6 (p.2770)
it follows

A4

tr
(
(TV N )

2
) P−→ 1 and therefore

tr3
(
(TV N )

2
)

A3
4

P−→ 1 for nmin → ∞,

independent of d or a. With Lemma C.3 (p.2791) it follows

C2
5

tr3
(
(TV N )

2
) − τP

P−→ 0 for d, nmin → ∞

or under the additional condition also in the asymptotic frameworks (4)–(5).
With these limits in both cases we can calculate

C2
5

A3
4

− τP =
C2

5

tr3
(
(TV N )

2
) ·

tr3
(
(TV N )

2
)

A3
4

− τP

=
C2

5

tr3
(
(TV N )

2
) · (1 +OP(1))− τP

=
C2

5

tr3
(
(TV N )

2
) − τP +

⎛⎝ C2
5

tr3
(
(TV N )

2
) − τP + τP

⎞⎠ ·OP(1)

= OP(1) +OP(1) ·OP(1) + τP ·OP(1) =OP(1).

As in the previous lemma we used τP ∈ [0, 1] and Slutzky.

For C�
5 the properties are shown in a similar way as in Lemma B.2 (p.2782).

Lemma C.4. For

Λ1(�1,1, . . . , �6,a) = Z(�1,1,�2,1,...,�1,a,�2,a)
�TZ(�3,1,�4,1,...,�3,a,�4,a),

Λ2(�1,1, . . . , �6,a) = Z(�3,1,�4,1,...,�3,a,�4,a)
�TZ(�5,1,�6,1,...,�5,a,�6,a),
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Λ3(�1,1, . . . , �6,a) = Z(�5,1,�6,1,...,�5,a,�6,a)
�TZ(�1,1,�2,1,...,�1,a,�2,a),

define

C�
5 (B) =

1

8 ·B

B∑
b=1

Λ1(σ(b, 6)) · Λ2(σ(b, 6)) · Λ3(σ(b, 6)).

Then it holds

E (C�
5 (B)) = tr

(
(TV N )

3
)
,

Var (C�
5 (B)) ≤

(
1−
(
1− 1

B

)
·

a∏
i=1

(
ni−6

6

)(
ni

6

) ) · 27 tr3
(
(TV N )

2
)
.

Proof. With the same steps as in the previous lemma and by using the fact that
expectation and variance do not depend on the concrete indices but rather on
the structure of independences we get

E (C�
5 (B)) =

1

8B

B∑
b=1

E (Λ1(σ(b, 6)) · Λ2(σ(b, 6)) · Λ3(σ(b, 6)))

=
1

8B

B∑
b=1
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C.1
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tr
(
(2TV N )

3
)
= tr

(
(TV N )

3
)
.

Var(E(C�
5 (B)|F(σ(B, 6)))) = Var

(
tr
(
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3
))

= 0.

Var (C�
5 (B)) = 0 + E (Var (C�

5 (B)|F(σ(B, 6))))
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× Var (Λ1(σ(j, 6))Λ2(σ(j, 6))Λ3(σ(j, 6))|F(σ(B, 6)))
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B \M(B,σ(b, 6))|
)
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·
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(
Z(1,2)

�TZ(3,4) ·Z(3,4)
�TZ(5,6) ·Z(5,6)

�TZ(1,2)

)
64

C.1
≤
(
1−
(
1− 1

B

)
·

a∏
i=1

(
ni−6

6

)(
ni

6

) ) · 27 tr3
(
(TV N )

2
)
.

Proof of Theorem 4.3 (p.2753). With Lemma C.4 we recognize τP → 1⇔ τ̂P
P−→ 1

and τP → 0 ⇔ τ̂P
P−→ 0. Therefore fP → 1 ⇔ f̂P

P−→ 1 and fP → ∞ ⇔ f̂P
P−→

∞. This is the only condition needed for the proof of Pauly et al. [34][Theorem
3.1], so the result follows.
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Although nmin = O(aq) with q > 1 is not too critical in most settings we
additionally developed an estimator which can be used without any restrictions.

For this estimator another random vector has to be introduced: The random
vector πj,i represents a random permutation of the numbers 1, . . . , ni, where πj,i

are independent for different i or j and πj,i(l) denotes its l-th element. Then we
define

C7 (w) =
1

w

w∑
j=1

nmin∑
�1 �=···�=�6=1

Λ4 (j; �1, . . . , �6) · Λ5 (j; �1, . . . , �6) · Λ6 (j; �1, . . . , �6)

8 · nmin!
(nmin−6)!

with

Λ4 (j; �1, . . . , �6) = Z
πj

(�1,�2)

�
TZ

πj

(�3,�4)
,

Λ5 (j; �1, . . . , �6) = Z
πj

(�3,�4)

�
TZ

πj

(�5,�6)
,

Λ6 (j; �1, . . . , �6) = Z
πj

(�5,�6)

�
TZ

πj

(�1,�2)
.

and

Z
πj

(�1,�2)
:= Z(πj,1(�1),πj,1(�2),πj,2(�1),...,πj,a(�1),πj,a(�2))

This estimator again uses Z, but different to C5 the indices are the same for
all groups. However the highest index is nmin and some index combinations are
unachievable. For this reason, the above random permutations were used. So
first the observations in each group were rearranged randomly and with this
rearranged samples we calculated the sum of the used terms. Thereafter, we
again rearrange the observations and the same terms as before are calculated.
If these values were summed up and divided by the number of rearrangements
we get an alternative for C5 which is shown in the following lemma.

Lemma C.5. For C7 as defined before it holds

E (C7(w)) = tr
(
(TV N )

3
)

Var (C7(w)) ≤

⎛⎝ nmin!
(nmin−6)! −

(nmin−6)!
(nmin−12)!

nmin!
(nmin−6)!

⎞⎠ · O
(
tr3
(
(TV N )

2
))

.

Proof. Again we calculate

E (C7 (w)) =
1

w

w∑
j=1

nmin∑
�1 �=···�=�6=1

E

(∏6
m=4 Λm (j; �1, . . . , �6)

)
8 · nmin!

(nmin−6)!

=
1

w
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nmin∑
�1 �=···�=�6=1

E

(∏6
m=4 Λm (j; 1, . . . , 6)

)
8 · nmin!

(nmin−6)!

= tr
(
(TV N )

3
)
.
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Because of the fact that all groups use the same indices, the number of remaining
index combinations simplifies and we receive

Var

⎛⎝ nmin∑
�1 �=···�=�6=1

∏
m=4 Λm (j; �1, . . . , �6)
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Λm (j; �1, . . . , �6)

)
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· O
(
tr3
(
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2
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.

For the sum this leads to

Var (C7 (w))

= Var

⎛⎝ 1

w
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nmin∑
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≤ 1
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∏6
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⎞⎠
≤ 1
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⎞⎠ · O
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tr3
(
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2
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⎞⎠ · O
(
tr3
(
(TV N )

2
))

.

Simulations (not shown here) show that higher values for w lead to better
estimations.

Lemma C.6. For C7 as previously defined, it holds

C2
7

tr3
(
(TV N )

2
) − τP

P−→ 0 for nmin → ∞,

independent of a or d. Therefore this holds for the asymptotic frameworks (3)–
(5).

Proof. With the previous lemma we know

E

⎛⎝C7(w)− tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)

⎞⎠
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= E

⎛⎝ C7(w)

tr3/2
(
(TV N )

2
)
⎞⎠−

tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
) = 0,

Var

⎛⎝C7(w)− tr
(
(TV N )

3
)

tr3/2
(
(TV N )

2
)
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=

Var (C7(w))

tr3
(
(TV N )

2
) ≤

⎛⎝ nmin!
(nmin−6)! −

(nmin−6)!
(nmin−12)!

nmin!
(nmin−6)!

⎞⎠ · O (1) .

So exactly the same steps as in the proof of Lemma 4.2, which in this case uses
that the zero sequence not depends on a or d, leads to the result.

But for the calculation of this estimator we need w ·nmin!/(nmin − 6)! summa-
tions. Thus, a subsampling-type version of C7 is necessary which is now defined.

Lemma C.7. For each b = 1, . . . , B we independently draw random subsamples
σ0(b, 6) of length 6 from {1, . . . , nmin} and define

C�
7 (w,B) =

w∑
j=1

B∑
b=1

Λ4 (j;σ0(b, 6)) Λ5 (j;σ0(b, 6)) Λ6 (j;σ0(b, 6))

8wB

which holds

E (C�
7 (w,B)) = tr ((TV N )) ,

Var (C�
7 (w,B)) =

(
1−
(
1− 1

B

) (nmin−6
6

)(
nmin

6

) ) 27 tr3
(
(TV N )

2
)
.

Proof. The proof for this subsampling-type estimator takes the same steps as
before, with another amount M(B,σ0(b, 6)). At the beginning we calculate ex-
pectation value and an upper bound for the variance of the inner sum. We get

E

(
B∑
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∏6
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8B

)
=
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E

(∏6
m=4 Λm (j; 1, . . . , 6)

)
8B
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(
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)
.

Var

(
E

(
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∏6
m=4 Λm (j;σ0(b, 6))

8B

∣∣∣F (σ0(B))

))
=Var

(
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3
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= 0.
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∏6
m=4 Λm (j;σ0(b, 6))

8B

)
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= 0 + E

(
Var

(
B∑

b=1

∏6
m=4 Λm (j;σ0(b, 6))

8B

∣∣∣F (σ0(B))

))
A.7
≤ E
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E
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)

B2

· Var (Λ4 (j; 1, . . . , 6) · Λ5 (j; 1, . . . , 6) · Λ6 (j; 1, . . . , 6))

64
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≤
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(
1− 1
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)
·
(
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6
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) ) · 27 tr3
(
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With these values we can consider the whole estimator

E (C�
7 (w,B)) =

1

w

w∑
j=1

E
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B∑
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∏6
m=4 Λm (j;σ0(b, 6))

8B

∣∣∣F (σ0(B))

)

= tr
(
(TV N )

3
)
,

Var (C�
7 (w,B)) ≤ 1

w2

⎛⎝ w∑
j=1

√√√√Var

(
B∑

b=1

∏6
m=4 Λm (j;σ0(b, 6))

8B

)⎞⎠2

≤ 1

w2

⎛⎝ w∑
j=1

√√√√(1− (1− 1

B

)
·
(
nmin−6

6

)(
nmin

6

) ) · 27 tr3
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2
)⎞⎠2
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(
1−
(
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B

)
·
(
nmin−6

6

)(
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6

) ) · 27 tr3
(
(TV N )

2
)
.

The next lemma shows that the version of the estimators with random indices
has all the properties the classical ones possess.

Lemma C.8. The statements of Lemma B.1, Lemma C.2, Lemma C.3, Lemma
4.2 and Lemma C.6 are also true, if all or only a part of the estimators are
replaced by the subsampling-type estimators.

Moreover, Theorem 3.1, Theorem 3.5 and Theorem 4.3 hold, if all or only a
part of the estimators are replaced by the subsampling-type estimators.

Proof. For the proofs of the classical estimators from the first paragraph, only
the expectation values are used together with upper bounds for the variances
which are zero sequences. With random indices, the expectation is the same and
for the variance, all traces are the same but the zero sequence changes. So the
proofs of the subsampling-type estimators work identically.

For the second paragraph, only some convergences are necessary, which the
subsampling-type estimators also fulfills.
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Appendix D: On the asymptotic distribution in our simulation
designs

To determine the asymptotic distribution of our test statistic (corresponding
to validity of the different tests) in our simulation settings, the asymptotic be-
haviour of β1 has to be investigated. Due to equivalence we calculate the value

of τP = tr2
(
(TV N )

3
)/

tr3
(
(TV N )

2
)
. This is sufficient since V N is known,

i.e. no estimation is needed. The ratio n1/N and n2/N are the same for all our
sample sizes, so the different numbers n1, n2 have no influence on the values
of τP . Results for different choices of T and Σi, i = 1, 2, corresponding to the
simulation settings from Section 5 are displayed in Tables 3–5. It can be seen
that for Ha

0 (Table 3) we have τP → 1 and thus β1 → 1 by Lemma A.8. For Hb
0

(Table 4) we have τP → 0 and thus β1 → 0; and in case of the autoregressive
covariance matrices with correlation factor depending on the the dimension, we
seem to have β1 → b1 ≈ 0.7589.

Table 3

τP for T =
(
P 2 ⊗ 1

d
Jd

)
with (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|

d 5 10 20 40 70 100 150 200 300 450 600 800
τP 1 1 1 1 1 1 1 1 1 1 1 1

Table 4

τP for T =
(
1
2
J2 ⊗ P d

)
and T = (P 2 ⊗ P d) with (Σ1)i,j = 0.6|i−j| and (Σ2)i,j = 0.65|i−j|

d 5 10 20 40 70 100 150 200 300 450 600 800
τP .49 .35 .21 .11 .061 .043 .029 .021 .014 .0095 .0071 .0053

Table 5

τP and β1 for T =
(
1
2
J2 ⊗ P d

)
with (Σ1)i,j = 0.6|i−j|/d and (Σ2)i,j = 0.65|i−j|/d

d 5 10 20 40 70 100 150 200 300 450 800
τP .9311 .9408 .9444 .9454 .9457 .9457 .9458 .9458 .9458 .9458 .9458
β1 .7082 .7392 .7534 .7575 .7584 .7587 .7588 .7588 .7589 .7589 .7589

Appendix E: On the Chen-Qin-Condition

We can also develop an estimator for τCQ = tr
(
(TV N )

4
)
/ tr2

(
(TV N )

2
)
=

1/fCQ on an analogical way as before. This leads to:

Lemma E.1. Let be

C6 =

n1∑
�1,1,...,�8,1=1
�1,1 �=···�=�8,1

· · ·
na∑

�1,a,...,�8,a=1
�1,a �=···�=�8,a

⎡⎢⎢⎣16 Λ7(�1,1, . . . , �8,a)

16 ·
a∏

i=1

ni!
(ni−8)!

− 1

2

Λ8(�1,1, . . . , �8,a)

16 ·
a∏

i=1

ni!
(ni−8)!

⎤⎥⎥⎦
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with

Λ7(�1,1, . . . , �8,a) =
[
Z�

(�1,1,�2,1,...,�2,a)TZ(�3,1,�4,1,...�4,a)

]4
,

Λ8(�1,1, . . . , �8,a) =

[√
Λ7(�1,1, . . . , �8,a) ·Z�

(�5,1,�6,1,...,�6,a)TZ(�7,1,�8,1,...,�8,a)

]2
.

Then we know

E(C6) = tr
(
(TV N )

4
)

Var(C6) ≤

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)
162 ·

a∏
i=1

(
ni

8

) O
(
tr4
(
(TV N )

2
))

.

Proof.

E(C6) =

E

([
Z�

(1,2)TZ(3,4)

]4)
6 · 16 −

E

([
Z�

(1,2)TZ(3,4)

]2 [
Z�

(5,6)TZ(7,8)

]2)
2 · 16

A.4
=

1

6 · 16
(
6 tr
(
(2TV N )

4
)
+ 3 tr2

(
(2TV N )

2
))

− 1

2 · 16 tr2
(
(2TV N )

2
)

= tr
(
(TV N )

4
)

For the second inequality, the variance of parts is calculated. Like before with
Lemma A.2 (p.2767) and Theorem A.4 (p.2768) we calculate

Var

(
1

6

[
Z(1,2)

�TZ(3,4)

]4)
= O

(
tr4
(
(TV N )

2
))

and

Var

(
1

2

[
Z(1,2)

�TZ(3,4)

]2 [
Z(5,6)

�TZ(7,8)

]2)
≤ 1

4
· E
([

Z(1,2)
�TZ(3,4)

]4 [
Z(5,6)

�TZ(7,8)

]4)
=

1

4

(
6 tr
(
(2TV N )

4
)
+ 3 tr2

(
(2TV N )

2
))2

= O
(
tr4
(
(TV N )

2
))

.

With Lemma A.7 (p.2770) it is known

Var(B) ≤ Var(A) +Var(B) + 2|Cov(A,B)| ≤
(√

Var(A) +
√

Var(B)
)2

and therefore

Var(C6) ≤

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)
162 ·

a∏
i=1

(
ni

8

) Var

(
1

6
Λ7(1, . . . , 8)−

1

2
Λ8(1, . . . , 8)

)
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Var(C6) ≤

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)
162 ·

a∏
i=1

(
ni

8

)
×
(√

O
(
tr4
(
(TV N )

2
))

+

√
O
(
tr4
(
(TV N )

2
)))2

Var(C6) =

a∏
i=1

(
ni

8

)
−

a∏
i=1

(
ni−8

8

)
162 ·

a∏
i=1

(
ni

8

) O
(
tr4
(
(TV N )

2
))

.

Lemma E.2. With the estimators introduced in the previous lemmata it holds
for fixed a

C6

A2
4

−
tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) P−→ 0 for d, nmin → ∞.

If q > 1 exists with nmin = O(aq), the convergence even holds in the asymptotic
frameworks (4)–(5).

Proof. Again we first consider the parts:

E

⎛⎝ C6

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
)
⎞⎠ =

E (C6)

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) = 0.

Var

⎛⎝ C6

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
)
⎞⎠

≤
∏a

i=1

(
ni

8

)
−
∏a

i=1

(
ni−8

8

)
162 ·

∏a
i=1

(
ni

8

) O
(
tr4
(
(TV N )

2
))

tr4
(
(TV N )

2
)

≤
∏a

i=1

(
ni

8

)
−
∏a

i=1

(
ni−8

8

)∏a
i=1

(
ni

8

) · O(1).

So with Lemma A.6 (p.2770) for fixed a and d, nmin → ∞ and moreover if the
additional condition is fulfilled even for the asymptotic frameworks (4)–(5), it
follows

C6

tr2
(
(TV N )

2
) −

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) P−→ 0.

Analogue to the proof of Lemma 4.2 it follows tr2
(
(TV N )

2
)/

A2
4

P−→ 1.
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Together this leads to

C6

A2
4

−
tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) =

C6

tr2
(
(TV N )

2
) ·

tr2
(
(TV N )

2
)

A2
4

−
tr
(
(TV N )

4
)

tr2
(
(TV N )

2
)

=
C6

tr2
(
(TV N )

2
) · (1 +OP(1))−

tr
(
(TV N )

4
)

tr2
(
(TV N )

2
) =OP(1) +OP(1) =OP(1).

Again in most cases, the subsampling-type version of this estimator should
be used.

Lemma E.3. Let be

C�
6 (B) =

1

16B

B∑
b=1

(
Λ7(σ(b, 8))

6
− Λ8(σ(b, 8))

2

)
.

Then it holds

E (C�
6 (B)) = tr

(
(TV N )

4
)
,

Var (C�
6 (B)) ≤

(
1−
(
1− 1

B

)
·

a∏
i=1

(
ni−8

8

)(
ni

6

) ) · O
(
tr4
(
(TV N )

2
))

.

Proof. By using the same steps as before it holds

E (C�
6 (B))

=
1

16B

B∑
b=1

E

(
Λ7(�1,1, . . . , �8,a)

6
− Λ8(�1,1, . . . , �8,a)

2

)

=
1

16B

B∑
b=1

E

×

⎛⎜⎝[Z(1,2)
�TZ(3,4)

]2
·

⎛⎜⎝
[
Z(1,2)

�TZ(3,4)

]2
6

−

[
Z(5,6)

�TZ(7,8)

]2
2

⎞⎟⎠
⎞⎟⎠

E.1
=

1

16B

B∑
b=1

tr
(
(2TV N )

4
)
= tr

(
(TV N )

4
)
.

Var (E (C�
6 (B)|F(σ(B, 8)))) = Var

(
tr
(
(TV N )

4
))

= 0.

Var (C�
6 (B))

= 0 + E (Var (C�
6 (B)|F(σ(B, 8))))

A.7
≤ 1

162B2
E
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×

⎛⎝ ∑
(j,�)∈N2

B\M(B,σ(b,8))

Var

(
Λ7(σ(j, 8))

6
− Λ8(σ(j, 8))

2

∣∣∣F(σ(B, 8))

)⎞⎠
=

Var
(

Λ7(�1,1,...,�8,a)
6 − Λ8(�1,1,...,�8,a)

2

)
162B · (E (|N2

B \M(B,σ(b, 8))|))−1

E.1
≤
(
1−
(
1− 1

B

)
·

a∏
i=1

(
ni−8

8

)(
ni

8

) ) · O
(
tr4
(
(TV N )

2
))

.

With Lemma C.7 we get an estimator for τCQ with τ̂CQ(C
�
6 , A4) = C�

6/A
2
4

and once more for a large number of groups A�
4 should be used.

Lemma E.4. Theorem 4.1 is also valid if fP is replaced by fCQ or by
(τ̂CQ(C6, A4))

−1. Using C�
6 or A�

4 also doesn’t change the result. Identical the
result of Lemma E.2 remains true if one or all estimators are replaced by their
subsampling version.

Proof. With Lemma A.8 we know fP → 1 ⇔ fCQ → 1 and fP → 0 ⇔ fCQ → 0
so in both cases KfP is asymptotically identic with KfCQ

.
From Lemma E.2 we know that τ̂CQ−τCQ converges in probability to zero so

this result follows identically to Theorem 4.1. At last the subsampling versions
have the same properties as the standard estimators.

Therefore this is a second way to test the hypotheses and moreover, it provides
an indicator for the choice of the limit distribution, because of Lemma A.8. For
situation c) from Theorem 3.1 there is no proof that this approach can be used
but in the case of just one group, it leads to good results.
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