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Abstract: Motivated by challenges on studying a new correlation mea-
surement being popularized in evaluating online ranking algorithms’ per-
formance, this manuscript explores the validity of uncertainty assessment
for weighted U-statistics. Without any commonly adopted assumption, we
verify Efron’s bootstrap and a new resampling procedure’s inference valid-
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weights asymmetric and data points not identically distributed, which are
all new issues that historically have not been addressed. For achieving strict
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1. Introduction

This manuscript studies the following general weighted U-statistic of degree m:

Un =
(n−m)!

n!

∑
1≤i1,i2,...,im≤n:

ij �=ik if j �=k

an(i1, . . . , im)hn(Xi1 , . . . , Xim). (1.1)

Here we assume X1, . . . , Xn are independent but not necessarily identically dis-
tributed random variables, taking values in a measurable space (X ,BX ) [16]. The
weight function an(·) and kernel function hn(·) are both possibly asymmetric,
and they are both allowed to be sample size dependent.

Our study on weighted U-statistics is motivated from the following new cor-
relation measurement popularized in the information retrieval area [40]. It is
formulated as a weighted U-statistic of asymmetric kernels and weights:

τAP :=
2

n− 1

n∑
i=2

∑i−1
j=1 1(Xj > Xi)

i− 1
− 1. (1.2)

Here 1(·) represents the indicator function and X1, . . . , Xn are specified to be
real-valued. For this specific example, X1, . . . , Xn correspond to the scores the
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ranking machine gives for each online page, aligned by the rankings of human la-
bels. The data points X1, . . . , Xn are usually modeled by a location-scale model,
and are usually non-i.i.d.. The statistic in (1.2), named average-precision (AP)
correlation, aims to evaluate the performance of any given online ranking algo-
rithm by calculating a reweighted rank correlation measurement between the
algorithm’s rankings, while “giving more weights to the errors at high rank-
ings”. For the AP correlation, it is desirable to derive confidence intervals for
solid inference.

Obviously, τAP is an extension to the Kendall’s tau statistic:

τKen :=
2

n(n− 1)

∑
i �=j

{
1(Xi > Xj)1(i < j) + 1(Xi < Xj)1(i > j)

}
− 1. (1.3)

Compared to τKen, the analysis of τAP is much more involved, but naturally
falls into the application regime of our theory.

The analysis of unweighted U-statistics (i.e., an(·) ≡ 1) has a long history.
There has been a vast literature on evaluating their asymptotic behaviors since
the seminal paper of [12]. Specifically, regarding the simple independent and
identically distributed (i.i.d.) setting, inference results have been summarized
in [20], [36], and [16]. For extensions, [20] proved the asymptotic normality under
a Lyapunov-type non-i.i.d. condition. [41] and [6] derived central limit theorem
and (block) bootstrap inference validity for stationary weakly dependent time
series. [4] proved the m-out-of-n bootstrap inference validity.

Weighted U-statistic is comparably less touched in the literature. Here, under
the i.i.d. setting, [38] and [27] conducted asymptotic analysis for weighted U-
statistics of degree two. [24] and [34] made extensions to weighted U-statistics
of degree m ≥ 2, with focus on the degenerate cases. [13] relaxed the inde-
pendence assumption, proving the asymptotic normality for a wide range of
stationary stochastic processes. Recently, [42] generalized the results in [13],
proving central and noncentral limit theorems for a class of nonstationary time
series.

Despite the above substantial advances, i.i.d. or stationary assumption is
commonly posed, especially for proving Efron’s bootstrap inference validity. A
notable exception is [42], who established central limit theorem for nonstationary
time series. However, bootstrap inference is not discussed, and the regularity
conditions therein are too strong to include statistics like τAP. In addition, the
kernels and weights are required to be symmetric.

Motivated from our study on the AP correlation, this manuscript aims to fill
the above gaps. In particular, we build unified theory for analyzing nondegen-
erate weighted U-statistics, namely, establishing sufficient conditions for their
asymptotic normality and bootstrap inference validity. Both Efron’s bootstrap
and a new resampling procedure stemmed from [31] and [2] are considered. For
this, we waive the i.i.d. assumptions, allowing researchers to analyze statistics
like τAP in practical settings. In addition, our analysis allows both the kernels
and weights to be asymmetric.
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1.1. Other related work

Our results are very related to bootstrap inference under data heterogeneity. In
[22], Regina Liu pioneered the study on Efron’s bootstrap inference validity for
non-i.i.d. models. Her results showed that bootstrap is robust to these specific
non-i.i.d. settings with common locations (means). However, bootstrap is very
sensitive to mean differences. The inference validity is captured by a function of
{μi := EXi}ni=1, which she called “heterogeneity factors” [22, 23]. For example,
for the sample mean, at the worse case, the distance between the largest and
smallest means needs to shrink to zero as n → ∞ for bootstrap consistency. [25]
summarized the existing results, providing necessary and sufficient conditions of
bootstrap validity for the sample-mean-type statistics under non-i.i.d. settings.

Politis and Romano’s subsampling [32] and many other resampling schemes
[2] are appealing alternatives to Efron’s bootstrap. They are designed to correct
the bootstrap inference inconsistency problem in many different settings, where
the data could be, for example, dependent or heavy-tailed. In this manuscript,
we examine a new resampling procedure’s inference validity for weighted U-
statistics.

1.2. Notation

Let R be the set of real numbers, and Z be the set of integers. For a positive
integer n, we write [n] = {a ∈ Z : 1 ≤ a ≤ n}. For any set A, let card(A)

represent the cardinality of A. Let
d→ denote “convergence in distribution”,

and
P→ denote “convergence in probability”. Let “a.s.” be the abbreviation of

“almost surely”. Let Φ(t) be the cumulative distribution function of the standard
Gaussian. For two positive integers m < n, define(

n

m

)
=

n!

(n−m)!m!
,

where n! represents the factorial of n. Let C be a generic absolute positive
constant, whose actual value may vary at different locations. For any two real
sequences {an} and {bn}, we write an � bn, or equivalently bn � an, if there
exists an absolute constant C such that |an| ≤ C|bn| for all sufficiently large
n. We write an � bn if both an � bn and an � bn hold. We write an � bn,
or equivalently bn � an, if an � bn holds, but an � bn does not. We write
an = O(bn) if an � bn, and an = o(bn) if an = O(bn) and bn 	= O(an). We write
an = OP (bn) if an/bn is stochastically bounded, that is, for any ε > 0, there
exists a finite M > 0 and a finite N > 0 such that P (|an/bn| > M) < ε for all
n > N . We write an = oP (bn) if for any ε > 0, limn→∞ P (|an/bn| ≥ ε) = 0.

1.3. Structure of the manuscript

The rest of the manuscript is organized as follows. In Section 2 we provide
the unified theory for asymmetric weighted U-statistic, deriving central limit
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theorem, bootstrap, and a new resampling procedure’s inference validity under
data non-i.i.d. settings. In Section 3, we apply the developed theory to explore
the inference validity of Kendall’s tau in (1.3) and AP correlation in (1.2). All
proofs are relegated to Appendix.

2. Main results

Throughout the manuscript, we focus on the following triangular array setting:
Assume we have n independent random variables {Xn,i}, n ≥ 1, 1 ≤ i ≤ n.
Each Xn,i follows the distribution Pn,i. The elements in {Pn,i, i ∈ [n]} are not
necessarily equal to each other. When n increases, Pn,i could possibly change.
For notational simplicity, in the sequel we drop n in the subscripts of Xn,i and
Pn,i when no confusion could be made.

We are focused on the following weighted U-statistic of degree m, with weight
function a(·) : Zm → R and kernel h(·) : Xm → R:

Un = Un(X1, . . . , Xn) =
(n−m)!

n!

∑
Im
n

an(i1, . . . , im)hn(Xi1 , . . . , Xim). (2.1)

Here the summation is over all possible m elements in [n] without overlap:

Imn :=
{
1 ≤ i1, i2, . . . , im ≤ n : ij 	= ik if j 	= k

}
.

Such Un is usually referred to as a weighted U-statistic in the literature [36].
We do not assume symmetry of an(·) or hn(·) in their arguments. For notation
simplicity, in the sequel we omit the subscript n in an(·) and hn(·).

Let’s define

θ(i1, . . . , im) := E{h(Xi1 , . . . , Xim)} =

∫
h(y1, . . . , ym)dPi1(y1) . . . dPim(ym)

(2.2)
to be the population mean of h(Xi1 , . . . , Xim). For any l ∈ [m], define πl(·; ·) to
be a function that takes two arguments (a scalar and a vector of length m− 1),
and returns a vector of length m by inserting the first argument into the l-th
position of the second argument. Formally, we define

πl(y; y1, y2, . . . , ym−1) := (y1, . . . , yl−1, y, yl, . . . , ym−1).

We further define

a(l)(i; i1, i2, . . . , im−1) := a{πl(i; i1, i2, . . . , im−1)},
h(l)(x;x1, . . . , xm−1) := h{πl(x;x1, . . . , xm−1)},
θ(l)(i; i1, i2, . . . , im−1) := θ{πl(i; i1, i2, . . . , im−1)}.

Define the first order expansion of h(·) for each Xi, regarding the specific se-
quence Xi1 , . . . , Xim−1 , to be:

h1,i;i1,...,im−1(x) :=

m∑
l=1

a(l)(i; i1, . . . , im−1)
{
f
(l)
i1,...,im−1

(x)− θ(l)(i; i1, . . . , im−1)
}
,
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where

f
(l)
i1,...,im−1

(x) := Ei1,...,im−1{h(l)(x;Y1, . . . , Ym−1)}

=

∫
h(l)(x; y1, . . . , ym−1)dPi1(y1) . . . dPim−1(ym−1). (2.3)

Define the first order expansion of h(·) for Xi to be

h1,i(x) :=
(n−m)!

(n− 1)!

∑
Im−1
n−1 (−i)

h1,i;i1,...,im−1(x), (2.4)

where the summation is over

Im−1
n−1 (−i)

:=
{
1 ≤ i1, . . . , im−1 ≤ n : ij 	= ik if j 	= k, and ij 	= i for all j ∈ [m− 1]

}
.

For l ∈ [m], we write (i1, . . . , im)\il := (i1, . . . , il−1, il+1, . . . , im), and define

h2;i1,...,im(x1, . . . , xm)

:= h(x1, . . . , xm)−
m∑
l=1

f
(l)
(i1,...,im)\il(xl) + (m− 1)θ(i1, . . . , im), (2.5)

where by (2.3) we have

f
(l)
(i1,...,im)\il(x) =

∫
h(y1, . . . , yl−1, x, yl+1, . . . , ym)

dPi1(y1) . . . dPil−1
(yl−1)dPil+1

(yl+1) . . . dPim(ym).

Before presenting the main theorem, we have to introduce more notation on
the weight function a(·). For K, q ∈ Z with K ≥ 2 and 0 ≤ q ≤ m, let (Imn )⊗K

≥q

be the collection of all K-dimensional index vectors from Imn that share at least
q common indices:

(Imn )⊗K
≥q :=

{
(i

(1)
1 , . . . , i(1)m ) ∈ Imn , . . . , (i

(K)
1 , . . . , i(K)

m ) ∈ Imn :

card
( K⋂

k=1

{i(k)1 , . . . , i(k)m }
)
≥ q

}
,

and (Imn )⊗K
=q be the collection of all K-dimensional index vectors from Imn that

share exactly q indices in common:

(Imn )⊗K
=q =

{
(i

(1)
1 , . . . , i(1)m ) ∈ Imn , . . . , (i

(K)
1 , . . . , i(K)

m ) ∈ Imn :

card
( K⋂

k=1

{i(k)1 , . . . , i(k)m }
)
= q

}
.

With fixed K, q,m, it is easy to observe card{(Imn )⊗K
≥q } � card{(Imn )⊗K

=q } as
n → ∞, and
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card{(Imn )⊗K
=q } �

(
n

q

)(
n− q

m− q

)
· · ·

(
n− (K − 1)m− q

m− q

)
� nq+K(m−q).

In particular, we have card{(Imn )⊗2
≥2} � n2m−2, card{(Imn )⊗2

≥1} � n2m−1, and

card{(Imn )⊗3
≥1} � n3m−2. Define the average weight, AK,q(n), as

AK,q(n) :=
1

card{(Imn )⊗K
≥q }

∑
(Im

n )⊗K
≥q

∣∣∣a(i(1)1 , . . . , i(1)m ) · · · a(i(K)
1 , . . . , i(K)

m )
∣∣∣ . (2.6)

The following theorem gives sufficient conditions on the weights and distri-
butions of {Xi} for guaranteeing Un to be asymptotically normal.

Theorem 2.1 (Sufficient condition for asymptotic normality of Un). For each
n, assume there exists a positive constant M(n) > 0 only depending on n such
that

max
(i1,...,im)∈Im

n

E{h(Xi1 , . . . , Xim)4} ≤ M(n). (2.7)

Define V (n) = Var{n−1
∑n

i=1 h1,i(Xi)} with h1,i(·) defined in (2.4). Assume the
following conditions hold:

n−2V (n)−1A2,2(n)M(n)1/2 → 0, (2.8)

n−2V (n)−3/2A3,1(n)M(n)3/4 → 0. (2.9)

Then we have
Var(Un)/V (n) → 1, (2.10)

and

Var(Un)
−1/2{Un − E(Un)} d→ N(0, 1). (2.11)

The first step of the proof, which establishes a von-Mises-expansion type
result, is simple yet inspiring. Of note, under i.i.d. settings, an analogous theorem
has been (inexplicitly) stated in [38].

Lemma 2.2 (Hoeffding’s decomposition). With h1,i(·) and h2;i1,...,im(·) defined
in (2.4) and (2.5), we have

Un − E(Un) =
1

n

n∑
i=1

h1,i(Xi) + Un(a, h2), (2.12)

where

Un(a, h2) :=
(n−m)!

n!

∑
Im
n

a(i1, . . . , im)h2;i1,...,im(Xi1 , . . . , Xim), (2.13)

and for any i, k ∈ [n] and (i1, . . . , im) ∈ Imn ,

E{h1,i(Xi)} = 0, (2.14)

E{h2;i1,...,im(Xi1 , . . . , Xim) | Xk} = 0 a.s.. (2.15)



2644 F. Han and T. Qian

For putting Theorem 2.1 appropriately in the literature, let’s first give a brief
review on the most relevant existing results. The first proof of asymptotic nor-
mality for (unweighted) nondegenerate U-statistics was given in Hoeffding [12].
Grams and Serfling [10] studied general unweighted U-statistics of degree m ≥ 2
and bounded their central moments. The techniques therein also play a central
role in our analysis. [38] and O’Neil and Redner [27] analyzed the asymptotic
behavior of weighted U-statistics of degree 2. They assumed weight function
a(·) symmetric. The above results all assume data i.i.d.-ness. For unweighted
U-statistics, [20] outlined an extension to non-i.i.d. data.

Theorem 2.1 is stronger than the results in the literature, allowing a(·) and
h(·) asymmetric, and the Xi’s non-i.i.d.. By examining the proof, one can also
easily check that, when the corresponding symmetry, boundedness, or i.i.d. as-
sumptions are made, our results can reduce to the ones in Hoeffding [12], [38],
O’Neil and Redner [27], and [20].

Remark 2.3. Condition (2.8) is to enforce domination of n−1
∑n

i=1 h1,i(Xi)
over Un(a, h2) in (2.12). Condition (2.9) evolves from the Lyapunov condition
with δ = 1, which is readily weakened to the condition of a smaller 0 < δ < 1 or
the Lindeberg-Feller condition. Condition (2.7) is made and could be weakened
based on the same argument. For presentation clearness, we choose the current
conditions.

Inferring the distribution of Un or approximating Var(Un) is usually challeng-
ing in practice. Resampling procedures are hence recommended. The rest of this
section gives asymptotic results for Efron’s bootstrap [7] and a new resampling
procedure for approximating Var(Un).

Due to the heterogeneity in Pi, it is well known that bootstrap could possi-
bly no longer be consistent [22]. However, it is still possible to recover bootstrap
consistency by restricting the heterogeneity degree. But before that, let’s first
provide a theoretically interesting theorem. It states that, under very mild con-
ditions, bootstrapped mean from the set {h1,i(Xi) : 1 ≤ i ≤ n} approximates
the distribution of n−1

∑n
i=1 h1,i(Xi) consistently. This is consistent to the dis-

covery in [22] by noting that E{h1,i(Xi)} = 0 no matter how different {Pi}ni=1

are.

Theorem 2.4 (Sufficient condition for bootstrapping main term to work). De-
note

σ2
n := Var(Un). (2.16)

Consider the term n−1
∑n

i=1 h1,i(Xi) with h1,i(Xi) defined in (2.4) and its boot-
strapped version n−1

∑n
i=1{h1,i(Xi)}∗, where conditional on X1, . . . , Xn the

{h1,i(Xi)}∗’s are i.i.d. draws from the empirical distribution of {h1,j(Xj) : 1 ≤
j ≤ n}. Assume (2.7) and (2.9) hold. In addition, assume for every ε > 0, we
have

sup
1≤i≤n

P
{∣∣∣h1,i(Xi)

nσn

∣∣∣ ≥ ε
}
→ 0, (2.17)
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n∑
i=1

[
E
{h1,i(Xi)

nσn
1
(∣∣∣h1,i(Xi)

nσn

∣∣∣ ≤ ε
)}]2

→ 0. (2.18)

Then

sup
t∈R

∣∣∣∣P ∗
{ n∑

i=1

{h1,i(Xi)}∗
nσn

−
n∑

i=1

h1,i(Xi)

nσn
≤ t

}
− P

{ n∑
i=1

h1,i(Xi)

nσn
≤ t

}∣∣∣∣ P→ 0,

(2.19)

where P ∗ denotes the conditional probability given X1, . . . , Xn. If further (2.8)
holds, then

sup
t∈R

∣∣∣∣P ∗
{ n∑

i=1

{h1,i(Xi)}∗
nσn

−
n∑

i=1

h1,i(Xi)

nσn
≤ t

}
− P

{
Var(Un)

−1/2{Un − E(Un)} ≤ t
}∣∣∣∣ P→ 0. (2.20)

Remark 2.5. Equations (2.17) and (2.18) are rather mild constraints. As we
will show in Corollary 3.1, usually they can be directly deduced from the asymp-
totic normality of Un. However, unless we know much about Xi, the form of
h1,i(·) is unknown.

We now focus on bootstrapping the original U-statistic for estimating Var(Un).
The following theorem shows that Efron’s bootstrap still gives consistent vari-
ance estimate for Un under some additional conditions on data heterogeneity.
Although the bootstrap inference validity for U-statistics under i.i.d. assump-
tions has been established (check, for example, [16]), the corresponding one for
non-i.i.d. settings, even for the simplest unweighted U-statistics, is still absent
in the literature. Our manuscript fills this gap.

Theorem 2.6 (Sufficient condition for consistent bootstrap variance estima-
tion). GivenX1, . . . , Xn, letX

∗
1 , . . . , X

∗
n denote the bootstrapped sample, which

are i.i.d. draws from the empirical distribution of X1, . . . , Xn. Define the boot-
strapped U-statistic

U∗
n =

(n−m)!

n!

∑
Im
n

a(i1, . . . , im)h(X∗
i1 , . . . , X

∗
im).

Assume all conditions in Theorem 2.1 are satisfied. Also assume the following
conditions hold:

(i) Bounded second moment of von-Mises type kernel:

lim sup
n→∞

max
1≤i1,...,im≤n

E{h(Xi1 , . . . , Xim)2} < ∞. (2.21)

(ii) Control of heterogeneity in the distributions of Xi:

1

n

n∑
i=1

n∑
j=1

{h1,i(Xj)

nσn

}2 P→ 1, (2.22)
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1

n2

n∑
i=1

{ n∑
j=1

h1,i(Xj)

nσn

}2 P→ 0, (2.23)

and

n−1σ−2
n A2,1(n){M1(n)

2 +M2(n) + n−1} → 0, (2.24)

where

M1(n) = max
(Im

n )⊗2
≥0

|θ(i1, . . . , im)− θ(j1, . . . , jm)|, (2.25)

M2(n) = max
1≤p,q≤m

max
r,s∈(Im

n )⊗2
=1

r∩s=rp=sq

max
k∈Im

n
k∩s=kp=sq

×
∣∣∣E[E{h(Xr1 , . . . , Xrm)h(Xs1 , . . . , Xsm) | Xkp}]

− E[E{h(Xk1 , . . . , Xkm)h(Xs1 , . . . , Xsm) | Xkp}]
∣∣∣. (2.26)

Here we define r := (r1, . . . , rm), and similarly for s,k.

Then we have ∣∣Var∗(σ−1
n U∗

n)−Var(σ−1
n Un)

∣∣ P→ 0, (2.27)

where the operator Var∗(·) denotes the conditional variance given X1, . . . , Xn.

The detailed proof of Theorem 2.6 is very involved and highly combinatorial.
Of note, in the theorem, (2.21) comes from [1], ensuring that the bootstrapped
U-statistic won’t explode. Equations (2.22) and (2.23) ensure that the condi-
tional variance of n−1

∑n
i=1 h1,i(X

∗
i ) approximates Var(Un). Equation (2.24)

ensures that U∗
n(a, h2) is negligible compared to n−1

∑n
i=1 h1,i(X

∗
i ).

Remark 2.7. Although Un(a, h2) in the decomposition (2.12) is degenerate
and hence negligible under the conditions of Theorem 2.1, its bootstrapped
version U∗

n(a, h2) is not necessarily degenerate, because the empirical measure
does not equal the true measure. This makes U∗

n(a, h2) not necessarily negligible
compared to the bootstrapped version of the main term, n−1

∑n
i=1 h1,i(X

∗
i ).

Therefore, bootstrap may fail without careful control on both the main term
and the remainder U∗

n(a, h2). We developed delicate analysis to bound U∗
n(a, h2)

and showed that it is negligible under the constraint (2.24).

Remark 2.8. Condition (2.24) puts homogeneity conditions mainly on the
means. This is consistent to Theorem 2.4 and the discoveries in [22], who showed
that bootstrap is most sensitive to mean differences. To illustrate, assume a(·) ≡
1 and the kernel h(·) to be a bounded function. Assume the assumptions in
Theorem 2.1 hold, so that we have asymptotic normality of Un. Equation (2.9)
requires σ2

n � n−4/3. Therefore, for (2.24) to hold, it is necessary that M1(n)
2 �

n−1/3 and M2(n) � n−1/3. The space to improve our requirements, if existing, is
relatively small. This is by noting that, even for the simplest sample-mean-type
statistics, for most cases, [22] required the mean differences shrink to zero as
n → ∞ for bootstrap consistency.
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An immediate implication of Theorem 2.6 proves the validity of bootstrapping
weighted U-statistics for i.i.d. data.

Corollary 2.1. Assume that X1, . . . , Xn are i.i.d., and that (2.7), (2.8), (2.9),
and (2.21) hold. In addition, assume n−2σ−2

n A2,1(n) → 0. Then (2.22), (2.23),
and (2.24) hold, and we have∣∣Var∗(σ−1

n U∗
n)−Var(σ−1

n Un)
∣∣ P→ 0.

Remark 2.9. The assumption n−2σ−2
n A2,1(n) → 0 is mild. Actually it follows

immediately from (2.8) if we have A2,1(n) � A2,2(n). It is reasonable to expect
A2,1(n) and A2,2(n) to be of similar order because of their definitions in (2.6).
Indeed, for the two applications in Section 3, we have A2,1(n) � A2,2(n) for
UKen
n and A2,1(n) � A2,2(n) � A2,1(n) log n for UAP

n .

In many cases, although the data are in general non-i.i.d., they possess some
locally stationary property [5]. For example, consider the following nonparamet-
ric regression model. Assume Xi ∼ N(μi, 1) with μi = gn(i/n) for i = 1, . . . , n.
If the function gn(·) is smooth enough (e.g., ε(n)-Lipschitz), then, although
|gn(1)−gn(0)| could increase to infinity, the subsample {Xi, Xi+1, . . . , Xi+b−1},
for each i ∈ 1, . . . , n− b+ 1, can be approximately i.i.d..

Adopting this thinking, we consider the following revised resampling proce-
dure whose idea comes from [31] and [2], but is tailored for non-i.i.d. data. This
is also related to the local block bootstrap developed in [29] and [17]. In detail,
for m < b → ∞, we consider the following statistic:

V ∗
n =

1

hn(n− b+ 1)

n−b+1∑
i=1

Var∗(U∗
b,i),

where U∗
b,i :=

(b−m)!

b!

∑
Im
b

a(i1, . . . , im)h(X∗
i1,b,i, . . . , X

∗
im,b,i),

and for each i ∈ [n − b + 1], X∗
i1,b,i

, . . . , X∗
im,b,i are independently drawn from

the empirical distribution of {Xi, . . . , Xi+b−1} with replacement. The tuning
parameter hn regulates the scale.

The following theorem verifies the new resampling procedure’s inference con-
sistency for V ∗

n , showing that the procedure tends to give conservative vari-
ance estimate under non-i.i.d. settings. It also shows that the inference is more
tractable compared to Efron’s bootstrap when we have more prior information
on the heterogeneity degree, reflected in the consistency rate of Un and the
choice of hn. We also refer the readers to Remark 3.4 and discussions therein
for the order of σn in a specific example.

Theorem 2.10. Assume that all conditions in Theorem 2.6 hold for each
“moving block” {Xi, . . . , Xi+b−1} of i ∈ [n − b + 1] as n, b → ∞. Assume
that Var(Ub,i(Xi, . . . , Xi+b−1)) = σ2

b (1 + o(1)) for any i ∈ [n − b + 1], and
σ2
b/σ

2
n = ζn,b · (1 + o(1)) for some ζn,b > 0. We then have

σ−2
n V ∗

n −Var(σ−1
n Un) =

ζn,b
hn

· (1 + oP (1))− 1.
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3. Application

This section explores two specific statistics, the Kendall’s tau (denoted as τKen)
[14] and average-precision (AP) correlation (denoted as τAP) [40]:

τKen =
2

n(n− 1)

∑
i �=j

{1(Xi > Xj)1(i < j) + 1(Xj > Xi)1(j < i)} − 1,

τAP =
2

n− 1

n∑
i=2

∑i−1
j=1 1(Xj > Xi)

i− 1
− 1.

Without loss of generality, we focus on the transformed versions of these two
statistics:

UKen
n =

τKen + 1

4
=

1

n(n− 1)

∑
i �=j

1(j < i)1(Xj > Xi),

UAP
n :=

τAP + 1

2
=

1

n(n− 1)

∑
i �=j

n1(j < i)

i− 1
1(Xj > Xi).

We assume {Pi, i ∈ [n]} to be absolutely continuous with regard to the Lebesgue
measure. Obviously, both UKen

n and UAP
n enjoy the distribution-free property

[15] when the data are i.i.d.. Of note, these two statistics could also be treated
as (weighted) U-statistics of symmetric kernels and weights with non-i.i.d. data
(X1, 1), . . . , (Xn, n). However, we found the following analysis based on X1, . . . ,
Xn much neater, and as will be seen in the proof, non-i.i.d.-ness is the major
obstacle in analysis.

3.1. Asymptotic theory

Note that the statistics UKen
n and UAP

n have the same kernel h(x, y) = 1(y > x).
Using the definition in (2.2), we have θ(i, j) = E{h(Xi, Xj)} = P (Xj > Xi).
The forms of h1,i(·) and h2;i,j(·) for UKen

n and UAP
n are then summarized in the

following two lemmas.

Lemma 3.1 (Hoeffding’s decomposition of UKen
n ). We have

UKen
n − E(UKen

n ) =
1

n

n∑
i=1

hKen
1,i (Xi) +

1

n(n− 1)

∑
i �=j

1(j < i)hKen
2;i,j(Xi, Xj),

where

hKen
1,i (x) =

1

n− 1

n∑
j=1

{1(j < i)− 1(j > i)}{P (Xj > x)− θ(i, j)} (3.1)

and
hKen
2;i,j(x, y) = 1(y > x)− P (Xj > x)− P (y > Xi) + θ(i, j).
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Lemma 3.2 (Hoeffding’s Decomposition of UAP
n ). We have

UAP
n − E(UAP

n ) =
1

n

n∑
i=1

hAP
1,i (Xi) +

1

n(n− 1)

∑
i �=j

n1(j < i)

i− 1
hAP
2;i,j(Xi, Xj),

where

hAP
1,i (x) =

1

n− 1

n∑
j=1

{n1(j < i)

i− 1
− n1(j > i)

j − 1

}
{P (Xj > x)− θ(i, j)}, (3.2)

and
hAP
2;i,j(x, y) = 1(y > x)− P (Xj > x)− P (y > Xi) + θ(i, j).

In (3.2), by convention, we have 0/0 := 0.

The next theorem characterizes sufficient distributional conditions for UKen
n

and UAP
n to be asymptotically normal, allowing for data non-i.i.d.-ness.

Theorem 3.3 (Sufficient conditions for asymptotic normality of UKen
n and

UAP
n ). Assume a sequence {δn ∈ (0, 1)}∞n=1 and a sequence {pn ∈ (0, 1)}∞n=1

such that for any sufficiently large n and for each i ∈ [n], one of the following
two conditions holds:

(i) P{P (Xj > Xi | Xi)− P (Xj > Xi) ∈ [δn, 1], ∀j ∈ [n]\{i}} ≥ pn;
(ii) P{P (Xj > Xi | Xi)− P (Xj > Xi) ∈ [−1,−δn], ∀j ∈ [n]\{i}} ≥ pn.

In addition, if

δ3npn �n−1/3, (3.3)

then UKen
n is asymptotically normal,

Var(UKen
n )−1/2{UKen

n − E(UKen
n )} d→ N(0, 1).

If we have

δ3npn � n−1/3(log n)2, (3.4)

then UAP
n is asymptotically normal,

Var(UAP
n )−1/2{UAP

n − E(UAP
n )} d→ N(0, 1).

The proof of Theorem 3.3 exploits Theorem 2.1. A key step in the proof
is to bound V (n) := n−2

∑
i Var{h1,i(Xi)} from below. The magnitude of

Var{h1,i(Xi)} varies greatly with different i, making it a challenging task to
bound the entire summation. To tackle this, we break V (n) into summations
over multiple subsets of [n]. Within each of these summations, the magnitude of
Var{h1,i(Xi)} is stable. Then we develop bounds on the summations for i with
large Var{h1,i(Xi)}.

The sequences {δn} and {pn} in Conditions (i) and (ii) of Theorem 3.3 char-
acterize the heterogeneity degree among the Pi’s. If all Pi’s are identical, it is
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easy to check that there exist absolute constants δn and pn not depending on n
such that Condition (i) or (ii) holds. Equations (3.3) and (3.4) allow δn and pn
to decay to zero as n → ∞. The legitimate decaying rate of δ3npn depends on
the average weight of each of the two statistics. The conditions for asymptotic
normality of UAP

n (3.4) are slightly stronger than that for UKen
n (3.3), because

for UAP
n the weight is much more skewed.

Remark 3.4. In the literature about Kendall’s tau, the classical result gives
root-n convergence rate [35]. Theorem 3.3 gives a more general result regarding
the convergence rate due to the non-i.i.d.-ness of {X1, . . . , Xn}. In the proof of
Theorem 3.3, we show that the Var(UKen

n ) � n−1δ3npn. As we vary the distribu-
tion of Xi from i.i.d. to the more heterogeneous ones, δ3npn changes from O(1)
to O(n−1/3+ε) for some small ε > 0. Therefore, the upper bound on the order
of Var(UKen

n )−1/2 can vary from n1/2 to n2/3−ε/2.

Motivated by the studies in [40], in the sequel we consider the following
specific location-scale model. In particular, given two sets of real values μi with
μ1 ≥ μ2 ≥ . . . ≥ μn and σ2

1 , . . . , σ
2
n > 0, let’s consider absolute continuous

(with respect to Lebesgue measure) probability distribution Pi with mean μi

and variance σ2
i for i ∈ [n]. Assume X1, . . . , Xn are independent draws from

P1, . . . , Pn. The following theorem characterizes the explicit sufficient conditions
on {(μi, σi), i ∈ [n]} for Kendall’s tau and AP correlation to be asymptotically
normal.

Theorem 3.5 (Sufficient condition for asymptotic normality of UKen
n and UAP

n

under two tail conditions). For each i ∈ [n], assume Xi follows distribution Pi

with mean μi and variance σ2
i . Define

rij := (μi − μj)/σi, Rn := max
1≤i �=j≤n

|rij |, ρij := σi/σj , and ρn := max
1≤i �=j≤n

ρij .

For n, i, j such that 1 ≤ i 	= j ≤ n, define

F c
j (t) = P

(Xj − μj

σj
> t

)
and F c

ji(t) = P
{Xj −Xi − (μj − μi)

(σ2
i + σ2

j )
1/2

> t
}
. (3.5)

Then the following results hold.

(i) Assume there exist absolute constants c1, c2 > 0, b1 > b2 > 0, and t0 > 0,
such that for any n, i, j with 1 ≤ i 	= j ≤ n and for any t ≥ t0,

c1t
−b1 ≤ F c

j (t) ≤ c2t
−b2 , (3.6)

c1t
−b1 ≤ F c

ji(t) ≤ c2t
−b2 . (3.7)

Then the sufficient condition for asymptotic normality of UKen
n is

R
(3b1b2+b21)/b2
n ρb1n � n1/3, (3.8)

and the sufficient condition for asymptotic normality of UAP
n is

R
(3b1b2+b21)/b2
n ρb1n � n1/3(logn)−2. (3.9)
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(ii) Assume there exist absolute constants c1, c2 > 0, b1 > b2 > 0, and t0 > 0,
such that for any n, i, j with 1 ≤ i 	= j ≤ n and for any t ≥ t0,

c1 exp(−b1t
λ) ≤ F c

j (t) ≤ c2 exp(−b2t
λ), (3.10)

c1 exp(−b1t
λ) ≤ F c

ji(t) ≤ c2 exp(−b2t
λ). (3.11)

Then the sufficient condition for asymptotic normality of UKen
n is

3b1R
λ
n + b1(Rn +K3ρn +K4ρnRn)

λ �
1

3
logn, (3.12)

and the sufficient condition for asymptotic normality of UAP
n is

3b1R
λ
n + b1(Rn +K3ρn +K4ρnRn)

λ �
1

3
logn− 2 log logn, (3.13)

where

K3 := t0 +
(
− 1

b2
log

c1
2c2

+
b1
b2
tλ0

)1/λ

+ ξ(λ−1)
(
− 1

b2
log

c1
2c2

)1/λ

,

K4 := ξ(λ−1)
(b1
b2

)1/λ

, (3.14)

and ξ(p) := 1(p ≤ 1) + 2p−11(p > 1).

Remark 3.6. It is worth noting that distributions satisfying (3.6) in Theorem
3.5(i) are commonly referred to as “heavy-tailed” distributions, whereas distri-
butions satisfying (3.10) in Theorem 3.5(ii) are considered to be “light-tailed”
[26, 33].

We compare Condition (3.8) in (i) and Condition (3.12) in (ii) for UKen
n .

Assume σi = 1 for all i ∈ [n]. In this case, we have ρn = 1, and Rn =
max1≤i �=j≤n |μi−μj | becomes the spread of the means. Equation (3.8) becomes

Rn � n
b2

3(3b1b2+b21) . (3.15)

Equation (3.12) becomes

3b1R
λ
n + b1(Rn +K3 +K4Rn)

λ �
1

3
logn. (3.16)

Lemma C.9 in Appendix yields (Rn+K3+K4Rn)
λ ≤ ξ(λ)(1+K4)

λRλ
n+ξ(λ)Kλ

3 .
So for (3.16) to hold, it suffices to have ξ(λ)(1 +K4)

λRλ
n + 3b1R

λ
n � (log n)/3.

Rearranging terms, we obtain a sufficient condition for (3.16) to hold:

Rn �
[ logn

3b1{3 + ξ(λ)(1 +K4)λ}
]1/λ

. (3.17)

For heavy-tailed distributions in (i), (3.15) implies that the spread of means
should not grow faster than a polynomial of n. For light-tailed distributions in
(ii), (3.17) implies that the spread of means should not grow faster than the
logarithm of n (up to some constant scaling factor). Of note, under both tail
conditions, Rn is allowed to increase to infinity at proper rates.
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Example 3.1. A special distribution satisfying the conditions in Theorem
3.5(ii) is the Gaussian. Again, consider UKen

n and assume σi = 1 for all i ∈ [n].
Note in this case F c

j (·) is the survival function for Gaussian with variance
1, whereas F c

ji(·) is for Gaussian with variance 2. Let λ = 2, b1 = 1/2 + ε,
b2 = 1/4 − ε for arbitrarily small ε > 0, and c1, c2, t0 be properly chosen con-
stants (whose value does not affect the rate in (3.17)). Equations (3.6) and (3.7)
are satisfied due to Lemma C.11. It then follows from (3.17) that

Rn �
( 2 logn

27 + 12
√
2

)1/2

is sufficient for UKen
n to be asymptotically normal.

Remark 3.7. We comment on a modified version of Theorem 3.5(i), with a
condition alternative to (3.6) (A similar modification applies to Theorem 3.5(ii)).
In detail, define Fj(t) = P{(Xj−μj)/σj ≤ t} to be the standardized cumulative
distribution function that is complement to the survival function F c

j (t). The
conclusion in Theorem 3.5(i) still holds if we replace the condition (3.6) by

c1t
−b1 ≤ Fj(−t) ≤ c2t

−b2 . (3.18)

For comparison, (3.6) regulates the upper-tail behavior of Xj , whereas (3.18)
regulates the lower-tail of Xj . Technically speaking, the proof of Theorem 3.5(i)
examines Condition (ii) in Theorem 3.5, whereas the alternative version exam-
ines Condition (i) in Theorem 3.5. Note that (3.7) is required in both versions,
and regulates both the upper- and lower-tail behaviors of Xj −Xi.

The following three corollaries give asymptotic results for bootstrapping UKen
n

and UAP
n . The first of them states that bootstrapping the main term is very

insensitive to data non-i.i.d.-ness. This is as expected by the results in [22].

Corollary 3.1 (Bootstrap of main term works for UKen
n and UAP

n ). If (3.3)
holds, we have that (2.17) and (2.18) hold for hKen

1,i . If (3.4) holds, we have that

(2.17) and (2.18) hold for hAP
1,i .

As has been shown in Section 2, bootstrapping the whole U-statistic requires
much stronger assumptions for guaranteeing its consistency. The following two
corollaries provide sufficient conditions for bootstrap inference validity of the
two considered U-statistics.

Corollary 3.2 (Sufficient condition for consistent bootstrap variance estima-
tion of UKen

n ). Assume (3.3) holds. Assume there exist θ > 0 and an absolute
constant C > 0 such that for all (i, j) ∈ I2n,

|P (Xi > Xj)− θ| ≤ Cn−1/6. (3.19)

In addition, assume there exist η2 > 0 and an absolute constant C > 0 such
that for all i ∈ [n] and all 1 ≤ j, k ≤ n such that j 	= i and k 	= i,

|E{P (Xj > Xi | Xi)P (Xk > Xi | Xi)} − η2| ≤ Cn−1/3. (3.20)
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Assume η2 	= θ2. Then we have

|Var∗(σ−1
n UKen∗

n )−Var(σ−1
n UKen

n )| P→ 0.

Corollary 3.3 (Sufficient condition for consistent bootstrap variance estimation
of UAP

n ). Assume (3.4) holds. Assume there exist θ > 0 and an absolute constant
C > 0 such that for all (i, j) ∈ I2n,

|P (Xi > Xj)− θ| ≤ Cn−1/6 logn. (3.21)

In addition, assume there exist η2 > 0 and an absolute constant C > 0 such
that for all 1 ≤ i ≤ n and all 1 ≤ j, k ≤ n such that j 	= i and k 	= i,

|E{P (Xj > Xi | Xi)P (Xk > Xi | Xi)} − η2| ≤ Cn−1/3(log n)2. (3.22)

Assume η2 	= θ2. Then we have

|Var∗(σ−1
n UAP∗

n )−Var(σ−1
n UAP

n )| P→ 0.

In the proof of Corollaries 3.2 and 3.3, for verifying (2.22), we exploit the weak
law of large numbers for independent but not identically distributed variables.
For verifying (2.23), we break the left-hand side into the sum of an unweighted
U-statistic and a negligible term, and apply the law of large numbers for un-
weighted U-statistics.

Remark 3.8. The condition η2 	= θ2 in Corollaries 3.2 and 3.3 is mild. Under
the i.i.d. case, it essentially requires that the Xi’s are not degenerate random
variables. To see this, let θ := P (X1 > X2) and η2 := E{P (X1 > X2 | X1)

2}.
Since the Xi’s are i.i.d., it follows that

|P (Xi > Xj)− θ| = 0 and |E{P (Xj > Xi | Xi)P (Xk > Xi | Xi)} − η2| = 0.

Jensen’s inequality implies that η2 ≥ θ2, with equality only if Xi is a degenerate
random variable.

3.2. Numerical experiments

In this section, we evaluate the developed theory and examine the finite sample
behavior of Kendall’s tau and AP correlation via synthetic data analysis. Both
central limit theorem and bootstrap inference validity are examined under dif-
ferent data heterogeneity degree. The numerical results show that central limit
theorem holds under relatively weaker data homogeneity requirement, whereas
bootstrap variance estimation is much more sensitive to data heterogeneity.
These observations agree with the theory developed in this manuscript.

In the first simulation study, we examine the validity of central limit theorem
for Kendall’s tau and AP correlation. We consider generating the data from
Gaussian distribution and t-distribution. For Gaussian distribution, each time,
we generate the data sequence X1, . . . , Xn with Xi ∼ N(θi, 1) for i ∈ [n].
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The means {θi, i ∈ [n]} are assigned equally spaced between Rn and 0, with
Rn = max |θi−θj | representing the heterogeneity degree, taking values 0, 10, 30,
and 50. For t-distribution, we generate X1, . . . , Xn with Xi follows noncentral
t-distribution with noncentrality parameter θi and 5 degrees of freedom. The
noncentrality parameters {θi, i ∈ [n]} are assigned equally spaced between Rn

and 0, and Rn takes values 0, 8, 25, and 42. We choose these Rn, so that
the difference between the means of X1 and Xn are similar under Gaussian
distribution and under t-distribution. We consider the sample size n being 50,
100, 200, and 500.

Under each setting, we repeat the simulation for 50,000 times. We use two
goodness-of-fit tests to examine the normality of the considered statistics:
Cramer-von Mises test (CvM) and Lilliefors test (L). Both tests are imple-
mented in the R package “Rnortest”, and we refer the readers to Thode [39]
for detailed descriptions on these tests. We also calculate the coverage proba-
bility for confidence intervals of nominal level 80% and 95% based on Gaussian
approximation.

Table 1 presents the p-values of two tests for normality and the coverage
probabilities, when the data are generated from Gaussian distribution. For both
statistics, with large sample size (n = 500) normality is plausible for Rn up to
50, as both tests fail to reject at significance level 0.05. Test rejection occurs as
sample size decreases. In terms of confidence interval, for sample size as small
as n = 50, the coverage probabilities are all close to the nominal level even for
large Rn. Note that with Rn = 50 the 95% confidence interval for UAP

n becomes
slightly conservative, especially with smaller sample size.

Table 2 presents the p-values and the coverage probabilities when the data
follow noncentral t-distribution. The trend is similar to that of Table 1, while by
comparison, we observed that the statistics are more robust to location shifts for
the heavy-tailed t-distribution as compared to Gaussian distribution, supporting
our theoretical discoveries.

In the second simulation study, we examine the bootstrap variance estima-
tion consistency and present the results in Tables 3–6. We consider the following
three approaches: (i) bootstrapping the original U-statistic as in Theorem 2.6,
termed as “Efron” in the tables; (ii) bootstrapping the main term of the U-
statistic as in Theorem 2.4, termed as “Efron-main term” in the tables; (iii)
the new resampling strategy as in Theorem 2.10, termed as “moving-block” in
the tables. Among them, the “Efron-main term” bootstrap is not of practical
use because it requires knowledge of h1i(Xi), which depends on the probability
distribution of Xi. We include it for theoretical purpose in order to validate
Theorem 2.4. Similar to the first simulation study, we generate the data from
Gaussian distribution and t-distribution. For Gaussian distribution, we sim-
ulate Xi ∼ N(θi, 1). For t-distribution, we simulate Xi following noncentral
t-distribution with noncentrality parameter θi and 5 degrees of freedom. For
both distributions, parameters {θi, i ∈ [n]} are assigned equally spaced between
Rn and 0, and the degree of heterogeneity Rn is set to be 0, 1, 2, and 3. We
consider the sample size n being 50, 100, 200, and 500. We set the number of
bootstrap replicates within each simulation to be 2,000 in bootstrap approaches
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Table 1. Asymptotic normality of UKen
n and UAP

n when Xi follows Gaussian distribution.

Rn = 0 Rn = 10 Rn = 30 Rn = 50

p-value cov.prob.(%) p-value cov.prob.(%) p-value cov.prob.(%) p-value cov.prob.(%)

statistic n CvM L 80% 95% CvM L 80% 95% CvM L 80% 95% CvM L 80% 95%

50 0.11 0.05 79.5 95.1 0.00 0.00 79.7 95.1 0.00 0.00 82.1 94.1 0.00 0.00 79.4 95.0
100 0.10 0.09 79.9 95.0 0.00 0.00 80.1 95.0 0.00 0.00 80.0 94.9 0.00 0.00 81.3 95.0
200 0.78 0.67 80.1 95.1 0.61 0.43 80.1 95.1 0.02 0.01 79.9 94.9 0.02 0.00 80.1 95.0

UKen
n

500 0.92 0.68 80.2 94.9 0.09 0.10 80.3 95.0 0.32 0.21 80.1 95.0 0.33 0.26 79.9 95.0

50 0.37 0.63 80.0 95.0 0.00 0.01 79.8 95.2 0.00 0.00 79.6 95.8 0.00 0.00 81.1 96.0
100 0.23 0.12 79.9 95.0 0.02 0.04 79.9 95.1 0.00 0.00 79.9 95.2 0.00 0.00 79.7 95.5
200 0.02 0.07 79.9 95.0 0.71 0.54 80.0 95.0 0.01 0.08 79.8 95.1 0.01 0.09 79.7 95.3

UAP
n

500 0.88 0.87 79.9 94.9 0.69 0.67 79.8 95.1 0.19 0.23 80.1 95.1 0.06 0.09 79.9 95.0
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Table 2. Asymptotic normality of UKen
n and UAP

n when Xi follows t-distribution.

Rn = 0 Rn = 8 Rn = 25 Rn = 42

p-value cov.prob.(%) p-value cov.prob.(%) p-value cov.prob.(%) p-value cov.prob.(%)

statistic n CvM L 80% 95% CvM L 80% 95% CvM L 80% 95% CvM L 80% 95%

50 0.29 0.06 79.6 95.1 0.00 0.00 79.9 95.2 0.00 0.00 80.6 95.2 0.00 0.00 80.7 95.1
100 0.06 0.09 80.0 95.0 0.00 0.00 80.0 95.1 0.00 0.00 80.1 95.1 0.00 0.00 79.9 95.1
200 0.64 0.36 80.0 94.9 0.01 0.06 80.0 95.1 0.00 0.00 80.1 95.1 0.00 0.00 80.2 95.0

UKen
n

500 0.62 0.59 80.0 95.0 0.20 0.33 80.0 95.0 0.75 0.88 80.0 95.0 0.51 0.44 80.0 95.0

50 0.72 0.39 79.9 95.0 0.33 0.32 80.1 95.0 0.00 0.00 80.1 95.1 0.00 0.00 80.1 95.1
100 0.08 0.11 80.0 95.1 0.02 0.04 80.0 95.0 0.03 0.08 80.1 95.0 0.03 0.02 80.1 95.0
200 0.74 0.62 79.8 95.1 0.01 0.11 80.0 94.9 0.00 0.03 80.2 95.0 0.00 0.01 80.2 95.0

UAP
n

500 0.53 0.75 80.1 94.8 0.54 0.62 79.9 95.1 0.29 0.35 80.1 95.1 0.16 0.36 79.9 95.1
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Table 3. Bootstrap variance estimation validity for UKen
n when Xi follows Gaussian distribution.

Rn = 0 Rn = 1 Rn = 2 Rn = 3

cov.prob.(%) cov.prob.(%) cov.prob.(%) cov.prob.(%)

bootstrap method n bias 80% 95% bias 80% 95% bias 80% 95% bias 80% 95%

50 0.02 79.5 95.0 -0.10 82.1 95.9 -0.49 88.4 98.1 -1.25 94.6 99.7
100 -0.02 80.8 95.2 -0.13 83.0 96.1 -0.51 88.8 98.3 -1.23 94.7 99.5
200 -0.02 80.6 95.1 -0.14 83.2 96.4 -0.55 89.0 98.8 -1.31 95.0 99.6

Efron

500 -0.01 79.9 95.4 -0.13 82.7 96.3 -0.52 88.9 98.5 -1.28 94.5 99.7

50 0.06 78.1 93.6 0.07 77.9 93.4 0.07 77.5 93.1 0.07 77.0 92.3
100 0.00 80.1 94.6 0.02 79.0 94.1 0.03 78.8 93.7 0.05 78.6 93.4
200 0.00 79.9 94.8 -0.01 80.3 94.8 -0.01 80.3 94.8 -0.01 80.0 94.8

Efron-main term

500 -0.01 79.7 95.4 -0.01 80.0 95.0 0.00 79.9 94.9 0.00 79.8 94.6

50 -0.28 85.4 97.3 -0.42 87.9 98.1 -0.93 92.8 99.2 -1.92 97.1 99.9
100 -0.17 83.5 96.6 -0.29 85.7 97.3 -0.73 90.7 99.0 -1.55 96.2 99.7
200 -0.09 82.1 95.8 -0.22 84.5 97.0 -0.66 90.1 99.0 -1.48 95.8 99.7

moving-block

500 -0.04 80.4 95.6 -0.16 83.3 96.6 -0.57 89.2 98.6 -1.34 94.9 99.7
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Table 4. Bootstrap variance estimation validity for UAP
n when Xi follows Gaussian distribution.

Rn = 0 Rn = 1 Rn = 2 Rn = 3

cov.prob.(%) cov.prob.(%) cov.prob.(%) cov.prob.(%)

bootstrap method n bias 80% 95% bias 80% 95% bias 80% 95% bias 80% 95%

50 0.01 79.6 94.9 -0.05 80.5 95.5 -0.25 84.9 97.3 -0.53 89.0 98.5
100 -0.03 80.6 95.5 -0.09 81.9 95.9 -0.29 85.6 97.3 -0.59 89.7 98.5
200 -0.02 81.1 95.0 -0.09 82.6 95.5 -0.30 85.9 97.2 -0.62 89.7 98.8

Efron

500 -0.02 80.5 96.0 -0.09 81.9 96.0 -0.30 85.6 97.3 -0.61 89.9 98.6

50 0.10 76.2 93.3 0.12 75.8 92.9 0.13 75.4 92.7 0.14 74.7 92.2
100 0.04 79.0 94.2 0.04 78.3 94.5 0.05 77.7 93.9 0.07 76.6 93.6
200 0.02 79.7 94.9 0.01 80.1 94.7 0.02 79.7 94.7 0.02 78.8 94.8

Efron-main term

500 0.00 79.8 95.4 0.00 79.7 95.1 0.01 79.8 95.0 0.01 79.4 94.7

50 -0.49 88.5 98.4 -0.58 89.5 98.8 -0.87 91.8 99.3 -1.30 94.6 99.7
100 -0.33 86.0 97.5 -0.42 87.2 97.9 -0.68 90.6 98.8 -1.06 93.5 99.4
200 -0.19 84.1 96.8 -0.28 85.9 97.2 -0.53 88.6 98.3 -0.90 92.3 99.4

moving-block

500 -0.11 82.3 96.6 -0.18 83.6 97.0 -0.41 87.2 97.8 -0.75 91.6 99.0
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Table 5. Bootstrap variance estimation validity for UKen
n when Xi follows t-distribution.

Rn = 0 Rn = 1 Rn = 2 Rn = 3

cov.prob.(%) cov.prob.(%) cov.prob.(%) cov.prob.(%)

bootstrap method n bias 80% 95% bias 80% 95% bias 80% 95% bias 80% 95%

50 0.03 79.5 94.5 -0.08 81.3 96.2 -0.40 87.0 98.0 -0.88 91.9 99.2
100 -0.02 80.1 95.1 -0.13 82.9 96.3 -0.46 88.1 98.3 -0.97 93.0 99.4
200 0.03 79.2 94.6 -0.09 82.2 96.0 -0.42 87.1 98.2 -0.91 92.3 99.3

Efron

500 0.01 79.8 94.7 -0.09 81.2 95.9 -0.40 86.9 97.8 -0.89 92.0 99.3

50 0.08 77.5 93.1 0.08 76.4 93.5 0.09 76.8 92.4 0.09 77.2 91.7
100 0.01 79.1 94.6 0.01 79.5 94.7 0.01 78.5 94.6 0.01 79.2 94.2
200 0.04 78.8 94.3 0.03 79.4 94.3 0.03 79.3 94.2 0.02 79.3 94.2

Efron-main term

500 0.02 79.2 94.7 0.03 78.7 94.4 0.03 79.0 94.1 0.02 79.5 94.6

50 -0.26 85.1 97.1 -0.40 87.0 98.2 -0.81 91.5 99.0 -1.44 95.7 99.6
100 -0.17 83.5 96.6 -0.30 85.7 97.4 -0.67 90.5 98.9 -1.25 94.8 99.6
200 -0.04 80.8 95.4 -0.17 83.7 96.8 -0.52 88.5 98.6 -1.05 93.3 99.4

moving-block

500 -0.02 80.2 95.0 -0.12 81.9 96.1 -0.44 87.4 98.1 -0.94 92.6 99.3
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Table 6. Bootstrap variance estimation validity for UAP
n when Xi follows t-distribution.

Rn = 0 Rn = 1 Rn = 2 Rn = 3

cov.prob.(%) cov.prob.(%) cov.prob.(%) cov.prob.(%)

bootstrap method n bias 80% 95% bias 80% 95% bias 80% 95% bias 80% 95%

50 0.02 79.2 95.1 -0.05 80.6 95.8 -0.21 84.0 96.8 -0.43 87.3 98.2
100 0.01 79.8 94.7 -0.04 81.1 95.2 -0.20 84.2 96.7 -0.41 86.6 98.1
200 0.02 79.7 94.7 -0.05 81.0 95.4 -0.22 84.1 97.0 -0.44 87.7 98.1

Efron

500 -0.01 80.0 94.6 -0.07 81.0 95.7 -0.24 84.3 97.0 -0.47 87.7 98.2

50 0.11 75.7 93.1 0.11 75.5 93.4 0.13 75.0 92.9 0.13 75.4 92.8
100 0.07 77.9 94.2 0.07 77.7 94.3 0.08 77.0 93.9 0.08 77.0 94.1
200 0.05 78.6 94.0 0.05 78.8 94.1 0.05 78.2 94.2 0.05 78.3 94.5

Efron-main term

500 0.01 79.4 94.6 0.01 79.3 94.7 0.02 79.1 94.6 0.00 79.3 94.7

50 -0.48 88.3 98.3 -0.58 89.4 98.7 -0.81 91.6 99.3 -1.14 93.8 99.7
100 -0.28 85.4 97.5 -0.35 86.8 97.8 -0.56 89.1 98.6 -0.83 91.7 99.3
200 -0.15 83.1 96.3 -0.23 84.3 97.0 -0.43 87.0 98.2 -0.69 90.6 98.8

moving-block

500 -0.09 81.5 95.8 -0.16 83.3 96.3 -0.34 85.7 97.6 -0.59 89.3 98.6
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(i) and (ii), 200 for each block in bootstrap approach (iii), and the block-size in
(iii) to be n/5.

Under each setting, we repeat the simulation for 50,000 times. In the “bias”
column of each table, we present the relative bias of the bootstrap variance es-
timators, where the relative bias is defined as {Var(Un) − V̂ar(Un)}/Var(Un).
Relative bias being positive/negative means that the bootstrap method tends to
underestimate/overestimate the variance. We also compute the coverage proba-
bility for confidence intervals of nominal level 80% and 95% based on Gaussian
approximation and the estimated variance.

Table 3 shows the performance of three bootstrap variance estimators for
UKen
n when Xi follows Gaussian distribution. When there is no heterogeneity

in the data (Rn = 0), all three bootstrap methods consistently estimates the
variance, with close to zero bias and close to nominal level confidence interval
coverage. As the distribution of Xi becomes more heterogeneous (larger Rn),
bootstrapping the main-term still estimates the variance consistently, whereas
Efron’s bootstrap and the moving-block bootstrap tend to overestimates the
variance, resulting in negative relative bias and larger than nominal confidence
interval coverage. This is as expected due to Corollary 3.1 and Corollary 3.2.
Table 4 gives the bootstrap performance for UAP

n when Xi follows Gaussian
distribution, and the trend is similar to UKen

n . A comparison between Table 3
and Table 4 shows that the finite sample performance of all three bootstrap
methods is better for UAP

n than for UKen
n . This is consistent with our theoretical

findings in Corollary 3.2 and Corollary 3.3. Tables 5 and 6 present the results for
both statistics when Xi follows t-distribution. The trends there are similar to
the Gaussian case, and by comparison, the statistics are more robust to location
shifts for t-distribution, supporting our theorems.

Comparing the first and the second simulation studies, we see that the central
limit theorem for our considered statistics holds under much weaker homogene-
ity conditions than the resampling procedures. This is as expected due to the
theory developed in Section 3.1. We also see that central limit theorem holds
approximately with sample size as small as n = 50, whereas bootstrap variance
estimation requires much larger sample size to have decent performance.

4. Discussion

One of the main focus of this manuscript is the consistency of bootstrap vari-
ance estimator for U-statistics under data heterogeneity. The proof is based on
brutal combinatorial calculation. This cannot be readily extended to analyz-
ing bootstrap distributional consistency. We believe using techniques developed
by [25] and [11], it is promising to devise the corresponding bootstrap distri-
butional consistency theory. However, there are still some challenges and open
problems to be resolved before rigorous distributional consistency theory can be
established. Details will be worked out in a future work.

We have considered U-statistics with data that are independent but not iden-
tically distributed. In the literature, there have been many developments of
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bootstrap methods for stationary time series since the seminal work of block
bootstrap methods by [18]. See, for example, [30], [19], and [31]. Among the
few developments for nonstationary time series, [8] showed that block boot-
strap is robust for linear regression estimation, and [9] established the consis-
tency for block bootstrap variance estimator of sample means. To the best of
knowledge, there is no work on bootstrapping U-statistics in the nonstationary
time-series setting. It would be interesting to extend our current techniques in
this manuscript to allow for dependent data. We believe our technique and the
techniques used in the bootstrapping time-series literature (e.g., [3], [28], and
[37]) can be potentially combined for analyzing bootstrapping U-statistics for
nonstationary time series data. However, the analysis will become even more
challenging technically, and will be left for future research.

Appendix A: Proofs of main results

In this section, we prove theoretical results presented in the manuscript. The
results are proved in the order they appear in the manuscript. For succinctness,
the supporting lemmas that appear in the proof are proven in Section B. In
those proof, sometimes we also have to refer to certain auxiliary results. Those
are numbered by C.

A.1. Proof of Theorem 2.1

Proof. By Lemma 2.2, we have{
Var(Un)

V (n)

}1/2
Un − E(Un)

Var(Un)1/2
=

n−1
∑n

i=1 h1,i(Xi)

V (n)1/2
+

Un(a, h2)

V (n)1/2
. (A.1)

For proving Theorem 2.1, by Slutsky’s theorem it suffices to establish the fol-
lowing results:

V (n)−1/2n−1
n∑

i=1

h1,i(Xi)
d→ N(0, 1), (A.2)

V (n)−1/2Un(a, h2)
P→ 0, (A.3)

and
Var(Un)/V (n) → 1. (A.4)

First we show (A.2) using Lyapunov’s Central Limit Theorem (Lemma C.4).
The following lemma gives bound on

∑n
i=1 E|h1,i(Xi)|3.

Lemma A.1. For A3,1(n) defined in (2.6) and M(n) defined in (2.7), we have

n∑
i=1

E|h1,i(Xi)|3 ≤ CnA3,1(n)M(n)3/4,

where C is some absolute constant.
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By Lemma A.1 and the fact that E{h1,i(Xi)} = 0, we deduce

n∑
i=1

E|h1,i(Xi)− E{h1,i(Xi)}|3 ≤ CnA3,1(n)M(n)3/4. (A.5)

Since V (n) := n−2
∑n

i=1 Var{h1,i(Xi)}, it follows from (A.5) and (2.9) that∑n
i=1 E|h1,i(Xi)− E{h1,i(Xi)}|3[∑n

i=1 E|h1,i(Xi)− E{h1,i(Xi)}|2
]3/2 ≤ CnA3,1(n)M(n)3/4

n3V (n)3/2
→ 0. (A.6)

Equation (A.6) and Lemma C.4 with δ = 1 yield (A.2).

Next we show (A.3). To simplify notation, let i denote the index vector
(i1, . . . , im) and Xi denote (Xi1 , . . . , Xim). Consider two index vectors i, j from
Imn . If i∩j = ∅, by independence of the Xi’s we have Cov{h2;i(Xi), h2;j(Xj)} =
0. If i ∩ j = ip = jq for some p, q ∈ [n] (i.e., the two vectors only share one
common index), Lemma C.2 and (2.15) imply that

Cov{h2;i(Xi), h2;j(Xj)} = Cov[E{h2;i(Xi) | Xip}, E{h2;j(Xj) | Xjq}] = 0.

Therefore, we have

Var{Un(a, h2)} =
{ (n−m)!

n!

}2 ∑
i,j∈(Im

n )⊗2
≥2

a(i)a(j)Cov{h2;i(Xi), h2;j(Xj)}.

(A.7)

By Lemma C.1(i) and Cauchy-Schwarz inequality, the right-hand side of (A.7) is
bounded by Cn−2A2,2(n)M(n)1/2 for some absolute constant C, where A2,2(n)
is defined in (2.6). This combined with (2.8) yields that

V (n)−1Var{Un(a, h2)} ≤ CV (n)−1n−2A2,2(n)M(n) → 0. (A.8)

Equation (A.3) follows from (A.8) and Lemma C.3.

Lastly, we establish (A.4). Taking variance on both sides of (A.1) gives

Var(Un)

V (n)
= 1 +

Var{Un(a, h2)}
V (n)

+ Cov
{∑n

i=1 h1,i(Xi)

nV (n)1/2
,
Un(a, h2)

V (n)1/2

}
= 1 +

Var{Un(a, h2)}
V (n)

(A.9)

Equations (A.8) and (A.9) imply that

Var(Un)/V (n) → 1.

This completes the proof.
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A.2. Proof of Lemma 2.2

Proof. We have

Un−E(Un) =

n∑
i=1

{E(Un | Xi)−E(Un)}+Un−E(Un)−
n∑

i=1

{E(Un | Xi)−E(Un)}.

For proving Lemma 2.2, it suffices to show

n∑
i=1

{E(Un | Xi)− E(Un)} =
1

n

n∑
i=1

h1,i(Xi) (A.10)

and

Un − E(Un)−
n∑

i=1

{E(Un | Xi)− E(Un)}

=
(n−m)!

n!

∑
Im
n

a(i1, . . . , im)h2;i1,...,im(Xi1 , . . . , Xim), (A.11)

where h1,i(·) and h2;i1,...,im(·) are defined in (2.14) and (2.15), respectively.
First we establish (A.10). We have

E(Un | Xi)− E(Un)

=
(n−m)!

n!

∑
Im
n

a(i1, . . . , im)
[
E{h(Xi1 , . . . , Xim) | Xi} − θ(i1, . . . , im)

]
.

(A.12)

Consider a fixed i ∈ [n] and fixed (i1, . . . , im) ∈ Imn . If i /∈ {i1, . . . , im},

E{h(Xi1 , . . . , Xim) | Xi} − θ(i1, . . . , im) = 0 a.s..

It follows that∑
Im
n

a(i1, . . . , im)
[
E{h(Xi1 , . . . , Xim) | Xi} − θ(i1, . . . , im)

]
=

∑
Im−1
n−1 (−i)

a(i, i1, . . . , im−1)
[
E{h(Xi, Xi1, . . . , Xim−1) | Xi} − θ(i, i1, . . . , im−1)

]
+

∑
Im−1
n−1 (−i)

a(i1, i, i2, . . . , im−1)

×
[
E{h(Xi1 , Xi, Xi2 , . . . , Xim−1) | Xi} − θ(i1, i, i2, . . . , im−1)

]
+ · · ·
+

∑
Im−1
n−1 (−i)

a(i1, . . . , im−1, i)

×
[
E{h(Xi1, . . . , Xim−1 , Xi) | Xi} − θ(i1, . . . , im−1, i)

]
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=
∑

Im−1
n−1 (−i)

m∑
l=1

a(l)(i; i1, . . . , im−1)

×
[
E{h(l)(Xi;Xi1 , . . . , Xim−1) | Xi} − θ(l)(i; i1, . . . , im−1)

]
. (A.13)

By the definition of h1,i(·), (A.13) equals {(n−1)!/(n−m)!}h1,i(Xi). Combining
this with (A.12) yields (A.10).

Next we establish (A.11). The following lemma shows that
∑n

i=1{E(Un |
Xi)− E(Un)} is a U-statistic.

Lemma A.2. We have
m∑
l=1

n∑
i=1

∑
Im−1
n−1 (−i)

a(l)(i; i1, . . . , im−1)

×
[
E{h(l)(Xi;Xi1 , . . . , Xim−1) | Xi} − θ(l)(i; i1, . . . , im−1)

]
=
∑
Im
n

a(i1, . . . , im)
[ m∑
j=1

E{h(Xi1 , . . . , Xim) | Xij} −mθ(i1, . . . , im)
]
. (A.14)

Using Lemma A.2, it follows from (A.13) that

n∑
i=1

{E(Un | Xi)− E(Un)}

=
∑
Im
n

a(i1, . . . , im)
[ m∑
j=1

E{h(Xi1 , . . . , Xim) | Xij} −mθ(i1, . . . , im)
]
.

By the definition of h2;i1,...,im(·), we deduce that (A.11) holds.
Equations (2.14) and (2.15) follow immediately from the definitions in (2.4)

and (2.5). This completes the proof.

A.3. Proof of Theorem 2.4

Proof. In Lemma C.6, let Yn,i = σ−1
n h1,i(Xi), gn be the identity function, tn = 0

and σ2
n = 1. By the definition of T̂n we have T̂n = n−1

∑n
i=1 σ

−1
n h1,i(Xi).

Equation (2.17) implies (C.2). (2.18) implies (C.3). Equations (A.2), (2.10) and
Slutsky’s theorem imply that for any t ∈ R,

P
{
T̂n − tn ≤ t

}
− Φ(t) → 0.

By Lemma C.5 the above convergence is uniform in t ∈ R. This yields (C.4).
Therefore, all conditions in Lemma C.6 hold, which implies

sup
t∈R

∣∣∣∣P ∗
{ n∑

i=1

{h1,i(Xi)}∗
nσn

−
n∑

i=1

h1,i(Xi)

nσn
≤ t

}
− P

{ n∑
i=1

h1,i(Xi)

nσn
≤ t

}∣∣∣∣ P→ 0.

This proves (2.19). Equation (2.20) follows immediately from Theorem 2.1.
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A.4. Proof of Theorem 2.6

Proof. By the definition of σ2
n, we have Var(σ−1

n Un) = 1. For proving Theorem
2.6 it suffices to show that

Var∗(σ−1
n U∗

n)
P→ 1. (A.15)

In Lemma 2.2, replacing Xi by X∗
i yields

U∗
n − E(Un) =

1

n

n∑
i=1

h1,i(X
∗
i ) + U∗

n(a, h2), (A.16)

where

U∗
n(a, h2) :=

(n−m)!

n!

∑
Im
n

a(i1, . . . , im)h2;i1,...,im(X∗
i1 , . . . , X

∗
im). (A.17)

Multiplying σ−1
n and then taking Var∗ on both sides of (A.16) yields

Var∗(σ−1
n U∗

n) =Var∗
{ n∑

i=1

h1,i(X
∗
i )

nσn

}
+Var∗

{U∗
n(a, h2)

σn

}
+Cov∗

{ n∑
i=1

h1,i(X
∗
i )

nσn
,
U∗
n(a, h2)

σn

}
, (A.18)

where Cov∗(·) denotes the covariance operator on the empirical measure. By
(A.18) and Slutsky’s theorem, for proving (A.15) it suffices to show the following:

Var∗
{ n∑

i=1

h1,i(X
∗
i )

nσn

}
P→ 1, (A.19)

Var∗
{U∗

n(a, h2)

σn

}
P→ 0, (A.20)

and

Cov∗
{ n∑

i=1

h1,i(X
∗
i )

nσn
,
U∗
n(a, h2)

σn

}
P→ 0, (A.21)

First we prove (A.19). Since conditional on X1, . . . , Xn the X∗
i ’s are i.i.d.

draws from the empirical distribution of X1, . . . , Xn, we have

E∗
[{ n∑

i=1

h1,i(X
∗
i )

nσn

}2]
=
1

n

n∑
i=1

n∑
j=1

{h1,i(Xj)

nσn

}2

+
1

n2

∑
i1 �=i2

n∑
j1=1

n∑
j2=1

h1,i1(Xj1)

nσn

h1,i2(Xj2)

nσn
, (A.22)
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and[
E∗

{ n∑
i=1

h1,i(X
∗
i )

nσn

}]2
=

1

n2

{ n∑
i1=1

n∑
j1=1

h1,i1(Xj1)

nσn

}{ n∑
i2=1

n∑
j2=1

h1,i2(Xj2)

nσn

}
=

1

n2

n∑
i=1

{ n∑
j1=1

h1,i(Xj1)

nσn

}{ n∑
j2=1

h1,i(Xj2)

nσn

}
+

1

n2

∑
i1 �=i2

n∑
j1=1

n∑
j2=1

h1,i1(Xj1)

nσn

h1,i2(Xj2)

nσn
. (A.23)

Equations (A.22) and (A.23) yield

Var∗
{ n∑

i=1

h1,i(X
∗
i )

nσn

}
= E∗

[{ n∑
i=1

h1,i(X
∗
i )

nσn

}2]
−
[
E∗

{ n∑
i=1

h1,i(X
∗
i )

nσn

}]2
=

1

n

n∑
i=1

n∑
j=1

{h1,i(Xj)

nσn

}2

− 1

n2

n∑
i=1

{ n∑
j=1

h1,i(Xj)

nσn

}2

.

(A.24)

Equation (A.19) follows from (A.24), (2.22), (2.23), and Slutsky’s theorem.
The following lemma establishes (A.20).

Lemma A.3. Under conditions of Theorem 2.6, we have Var∗{U∗
n(a, h2)/σn} P→

0, where U∗
n(a, h2) is defined in (A.17).

Equation (A.21) follows from (A.19), (A.20), and Cauchy-Schwarz inequality.
This completes the proof.

A.5. Proof of Corollary 2.1

Proof. For proving Corollary 2.1, by Theorem 2.6, it suffices to show (2.22),
(2.23), and (2.24) when the Xi’s are i.i.d..

First we show (2.22). Equations (2.7), (2.8), and (2.9) imply (2.10) accord-
ing to Theorem 2.1. By the i.i.d.-ness of the Xi’s we have E{h1,i(Xj)} =
E{h1,i(Xi)} = 0 and E{h1,i(Xj)

2} = E{h1,i(Xi)
2}. It follows from (2.10) that

for any j ∈ [n],

E
[ n∑

i=1

{h1,i(Xj)

nσn

}2]
=

n∑
i=1

E{h1,i(Xj)
2}

n2σ2
n

=

∑n
i=1 Var{h1,i(Xi)}

n2σ2
n

→ 1. (A.25)

By the weak law of large numbers for i.i.d. random variables, we have

1

n

n∑
j=1

n∑
i=1

{h1,i(Xj)

nσn

}2

− E
[ n∑

i=1

{h1,i(Xj)

nσn

}2] P→ 0. (A.26)

Equations (A.25), (A.26), and Slutsky’s theorem yield (2.22).
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Next we prove (2.23). By algebra we have

1

n2

n∑
i=1

{ n∑
j=1

h1,i(Xj)

nσn

}2

=
1

n2

n∑
j=1

n∑
i=1

{h1,i(Xj)

nσn

}2

+
1

n2

∑
j1 �=j2

n∑
i=1

h1,i(Xj1)h1,i(Xj2)

n2σ2
n

. (A.27)

Equation (2.22) implies that the first term on the right-hand side of (A.27)
converges to 0 in probability. The second term on the right-hand side of (A.27)
equals (n− 1)/n times a U-statistic with symmetric kernel g(x, y) = n−2σ−2

n ×∑n
i=1 h1,i(x)h1,i(y). By the triangle inequality, Jensen’s inequality, and the i.i.d.-

ness of the Xi’s, we deduce

E |g(X1, X2)| ≤
n∑

i=1

E
∣∣∣h1,i(X1)

nσn

∣∣∣ E∣∣∣h1,i(X2)

nσn

∣∣∣ ≤ n∑
i=1

E
{(h1,i(Xi)

nσn

)2}
≤ 1.

(A.28)
The i.i.d.-ness of the Xi’s and the fact that E{h1,i(Xi)} = 0 yield

E{g(X1, X2)} = n−2σ−2
n

n∑
i=1

E{h1,i(X1)}E{h1,i(X2)} = 0. (A.29)

By (A.28) and (A.29), it follows from the weak law of large numbers for U-
statistics of i.i.d. variables [36, Theorem 5.4 A] that the second term on the
right-hand side of (A.27) converges to 0 in probability. Therefore, by Slutsky’s
theorem, the left-hand side of (A.27) converges to 0 in probability, which estab-
lishes (2.23).

Lastly, we establish (2.24). By the definition of θ(·) in (2.2), we have
θ(i1, . . . , im) − θ(j1, . . . , jm) = 0 for any (i1, . . . , im) and (j1, . . . , jm) in Imn .
This implies that M1(n) = 0. For any p, q ∈ [m] and r, s,k ∈ Imn such that
r ∩ s = k ∩ s = rp = sq = kp, by the i.i.d.-ness of the Xi’s, we have

E
[
E
{
h(Xr1 , . . . , Xrm)h(Xs1 . . . Xsm) | Xkp

}]
= E

[
E
{
h(X1, . . . , Xm)h(Xm+1, . . . , Xm+q−1, Xp, Xm+q, . . . , X2m−1) |Xp

}]
,

(A.30)

and

E
[
E
{
h(Xk1 , . . . , Xkm)h(Xs1 , . . . , Xsm) | Xkp

}]
= E

[
E
{
h(X1, . . . , Xm)h(Xm+1, . . . , Xm+q−1, Xp, Xm+q, . . . , X2m−1) |Xp

}]
.

(A.31)

Equations (A.30) and (A.31) imply that M2(n) = 0. Therefore, (2.24) follows
from M1(n) = M2(n) = 0 and the assumption that n−2σ−2

n A2,1(n) → 0.
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A.6. Proof of Theorem 2.10

Proof. By the definition of V ∗
n , we have

V ∗
n =

1

hn(n− b+ 1)

n−b+1∑
i=1

Var∗(U∗
b,i)

=
1

hn(n− b+ 1)

n−b+1∑
i=1

σ2
b (1 + oP (1))

=
1

hn
σ2
b (1 + oP (1)),

where the second equality follows from the assumption Var(Ub,i(Xi, . . . , Xi+b−1))
= σ2

b (1 + o(1)) and Theorem 2.6. This combines with the assumption σ2
b/σ

2
n

= ζn,b · (1 + o(1)) gives the desired result.

A.7. Proof of Lemma 3.1

Proof. For UKen
n we have a(i, j) = 1(j < i) and h(Xi, Xj) = 1(Xj > Xi). Using

definitions in (2.2) and (2.3), we have f
(1)
i (x) = E{h(x,Xi)} = P (Xi > x),

f
(2)
i (x) = E{h(Xi, x)} = 1−P (Xi > x), and θ(i, j) = 1− θ(j, i). By Lemma 2.2
we obtain

hKen
1,i (x) =

1

n− 1

n∑
j=1
j �=i

a(i, j){f (1)
j (x)− θ(i, j)}+ a(j, i){f (2)

j (x)− θ(j, i)}

=
1

n− 1

n∑
j=1

{1(j < i)− 1(j > i)}{P (Xj > x)− θ(i, j)},

and

hKen
2;i,j(x, y) = h(x, y)− f

(1)
j (x)− f

(2)
i (y) + θ(i, j)

= 1(y > x)− P (Xj > x)− P (y > Xi) + θ(i, j).

This completes the proof.

A.8. Proof of Lemma 3.2

Proof. For UAP
n , we have a(i, j) = n(i− 1)−11(j < i) and h(Xi, Xj) = 1(Xj >

Xi). The form of f
(1)
i (x) and f

(2)
i (x) is the same as in the proof of Lemma 3.1.

By Lemma 2.2 we obtain

hAP
1,i (x) =

1

n− 1

n∑
j=1
j �=i

a(i, j){f (1)
j (x)− θ(i, j)}+ a(j, i){f (2)

j (x)− θ(j, i)}

=
1

n− 1

n∑
j=1

{n1(j < i)

i− 1
− n1(j > i)

j − 1

}
{P (Xj > x)− θ(i, j)},
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and

hAP
2;i,j(x, y) = h(x, y)− f

(1)
j (x)− f

(2)
i (y) + θ(i, j)

= 1(y > x)− P (Xj > x)− P (y > Xi) + θ(i, j).

This completes the proof.

A.9. Proof of Theorem 3.3

Proof. We divide the proof into two parts. In Part I, we prove the theorem for
UAP
n . In Part II, we prove the theorem for UKen

n .

Part I (for UAP
n ). By Theorem 2.1, for proving asymptotic normality of

UAP
n , it suffices to show that (2.7), (2.8), and (2.9) hold under the assumption of

Theorem 3.1. Equation (2.7) holds trivially with M(n) = 1 due to boundedness
of the kernel function h(·). In the following, we establish (2.8) and (2.9) by
calculating the orders of A2,2(n), A3,1(n), and V (n).

First we derive upper bound on A2,2(n) and A3,1(n). We will repeatedly use
Lemma C.8 to bound the partial sum of harmonic series. By the definition of
A2,2(n) in (2.6), we have

A2,2(n) :=
1

n2

∑
(I2

n)
⊗2
≥2

|a(i1, j1)a(i2, j2)| =
1

n2

∑
(i,j)∈I2

n

∣∣a(i, j)2 + a(i, j)a(j, i)
∣∣ .

(A.32)
Since a(i, j) = n(i − 1)−11(j < i), we have a(i, j)a(j, i) = 0 and a(i, i) = 0. It
then follows from (A.32) that

A2,2(n) =
1

n2

n∑
i=2

i−1∑
j=1

(
n

i− 1
)2 =

n∑
i=2

1

i− 1
≤ 1 + log(n− 1). (A.33)

By the definition of A3,1(n) in (2.6), we have

A3,1(n) =
1

n4

n∑
i=1

n∑
j1,j2,j3=1

{
|a(i, j1)a(i, j2)a(i, j3)|+ 3|a(i, j1)a(i, j2)a(j3, i)|

+ 3|a(i, j1)a(j2, i)a(j3, i)|+ |a(j1, i)a(j2, i)a(j3, i)|
}
. (A.34)

The term |a(i, j1)a(i, j2)a(i, j3)| is nonzero only if j1, j2, j3 < i, so the corre-
sponding summation in (A.34) equals

1

n4

n∑
i=2

i−1∑
j1,j2,j3=1

n

i− 1
· n

i− 1
· n

i− 1
≤ 1

n

n−1∑
i=1

(i− 1)3(
1

i− 1
)3 =

n− 1

n
. (A.35)

The term |a(i, j1)a(i, j2)a(j3, i)| is nonzero only if j1, j2 < i < j3, so the corre-
sponding summation in (A.34) equals

3

n4

n−1∑
i=2

i−1∑
j1,j2=1

n∑
j3=i+1

(
n

i− 1
)2(

n

j3 − 1
)
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=
3

n

n−1∑
i=2

n∑
j3=i+1

1

j3 − 1
≤ 3

n

n−1∑
i=2

log
n− 1

i− 1
≤ 3 logn. (A.36)

The term |a(i, j1)a(j2, i)a(j3, i)| is nonzero only if j1 < i < j2, j3, so the corre-
sponding summation in (A.34) equals

3

n4

n−1∑
i=2

i−1∑
j1=1

n∑
j2,j3=i+1

(
n

i− 1
)(

n

j2 − 1
)(

n

j3 − 1
) ≤ 3

n

n−1∑
i=2

(
log

n− 1

i− 1

)2

≤ 3(logn)2.

(A.37)

The term |a(j1, i)a(j2, i)a(j3, i)| is nonzero only if j1, j2, j3 > i, so the corre-
sponding summation in (A.34) equals

1

n4

n−1∑
i=1

n∑
j1,j2,j3=i+1

n

j1 − 1
· n

j2 − 1
· n

j3 − 1
≤ 1

n

n−1∑
i=1

(
log

n− 1

i− 1

)3

≤ (logn)3.

(A.38)

By (A.35)–(A.38), it follows from (A.34) that

A3,1(n) ≤ C(logn)3. (A.39)

Next we establish lower bound on V (n) := n−2
∑n

i=1 Var{hAP
1,i (Xi)}. The

following lemma gives lower bound on |hAP
1,i (Xi)|.

Lemma A.4. Consider a fixed i with 2 ≤ i ≤ n. If δn/2 ≥ log{(n− 1)/(i− 1)},
either Condition (i) or Condition (ii) in Theorem 3.3 implies

P{|hAP
1,i (Xi)| ≥ δn/2} ≥ pn. (A.40)

If δn log(n/i) ≥ 2, either Condition (i) or Condition (ii) in Theorem 3.3 implies

P{|hAP
1,i (Xi)| ≥ 1} ≥ pn. (A.41)

If i ≥ 1 + (n− 1) exp(−δn/2), we have δn/2 ≥ log{(n− 1)/(i− 1)}. Lemma
A.4 implies that (A.40) holds. By Chebyshev’s inequality we deduce

Var{hAP
1,i (Xi)} ≥ 1

4
δ2npn. (A.42)

If 2 ≤ i ≤ n exp(−2/δn), we have δn log(n/i) ≥ 2. Lemma A.4 implies that
(A.41) holds. By Chebyshev’s inequality we deduce

Var{hAP
1,i (Xi)} ≥ pn. (A.43)

By (A.42) and (A.43), we have

n∑
i=1

Var{hAP
1,i (Xi)} ≥

�n exp(− 2
δn

)�∑
i=2

pn +

n∑
i=�1+(n−1) exp(− δn

2 )�+1

1

4
δ2npn
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≥
{
n exp

(
− 2

δn

)
− 2

}
pn +

1

4

{
n− (n− 1) exp

(
− δn

2

)
− 1

}
δ2npn

= n exp
(
− 2

δn

)
pn +

nδ2npn
4

{
1− exp

(
− δn

2

)}
+

δ2npn
4

{
exp

(
− δn

2

)
− 1

}
− 2pn. (A.44)

By (3.4) we have

nδ2npn

{
1− exp

(
− δn

2

)}
� nδ3npn � n2/3(logn)2. (A.45)

Note that

n exp
(
− 2

δn

)
pn ≥ 0 and

δ2npn
4

{
exp

(
− δn

2

)
− 1

}
− 2pn = O(1). (A.46)

Combining (A.44) with (A.45) and (A.46) gives

n∑
i=1

Var{hAP
1,i (Xi)} � n2/3(log n)2.

This implies

V (n) :=
1

n2

n∑
i=1

Var{hAP
1,i (Xi)} � n−4/3(log n)2. (A.47)

Equations (A.33), (A.39), and (A.47) yield (2.8) and (2.9). The asymptotic
normality of UAP

n then follows from Theorem 2.1. This completes the proof for
Part I.

Part II (for UKen
n ). Proof for UKen

n follows the same logic as the proof for
UAP
n . In the following we calculate the orders of A2,2(n), A3,1(n), and V (n) for

UKen
n .

Since a(i, j) = 1(j < i) for UKen
n , we have a(i, j)a(j, i) = 0 and a(i, i) = 0. It

then follows from (A.32) that

A2,2(n) =
1

n2

n∑
i=2

i−1∑
j=1

1 = O(1). (A.48)

By (A.34), following the same argument as in (A.35)–(A.38) we deduce

A3,1(n) = O(1). (A.49)

Next we establish lower bound on V (n) := n−2
∑n

i=1 Var{hKen
1,i (Xi)}. The

following lemma gives lower bound on |hKen
1,i (Xi)|.
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Lemma A.5. Consider a fixed i ∈ [n]. If n− i ≤ (i− 1)δn/2, either Condition
(i) or Condition (ii) in Theorem 3.3 implies

P
{
|hKen

1,i (Xi)| ≥
i− 1

n− 1

δn
2

}
≥ pn. (A.50)

If i − 1 ≤ (n − i)δn/2, either Condition (i) or Condition (ii) in Theorem 3.3
implies

P
{
|hKen

1,i (Xi)| ≥
n− i

n− 1

δn
2

}
≥ pn. (A.51)

If i ≥ (2n− δn)/(2 + δn), we have n− i ≤ (i− 1)δn/2 and (i− 1)/(n− 1) ≥
2/(δn+2). Lemma A.5 implies that (A.50) holds. By Chebyshev’s inequality we
deduce

Var{hKen
1,i (Xi)} ≥ { i− 1

n− 1

δn
2
}2pn ≥ 4

(2 + δn)2
δ2npn. (A.52)

If i ≤ (nδn + 2)/(2 + δn), we have i − 1 ≤ (n − i)δn/2 and (n − i)/(n − 1) ≥
2/(2+δn). Lemma A.5 implies that (A.51) holds. By Chebyshev’s inequality we
deduce

Var{hKen
1,i (Xi)} ≥ { n− i

n− 1

δn
2
}2pn ≥ 1

(2 + δn)2
δ2npn. (A.53)

By (A.52) and (A.53), we have

n∑
i=1

Var{hKen
1,i (Xi)}

≥
�(nδn+2)/(2+δn)�∑

i=1

1

(2 + δn)2
δ2npn +

n∑
i=�(2n−δn)/(2+δn)�+1

4

(2 + δn)2
δ2npn.

(A.54)

Note that

�(nδn+2)/(2+δn)�∑
i=1

1

(2 + δn)2
δ2npn =

(nδn + 2)/(2 + δn)− 1

(2 + δn)2
δ2npn � nδ3npn.

(A.55)
Combining (A.54) and (A.55) yields

n∑
i=1

Var{hKen
1,i (Xi)} � nδ3npn. (A.56)

It follows from (3.3) and (A.56) that

V (n) :=
1

n2

n∑
i=1

Var{hKen
1,i (Xi)} � n−4/3. (A.57)

Equations (A.48), (A.49), and (A.57) yield (2.8) and (2.9). The asymptotic
normality of UKen

n then follows from Theorem 2.1. This completes the proof for
Part II.
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A.10. Proof of Theorem 3.5

Proof. Define
fij(x) := P (Xj > x)− P (Xj > Xi), (A.58)

and
zi = zi(x) := (x− μi)/σi. (A.59)

Using the definitions of F c
j and F c

ji in (3.5), we have

fij(x) = P
{Xj − μj

σj
>

(x− μi) + (μi − μj)

σi
· σi

σj

}
− P

{Xj −Xi − (μj − μi)

(σ2
i + σ2

j )
1/2

>
μi − μj

σi
· σi

(σ2
i + σ2

j )
1/2

}
= F c

j {ρij(zi + rij)} − F c
ji{rij(1 + ρ−2

ij )−1/2}. (A.60)

For proving Theorem 3.5, it suffices to show the existence of δn and pn satisfying
the conditions in Theorem 3.3. Because the proofs for UKen

n and UAP
n are almost

identical, we give detailed proof for UKen
n and comment on the proof for UAP

n

at the end. We divide the proof for UKen
n into two parts. In Part I we construct

such δn and pn under conditions (3.6), (3.7), and (3.8). In Part II we construct
such δn and pn under conditions (3.10), (3.11), and (3.12).

Part I: Assume (3.6), (3.7), and (3.8) hold. The following lemma gives bound
on fij(x).

Lemma A.6. Define

K1 = t0 +
(
t−b1
0

c1
2c2

)−1/b2
and K2 =

( c1
2c2

)−1/b2
.

Consider a fixed i ∈ [n]. If x satisfies

zi(x) ≥ Rn +K1ρn +K2ρnR
b1/b2
n , (A.61)

then for all j ∈ [n]\{i} we have

fij(x) ≤ −min
{c1
2
R−b1

n ,
c1
2
t−b1
0 ,

1

2

}
. (A.62)

Define δn := min{ c1
2 R

−b1
n , c1

2 t
−b1
0 , 1

2}., Zi := (Xi − μi)/σi, and

pn := P{Zi ≥ Rn +K1ρn +K2ρnR
b1/b2
n }. (A.63)

Lemma A.6 yields that

P{fij(x) ≤ −δn, ∀j ∈ [n]\{i}} ≥ pn.

Since ρn ≥ 1, by the definition of K1 we have

Rn +K1ρn +K2ρnR
b1/b2
n ≥ K1ρn ≥ t0. (A.64)

Combining (A.63), (A.64) and (3.6) yields

pn ≥ c1(Rn +K1ρn +K2ρnR
b1/b2
n )−b1 .
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Thus by dropping constants we obtain

δ3npn � (Rn + ρn + ρnR
b1/b2
n )−b1 min(R−3b1

n , 1). (A.65)

In the following we show that (A.65) and (3.8) imply

δ3npn � n−1/3. (A.66)

If lim supn→∞ Rn = ∞, the fact that ρn ≥ 1 and b1 > b2 > 0 yields

(Rn + ρn + ρnR
b1/b2
n )−b1 � ρ−b1

n R
−b21/b2
n (A.67)

and
min(R−3b1

n , 1) � R−3b1
n . (A.68)

Equation (A.65) together with (A.67) and (A.68) gives

δ3npn � ρ−b1
n R

−b21/b2
n R−3b1

n . (A.69)

By (A.69) and (3.8), we deduce (A.66). If lim supn→∞ Rn < ∞, by (A.65) we
have

δ3npn � ρ−b1
n . (A.70)

Equation (3.8) implies
ρ−b1
n � n−1/3. (A.71)

Combining (A.70) and (A.71) yields (A.66). Therefore, the asymptotic normality
of UKen

n follows from Theorem 3.3.
This completes the proof of Part I for UKen

n . For UAP
n the proof is almost the

same, except that (3.8) is replaced by (3.9), and the right-hand side of (A.66)
and (A.71) is replaced by n−1/3(logn)2.

Part II: Assume (3.9), (3.10), and (3.11) hold. The following lemma gives
bound on fij(x).

Lemma A.7. Recall that zi = zi(x) := (x− μi)/σi. For a fixed i ∈ [n], assume
that

zi ≥ Rn +K3ρn +K4ρnRn, (A.72)

where K3,K4 are defind in (3.14). Then for all j ∈ [n]\{i} we have

fij(x) ≤ −min
{c1
2
exp(−b1R

λ
n),

c1
2
exp(−b1t

λ
0 ),

1

2

}
. (A.73)

Define δn = min
{

c1
2 exp(−b1R

λ
n),

c1
2 exp(−b1t

λ
0 ),

1
2

}
, Zi = (Xi − μi)/σi, and

pn = P{Zi ≥ Rn +K3ρn +K4ρnRn}. (A.74)

Lemma A.7 yields that

P{fij(x) ≤ −δn, ∀j ∈ [n]\{i}} ≥ pn.



2676 F. Han and T. Qian

Since ρn ≥ 1, by the definition of K3, we have

Rn +K3ρn +K4ρnRn ≥ K3ρn ≥ t0. (A.75)

Combining (A.74), (A.75), and (3.10) yields

pn ≥ c1 exp{−b1(Rn +K3ρn +K4ρnRn)
λ}.

Thus by dropping constants we obtain

δ3npn � exp{−b1(Rn +K3ρn +K4ρnRn)
λ}min{exp(−3b1R

λ
n), 1}.

� min
[
exp{−3b1R

λ
n − b1(Rn +K3ρn +K4ρnRn)

λ},

exp{−b1(Rn +K3ρn +K4ρnRn)
λ}

]
(A.76)

With an argument similar to (A.67)–(A.71), it follows from (A.76) and (3.12)
that

δ3npn � n−1/3. (A.77)

This completes the proof of Part II for UKen
n . For UAP

n the proof is almost
the same, except that (3.12) is replaced by (3.13), and the right-hand side of
(A.77) is replaced by n−1/3(log n)2.

A.11. Proof of Corollary 3.1

Proof. We divide the proof into two parts. In Part I, we show that (2.17) and
(2.18) hold for hKen

1,i . In Part II, we show that (2.17) and (2.18) hold for hAP
1,i .

Part I. By (3.3) and Theorem 3.3, we have that (2.10) holds. This combined
with (A.57) gives

nσn � n1/3, (A.78)

where σ2
n := Var(UKen

n ). By (3.1), we have |hKen
1,i (x)| ≤ 1 for any x. It then

follows from Markov’s inequality that for any ε > 0,

P
{∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ ≥ ε
}
≤

E|hKen
1,i (Xi)|
εnσn

≤ 1

εnσn
. (A.79)

Taking sup1≤i≤n on both sides of (A.79), we deduce (2.17) from (A.78).
By (2.14) we have

E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ ≤ ε
)}

= −E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ > ε
)}

.

(A.80)
Cauchy-Schwarz inequality gives∣∣∣E{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ > ε
)}∣∣∣
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≤
[
E
{hKen

1,i (Xi)

nσn

}2]1/2
P
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ > ε
)1/2

. (A.81)

Combining (A.80) and (A.81) yields[
E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ ≤ ε
)}]2

≤ E
{hKen

1,i (Xi)

nσn

}2

P
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ > ε
)
.

(A.82)
Taking summation over 1 ≤ i ≤ n on both sides of (A.82), it follows from (A.79)
that

n∑
i=1

[
E
{hKen

1,i (Xi)

nσn
1
(∣∣∣hKen

1,i (Xi)

nσn

∣∣∣ ≤ ε
)}]2

≤ 1

εnσn

n∑
i=1

E
{hKen

1,i (Xi)

nσn

}2

. (A.83)

By (2.14) and (2.10) we obtain

n∑
i=1

E
{hKen

1,i (Xi)

nσn

}2

= σ−2
n n−2

n∑
i=1

Var{hKen
1,i (Xi)} → 1. (A.84)

Equation (2.18) then follows from (A.78), (A.83), and (A.84).

Part II. By (3.4) and Theorem 3.3, we have that (2.10) hold. This combined
with (A.47) gives

nσn � n1/3 logn, (A.85)

where σ2
n := Var(UAP

n ). By (3.2) and the fact that |{1(j < i)−1(j > i)}{P (Xj >
x)− θ(i, j)}| ≤ 1, we obtain

|hAP
1,i (x)| ≤

n

n− 1

( i−1∑
j=1

1

i− 1
+

n∑
j=i+1

1

j − 1

)
. (A.86)

It follows from (A.86) and Lemma C.8 that

|hAP
1,i (x)| ≤

n

n− 1
{1 + 1 + log(n− 1)} ≤ 4 + 2 logn. (A.87)

By Markov’s inequality and (A.87) we have for any ε > 0,

P
{∣∣∣hAP

1,i (Xi)

nσn

∣∣∣ ≥ ε
}
≤

E|hAP
1,i (Xi)|
εnσn

≤ 4 + 2 logn

εnσn
. (A.88)

Taking sup1≤i≤n on both sides of (A.88), we deduce (2.17) from (A.85).

Equations (A.80), (A.81) and (A.82) hold for hAP
1,i as well. Taking summation

over 1 ≤ i ≤ n on both sides of (A.82), it follows from (A.88) that

n∑
i=1

[
E
{hAP

1,i (Xi)

nσn
1
(∣∣∣hAP

1,i (Xi)

nσn

∣∣∣ ≤ ε
)}]2

≤ 4 + 2 logn

εnσn

n∑
i=1

E
{hAP

1,i (Xi)

nσn

}2

.

(A.89)
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By (2.14) and (2.10) we obtain

n∑
i=1

E
{hAP

1,i (Xi)

nσn

}2

= σ−2
n n−2

n∑
i=1

Var{hAP
1,i (Xi)} → 1. (A.90)

Equation (2.18) then follows from (A.85), (A.89), and (A.90).
This completes the proof.

A.12. Proof of Corollary 3.2

Proof. By Theorem 2.6, for proving Corollary 3.2, it suffices to show that (2.21),
(2.22), (2.23), and (2.24) hold. For UKen

n we have |h(x, y)| ≤ 1 for any x, y. This
implies (2.21).

Now we establish (2.24). For UKen
n , we have |a(i, j)| = |1(j < i)| ≤ 1. By the

definition in (2.6), we have

A2,1(n) = n−3
∑

(I2
n)

⊗2
≥1

|a(i1, j1)a(i2, j2)| = O(1). (A.91)

By (2.25) and (3.19) we have

M1(n) � n−1/6. (A.92)

By (2.26) and (3.20) we have

M2(n) � n−1/3. (A.93)

Equation (3.3) implies (A.57) by Theorem 3.3. Combining (A.57) and (2.10)
yields

σ2
n � n−4/3. (A.94)

Equation (2.24) follows from (A.91), (A.92), (A.93), and (A.94).
Next we establish (2.22). The following lemma gives bounds on∑n
i=1 E{hKen

1,i (Xj)
2} and

∑n
i=1 E{hKen

1,i (Xi)
2}.

Lemma A.8. Under the assumptions of Corollary 3.2, we have

n∑
i=1

E{hKen
1,i (Xj)

2} =
n(n+ 1)

3(n− 1)
(η2 − θ2) +O(n5/6), (A.95)

and
n∑

i=1

E{hKen
1,i (Xi)

2} =
n(n+ 1)

3(n− 1)
(η2 − θ2) +O(n5/6). (A.96)

By (2.10) we have

σ2
n = n−2

n∑
i=1

E{hKen
1,i (Xi)

2}{1 + o(1)}. (A.97)
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Using (A.96) and (A.97) we obtain

n2σ2
n = {1 + o(1)}

{n(n+ 1)

3(n− 1)
(η2 − θ2) +O(n5/6)

}
. (A.98)

Note that

1

n

n∑
i=1

n∑
j=1

E
[{hKen

1,i (Xj)

nσn

}2]
=

n−1
∑n

i=1

∑n
j=1 E{hKen

1,i (Xj)
2}

n2σ2
n

. (A.99)

Combining (A.99) with (A.95), (A.98), and the fact that η2 	= θ2 yields

1

n

n∑
i=1

n∑
j=1

E
[{hKen

1,i (Xj)

nσn

}2]
=

3−1(n− 1)−1n(n+ 1)(η2 − θ2) +O(n5/6)

{1 + o(1)}
{
3−1(n− 1)−1n(n+ 1)(η2 − θ2) +O(n5/6)

} → 1.

(A.100)

By (3.1) we have |h1,i(x)| ≤ 1. Therefore, for any x∣∣∣ n∑
i=1

{h1,i(x)

nσn

}2∣∣∣ = ∣∣∣∑n
i=1 h1,i(x)

2

n2σ2
n

∣∣∣ ≤ 1

nσ2
n

. (A.101)

Equations (A.98) and (A.101) imply that

n∑
j=1

Var
[ n∑

i=1

{h1,i(Xj)

nσn

}2]
≤

n∑
j=1

1

n2σ4
n

= O(n) = o(n2).

It then follows from Lemma C.7 that

1

n

n∑
j=1

[ n∑
i=1

{h1,i(Xj)

nσn

}2

− E
{ n∑

i=1

(h1,i(Xj)

nσn

)2}] P→ 0. (A.102)

Equation (2.22) follows from (A.100) and (A.102).
Lastly, we prove (2.23). By algebra we have

1

n2

n∑
i=1

{ n∑
j=1

hKen
1,i (Xj)

nσn

}2

=
1

n2

n∑
j=1

n∑
i=1

{hKen
1,i (Xj)

nσn

}2

+
1

n2

∑
j1 �=j2

n∑
i=1

hKen
1,i (Xj1)h

Ken
1,i (Xj2)

n2σ2
n

. (A.103)

By (2.22) we have

1

n2

n∑
j=1

n∑
i=1

{hKen
1,i (Xj)

nσn

}2 P→ 0. (A.104)
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The second term on the right-hand side of (A.103) is (n−1)/n times a U-statistic
with symmetric kernel g(x, y) = n−2σ−2

n

∑n
i=1 h

Ken
1,i (x)hKen

1,i (y). By (3.1) and
(3.19) we have

E{hKen
1,i (Xj)} =

1

n− 1

n∑
k=1

sgn(i− k){P (Xk > Xj)− P (Xk > Xi)} = O(n−1/6).

(A.105)
It follows from (A.105) and (A.98) that

E{g(Xj1 , Xj2)} = n−2σ−2
n

n∑
i=1

E{hKen
1,i (Xj1)}E{hKen

1,i (Xj2)} → 0. (A.106)

By (A.106) and the weak law of large numbers for U-statistics with indepen-
dent but not identically distributed variables [20, Theorem 1, Section 3.7.2], we
deduce

1

n2

∑
j1 �=j2

n∑
i=1

hKen
1,i (Xj1)h

Ken
1,i (Xj2)

n2σ2
n

P→ 0. (A.107)

Equation (2.23) follows from (A.103), (A.104), and (A.107).
This completes the proof.

A.13. Proof of Corollary 3.3

Proof. By Theorem 2.6, for proving Corollary 3.3, it suffices to show that (2.21),
(2.22), (2.23), and (2.24) hold. For UAP

n we have |h(x, y)| ≤ 1 for any x, y. This
implies (2.21).

Now we establish (2.24). For UAP
n , we have a(i, j) = 1(j < i)n/(i − 1). It

follows that a(i, j)a(j, i) = 0 and a(i, i) = 0. By the definition in (2.6), we have

A2,1(n) = n−3
∑

(i,j)∈I2
n

n∑
k=1,k �=i

{|a(i, j)a(i, k)|+ |a(i, j)a(k, i)|}.

= n−3
{ n∑

i=2

i−1∑
j=1

i−1∑
k=1

n

i− 1
· n

i− 1
+

n−1∑
i=2

i−1∑
j=1

n∑
k=i+1

n

i− 1
· n

k − 1

}
.

(A.108)

By algebra, we have

n∑
i=2

i−1∑
j=1

i−1∑
k=1

n

i− 1
· n

i− 1
= n2(n− 1), (A.109)

and

n−1∑
i=2

i−1∑
j=1

n∑
k=i+1

n

i− 1
· n

k − 1
= n2

n∑
k=3

k−1∑
i=2

1

k − 1
= n2

n∑
k=3

k − 2

k − 1
= O(n3).

(A.110)
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Combining (A.108) with (A.109) and (A.110) yields

A2,1(n) = O(1). (A.111)

By (2.25) and (3.21) we have

M1(n) � n−1/6 logn. (A.112)

By (2.26) and (3.22) we have

M2(n) � n−1/3(logn)2. (A.113)

Equation (3.4) implies (A.47) by Theorem 3.3. Combining (A.47) and (2.10)
yields

σ2
n � n−4/3(log n)2. (A.114)

Equation (2.24) follows from (A.111), (A.112), (A.113), and (A.114).
Next we establish (2.22). The following lemma gives useful bounds.

Lemma A.9. Under the assumptions of Corollary 3.3, we have

n∑
i=1

E{hAP
1,i (Xj)

2} =
n2

n− 1
(η2 − θ2) +O(n5/6 logn), (A.115)

and
n∑

i=1

E{hAP
1,i (Xi)

2} =
n2

n− 1
(η2 − θ2) +O(n5/6 log n). (A.116)

By (2.10) we have

σ2
n = n−2

n∑
i=1

E{hAP
1,i (Xi)

2}{1 + o(1)}. (A.117)

Using (A.117) and (A.116) we obtain

n2σ2
n = {1 + o(1)}

{ n2

n− 1
(η2 − θ2) +O(n5/6 log n)

}
. (A.118)

Note that

1

n

n∑
i=1

n∑
j=1

E
[{hAP

1,i (Xj)

nσn

}2]
=

n−1
∑n

i=1

∑n
j=1 E{hAP

1,i (Xj)
2}

n2σ2
n

. (A.119)

Combining (A.119) with (A.115), (A.118), and the fact that η2 	= θ2 yields

1

n

n∑
i=1

n∑
j=1

E
[{hAP

1,i (Xj)

nσn

}2]
=

n2(n− 1)−1(η2 − θ2) +O(n5/6 logn)

{1 + o(1)}
{
n2(n− 1)−1(η2 − θ2) +O(n5/6 logn)

} → 1. (A.120)
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By (3.2) we have |hAP
1,i (x)| ≤ 1+ϕ(n− 1)−ϕ(i− 1) for all x. This combined

with Lemma C.8 yields

|hAP
1,i (x)| ≤ 1 + log

n

i
≤ 1 + logn. (A.121)

It then follows from (A.121) that∣∣∣ n∑
i=1

{hAP
1,i (x)

nσn

}2∣∣∣ = ∣∣∣∑n
i=1 h

AP
1,i (x)

2

n2σ2
n

∣∣∣ ≤ (1 + logn)2

nσ2
n

. (A.122)

Equations (A.118) and (A.122) imply that

n∑
j=1

Var
[ n∑

i=1

{hAP
1,i (Xj)

nσn

}2]
≤

n∑
j=1

(1 + log n)4

n2σ4
n

= O{n(log n)4} = o(n2).

It then follows from Lemma C.7 that

1

n

n∑
j=1

[ n∑
i=1

{hAP
1,i (Xj)

nσn

}2

− E
{ n∑

i=1

(hAP
1,i (Xj)

nσn

)2}] P→ 0. (A.123)

Equation (2.22) follows from (A.120) and (A.123).
Lastly, we prove (2.23). By algebra we have

1

n2

n∑
i=1

{ n∑
j=1

hAP
1,i (Xj)

nσn

}2

=
1

n2

n∑
j=1

n∑
i=1

{hAP
1,i (Xj)

nσn

}2

+
1

n2

∑
j1 �=j2

n∑
i=1

hAP
1,i (Xj1)h

AP
1,i (Xj2)

n2σ2
n

. (A.124)

By (2.22) we have

1

n2

n∑
j=1

n∑
i=1

{hAP
1,i (Xj)

nσn

}2 P→ 0. (A.125)

The second term on the right-hand side of (A.124) is (n−1)/n times a U-statistic
with symmetric kernel g(x, y) = n−2σ−2

n

∑n
i=1 h

AP
1,i (x)h

AP
1,i (y). By (A.121) and

(3.21) we have

E{hAP
1,i (Xj)} =

1

n− 1

n∑
k=1

{n1(j < i)

i− 1
− n1(j > i)

j − 1

}
O(n−1/6 log n).

This combined with Lemma C.8 yields

E{hAP
1,i (Xj)} = O{n−1/6(logn)2}. (A.126)

It follows from (A.126) and (A.118) that

E{g(Xj1 , Xj2)} = n−2σ−2
n

n∑
i=1

E{hAP
1,i (Xj1)}E{hAP

1,i (Xj2)} → 0. (A.127)
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By (A.127) and Theorem 1 in Lee [20, Section 3.7.2], we deduce

1

n2

∑
j1 �=j2

n∑
i=1

hAP
1,i (Xj1)h

AP
1,i (Xj2)

n2σ2
n

P→ 0. (A.128)

Equation (2.23) follows from (A.124), (A.125), and (A.128).
This completes the proof.

Appendix B: Proofs of the supporting lemmas

In this section, we prove the supporting lemmas that appear in Section A.

B.1. Proof of Lemma A.1

Proof. To simplify notation, define i = (i1, . . . , im), Xi = (Xi1 , . . . , Xim), and
i−m = (i1, . . . , im−1). By definition of h1,i(Xi) in (2.4) we have

n∑
i=1

E|h1,i(Xi)|3 =

n∑
i=1

{ (n−m)!

(n− 1)!

}3

× E
∣∣∣ ∑
Im−1
n−1 (−i)

m∑
l=1

a(l)(i; i−m)
{
f
(l)
i−m

(Xi)− θ(l)(i; i−m)
}∣∣∣3.
(B.1)

Define

T
(l1)
i−m

(Xi) = f
(l1)
i−m

(Xi)− θ(l1)(i; i−m),

and define T
(l2)
j−m

(Xi) and T
(l3)
k−m

(Xi) similarly. The right-hand side of (B.1) equals

{ (n−m)!

(n− 1)!

}3 ∑∣∣∣a(l1)(i; i−m)a(l2)(i; j−m)a(l3)(i;k−m)
∣∣∣

× E
∣∣∣T (l1)

i−m
(Xi)T

(l2)
j−m

(Xi)T
(l3)
k−m

(Xi)
∣∣∣, (B.2)

where the summation is over i ∈ [n], l1, l2, l3 ∈ [m], and i−m, j−m,k−m ∈
Im−1
n−1 (−i). By Cauchy-Schwarz inequality and Lemma C.1(ii), we have

E
∣∣∣T (l1)

i−m
(Xi)T

(l2)
j−m

(Xi)T
(l3)
k−m

(Xi)
∣∣∣

≤
[
E{T (l1)

i−m
(Xi)

2T
(l2)
j−m

(Xi)
2}
]1/2[

E{T (l3)
k−m

(Xi)
2}
]1/2

≤
[
E{T (l1)

i−m
(Xi)

4}
]1/4[

E{T (l2)
j−m

(Xi)
4}
]1/4[

E{T (l3)
k−m

(Xi)
4}
]1/4

≤ CM(n)3/4.

(B.3)
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By the definition of A3,1(n) in (2.6) and algebra, we have∑
|a(l1)(i; i−m)a(l2)(i; j−m)a(l3)(i;k−m)|

≤ C
∑

(Im
n )⊗3

≥1

|a(i)a(j)a(k)| = Cn3m−2A3,1(n), (B.4)

where the summation in the leftmost part of (B.4) is over i ∈ [n], l1, l2, l3 ∈ [m],
and i−m, j−m,k−m ∈ Im−1

n−1 (−i). By (B.1), (B.2), (B.3), and (B.4), we deduce

n∑
i=1

E |h1,i(Xi)|3 ≤ CnA3,1(n)M(n)3/4. (B.5)

This completes the proof.

B.2. Proof of Lemma A.2

Proof. We prove Lemma A.2 by showing that for each (i∗1, . . . , i
∗
m) ∈ Imn , the

coefficients of a(i∗1, . . . , i
∗
m) on both sides of (A.14) are equal. In the following

we fix (i∗1, . . . , i
∗
m) ∈ Imn .

For the left-hand side of (A.14), we enumerate the combinations in

{l, i, (i1, . . . , im−1) : l ∈ [m], i ∈ [n], (i1, . . . , im−1) ∈ Im−1
n−1 (−i)}

such that a(l)(i; i1, . . . , im−1) = a(i∗1, . . . , i
∗
m), as follows:

l = 1,i = i∗1, (i1, . . . , im−1) = (i∗1, . . . , i
∗
m)\i∗1;

...

l = j,i = i∗j , (i1, . . . , im−1) = (i∗1, . . . , i
∗
m)\i∗j ; (B.6)

...

l = m,i = i∗m, (i1, . . . , im−1) = (i∗1, . . . , i
∗
m)\i∗m.

When l = j, i = i∗j , (i1, . . . , im−1) = (i∗1, . . . , i
∗
m)\i∗j ,

E{h(l)(Xi;Xi1 , . . . , Xim−1) | Xi} − θ(l)(i; i1, . . . , im−1)

= E{h(Xi∗1
, . . . , Xi∗m) | Xi∗j

} − θ(i∗1, . . . , i
∗
m).

So the coefficient of a(i∗1, . . . , i
∗
m) on the left-hand side of (A.14) is

m∑
j=1

[
E{h(Xi∗1

, . . . , Xi∗m | Xi∗j
} − θ(i∗1, . . . , i

∗
m)

]
.

This equals the coefficient of a(i∗1, . . . , i
∗
m) on the right-hand side of (A.14). This

completes the proof.
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B.3. Proof of Lemma A.3

Lemmas B.1 and B.2 that appear in this proof are proven immediately after
this proof.

Proof. Define i := (i1, . . . , im) and Xi := (Xi1 , . . . , Xim). By (A.17) we have

E∗{σ−2
n U∗

n(h2)
2} = σ−2

n

{ (n−m)!

n!

}2 ∑
(Im

n )⊗2
≥0

a(i)a(j)E∗{h2;i(X
∗
i )h2;j(X

∗
j )}

(B.7)

and

[E∗{σnU
∗
n(h2)}]2

= σ−2
n

{ (n−m)!

n!

}2 ∑
(Im

n )⊗2
≥0

a(i)a(j)E∗{h2;i(X
∗
i )}E∗{h2;j(X

∗
j )}. (B.8)

Define

g(i, j) := a(i)a(j)
[
E∗{h2;i(X

∗
i )h2;j(X

∗
j )} − E∗{h2;i(X

∗
i )}E∗{h2;j(X

∗
j )}

]
.

(B.9)
It follows from (B.7) and (B.8) that

Var∗{σ−1
n U∗

n(h2)} = σ−2
n

{ (n−m)!

n!

}2 ∑
(i,j)∈(Im

n )⊗2
≥0

g(i, j). (B.10)

The following proof consists of two steps. In the first step, we establish

Var∗{σ−1
n U∗

n(h2)} = σ−2
n

{ (n−m)!

n!

}2 ∑
(i,j)∈(Im

n )⊗2
=1

g(i, j) + oP (1). (B.11)

In the second step, we show that

σ−2
n

{ (n−m)!

n!

}2 ∑
(i,j)∈(Im

n )⊗2
=1

g(i, j)
P→ 0. (B.12)

Lemma A.3 then follows from (B.11), (B.12), and Slutsky’s theorem.
Step I. If (i, j) ∈ (Imn )⊗2

=0, we have

E∗{h2;i(X
∗
i )h2;j(X

∗
j )} = E∗{h2;i(X

∗
i )}E∗{h2;j(X

∗
j )} a.s..

This implies ∑
(i,j)∈(Im

n )⊗2
=0

g(i, j) = 0 a.s.. (B.13)
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For any (i, j) ∈ (Imn )⊗2
≥2, by the law of iterated expectation, Cauchy-Schwarz

inequality, and triangular inequality we have

E
∣∣∣E∗{h2;i(X

∗
i )h2;j(X

∗
j )}

∣∣∣ ≤ E
{
|h2;i(X

∗
i )||h2;j(X

∗
j )|

}
≤

[
E{h2;i(X

∗
i )

2}E{h2;j(X
∗
j )

2}
] 1

2

. (B.14)

Similarly, by Jensen’s inequality and triangular inequality we have

E
∣∣∣E∗{h2;i(X

∗
i )}E∗{h2;j(X

∗
j )}

∣∣∣ ≤ E
{
E∗|h2;i(X

∗
i )|E∗|h2;j(X

∗
j )|

}
≤
[
E{E∗|h2;i(X

∗
i )|}2E{E∗|h2;j(X

∗
j )|}2

] 1
2 ≤

[
E{h2;i(X

∗
i )

2}E{h2;j(X
∗
j )

2}
] 1

2

.

(B.15)

Using the law of iterated expectation, we deduce

E{h2;i(X
∗
i )

2} = E[E∗{h2;i(X
∗
i )

2}] = n−m
∑

1≤j1,...,jm≤n

E{h2;i(Xj1 , . . . , Xjm)2}.

(B.16)
By Lemma C.1(iii) and (2.21), there exists an absolute constant C > 0 such
that for any n, for any i ∈ Imn , and for any 1 ≤ j1, . . . , jm ≤ n,

E{h2;i(Xj1 , . . . , Xjm)2} ≤ C. (B.17)

Combining (B.16) and (B.17) yields that E{h2;i(X
∗
i )

2} ≤ C. It then follows
from (B.14) and (B.15) that

E
∣∣∣E∗{h2;i(X

∗
i )h2;j(X

∗
j )}

∣∣∣ ≤ C, (B.18)

and E
∣∣∣E∗{h2;i(X

∗
i )}E∗{h2;j(X

∗
j )}

∣∣∣ ≤ C. (B.19)

Equations (B.9), (B.18), and (B.19) imply that

E
∣∣∣ ∑
(Im

n )⊗2
≥2

g(i, j)
∣∣∣ ≤ 2C

∑
(Im

n )⊗2
≥2

|a(i)a(j)| = 2Cn2m−2A2,2(n). (B.20)

By (2.8), (2.10), and (B.20), we deduce

σ−2
n

{ (n−m)!

n!

}2

E
∣∣∣ ∑
(Im

n )⊗2
≥2

g(i, j)
∣∣∣ → 0.

It then follows from Markov’s inequality that

σ−2
n

{ (n−m)!

n!

}2 ∑
(Im

n )⊗2
≥2

g(i, j)
P→ 0. (B.21)

Combining (B.10), (B.13), and (B.21) yields (B.11). This concludes Step I.
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Step II. Consider a fixed (i, j) ∈ (Imn )⊗2
=1. Without loss of generality assume

i ∩ j = {ip} = {jq} for some 1 ≤ p, q ≤ m. By the i.i.d.-ness of X∗
i ’s given

X1, . . . , Xn, we have

E[E∗{h2;i(X
∗
i )h2;j(X

∗
j )}] = n−(2m−1)

∑
r,s∈[n]2m

rp=sq

E{h2;i(Xr)h2;j(Xs)} (B.22)

and

E[E∗{h2;i(X
∗
i )}E∗{h2;j(X

∗
j )}] = n−2m

∑
r,s∈[n]2m

E{h2;i(Xr)h2;j(Xs)}. (B.23)

The number of pairs (r, s) in {(r, s) ∈ [n]2m : rp = sq} satisfying any of the
following three statements is of order O(n2m−2): (1) r or s has duplicate indices
(i.e., r /∈ Imn or s /∈ Imn ); (2) i ∩ r 	= ∅; or (3) j ∩ s 	= ∅. It then follows from
(B.18) that∑

r,s∈[n]2m

rp=sq

E{h2;i(Xr)h2;j(Xs)}

=
∑

(r,s)∈(Im
n )⊗2

=1

rp=sq,i∩r=∅=j∩s

E{h2;i(Xr)h2;j(Xs)}+O(n2m−2). (B.24)

The following lemma gives bound on the right-hand side of (B.24).

Lemma B.1. For any (i, j) ∈ (Imn )⊗2
=1, under the assumptions of Theorem 2.6,

there exists a constant C such that∣∣∣ ∑
(r,s)∈(Im

n )⊗2
=1

rp=sq,i∩r=∅=j∩s

E{h2;i(Xr)h2;j(Xs)}
∣∣∣ ≤ Cn2m−1{M1(n)

2 +M2(n)}. (B.25)

It follows from (B.22), (B.24) and Lemma B.1 that

|E[E∗{h2;i(X
∗
i )h2;j(X

∗
j )}]| ≤ C{M1(n)

2 +M2(n) + n−1}. (B.26)

Using an argument similar to (B.24), we have∑
r,s∈{1,...,n}2m

E{h2;i(Xr)h2;j(Xs)}

=
∑

(r,s)∈(Im
n )⊗2

=0

i∩r=∅=j∩s

E {h2;i(Xr)h2;j(Xs)}+O(n2m−1). (B.27)

The following lemma gives bound on the right-hand side of (B.27).
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Lemma B.2. For any (i, j) ∈ (Imn )⊗2
=1, under the assumptions of Theorem 2.6,

there exists a constant C such that∣∣∣ ∑
(r,s)∈(Im

n )⊗2
=0

i∩r=∅=j∩s

E{h2;i(Xr)h2;j(Xs)}
∣∣∣ ≤ Cn2mM1(n)

2. (B.28)

It follows from (B.23), (B.27) and Lemma B.2 that

|E[E∗{h2;i(X
∗
i )}E∗{h2;j(X

∗
j )}]| ≤ CM1(n)

2. (B.29)

Combining (B.9) with (B.26) and (B.29) yields that, for any (i, j) ∈ (Imn )⊗2
=1,

|g(i, j)| ≤ C|a(i)a(j)|{M1(n)
2 +M2(n) + n−1}.

Therefore, by the definition of A2,1(n) in (2.6), we have∣∣∣ ∑
(Im

n )⊗2
=1

g(i, j)
∣∣∣ ≤ Cn2m−1A2,1(n){M1(n)

2 +M2(n) + n−1}. (B.30)

Equation (B.12) follows from (B.30) and (2.24). This concludes Step II.
The proof is thus finished.

Proof of Lemma B.1. For a fixed (i, j) ∈ (Imn )⊗2
=1, consider any (r, s) ∈ (Imn )⊗2

=1

with rp = sq and i ∩ r = ∅ = j ∩ s. By the law of iterated expectation and the
independence of Xi’s we have

E{h2;i(Xr)h2;j(Xs)} = E[E{h2;i(Xr) | Xrp}E{h2;j(Xs) | Xsq}]. (B.31)

For i = (i1, . . . , im) and l ∈ [m], define

i\il := (i1, . . . , il−1, il+1, . . . , im).

Using the definition of h2;i(·) in (2.5) we have

E{h2;i(Xr) | Xrp} = E{h(Xr) | Xrp}

−
m∑
l=1

E[Ei\il{h(l)(Xrl ;Y1, . . . , Ym−1) | Xrl} | Xrp ] + (m− 1)θ(i). (B.32)

By the independence of the Xi’s we have

m∑
l=1

E[Ei\il{h(l)(Xrl ;Y1, . . . , Ym−1) | Xrl} | Xrp ].

=

m∑
l=1
l �=p

θ(l)(rl; i\il) + Ei\ip{h(l)(Xrp ;Y1, . . . , Ym−1) | Xrp} (B.33)
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Using (B.32) and (B.33) we obtain

E{h2;i(Xr) | Xrp} = E{h(Xr) | Xrp} −
m∑
l=1
l �=p

θ(l)(rl; i\il)

−Ei\ip{h(l)(Xrp ;Y1, . . . , Ym−1) | Xrp}+ (m− 1)θ(i). (B.34)

We introduce some notation:

i\il ⊕ k := (i1, . . . , il−1, k, il+1, . . . , im),

Xi\il⊕k := (Xi1 , . . . , Xil−1
, Xk, Xil+1

, . . . , Xim),

θ(i | il) := E{h(Xi) | Xil}.

Using the new notation, (B.34) becomes

E{h2;i(Xr) | Xrp} = θ(r | rp)−
m∑
l=1
l �=p

θ(i\il ⊕ rl)− θ(i\ip ⊕ rp | rp)+ (m− 1)θ(i).

(B.35)
Similarly, we have

E{h2;j(Xs) | Xsq} = θ(s | sq)−
m∑
l=1
l �=q

θ(j\jl⊕sl)−θ(j\jq⊕sq | sq)+(m−1)θ(j).

(B.36)
By algebra and the law of iterated expectation, we derive from (B.35) and

(B.36) that

E[E{h2;i(Xr) | Xrp}E{h2;j(Xs) | Xsq}] = T1 + T2 + T3 + T4 + T5, (B.37)

where

T1 = E{θ(r | rp)θ(s | sq)} − E{θ(r | rp)θ(j\jq ⊕ sq | sq)}
− E{θ(i\ip ⊕ rp | rp)θ(s | sq)}+ E{θ(i\ip ⊕ rp | rp)θ(j\jq ⊕ sq | sq)},

T2 = (m− 1)θ(r)θ(j)− θ(r)
∑
l �=q

θ(j\jl ⊕ sl) + (m− 1)θ(i)θ(s)

− θ(s)
∑
l �=p

θ(i\il ⊕ rl),

T3 =
{ m∑

l=1

θ(i\il ⊕ rl)−mθ(i)
}{ m∑

l=1

θ(j\jl ⊕ sl)−mθ(j)
}
,

T4 = θ(i)
m∑
l=1

θ(j\jl ⊕ sl) + θ(j)
m∑
l=1

θ(i\il ⊕ rl)− 2mθ(i)θ(j),

T5 = θ(i)θ(j)− θ(i\ip ⊕ rp)θ(j\jq ⊕ sq).
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By the definitions of M1(n) and M2(n) in (2.25) and (2.26), we have |T1| ≤
2M2(n), |T2| ≤ CM1(n), |T3| ≤ CM1(n)

2, |T4| ≤ CM1(n), and |T5| ≤ CM1(n).
Therefore, it follows from (B.37) that

|E[E{h2;i(Xr) | Xrp}E{h2;j(Xs) | Xsq}]| ≤ C{M1(n)
2 +M2(n)}.

This yields (B.25). The proof is thus finished.

Proof of Lemma B.2. For a fixed (i, j) ∈ (Imn )⊗2
=1, consider any (r, s) ∈ (Imn )⊗2

=0

such that i ∩ r = ∅ = j ∩ s. By independence of the Xi’s we have

E{h2;i(Xr)h2;j(Xs)} = E{h2;i(Xr)}E{h2;j(Xs)}. (B.38)

By the definition of h2;i(·) in (2.5), we have

E{h2;i(Xr)} = E{h(Xr)} −
m∑
l=1

E[Ei\il{h(l)(Xrl ;Y1, . . . , Ym−1) | Xrl}]

+ (m− 1)θ(i)

= θ(r)−
m∑
l=1

θ(l)(rl; i\il) + (m− 1)θ(i).

It then follows from the definition of M1(n) in (2.25) that

|E{h2;i(Xr)}| ≤ mM1(n). (B.39)

Combining (B.38) and (B.39) yields that

|E{h2;i(Xr)h2;j(Xs)}| ≤ m2M1(n).

This implies (B.28). The proof is thus finished.

B.4. Proof of Lemma A.4

Proof. Define

fij(x) := P (Xj > x)− θ(i, j),

S
(1)
i (x) :=

i−1∑
j=1

n

i− 1
fij(x), S

(2)
i (x) :=

n∑
j=i+1

n

j − 1
fij(x). (B.40)

By (3.2) we have hAP
1,i (Xi) = {S(1)

i (Xi) − S
(2)
i (Xi)}/(n − 1) for any i ∈ [n]. In

the following we use Lemma C.8 repeatedly to bound ϕ(n) :=
∑n

k=1 k
−1.

First, we show that (A.40) and (A.41) hold under Condition (i) of Theorem
3.3. Using fij(·) notation, Condition (i) becomes

P{δn ≤ fij(Xi) ≤ 1, ∀j ∈ [n]\{i}} ≥ pn. (B.41)
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If δn ≤ fij(x) ≤ 1, ∀j ∈ [n]\{i}, we have

nδn =

i−1∑
j=1

n

i− 1
δn ≤ S

(1)
i (x) ≤

i−1∑
j=1

n

i− 1
= n, (B.42)

and

S
(2)
i (x) ≥

n∑
j=i+1

n

j − 1
δn = nδn{ϕ(n− 1)− ϕ(i− 1)} ≥ nδn log

n

i
, (B.43)

S
(2)
i (x) ≤

n∑
j=i+1

n

j − 1
= n{ϕ(n− 1)− ϕ(i− 1)} ≤ n log

n− 1

i− 1
. (B.44)

Using (B.42), (B.43), and (B.44), it follows from (B.41) that

P
{
nδn ≤ S

(1)
i (Xi) ≤ n, nδn log

n

i
≤ S

(2)
i (Xi) ≤ n log

n− 1

i− 1

}
≥ pn. (B.45)

If log{(n−1)/(i−1)} ≤ δn/2, the monotonicity property of probability measure
gives

P{h1,i(Xi) ≥ δn/2} ≥ P
{S

(1)
i (Xi)

n− 1
≥ n

n− 1
δn,

S
(2)
i (Xi)

n− 1
≤ n

n− 1
log

n− 1

i− 1

}
= P

{
S
(1)
i ≥ nδn, S

(2)
i ≤ n log

n− 1

i− 1

}
≥ P

{
nδn ≤ S

(1)
i ≤ n, nδn log

n

i
≤ S

(2)
i ≤ n log

n− 1

i− 1

}
. (B.46)

Note that
P{|h1,i(Xi)| ≥ δn/2} ≥ P{h1,i(Xi) ≥ δn/2}. (B.47)

Equation (A.40) follows from (B.45), (B.46), and (B.47). If δn log(n/i) ≥ 2, the
monotonicity property of probability measure gives

P{h1,i(Xi) ≤ −1} ≥ P
{S

(1)
i (Xi)

n− 1
≤ n

n− 1
,
S
(2)
i (Xi)

n− 1
≥ n

n− 1
δn log

n

i

}
= P

{
S
(1)
i ≤ n, S

(2)
i ≥ nδn log

n

i

}
≥ P

{
nδn ≤ S

(1)
i ≤ n, nδn log

n

i
≤ S

(2)
i ≤ n log

n− 1

i− 1

}
. (B.48)

Note that
P{|h1,i(Xi)| ≥ 1} ≥ P{h1,i(Xi) ≤ −1}. (B.49)

Equation (A.41) follows from (B.45), (B.48), and (B.49).
Secondly, we show that (A.40) and (A.41) hold under Condition (ii) of The-

orem 3.3. Using fij(·) notation, Condition (ii) becomes

P{−1 ≤ fij(Xi) ≤ −δn, ∀j ∈ [n]\{i}} ≥ pn. (B.50)
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By an argument similar to (B.42)–(B.44), if −1 ≤ fij(x) ≤ −δn, ∀j ∈ [n]\{i}
we have

− n ≤ S
(1)
i (x) ≤ −nδn, and − n log

n− 1

i− 1
≤ S

(2)
i (x) ≤ −nδn log

n

i
. (B.51)

By (B.51), Condition (ii) in Theorem 3.3 implies that

P
{
− n ≤ S

(1)
i (Xi) ≤ −nδn,−n log

n− 1

i− 1
≤ S

(2)
i (Xi) ≤ −nδn log

n

i

}
≥ pn.

(B.52)
If log{(n−1)/(i−1)} ≤ δn/2, the monotonicity property of probability measure
gives

P{h1,i(Xi) ≤ −δn/2}

≥ P
{S

(1)
i (Xi)

n− 1
≤ − n

n− 1
δn,

S
(2)
i (Xi)

n− 1
≥ − n

n− 1
log

n− 1

i− 1

}
= P

{
S
(1)
i ≤ −nδn, S

(2)
i ≥ −n log

n− 1

i− 1

}
≥ P

{
− n ≤ S

(1)
i ≤ −nδn,−n log

n− 1

i− 1
≤ S

(2)
i ≤ −nδn log

n

i

}
. (B.53)

Note that
P{|h1,i(Xi)| ≥ δn/2} ≥ P{h1,i(Xi) ≤ −δn/2}. (B.54)

Equation (A.40) follows from (B.52), (B.53), and (B.54). If δn log(n/i) ≥ 2, the
monotonicity property of probability measure gives

P{h1,i(Xi) ≥ 1} ≥ P
{S

(1)
i (Xi)

n− 1
≥ − n

n− 1
,
S
(2)
i (Xi)

n− 1
≤ − n

n− 1
δn log

n

i

}
=P

{
S
(1)
i ≥ −n, S

(2)
i ≤ −nδn log

n

i

}
≥P

{
− n ≤ S

(1)
i ≤ −nδn,−n log

n− 1

i− 1
≤ S

(2)
i ≤ −nδn log

n

i

}
. (B.55)

Note that
P{|h1,i(Xi)| ≥ 1} ≥ P{h1,i(Xi) ≥ 1}. (B.56)

Equation (A.41) follows from (B.52), (B.55), and (B.56).
This completes the proof.

B.5. Proof of Lemma A.5

Proof. Define

fij(x) := P (Xj > x)− θ(i, j),

S
(1)
i (x) :=

i−1∑
j=1

fij(x), and S
(2)
i (x) :=

n∑
j=i+1

fij(x). (B.57)

By (3.1) we have hAP
1,i (Xi) = {S(1)

i (Xi)− S
(2)
i (Xi)}/(n− 1) for 2 ≤ i ≤ n.
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First, we show that (A.50) and (A.51) hold under Condition (i) of Theorem
3.3. Using fij(·) notation, Condition (i) becomes

P{δn ≤ fij(Xi) ≤ 1, ∀j ∈ [n]\{i}} ≥ pn. (B.58)

If δn ≤ fij(x) ≤ 1, ∀j ∈ [n]\{i}, we have

(i− 1)δn =

i−1∑
j=1

δn ≤ S
(1)
i (x) ≤

i−1∑
j=1

1 = i− 1, (B.59)

and

(n− i)δn =

n∑
j=i+1

δn ≤ S
(2)
i (x) ≤

n∑
j=i+1

1 = n− i. (B.60)

Using (B.59) and (B.60), it follows from (B.58) that

P
{
(i− 1)δn ≤ S

(1)
i (Xi) ≤ i− 1, (n− i)δn ≤ S

(2)
i (Xi) ≤ n− i

}
≥ pn. (B.61)

If n− i ≤ (i− 1)δn/2, the monotonicity property of probability measure gives

P
{
h1,i(Xi) ≥

i− 1

n− 1

δn
2

}
≥ P

{S
(1)
i (Xi)

n− 1
≥ i− 1

n− 1
δn,

S
(2)
i (Xi)

n− 1
≤ n− i

n− 1

}
=P

{
S
(1)
i ≥ (i− 1)δn, S

(2)
i ≤ n− i

}
≥P

{
(i− 1)δn ≤ S

(1)
i ≤ i− 1, (n− i)δn ≤ S

(2)
i ≤ n− i

}
. (B.62)

Note that

P
{
|h1,i(Xi)| ≥

i− 1

n− 1

δn
2

}
≥ P

{
h1,i(Xi) ≥

i− 1

n− 1

δn
2

}
. (B.63)

Equation (A.50) follows from (B.61), (B.62), and (B.63). If i− 1 ≤ (n− i)δn/2,
the monotonicity property of probability measure gives

P{h1,i(Xi) ≤ − n− i

n− 1

δn
2
} ≥ P

{S
(1)
i (Xi)

n− 1
≤ i− 1

n− 1
,
S
(2)
i (Xi)

n− 1
≥ n− i

n− 1
δn

}
=P

{
S
(1)
i ≤ i− 1, S

(2)
i ≥ (n− i)δn

}
≥P

{
(i− 1)δn ≤ S

(1)
i ≤ i− 1, (n− i)δn ≤ S

(2)
i ≤ n− i

}
. (B.64)

Note that

P
{
|h1,i(Xi)| ≥

n− i

n− 1

δn
2

}
≥ P

{
h1,i(Xi) ≤ − n− i

n− 1

δn
2

}
. (B.65)

Equation (A.51) follows from (B.61), (B.64), and (B.65).
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Secondly, we show that (A.50) and (A.51) hold under Condition (ii) of The-
orem 3.3. Using fij(·) notation, Condition (ii) becomes

P{−1 ≤ fij(Xi) ≤ −δn, ∀j ∈ [n]\{i}} ≥ pn. (B.66)

If −1 ≤ fij(x) ≤ −δn, ∀j ∈ [n]\{i}, we have

− (i− 1) = −
i−1∑
j=1

1 ≤ S
(1)
i (x) ≤ −

i−1∑
j=1

δn = −(i− 1)δn, (B.67)

and

− (n− i) = −
n∑

j=i+1

1 ≤ S
(2)
i (x) ≤ −

n∑
j=i+1

δn = −(n− i)δn. (B.68)

Using (B.67) and (B.68), it follows from (B.58) that

P
{
− (i− 1) ≤ S

(1)
i (Xi) ≤ −(i− 1)δn,−(n− i) ≤ S

(2)
i (Xi) ≤ −(n− i)δn

}
≥ pn.

(B.69)
If n− i ≤ (i− 1)δn/2, the monotonicity property of probability measure gives

P
{
h1,i(Xi) ≤ − i− 1

n− 1

δn
2

}
≥ P

{S
(1)
i (Xi)

n− 1
≤ − i− 1

n− 1
δn,

S
(2)
i (Xi)

n− 1
≥ − n− i

n− 1

}
=P

{
S
(1)
i ≤ −(i− 1)δn, S

(2)
i ≥ −(n− i)

}
≥P

{
− (i− 1) ≤ S

(1)
i ≤ −(i− 1)δn,−(n− i) ≤ S

(2)
i ≤ −(n− i)δn

}
. (B.70)

Note that

P
{
|h1,i(Xi)| ≥

i− 1

n− 1

δn
2

}
≥ P

{
h1,i(Xi) ≤ − i− 1

n− 1

δn
2

}
. (B.71)

Equation (A.50) follows from (B.69), (B.70), and (B.71). If i− 1 ≤ (n− i)δn/2,
the monotonicity property of probability measure gives

P{h1,i(Xi) ≥
n− i

n− 1

δn
2
} ≥ P

{S
(1)
i (Xi)

n− 1
≥ − i− 1

n− 1
,
S
(2)
i (Xi)

n− 1
≤ − n− i

n− 1
δn

}
=P

{
S
(1)
i ≥ −(i− 1), S

(2)
i ≤ −(n− i)δn

}
≥P

{
− (i− 1) ≤ S

(1)
i ≤ −(i− 1)δn,−(n− i) ≤ S

(2)
i ≤ −(n− i)δn

}
. (B.72)

Note that

P
{
|h1,i(Xi)| ≥

n− i

n− 1

δn
2

}
≥ P

{
h1,i(Xi) ≥

n− i

n− 1

δn
2

}
. (B.73)

Equation (A.51) follows from (B.69), (B.72), and (B.73).
This completes the proof.
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B.6. Proof of Lemma A.6

Proof. As in the statement of Lemma A.6, we consider a fixed i ∈ [n]. For any
j ∈ [n]\{i}, we have ρ−1

ij ≤ ρn and −rij ≤ Rn. This combined with (A.61)

implies that zi ≥ ρ−1
ij t0 − rij , or equivalently

ρij(zi + rij) ≥ t0. (B.74)

Equations (B.74) and (3.6) imply that

F c
j {ρij(zi + rij)} ≤ c2{ρij(zi + rij)}−b2 . (B.75)

Define

δn := min
{c1
2
R−b1

n ,
c1
2
t−b1
0 ,

1

2

}
.

This implies that δn ∈ (0, 1) and

−δn
c2

+
c1
c2

t−b1
0 ≥ c1

2c2
t−b1
0 , (B.76)

and − δn
c2

+
c1
c2

R−b1
n ≥ c1

2c2
R−b1

n . (B.77)

For an arbitrary j ∈ [n]\{i}, either rij(1+ρ−2
ij )−1/2 ≤ t0 or rij(1+ρ−2

ij )−1/2 > t0
holds. In the following we show fij(x) ≤ −δn for all j ∈ [n]\{i} under these two
mutually exclusive and collectively exhaustive cases.

Case 1: Assume that for a fixed j we have

rij(1 + ρ−2
ij )−1/2 ≤ t0. (B.78)

By the monotonicity of F c
ji(·) we have

F c
ji{rij(1 + ρ−2

ij )−1/2} ≥ F c
ji(t0). (B.79)

By (3.7) we have
F c
ji(t0) ≥ c1t

−b1
0 . (B.80)

Combining (B.79) and (B.80) yields

F c
ji{rij(1 + ρ−2

ij )−1/2} ≥ c1t
−b1
0 . (B.81)

Combining (A.60), (B.75), and (B.81) gives

fij(x) ≤ c2{ρij(zi + rij)}−b2 − c1t
−b1
0 . (B.82)

Equation (B.76) implies(
− δn

c2
+

c1
c2

t−b1
0

)−1/b2
≤

(
t−b1
0

c1
2c2

)−1/b2
. (B.83)
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Noting that t0 > 0 and Rn ≥ −rij , (A.61) implies

zi ≥ −rij +
(
t−b1
0

c1
2c2

)−1/b2
ρn, (B.84)

Combining (B.83) and (B.84) gives

ρij(zi + rij) ≥
(
− δn

c2
+

c1
c2

t−b1
0

)−1/b2
. (B.85)

Therefore, by (B.82) and (B.85) we deduce

fij(x) ≤ −δn + c1t
−b1
0 − c1t

−b1
0 = −δn.

Case 2: Assume that for a fixed j we have

rij(1 + ρ−2
ij )−1/2 > t0. (B.86)

By (3.7) we have

F c
ji{rij(1 + ρ−2

ij )−1/2} ≥ c1{rij(1 + ρ−2
ij )−1/2}−b1 . (B.87)

Combining (A.60), (B.75), and (B.87) gives

fij(x) ≤ c2{ρij(zi + rij)}−b2 − c1{rij(1 + ρ−2
ij )−1/2}−b1 . (B.88)

Equation (B.77) implies(
− δn

c2
+

c1
c2

R−b1
n

)−1/b2
≤

( c1
2c2

R−b1
n

)−1/b2
. (B.89)

Noting that t0 > 0 and Rn ≥ −rij , (A.61) implies

zi ≥ −rij + ρ−1
ij

( c1
2c2

)−1/b2
Rb1/b2

n . (B.90)

Combining (B.89) and (B.90) gives

ρij(zi + rij) ≥
(
− δn

c2
+

c1
c2

R−b1
n

)−1/b2
. (B.91)

Equation (B.91) implies

c2{ρij(zi + rij)}−b2 ≤ −δn + c1R
−b1
n . (B.92)

Since rij ≤ Rn and (1 + ρ−2
ij )−1/2 ≤ 1, we have

c1{rij(1 + ρ−2
ij )−1/2}−b1 ≥ c1R

−b1
n . (B.93)

Therefore, by (B.88), (B.92), and (B.93) we deduce

fij(x) ≤ −δn + c1R
−b1
n − c1R

−b1
n = −δn.

This completes the proof.
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B.7. Proof of Lemma A.7

Proof. For any j ∈ [n]\{i}, we have ρ−1
ij ≤ ρn and −rij ≤ Rn. This combined

with (A.72) implies that zi ≥ ρ−1
ij t0 − rij , or equivalently

ρij(zi + rij) ≥ t0. (B.94)

Equations (B.94) and (3.10) imply that

F c
j {ρij(zi + rij)} ≤ c2 exp[−b2{ρij(zi + rij)}λ]. (B.95)

Define

δn := min
{c1
2
exp(−b1R

λ
n),

c1
2
exp(−b1t

λ
0 ),

1

2

}
.

This implies that δn ∈ (0, 1) and that

−δn
c2

+
c1
c2

exp(−b1t
λ
0 ) ≥

c1
2c2

exp(−b1t
λ
0 ) (B.96)

and − δn
c2

+
c1
c2

exp(−b1R
λ
n) ≥

c1
2c2

exp(−b1R
λ
n). (B.97)

In the following we show fij(x) ≤ −δn for all j ∈ [n]\{i} under these two
mutually exclusive and collectively exhaustive cases.

Case 1: Assume that for a fixed j we have

rij(1 + ρ−2
ij )−1/2 ≤ t0. (B.98)

By the monotonicity of F c
ji(·) we have

F c
ji{rij(1 + ρ−2

ij )−1/2} ≥ F c
ji(t0). (B.99)

By (3.11) we have
F c
ji(t0) ≥ c1 exp(−b1t

λ
0 ). (B.100)

Combining (B.99) and (B.100) yields

F c
ji{rij(1 + ρ−2

ij )−1/2} ≥ c1 exp(−b1t
λ
0 ). (B.101)

Combining (A.60), (B.95), and (B.101) gives

fij(x) ≤ c2 exp[−b2{ρij(zi + rij)}λ]− c1 exp(−b1t
λ
0 ). (B.102)

Equation (B.96) implies

− 1

b2
log{−δn

c2
+

c1
c2

exp(−b1t
λ
0 )} ≤ − 1

b2
log

c1
2c2

+
b1
b2
tλ0 . (B.103)

Noting that t0 > 0 and Rn ≥ −rij , (A.72) implies

zi ≥ −rij + ρ−1
ij K3 ≥ −rij + ρ−1

ij

(
− 1

b2
log

c1
2c2

+
b1
b2
tλ0

)1/λ

. (B.104)
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Combining (B.103) and (B.104) gives

ρij(zi + rij) ≥
[
− 1

b2
log

{
− δn

c2
+

c1
c2

exp(−b1t
λ
0 )
}]1/λ

. (B.105)

Therefore, by (B.102) and (B.105) we deduce

fij(x) ≤ −δn + c1 exp(−b1t
λ
0 )− c1 exp(−b1t

λ
0 ) = −δn.

Case 2: Assume that for a fixed j we have

rij(1 + ρ−2
ij )−1/2 > t0. (B.106)

By (3.11) we have

F c
ji{rij(1 + ρ−2

ij )−1/2} ≥ c1 exp
[
− b1

{
rij

(
1 + ρ−2

ij

)−1/2}λ]
. (B.107)

Combining (A.60), (B.95), and (B.107) gives

fij(x) ≤ c2 exp[−b2{ρij(zi + rij)}λ]− c1 exp[−b1{rij(1 + ρ−2
ij )−1/2}λ]. (B.108)

Equation (B.97) implies

− 1

b2
log{−δn

c2
+

c1
c2

exp(−b1R
λ
n)} ≤ − 1

b2
log

c1
2c2

+
b1
b2
Rλ

n. (B.109)

Equation (A.72) implies

zi ≥ Rn + ρnξ(λ
−1)

{(
− 1

b2
log

c1
2c2

)1/λ

+
(b1
b2
Rλ

n

)1/λ}
. (B.110)

It follows from (B.110) and Lemma C.9 that

zi ≥ Rn + ρn

(
− 1

b2
log

c1
2c2

+
b1
b2
Rλ

n

)1/λ

. (B.111)

Noting that t0 > 0 and Rn ≥ −rij , (B.111) implies

zi ≥ −rij + ρ−1
ij

(
− 1

b2
log

c1
2c2

+
b1
b2
Rλ

n

)1/λ

. (B.112)

Combining (B.109) and (B.112) gives

ρij(zi + rij) ≥
[
− 1

b2
log{−δn

c2
+

c1
c2

exp(−b1R
λ
n)}

]1/λ
. (B.113)

Equation (B.113) implies

c2 exp[−b2{ρij(zi + rij)}λ] ≤ −δn + c1 exp(−b1R
λ
n). (B.114)

Since rij ≤ Rn and (1 + ρ−2
ij )−1/2 ≤ 1, we have

c1 exp
[
− b1{rij(1 + ρ−2

ij )−1/2}λ
]
≥ c1 exp(−b1R

λ
n). (B.115)

Therefore, by (B.108), (B.114), and (B.115) we deduce

fij(x) ≤ −δn + c1 exp(−b1R
λ
n)− c1 exp(−b1R

λ
n) = −δn.

This completes the proof.
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B.8. Proof of Lemma A.8

Proof. Consider an arbitrary vector (l1, . . . , ln), with each li ∈ [n]. Define the
sign function sgn(x) := 1(x > 0)− 1(x < 0). It follows from (3.1) that

n∑
i=1

E{hKen
1,i (Xli)

2}

=
1

(n− 1)2

n∑
i=1

E
[ n∑
k=1

sgn(i− k){P (Xk > Xli | Xli)− P (Xk > Xi)}
]2

= T1 − 2T2 + T3, (B.116)

where

T1 =
1

(n− 1)2

n∑
i=1

n∑
k1,k2=1

sgn(i− k1)sgn(i− k2)

× E [P (Xk1 > Xli | Xli)P (Xk2 > Xli | Xli)] , (B.117)

T2 =
1

(n− 1)2

n∑
i=1

n∑
k1,k2=1

sgn(i− k1)sgn(i− k2)P (Xk1 > Xj)P (Xk2 > Xi),

(B.118)

T3 =
1

(n− 1)2

n∑
i=1

n∑
k1,k2=1

sgn(i− k1)sgn(i− k2)P (Xk1 > Xi)P (Xk2 > Xi).

(B.119)

We have

n∑
i=1

n∑
k1,k2=1

sgn(i−k1)sgn(i−k2) =

n∑
i=1

(2i−n−1)2 =
1

3
n(n−1)(n+1). (B.120)

It follows from (3.20), (B.117), and (B.120) that

T1 =
n(n− 1)(n+ 1)

3(n− 1)2
{η2 +O(n−1/3)} =

n(n+ 1)

3(n− 1)
η2 +O(n2/3). (B.121)

It follows from (3.19), (B.118), (B.119), and (B.120) that

T2 =
n(n− 1)(n+ 1)

3(n− 1)2
{θ +O(n−1/6)}2 =

n(n+ 1)

3(n− 1)
θ2 +O(n5/6), (B.122)

T3 =
n(n− 1)(n+ 1)

3(n− 1)2
{θ +O(n−1/6)}2 =

n(n+ 1)

3(n− 1)
θ2 +O(n5/6). (B.123)

Combining (B.116) with (B.121), (B.122), and (B.123) yields

n∑
i=1

E
{
hKen
1,i (Xli)

2
}
= T1 − 2T2 + T3 =

n(n+ 1)

3(n− 1)
(η2 − θ2) +O(n5/6). (B.124)
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In (B.124), letting (l1, . . . , ln) = (j, j, . . . , j) yields (A.95), and letting
(l1, . . . , ln) = (j, j, . . . , j) yields (A.96).

This completes the proof.

B.9. Proof of Lemma A.9

Proof. Consider an arbitrary vector (l1, . . . , ln), with each li ∈ [n]. It follows
from (3.2) that

n∑
i=1

E{hAP
1,i (Xli)

2}

=
1

(n− 1)2

n∑
i=1

E
[ n∑
k=1

{n1(k < i)

i− 1
− n1(k > i)

k − 1

}
{P (Xk > Xli | Xli)− P (Xk > Xi)}

]2
= T1 − 2T2 + T3, (B.125)

where

T1 =
n2

(n− 1)2

n∑
i=1

n∑
k1,k2=1

γ(i, k1, k2)E [P (Xk1 > Xli | Xli)P (Xk2 > Xli | Xli)] ,

(B.126)

T2 =
n2

(n− 1)2

n∑
i=1

n∑
k1,k2=1

γ(i, k1, k2)P (Xk1 > Xj)P (Xk2 > Xi), (B.127)

T3 =
n2

(n− 1)2

n∑
i=1

n∑
k1,k2=1

γ(i, k1, k2)P (Xk1 > Xi)P (Xk2 > Xi), (B.128)

and

γ(i, k1, k2) :=
{1(k1 < i)

i− 1
− 1(k1 > i)

k1 − 1

}{1(k2 < i)

i− 1
− 1(k2 > i)

k2 − 1

}
.

By Lemma C.10 and Lemma C.8 we have

n∑
i=1

n∑
k1,k2=1

γ(i, k1, k2) = (n− 1) + ϕ(n− 1) = (n− 1) +O(log n). (B.129)

It follows from (3.22), (B.126), and (B.129) that

T1 =
n2{(n− 1) +O(log n)}

(n− 1)2
{η2 +O(n−1/3(logn)2)}

=
n2

n− 1
η2 +O{n2/3(log n)2}. (B.130)
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It follows from (3.21), (B.127), (B.128), and (B.129) that

T2 =
n2{(n− 1) +O(log n)}

(n− 1)2
{θ +O(n−1/6 logn)}2 =

n2

n− 1
θ2 +O(n5/6 logn),

(B.131)

T3 =
n2{(n− 1) +O(log n)}

(n− 1)2
{θ +O(n−1/6 logn)}2 =

n2

n− 1
θ2 +O(n5/6 logn).

(B.132)

Combining (B.125) with (B.130), (B.131), and (B.132) yields

n∑
i=1

E
{
hAP
1,i (Xli)

2
}
= T1 − 2T2 +T3 =

n2

n− 1
(η2 − θ2)+O(n5/6 logn). (B.133)

In (B.133), letting (l1, . . . , ln) = (j, j, . . . , j) yields (A.95), and letting
(l1, . . . , ln) = (j, j, . . . , j) yields (A.96). This completes the proof.

Appendix C: Auxiliary lemmas and proofs

In this Section, we state and prove (or give reference to) the auxiliary lemmas
that are used in the proofs in earlier sections.

Lemma C.1. There exists a constant cm which only depends on m, such that
the following results hold.

(i) For any n and any (i1, . . . , im) ∈ Imn ,

E{h2;i1,...,im(Xi1 , . . . , Xim)2} ≤ cmE{h(Xi1 , . . . , Xim)2}.

(ii) For any n, any i ∈ [n], any (i1, . . . , im−1) ∈ Im−1
n−1 (−i), and any l ∈ [m],

E[{f (l)
i1,...,im−1

(Xi)− θ(l)(i; i1, . . . , im−1)}4]
≤ cmE{h(l)(Xi;Xi1 , . . . , Xim−1)

4}.

(iii) For any n, any (i1, . . . , im) ∈ Imn , and any j1, . . . , jm ∈ [n],

E{h2;i1,...,im(Xj1 , . . . , Xjm)2} ≤ cm sup
1≤k1,...,km≤n

E{h(Xk1 , . . . , Xkm)2}.

Lemma C.2 (20, Section 1.3, Theorem 2). Consider three random variables
X,Y, Z. Assume Y is independent of Z conditional on X. Then for two measur-
able functions f, g : R2 → R, we have

Cov{f(X,Y ), g(X,Z)} = Cov
[
E{f(X,Y ) | X}, E{g(X,Z) | X}

]
.

Lemma C.3. Consider a sequence of random variables X1, X2, . . ., with

E(Xn) = 0 for all Xn. If Var(Xn) → 0, then Xn
P→ 0.
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Lemma C.4 (Lyapunov’s central limit theorem). Let X1, X2, . . . be a sequence
of independent random variables and let Sn = n−1

∑n
i=1 Xi. If there exists δ > 0

such that

lim
n→∞

∑n
i=1 E|Xi − E(Xi)|2+δ{∑n
i=1 E |Xi − E(Xi)|2

} 2+δ
2

= 0, (C.1)

then

Var(Sn)
−1/2{Sn − E(Sn)} d→ N(0, 1).

Lemma C.5 (21, Theorem 2.6.1). If a sequence of cumulative distribution func-
tions Hn tends to a continuous cdf H, then Hn(x) converges to H(x) uniformly
in x.

Lemma C.6 (25, Theorem 2.2). Consider a sequence Yn,1, . . . , Yn,n of in-
dependent random variables with distribution Pn,i. For a function gn define

T̂n = n−1
∑n

i=1 gn(Yn,i). Consider a bootstrap sample Y ∗
n,1, . . . , Y

∗
n,n and define

T̂ ∗
n = n−1

∑n
i=1 gn(Y

∗
n,i). Then for every sequence tn the following assertions are

equivalent:

(i) There exists σn such that for every ε > 0

sup
1≤i≤n

P
{∣∣∣gn(Yn,i)− tn

nσn

∣∣∣ ≥ ε
}
→ 0, (C.2)

n∑
i=1

(
E
[gn(Yn,i)− tn

nσn
1
{∣∣∣gn(Yn,i)− tn

nσn

∣∣∣ ≤ ε
}])2

→ 0, (C.3)

sup
t∈R

|P (T̂n − tn ≤ t)− Φ(t)| → 0. (C.4)

(ii) Bootstrap works:

sup
t∈R

|P (T̂ ∗
n − T̂n ≤ t | Yn,1, . . . , Yn,n)− P (T̂n − tn ≤ t)| P→ 0.

Lemma C.7 (36, Theorem 1.8 C). Let X1, X2, . . . be uncorrelated with means
μ1, μ2, . . . and variances σ2

1 , σ
2
2 , . . .. If

∑n
i=1 σ

2
i = o(n−2), n → ∞, then

1

n

n∑
i=1

Xi −
1

n

n∑
i=1

μi
P→ 0.

Lemma C.8 (Bound on the partial sum of harmonic series). Denote ϕ(n) =∑n
k=1 k

−1. Then for any two integers m,n such that 1 ≤ m ≤ n,

log
n+ 1

m+ 1
≤ ϕ(n)− ϕ(m) ≤ log

n

m
, (C.5)

log(n+ 1) ≤ ϕ(n) ≤ 1 + logn. (C.6)
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Lemma C.9. For any two positive real numbers a, b and real number p > 0,
we have

(a+ b)p ≤ ξ(p)(ap + bp),

where

ξ(p) =

{
2p−1 if p ≥ 1,

1 if 0 < p < 1.

Lemma C.10. We have

n∑
i=1

n∑
j=1

n∑
k=1

{1(j < i)

i− 1
− 1(j > i)

j − 1

}{1(k < i)

i− 1
− 1(k > i)

k − 1

}
= (n− 1)+ϕ(n− 1),

(C.7)
where we define 0/0 := 0 and ϕ(n) :=

∑n
k=1 k

−1.

Lemma C.11. Define Φc(x) = 1√
2π

∫∞
x

exp(− t2

2 )dt to be the complement dis-

tribution function for the standard Gaussian. We have the following bounds for
Φc(x):

1√
2π

(
1

x
− 1

x3

)
exp(−x2

2
) ≤ Φc(x) ≤ 1√

2π

1

x
exp(−x2

2
), if x > 0,

1+
1√
2π

1

x
exp(−x2

2
) ≤ Φc(x) ≤ 1+

1√
2π

(
1

x
− 1

x3

)
exp(−x2

2
), if x < 0.

C.1. Proof of auxiliary lemmas

Proof of Lemma C.1. Define i = (i1, . . . , im), Xi = (Xi1 , . . . , Xim), and i−m =
(i1, . . . , im−1).

(i) By the definition of h2;i(·) in (2.5) we have

E{h2;(Xi)
2} ≤ 2m+2

[
E{h(Xi)

2}+
m∑
l=1

E{f (l)
i\il(Xil)

2}+ (m− 1)2θ2(i)
]
.

(C.8)
Jensen’s inequality and the law of iterated expectation yield

E{f (l)
i\il(Xil)

2} = Eil [Ei\il{h(l)(Xil ;Y1, . . . Ym−1) | Xil}2] ≤ E{h(Xi)
2}

(C.9)
and

θ2(i) ≤ E{h(Xi)
2}. (C.10)

Equations (C.8), (C.9), and (C.10) imply

E{h2;i(Xi)
2} ≤ 2m+2{1 +m+ (m− 1)2}E{h(Xi)

2}.

This proves (i).
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(ii) We have

E[{f (l)
i−m

(Xi)− θ(l)(i; i−m)}4] ≤ 24[E{f (l)
i−m

(Xi)
4}+ θ(l)(i; i−m)4] (C.11)

By the definition of f
(l)
i−m

(·) in (2.3) and Jensen’s inequality we have

E{f (l)
i−m

(Xi)
4} ≤ Ei[Ei−m{h(l)(Xi;Y1, . . . Ym−1)

4 | Xi}]

= E{h(l)(Xi;Xi−m)4}. (C.12)

Jensen’s inequality also implies that

θ(l)(i; i−m)4 = {Eh(l)(Xi;Xi−m)}4 ≤ E{h(l)(Xi;Xi−m)4}. (C.13)

Combining (C.11) with (C.12) and (C.13) yields

E[{f (l)
i−m

(Xi)− θ(l)(i; i−m)}4] ≤ 24E{h(l)(Xi;Xi−m)4}.

This proves (ii).
(iii) Consider j := (j1, . . . , jm) with each jl ∈ [m]. DefineXj := (Xj1 , . . . , Xjm).

By the definition of h2;i(·) in (2.5) we have

E{h2;i(Xj)
2} ≤ 2m+2

[
E{h(Xj)

2}+
m∑
l=1

E{f (l)
i\il(Xjl)

2}+ (m− 1)2θ2(i)
]
.

(C.14)

By the definition of f
(l)
i−m

(·) in (2.3) and Jensen’s inequality we have

E{f (l)
i−m

(Xjl)
2} ≤ Ejl [Ei−m

{h(l)(Xjl ;Y1, . . . Ym−1)
2 | Xjl}]

= E{h(l)(Xjl ;Xi−m
)2}. (C.15)

Combining (C.14), (C.15), and (C.10) yields

E{h2;i(Xj)
2}

≤ 2m+2
[
E{h(Xj)

2}+
m∑
l=1

E{h(l)(Xjl ;Xi−m)2}+ (m− 1)2E{h(Xi)
2}
]

≤ 2m+2m2 sup
1≤k1,...,km≤n

E{h(Xk1 , . . . , Xkm)2}.

This proves (iii).

The proof is thus finished.

Proof of Lemma C.8. We have ϕ(n)−ϕ(m) =
∑n

k=m+1 k
−1. By integral bound,

we have

log
n+ 1

m+ 1
=

∫ n+1

m+1

1

x
dx ≤

n∑
k=m+1

1

k
≤

∫ n

m

1

x
dx = log

n

m
,
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which yields (C.5). We also have

log(n+ 1) ≤
∫ n+1

1

1

x
dx ≤

n∑
k=1

1

k
≤ 1 +

∫ n

1

1

x
dx ≤ 1 + logn,

which yields (C.6). The proof is thus finished.

Proof of Lemma C.10. By algebra we have

n∑
i=1

n∑
j=1

n∑
k=1

{1(j < i)

i− 1
− 1(j > i)

j − 1

}{1(k < i)

i− 1
− 1(k > i)

k2 − 1

}
= T1 − T2 − T3 + T4,

(C.16)
where

T1 =

n∑
i=1

n∑
j=1

n∑
k=1

1(j < i)

i− 1
· 1(k < i)

i− 1
, T2 =

n∑
i=1

n∑
j=1

n∑
k=1

1(j < i)

i− 1
· 1(k > i)

k − 1
,

T3 =

n∑
i=1

n∑
j=1

n∑
k=1

1(j > i)

j − 1
· 1(k < i)

i− 1
, T4 =

n∑
i=1

n∑
j=1

n∑
k=1

1(j > i)

j − 1
· 1(k > i)

k − 1
.

For T1 we have

T1 =

n∑
i=2

i−1∑
j=1

i−1∑
k=1

1

(i− 1)2
= n− 1. (C.17)

For T2 we have

T2 =

n−1∑
i=2

i−1∑
j=1

n∑
k=i+1

1

i− 1
· 1

k − 1
=

n∑
k=3

k−1∑
i=2

1

k − 1

=

n∑
k=3

(
1− 1

k − 1

)
= (n− 1)− ϕ(n− 1). (C.18)

By symmetry T2 = T3, so

T3 = (n− 1)− ϕ(n− 1). (C.19)

For T4 we have

T4 =

n−1∑
i=1

n∑
j=i+1

n∑
k=i+1

1

j − 1
· 1

k − 1

=

n∑
j=2

n∑
k=j+1

j−1∑
i=1

1

j − 1
· 1

k − 1
+

n∑
j=2

j∑
k=2

k−1∑
i=1

1

j − 1
· 1

k − 1
. (C.20)

Note that

n∑
j=2

n∑
k=j+1

j−1∑
i=1

1

j − 1
· 1

k − 1
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=

n∑
j=2

n∑
k=j+1

1

k − 1
=

n∑
k=3

k−1∑
j=2

1

k − 1
= (n− 1)− ϕ(n− 1) (C.21)

and

n∑
j=2

j∑
k=2

k−1∑
i=1

1

j − 1
· 1

k − 1
=

n∑
j=2

j∑
k=2

1

j − 1
=

n∑
j=2

1 = n− 1. (C.22)

Combining (C.20) with (C.21) and (C.22) yields

T4 = 2(n− 1)− ϕ(n− 1). (C.23)

Equation (C.7) follows from (C.16), (C.17), (C.18), and (C.23).
This completes the proof.
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