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Abstract: We present upper bounds for the Wasserstein distance of order
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1. Introduction

Lévy processes form the prototype of continuous-time processes with a con-
tinuous diffusion and a jump part. In applications, there is a high interest to
disentangle these parts based on discrete observations. While Aı̈t-Sahalia and
Jacod [1] among many others propose an asymptotically (as the observation
distances become smaller) consistent test on the presence of jumps for gen-
eral semimartingale models, Neumann and Reiß [18] argue that, already inside
the class of α-stable processes with α ∈ (0, 2], no uniformly consistent test ex-
ists. The subtle, but important, difference is the uniformity over the class of
processes. Mathematically, the difference is that on the Skorokhod path space
D([0, T ]) α-stable processes, α ∈ (0, 2), induce laws singular to that of Brownian
motion (α = 2), while their respective marginals at tk = kT/n, k = 0, . . . , n for
n fixed, have equivalent laws, which even converge in total variation distance
as α → 2 to those of Brownian motion. It is our aim here to shed some light
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on the geometry of the marginal laws of one-dimensional Lévy processes and
to quantify the distance of the marginal laws non-asymptotically as a function
of the respective Lévy characteristics (b, σ2, ν). The marginals form, of course,
infinitely divisible distributions, but we prefer here the process point of view
which is sometimes more intuitive.

Let us recall the fundamental result by Gnedenko and Kolmogorov [12].

Theorem 1 ([12]). Marginals of Lévy processes Xn = (Xn
t )t≥0 with character-

istics (bn, σ
2
n, νn) converge weakly to marginals of a Lévy process X = (Xt)t≥0

with characteristics (b, σ2, ν) if and only if

bn → b and σ2
nδ0 + (x2 ∧ 1)νn(dx)

w−→ σ2δ0 + (x2 ∧ 1)ν(dx),

where δ0 is the Dirac measure in 0 and
w−→ denotes weak convergence of finite

measures.

As a particular example, consider the compound Poisson process with Lévy
measure δ−ε+δε

2ε2 that has jumps of size ε and −ε both at intensity 1
2ε2 . Then as

ε ↓ 0, the marginals converge to those of a standard Brownian motion, which
can also be derived from Donsker’s Theorem. Below, we shall be able to quantify
this rate of convergence for general Lévy processes in terms of the (stronger)
p-Wasserstein distances Wp. The derived Gaussian approximation of the small
jump part relies on the fine analysis by Rio [20] of the approximation error
in Wasserstein distance for the central limit theorem. This is the subject of
Theorem 9, of which the following is a simplified statement:

Result. Let XS(ε) be a Lévy process with characteristics (0, 0, νε) where νε is
a Lévy measure with support in [−ε, ε]. Introducing σ̄2(ε) =

∫ ε

−ε
x2νε(dx), there

exists a constant C depending only on p such that:

Wp

(
L (XS

t (ε)),N (0, tσ̄2(ε))
)
≤ Cmin

(√
tσ̄(ε), ε

)
≤ Cε.

A Gaussian approximation of the small jumps of Lévy processes has already
been employed, for example when simulating trajectories of Lévy processes with
infinite Lévy measure (see e.g. [4]).

The above result is actually an intermediate step for the more general Corol-
lary 3, that bounds the p-Wasserstein distance Wp in �r(Rn) as follows:

Result. Let Xj, j = 1, 2, be two Lévy processes with characteristics (bj , σ
2
j , νj),

j = 1, 2. Then for all ε ≥ 0, T > 0 and n ∈ N we have

Wp

(
(X1

kT/n −X1
(k−1)T/n)

n
k=1, (X

2
kT/n −X2

(k−1)T/n)
n
k=1

)
≤ Tn

1
r−1

∣∣b1(ε)− b2(ε)
∣∣ + T 1/2n

1
r− 1

2

∣∣σ1 + σ̄1(ε)− σ2 − σ̄2(ε)
∣∣

+ C

2∑
j=1

min
(
T 1/2n

1
r− 1

2 σ̄j(ε), n
1
r ε

)
+ n

1
r Wp

(
X1,B

T/n(ε), X
2,B
T/n(ε)

)
,

where bj(ε) := bj −
∫
ε<|x|≤1

xνj(dx), σ̄
2
j (ε) :=

∫
|x|≤ε

x2ν(dx) and C is a con-

stant depending only on p. The term Wp(X
1,B
T/n(ε), X

2,B
T/n(ε)), involving the jumps

larger ε, can be bounded as in Theorem 10.
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Sometimes we can even obtain bounds on the total variation distance, which
for statistical purposes, especially testing, is particularly meaningful. The cur-
rently available bound in the literature is by Liese [16].

Theorem 2 ([16, Cor. 2.7]). For Lévy processes X1 and X2 with characteristics
(b1, σ

2
1 , ν1) and (b2, σ

2
2 , ν2), respectively, introduce the squared Hellinger distance

of the Lévy measures (put ν0 = ν1 + ν2):

H2(ν1, ν2) :=

∫
R

(√
dν1
dν0

(x)−
√

dν2
dν0

(x)

)2

ν0(dx).

Then the total variation distance between the laws of X1
t and X2

t is bounded as:

‖L (X1
t )− L (X2

t )‖TV

≤ 2

√
1−

(
1− 1

2
H2

(
N (b̃1t, σ2

1t),N (b̃2t, σ2
2t)

))2

exp
(
− tH2(ν1, ν2)

)
with b̃1 = b1 −

∫ 1

−1
xν1(dx), b̃2 = b2 −

∫ 1

−1
xν2(dx).

Note that the bound is very loose or even trivial in the case ν2 = 0 and
λ1 = ν1(R) > 1/t because then tH2(ν1, ν2) = tλ1 > 1. So, this bound does not
allow to deduce a total variation approximation of Brownian motion by jump
processes of infinite jump activity like α-stable processes with α ↑ 2. In fact, for
pure jump Lévy processes these bounds are analogous to the bounds by Mémin
and Shiryayev [17] in the path space D([0, T ]), where pure jump processes and
Brownian motion have singular laws (for other results on distances on D([0, T ])
see e.g. [6, 9, 14, 15]). Our main idea is to use the convolutional structure of
the laws to transfer bounds from Wasserstein to total variation distance. This
strategy is implemented for Lévy processes with a non-zero Gaussian component
(but without any restriction on the Lévy measures, which can be infinite, and
even with infinite variation) and yields Theorem 14:

Result. For Lévy processes X1 and X2 with characteristics (bj , σ
2
j , νj) and

σj > 0, j = 1, 2, we have for all t > 0, ε ∈ [0, 1]:∥∥L (X1
t )− L (X2

t )
∥∥
TV

≤

√
t
2π

∣∣∣b1(ε)− b2(ε)
∣∣∣ +√

2
∣∣∣√σ2

1 + σ̄2
1(ε)−

√
σ2
2 + σ̄2

2(ε)
∣∣∣√

σ2
1 + σ̄2

1(ε) ∨
√

σ2
2 + σ̄2

2(ε)

+

2∑
j=1

√
2

πtσ2
j

min
(
2
√

tσ̄2
j (ε),

ε

2

)
+ t

∣∣λ1(ε)− λ2(ε)
∣∣ + t

(
λ1(ε) ∧ λ2(ε)

)∥∥∥∥ νε1
λ1(ε)

− νε2
λ2(ε)

∥∥∥∥
TV

,

with the above notation, νεj = νj(· \ (−ε, ε)) and λj(ε) = νεj (R).
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The results proven in this paper provide further insight in the geometry of the
space of discretely observed Lévy processes. At the same time, their nonasymp-
totic character finds fruitful applications in nonparametric statistics, when prov-
ing general lower bounds in a minimax sense. The technology is shown at work
in Section 5.2, making the original proof by Jacod and Reiß [13] for volatility
estimation under high activity jumps simpler and much more transparent.

The results are stated in dimension one. After the first version of this paper
was completed, however, new results for non-asymptotic multidimensional cen-
tral limit theorem in Wasserstein distances have appeared (see e.g. [2]). Since a
(special form of a) central limit theorem was the main technical tool in our proof
of Theorem 9, this makes a multidimensional extension of our findings a promis-
ing future research direction that seems worth investigating. Another potentially
fruitful line of research would be to go beyond the independence structure of
the increments and consider the general framework of semimartingales. Lévy
processes are the basic building blocks for these more general processes and
it is common to use this easier setting as a first step towards a more general
proof; however, the techniques that were used in this paper heavily depend on
the independence structure and do not directly extend to this more general
framework.

The paper is organized as follows. In Section 2 we review basic properties of
the Wasserstein distances and discuss their relationship with the Zolotarev and
Toscani-Fourier distances. Then we recall the main non-asymptotic bounds for
the Wasserstein distances in the CLT and introduce Lévy processes. Section 3
derives bounds between marginals of Lévy processes in Wasserstein distance.
The main focus is on the small jump part, which is treated in Theorem 9 and
for which the tightness of the bounds is discussed in detail, first for concrete
examples and then more generally using a lower bound via the Toscani-Fourier
distance. Main results are presented in Section 3.3. Section 4 introduces proper-
ties of the total variation distance and then shows how bounds in Wasserstein or
Toscani-Fourier distance transfer under convolution to total variation bounds,
see e.g. Proposition 4 and Proposition 7. For Gaussian convolutions the different
bounds are first compared and then applied to the marginals of Lévy processes.
Section 5 is devoted to the application of the total variation bounds for prov-
ing the minimax-optimality of integrated volatility estimators in the presence
of jumps proposed in [13].

2. Preliminaries

2.1. The Wasserstein distances

Let (X , d) be a Polish metric space. Given p ∈ [1,∞), let Pp(X ) denote the
space of all Borel probability measures μ on X such that the moment bound

Eμ[d(X,x0)
p] < ∞

holds for some (and hence all) x0 ∈ X .
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Definition 1. Given p ≥ 1, for any two probability measures μ, ν ∈ Pp(X ), the
Wasserstein distance of order p between μ and ν is defined by

Wp(μ, ν) = inf
{[

E[d(X ′, Y ′)p]
] 1

p , L (X ′) = μ, L (Y ′) = ν
}
, (1)

where the infimum is taken over all random variables X ′ and Y ′ having laws μ
and ν, respectively. We abbreviate Wp(X,Y ) = Wp(L (X),L (Y )) for random
variables X,Y with laws L (X),L (Y ) ∈ Pp(X ).

The following lemma introduces some properties of the Wasserstein distances
that we will use throughout the paper. For a proof, the reader is referred to [25],
Chapter 6.

Lemma 1. The Wasserstein distances have the following properties:

(1) For all p ≥ 1, Wp(·, ·) is a metric on Pp(X ).
(2) If 1 ≤ p ≤ q, then Pq(X ) ⊆ Pp(X ), and Wp(μ, ν) ≤ Wq(μ, ν) for every

μ, ν ∈ Pq(X ).
(3) Given a sequence (μn)n≥1 and a probability measure μ in Pp(X )

lim
n→∞

Wp(μn, μ) = 0

if and only if (μn)n≥1 converges to μ weakly and for some (and hence all)
x0 ∈ X

lim
n→∞

∫
X
d(x, x0)

pμn(dx) =

∫
X
d(x, x0)

pμ(dx).

(4) The infimum in (1) is actually a minimum; i.e., there exists a pair (X∗, Y ∗)
of jointly distributed X -valued random variables with L (X∗) = μ and
L (Y ∗) = ν, such that

Wp(μ, ν)
p = E[d(X∗, Y ∗)p].

Following the terminology used in [26], we can say that the Wasserstein dis-
tances are ideal metrics since they possess the following two properties.

Lemma 2. Let X be a separable Banach space. For any three X -valued random
variables X,Y, Z, with Z independent of X and Y , the inequality

Wp(X + Z, Y + Z) ≤ Wp(X,Y )

holds. Furthermore, for any real constant c, we have

Wp(cX, cY ) = |c|Wp(X,Y ). (2)

Proof. Lemma 1 guarantees the existence of two random variables X∗, Y ∗, in-
dependent of Z, such that

Wp(X,Y ) =
(
E[d(X∗, Y ∗)p]

)1/p
.
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We have:

Wp(X + Z, Y + Z) ≤
(
E

[
d(X∗ + Z, Y ∗ + Z)p

]) 1
p =

(
E

[
d(X∗, Y ∗)p

]) 1
p

= Wp(X,Y ).

The equality (2) follows by homogeneity of the expectation.

An immediate corollary of Lemma 2 is the subadditivity of the metric Wp

under independence (or equivalently under convolution of laws).

Corollary 1. If X1, . . . , Xn are independent random variables as well as Y1, . . . ,
Yn, then

Wp(X1 + · · ·+Xn, Y1 + · · ·+ Yn) ≤
n∑

i=1

Wp(Xi, Yi).

Proof. By induction, it suffices to prove the case n = 2. Let X̃2 be a random
variable equal in law to X2 and independent of Y1 and of X1. By means of
Lemma 2 we have

Wp(Y1 + X̃2, Y1 + Y2) ≤ Wp(X̃2, Y2) = Wp(X2, Y2),

Wp(X1 +X2, Y1 + X̃2) ≤ Wp(X1, Y1).

Hence, by triangle inequality Wp(X1+X2, Y1+Y2) ≤ Wp(X1, Y1)+Wp(X2, Y2)
follows.

A useful property of the Wasserstein distances is their good behaviour with
respect to products of measures.

Lemma 3 (Tensorisation). Let (X , d) be Rn endowed with the distance d(x, y) =
(
∑n

i=1 |xi − yi|r)1/r, r ≥ 1, for all x = (x1, . . . , xn), y = (y1, . . . , yn) and let
μ =

⊗n
i=1 μi and ν =

⊗n
i=1 νi be two product measures on R

n. Then,

Wp(μ, ν)
p ≤ max(n

p
r−1, 1)

n∑
i=1

Wp(μi, νi)
p.

In the special case where μ1 = · · · = μn and ν1 = · · · = νn, the following stricter
inequality holds:

Wp(μ, ν)
p ≤ n

p
r Wp(μ1, ν1)

p.

Proof. Thanks to Point (4) in Lemma 1, we can always find two random vectors
X∗,n = (X∗

1 , . . . , X
∗
n), Y

∗,n = (Y ∗
1 , . . . , Y

∗
n ) with independent coordinates such

that μi = L (X∗
i ), νi = L (Y ∗

i ) andWp(μi, νi) = E[|X∗
i −Y ∗

i |p]1/p. In particular,
we have:

Wp(μ, ν)
p ≤ E

[
d((X∗

i )i, (Y
∗
i )i)

p
]
= E

[( n∑
i=1

|X∗
i − Y ∗

i |r
)p/r]

. (3)
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If p ≥ r, by means of the elementary inequality (z1 + · · · + zn)
q ≤ nq−1(zq1 +

· · ·+ zqn), q ≥ 1, we deduce from (3) that

Wp(μ, ν)
p ≤ np/r−1

n∑
i=1

E[|X∗
i − Y ∗

i |p] = np/r−1
n∑

i=1

Wp(μi, νi)
p.

Similarly, if p < r, the proof follows by the inequality (|z1| + · · · + |zn|)1/q ≤
|z1|1/q + · · ·+ |zn|1/q, q ≥ 1.

In the case where μ1 = · · · = μn and ν1 = · · · = νn, one may choose X∗
1 =

· · · = X∗
n and Y ∗

1 = · · · = Y ∗
n . The conclusion readily follows.

The distance W1 is commonly called the Kantorovich-Rubinstein distance
and it can be characterized in many different ways. Some useful properties of
the distance W1 are the following.

Proposition 1 (See [10]). Let X and Y be integrable real random variables.
Denote by μ and ν their laws and by F and G their cumulative distribution
functions, respectively. Then the following characterizations of the Wasserstein
distance of order 1 hold:

1. W1(X,Y ) =

∫
R

|F (x)−G(x)|dx,

2. W1(X,Y ) =

∫ 1

0

|F−1(t)−G−1(t)|dt,

3. W1(X,Y ) = sup‖ψ‖Lip≤1

(∫
R
ψdμ −

∫
R
ψdν

)
, the supremum being taken

over all ψ satisfying the Lipschitz condition |ψ(x) − ψ(y)| ≤ |x − y|, for
all x, y ∈ R. This property is generally called Kantorovich-Rubinstein for-
mula.

2.2. Wasserstein, Zolotarev and Toscani-Fourier distances

Let μ, ν be two probability measures on R endowed with the distance d(x, y) =
|x − y|, x, y ∈ R. Writing p > 0 as p = m + α with m ∈ N0 and 0 < α ≤ 1,
denote by Fp the Hölder class of real-valued bounded functions f on R which
are m-times differentiable with∣∣f (m)(x)− f (m)(y)

∣∣ ≤ |x− y|α.

Definition 2. The Zolotarev distance Zp between μ and ν is defined by

Zp(μ, ν) = sup
f∈Fp

(∫
R

fdμ−
∫
R

fdν

)
.

Remark 1. It is easy to see that the functional Zp is a metric. For p = 0
the metric Zp is defined by the relation Z0 = limp→0 Zp and F0 is the set of
Borel functions satisfying the condition |f(x) − f(y)| ≤ Ix 
=y. Thanks to the
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characterisation of the total variation given in Property 6 below, it follows that
Z0(μ, ν) = ‖μ− ν‖TV . Also, by means of the Kantorovich-Rubinstein formula,
recalled in Property 1, we have Z1(μ, ν) = W1(μ, ν).

The following result shows that the Wasserstein distance of order p is bounded
by the p-th root of the Zolotarev distance Zp. This fact, together with Theorem
4 below, will be a useful tool to control the Wasserstein distances between the
increments of compound Poisson processes.

Theorem 3 (See [20], Theorem 3.1). For any p ≥ 1 there exists a positive
constant cp such that for any pair (μ, ν) of laws on the real line with finite
absolute moments of order p(

Wp(μ, ν)
)p ≤ cpZp(μ, ν).

Theorem 4 (See [26], Theorem 1.4.3). Let (Xi)i≥1 and (Yi)i≥1 be sequences
of independent random variables and N be an integer-valued random variable
independent of the random variables from both sequences. Then,

Zp

( N∑
i=1

Xi,

N∑
i=1

Yi

)
≤

∞∑
k=1

P(N ≥ k)Zp(Xk, Yk).

Theorem 5 (See [26], Theorem 1.4.2.). Let X and Y be integrable real random
variables with laws μ and ν, respectively. Then the following characterization of
the Zolotarev distance holds: for any p ≥ 1

Zp(X,Y ) =

∫ ∣∣∣∣ ∫ x

−∞

(x− u)p−1

Γ(p)
(μ− ν)(du)

∣∣∣∣dx,
where Γ denotes the Gamma function.

Let P1 and P2 be two probability measures on the real line. We will denote
by ϕ1 (resp. ϕ2) the characteristic function of P1 (resp. P2), i.e.

ϕ1(u) =

∫
R

eiuxP1(dx).

Also, denote by L b(R) (resp. L b(C)) the class of real-valued (resp. complex-
valued) bounded functions on R with Lipschitz norm bounded by 1.

Definition 3. For s > 0, the Toscani-Fourier distance of order s, denoted by
Ts, is defined as:

Ts(P1, P2) = sup
u∈R\{0}

|ϕ1(u)− ϕ2(u)|
|u|s .

The distance introduced in Definition 3 first appeared in [8], under the name
“Fourier-based metrics”, to study the trend to equilibrium for solutions of the
space-homogeneous Boltzmann equation for Maxwellian molecules. After that,
it has been used in several other works, and especially linked to the kinetic
theory, see [3] for an overview. In [25], T2 is called the “Toscani distance”.
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Proposition 2. For all p ≥ 1

Wp(P1, P2) ≥
1√
2
T1(P1, P2).

Proof. Thanks to Lemma 1 and Property 1

Wp(P1, P2) ≥ W1(P1, P2) = sup
ψ∈L b(R)

( ∫
R

ψdP1 −
∫
R

ψdP2

)
≥ 1√

2
sup

ψ∈L b(C)

∣∣∣∣ ∫
R

ψdP1 −
∫
R

ψdP2

∣∣∣∣.
For all u ∈ R \ {0}, let us consider the function Ψu(x) =

eiux

u and observe that
the Lipschitz norm of Ψu is 1. It immediately follows that

sup
ψ∈L b(C)

∣∣∣∣ ∫
R

ψdP1 −
∫
R

ψdP2

∣∣∣∣ ≥ sup
u∈R\{0}

∣∣∣∣ ∫
R

ΨudP1 −
∫
R

ΨudP2

∣∣∣∣ = T1(P1, P2).

2.3. Wasserstein distances in the central limit theorem

The class of Wasserstein metrics proves to be very useful in estimating the con-
vergence rate in the central limit theorem. We recall some results. Let (Yi)i≥1

be a sequence of centred i.i.d. random variables with finite and positive vari-
ance σ2. We denote by μn the law of 1√

nσ2

∑n
i=1 Yi. For i.i.d. centred random

variables with finite absolute third moment, Esseen [5] proved the following
result.

Theorem 6 (See e.g. [19], Theorem 16). For any n ≥ 1,

W1

(
μn,N (0, 1)

)
≤ 1

2
√
n

E|Y1|3(
Var[Y1]

)3/2 .
The constant 1

2 in this inequality cannot be improved.

A bound for the Wasserstein distances of order r ∈ (1, 2] is due to Rio [20]:

Theorem 7 (See [20], Theorem 4.1). For any n ≥ 1 and any r ∈ (1, 2], there
exists some positive constant C depending only on r such that

Wr(μn,N (0, 1)) ≤ C

(
E

[
|Y1|r+2

])1/r

√
n
(
Var[Y1]

) r+2
2r

.

For r > 2 and i.i.d. random variables with a finite absolute moment of order r,
we have the following:
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Theorem 8 (See [22]). For any n ≥ 1 and r > 2, there exists some positive
constant C, depending only on r, such that

Wr(μn,N (0, 1)) ≤ C

(
E

[
|Y1|r

])1/r

√
Var[Y1]

n
1
r− 1

2 .

If one only assumes finite absolute moment of order r, this rate cannot be
improved. In particular, under this assumption, the classical rate of convergence
1√
n
cannot be recovered for r > 2. For that reason, from now on, we will only

focus on the case r ∈ [1, 2].

2.4. Lévy processes

Let us denote by P
(b,σ,ν)
t the marginal law at time t ≥ 0 of a Lévy process X

with characteristics (b, σ2, ν), i.e. (see Theorem 8.1 in [23])

E
(
eiuXt

)
= exp

(
t

(
iub− u2σ2

2
+

∫
R

(
eiux − 1− iuxI|x|≤1

)
ν(dx)

))
= exp

(
t

(
iub(ε)− u2σ2

2
+

∫
R

(
eiux − 1− iuxI|x|≤ε

)
ν(dx)

))
,

where b(ε) := b−
∫
ε<|x|≤1

xν(dx), for all ε ∈ (0, 1]. Equivalently, P
(b,σ,ν)
t denotes

the infinitely divisible law with characteristics (bt, σ2t, νt). X can be charac-
terised via the Lévy-Itô decomposition (see [23]), that is via a canonical repre-
sentation with independent components X = X(1) +X(2)(ε) +XS(ε) +XB(ε):
For all ε ∈ (0, 1]

Xt = σWt + b(ε)t+ lim
η→0

( ∑
0<s≤t

ΔXsI(η,ε](|ΔXs|)− t
(
b(ε)− b(η)

))
+

∑
0<s≤t

ΔXsI(ε,+∞)(|ΔXs|),

where W is a standard Brownian motion, ΔXs := Xs− limr↑s Xr is the jump at
time s of X, XS(ε) is a pure jump martingale containing only small jumps and
XB(ε) is a finite variation part containing jumps larger in absolute value than ε.
Thus XB(ε) is a compound Poisson process with intensity λε := ν(R \ (−ε, ε))

and jump distribution Fε(dx) =
ν(dx)

ν(R\(−ε,ε)) I(ε,+∞)(|x|). In the following, some-

times we will write XB
t (ε) as

∑Nt

i=1 Yi where N is a Poisson process of intensity
λε independent of the sequence (Yi)i≥0 of i.i.d. random variables having distri-
bution Fε. Also, for a given Lévy process X we define an auxiliary characteristic
σ̄ : R+ → R capturing the variance induced by small jumps:

σ̄2(ε) :=

∫
|x|≤ε

x2ν(dx).
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3. Wasserstein distances for Lévy processes

Let Xj , j = 1, 2, be two Lévy processes with characteristics (bj , σ
2
j , νj), j = 1, 2.

As we will see later, thanks to Corollary 1 and the Lévy-Itô decomposition, in
order to control Wp(X

1
t , X

2
t ) it is enough to separately control the Wasserstein

distances between two Gaussian random variables as well as Wp

(
L (Xj,S

t (ε)),

N
(
0, tσ̄2

j (ε)
))

and Wp

(
X1,B

t (ε), X2,B
t (ε)

)
. A bound for the Wasserstein dis-

tances between Gaussian distributions is given by:

Lemma 4 (See [11], Prop. 7).

W2(N (m1, σ
2
1),N (m2, σ

2
2)) =

√
(m1 −m2)2 + (σ1 − σ2)2.

Upper bounds for Wp

(
L (Xj,S

t (ε)),N
(
0, tσ̄2

j (ε)
))

and Wp

(
X1,B

t (ε), X2,B
t (ε)

)
will be the subject of Sections 3.1 and 3.2, respectively.

3.1. Distances between marginals of small jump Lévy processes

Let X be a Lévy process with Lévy measure ν and denote by XS(ε) the Lévy
process associated with the small jumps of X, following the notation introduced
in Section 2.4.

Theorem 9. For any p ∈ [1, 2], there exists a positive constant C such that

Wp

(
L

(
XS

t (ε)
)
,N (0, tσ̄(ε)2)

)
≤ Cmin

(√
tσ̄(ε),

(∫ ε

−ε
|x|p+2ν(dx)

σ̄2(ε)

)1/p)
≤ Cmin

(√
tσ̄(ε), ε

)
. (4)

In particular, for p = 1 the bound is min(2
√
tσ̄(ε), 1

2ε).

Remark 2. The inequality

Wp

(
L

(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤ W2

(
L

(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤ 2

√
tσ̄(ε)

is clear from the definition of W2, noting that tσ̄2(ε) is the second moment of
both arguments. The interest of Theorem 9 lies in the bound

Wp

(
L

(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤ 2ε, (5)

which after renormalisation yields

Wp

(
L

( XS
t (ε)√
tσ̄(ε)

)
,N (0, 1)

)
≤ Cε√

tσ̄(ε)
.

Thus, not surprisingly in view of the central limit theorem, the Gaussian ap-
proximation is better as t is large. Also whenever σ̄2(ε) is much larger than ε2,
then a Gaussian approximation is valid, e.g. for α-stable processes with α > 0
and ε small, see Example 1 below.
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Remark 3. The upper bound (4) gives in general the right order. Indeed, let

us consider for ε > 0 the Lévy measure νε = δ−ε+δε
2ε2 and denote by Y (ε) the

corresponding (centred) pure jump Lévy process, i.e. Yt(ε) = ε(N1
t (ε)−N2

t (ε)) is
the rescaled difference of two independent Poisson processes of intensity λ = 1

2ε2

each. In particular, observe that σ̄2(ε) = 1 and
∫ ε

−ε
|x|3νε(dx) = ε.

Let us develop the case p = 1. Applying the scheme of proof proposed in [20],
see proof of Theorem 5.1, we show that there exists a constant K such that

W1

(
L (Yt(ε)),N (0, t)

)
≥ Kmin(

√
t, ε).

To see that, we consider the cases where t ≤ ε2 and t > ε2 separately.

• t ≤ ε2: From the definition of the Wasserstein distance of order 1 it follows
that

W1

(
L (Yt(ε)),N (0, t)

)
≥ E[|N (0, t)|]P(N1

t (ε) +N2
t (ε) = 0)

=

√
2t

π
e−

t
ε2 ≥

√
2

π

1

e

√
t.

• t ≥ ε2: Again, by the definition of the Wasserstein distance of order 1, we
find that

W1

(
L (Yt(ε)),N (0, t)

)
≥ E

[
min
n∈Z

|
√
tN − nε|

]
≥ ε

4
P

(
(
√
t/ε)N ∈

⋃
n∈Z

[n+ 1/4, n+ 3/4]
)

with N ∼ N (0, 1). Since in this case (
√
t/ε)N has variance at least one,

there exists a constant K such that

W1

(
L (Yt(ε)),N (0, t)

)
≥ Kε.

In the case p ∈ (1, 2] Wp is even larger than W1. For the case p = 2 see also [7].

Example 1. Let us illustrate Theorem 9 for the class of α-stable Lévy processes
with a Lévy density proportional to 1

|x|1+α , α ∈ [0, 2). For all ε ∈ (0, 1], let us

denote by XS(ε) the Lévy process describing the small jumps and by νI[−ε,ε]

its Lévy measure, i.e.

XS(ε) ∼
(
0, 0, νI[−ε,ε]

)
, ν(dx) =

Cα

|x|1+α
dx,

for some constant Cα. In particular, we have

σ̄2(ε) =

∫ ε

−ε

x2ν(dx) = 2Cα
ε2−α

2− α
.

Therefore an application of Theorem 9 guarantees the existence of a constant
C, possibly depending on p and α, such that:

Wp

(
L

(XS
t (ε)

σ̄(ε)

)
,N (0, t)

)
≤ Cmin

(√
t, ε

α
2

)
, ∀t > 0, ∀ε ∈ (0, 1], ∀p ∈ [1, 2].

(6)
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Equation (6) validates the intuition that a Gaussian approximation of the small
jumps is the better the more active the small jumps are. Indeed, the approxi-
mation in (6) is better when α is larger.

Let us now prove Theorem 9. For that we need to recall the following lemma:

Lemma 5 (See [21], Lemma 6.). Let X be a Lévy process with Lévy measure ν.

If a Borel function f : R → R satisfies
∫
|x|≥1

f(x)ν(dx) < ∞, limx→0
f(x)
x2 = 0

and f(x)(|x|2 ∧ 1)−1 is bounded, then

lim
t→0

1

t
E[f(Xt)] =

∫
f(x)ν(dx).

Proof of Theorem 9. Let us introduce n random variables defined by Yj =√
n(XS

tj/n(ε)−XS
t(j−1)/n(ε)). The Yj ’s are i.i.d. centred random variables with

variance equal to tσ̄2(ε) and such that XS
t (ε) = 1√

n

∑n
j=1 Yj . An application

of Theorems 7 and 6 (using the fact that Yj has the same law as
√
nXS

t/n(ε)

and the homogeneity property of the Wasserstein distances stated in Lemma 2)
gives

W1(L
(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤

nE[|XS
t/n(ε)|3]

2tσ̄2(ε)
.

Let us now argue that

lim sup
t→0

E[|XS
t (ε)|3]
t

≤
∫
|x|<ε

|x|3ν(dx).

Indeed, applying Lemma 5 to the family f(x) = fR(x) = |x|3I[−R,R](x) for
R > ε, we deduce that

lim
t→0

E
[
|XS

t (ε)|3I|XS
t (ε)|≤R

]
t

=

∫
|x|<ε

|x|3ν(dx).

Thus, using the fact that E
[
(XS

t (ε))
4
]
= t

∫
|x|<ε

x4ν(dx) + 3t2σ̄4(ε), we get

E
[
|XS

t (ε)|3
]
≤ E

[
|XS

t (ε)|3I|XS
t (ε)|≤R

]
+ E

[
(XS

t (ε)
4/R)I|XS

t (ε)|>R

]
≤ E

[
|XS

t (ε)|3I|XS
t (ε)|≤R

]
+

1

R

(
t

∫
|x|<ε

x4ν(dx) + 3t2σ̄4(ε)

)
.

Therefore, for any R > ε,

lim sup
t→0

E[|XS
t (ε)|3]
t

≤
∫
|x|<ε

|x|3ν(dx) +
∫
|x|<ε

x4ν(dx)

R
.

Taking the limit as R → ∞, we conclude. It follows that

W1

(
L

(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤ lim sup

n→∞

nE[|XS
t/n(ε)|3]

2tσ̄2(ε)
≤

∫ ε

−ε
|x|3ν(dx)
2σ̄2(ε)

.
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Moreover, by definition of the Wasserstein distance of order 1 and denoting by
N a centered Gaussian random variable with variance tσ̄2(ε), we have

W1(L
(
XS

t (ε)
)
,N (0, tσ̄2(ε))) ≤ E[|XS

t (ε)|] + E[|N |] ≤ 2
√

tσ̄2(ε).

We deduce

W1

(
L

(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤ min

(
2
√

tσ̄2(ε),

∫ ε

−ε
|x|3ν(dx)
2σ̄2(ε)

)
.

Similarly, by means of Theorem 7, for p ∈ (1, 2]

Wp

(
L

(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤ lim sup

n→∞

C√
n

(
E

[
|√nXS

t/n|p+2
]

tσ̄2(ε)

)1/p

≤ C

(∫ ε

−ε
|x|p+2ν(dx)

σ̄2(ε)

)1/p

and also

Wp

(
L

(
XS

t (ε)
)
,N (0, tσ̄2(ε))

)
≤

(
E

[
|XS

t (ε)|p
])1/p

+
(
E

[
|N |p

])1/p

≤ 2
√

tσ̄2(ε).

The upper bound (4) follows by the fact that
∫ ε
−ε

|x|p+2νi(dx)

σ̄2
i (ε)

≤ εp.

Theorem 9 can be used to bound the Wasserstein distances between the
increments of the small jumps of two Lévy processes.

Corollary 2. For all ε ∈ (0, 1] let Xj(ε) ∼ (−
∫
ε<|x|≤1

xνj(dx), σ
2
j , νjI[−ε,ε]) be

two Lévy processes with σ̄2
j (ε) �= 0 and σj ≥ 0, j = 1, 2. Then, for all p ∈ [1, 2],

there exists a constant C, only depending on p, such that

Wp

(
X1

t (ε), X
2
t (ε)

)
≤

2∑
j=1

Cmin

(√
tσ̄j(ε),

(∫ ε

−ε
|x|p+2νj(dx)

σ̄2
j (ε)

)1/p)
+ t

(√
σ̄2
1(ε) + σ2

1 −
√
σ̄2
2(ε) + σ2

2

)2

.

Proof. This is a consequence of Theorem 9 and Lemma 4.

3.2. Distances between random sums of random variables

Theorem 10. Let (Xi)i≥1 and (Yi)i≥1 be sequences of i.i.d. random variables
with Yi ∈ L2 and N , N ′ be two positive integer-valued random variables with N
(resp. N ′) independent of (Xi)i≥1 (resp. (Yi)i≥1). Then, for 1 ≤ p ≤ 2,

Wp

( N∑
i=1

Xi,

N ′∑
i=1

Yi

)
≤ min

((
cpE[N ]Zp(X1, Y1)

)1/p
,E[Np]1/pWp(X1, Y1)

)
+Wp(N,N ′)E

[
|Y1|p

]1/p
with the constant cp from Theorem 3.
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Proof. By the triangle inequality,

Wp

( N∑
i=1

Xi,

N ′∑
i=1

Yi

)
≤ Wp

( N∑
i=1

Xi,

N ′′∑
i=1

Yi

)
+Wp

( N ′′∑
i=1

Yi,

N ′∑
i=1

Yi

)
, (7)

where N ′′ is independent of (Yi)i≥1 and with the same law as N . Thanks to The-

orems 3 and 4, the first summand in (7) is bounded by
(
cpE[N ]Zp(X1, Y1)

)1/p
.

Alternatively, this summand can be estimated via Jensen’s inequality joined

with the fact that Wp

( ∑N
i=1 Xi,

∑N ′′

i=1 Yi

)p ≤ E
[∣∣ ∑Ñ

i=1(Xi−Yi)
∣∣p], Ñ indepen-

dent of (Xi, Yi)i≥1 and L (Ñ) = L (N) = L (N ′′), as follows:

E

[∣∣∣∣ Ñ∑
i=1

(Xi − Yi)

∣∣∣∣p] ≤ E

[
Ñp−1

Ñ∑
i=1

|Xi − Yi|p
]
≤ E

[
Np

]
E

[
|X1 − Y1|p

]
.

Therefore,

Wp

( N∑
i=1

Xi,

N ′′∑
i=1

Yi

)p

≤ inf

{
E

[∣∣∣∣ Ñ∑
i=1

(Xi − Yi)

∣∣∣∣p], Ñ independent of (Xi, Yi)i≥1

}
≤ E

[
Np

]
Wp(X1, Y1)

p.

To control the second summand, we proceed similarly

Wp

( N ′′∑
i=1

Yi,
N ′∑
i=1

Yi

)p

≤ inf

{
E

[∣∣∣∣ N ′′∑
i=1

Yi −
N ′∑
i=1

Yi

∣∣∣∣p], N ′′, N ′ independent of (Yi)i≥1

}
≤ E[|Y1|p]Wp(N

′′, N ′)p,

which, by noting L (N ′′) = L (N), concludes the proof.

In the preceding theorem one term is bounded alternatively by the Zolotarev
or the Wasserstein distance between X1 and Y1. The difference is the factor in
front which is either the first or the pth moment of N . If N is likely to be large,
then better bounds can be obtained by profiting from the variance stabilisation
for centred sums. Since the larger jumps are not our main issue, this is not
pursued further.

In the Poisson case the moments and the Wasserstein distances can be easily
analysed.

Proposition 3. Let N and N ′ be two Poisson random variables of mean λ and
λ′, respectively. Let us denote by m(p,
) the moment of order p of a Poisson
random variable of mean �, i.e.
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m(p,
) :=

p∑
i=1

�i
{
p

i

}
, where

{
p

i

}
:=

1

i!

i∑
j=0

(−1)i−j

(
i

j

)
jp.

Then the following upper bound holds for p ≥ 1 :

Wp(N,N ′)p ≤ m(p,|λ−λ′|).

In particular,

W1(N,N ′) ≤ |λ− λ′| (8)

Wp(N,N ′)p ≤ |λ− λ′|+ |λ− λ′|p, 1 < p ≤ 2. (9)

Proof. Without loss of generality, let us suppose λ′ ≥ λ and let N ′′ be a Poisson
random variable with mean λ− λ′, independent of N . Thanks to Lemma 2 we
have

Wp(N,N ′)p = Wp(N
′ +N ′′, N ′)p ≤ Wp(0, N

′′)p ≤ E
[
(N ′′)p

]
= m(p,λ′−λ).

To deduce (8) and (9) we use the fact that m(1,
) = �, m(2,
) = � + �2 and
E[(N ′′)p] ≤ E[N ′′]2−p

E[(N ′′)2]p−1 for p ∈ (1, 2] by Hölder’s inequality.

3.3. First main result

We will use the notation introduced in Section 2.4. In accordance with that, for
any given Lévy process Xj with characteristics (bj , σ

2
j , νj), X

j,B(ε) will be a
compound Poisson process with Lévy measure νj(dx)I(ε,∞)(|x|), i.e.

Xj,B
t (ε) =

Nj
t∑

i=1

Y
(j)
i

where N j is a Poisson process of intensity λj(ε) := νj(R\(−ε, ε)) independent of

the sequence of i.i.d. random variables (Y
(j)
i )i≥0 having distribution F j

ε (dx) =
I(ε,∞)(|x|)

λj(ε)
νj(dx). Recall from Proposition 3 that m(p,
) denotes the moment of

order p of a Poisson random variable of mean �.

Theorem 11. Let Xj, j = 1, 2, be two Lévy processes with characteristics
(bj , σ

2
j , νj), j = 1, 2. For all p ∈ [1, 2], for all ε ∈ [0, 1] and all t ≥ 0, the

following estimate holds

Wp

(
X1

t , X
2
t

)
≤

(
t2

(
b1(ε)− b2(ε)

)2
+ t

(
σ1 + σ̄1(ε)− σ2 − σ̄2(ε)

)2)1/2

+ C

2∑
j=1

min
(√

tσ̄j(ε), ε
)
+Wp

(
X1,B

t (ε), X2,B
t (ε)

)
,

for some constant C, only depending on p. Introducing Lt(ε) := t|λ1(ε)−λ2(ε)|,
we have

Wp

(
X1,B

t (ε), X2,B
t (ε)

)
≤

(
(tλ1(ε))

1/p + tλ1(ε)
)
Wp

(
Y

(1)
1 , Y

(2)
1

)
+

(
Lt(ε)

1/p + Lt(ε)
)
E

[(
Y

(2)
1

)p]1/p
.
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Proof of Theorem 11. By some abuse of notation let N (μ, σ2) denote a random
variable with this distribution. Then, thanks to the Lévy-Itô decomposition, we
have

Xi
t = N (tbi(ε), tσ

2
i ) +Xi,S

t (ε) +Xi,B
t (ε)

with independent summands. Hence, by subadditivity we get

Wp

(
X1

t , X
2
t

)
≤ Wp

(
N (tb1(ε), tσ

2
1) +X1,S

t (ε),N (tb2(ε), tσ
2
2) +X2,S

t (ε)
)

+Wp

(
X1,B

t (ε), X2,B
t (ε)

)
.

Observe that

Wp

(
N (tb1(ε), tσ

2
1) +X1,S

t (ε),N (tb2(ε), tσ
2
2) +X2,S

t (ε)
)

≤ Wp

(
N (tb1(ε), tσ

2
1) +X1,S

t (ε),N (tb1(ε), t(σ
2
1 + σ̄2

1(ε)))
)

+Wp

(
N (tb2(ε), tσ

2
2) +X2,S

t (ε),N (tb2(ε), t(σ
2
2 + σ̄2

2(ε)))
)

+Wp

(
N (tb1(ε), t(σ

2
1 + σ̄2

2(ε))
)
,N (tb2(ε), t(σ

2
2 + σ̄2

2(ε)))
)

≤ Wp

(
X1,S

t (ε),N (0, tσ2
1(ε))

)
+Wp

(
X2,S

t (ε),N (0, tσ̄2
2(ε))

)
+Wp

(
N (tb1(ε), t(σ

2
1 + σ̄2

1(ε))),N (tb2(ε), t(σ
2
2 + σ̄2

2(ε)))
)
,

where in the second inequality we used again Lemma 2. An application of The-
orem 9 together with Point (2) in Lemma 1 and Lemma 4 allows us to bound

Wp

(
N (tb1(ε), tσ

2
1) +X1,S

t (ε),N (tb2(ε), tσ
2
2) +X2,S

t (ε)
)

by the quantity

(
t2

(
b1(ε)− b2(ε)

)2
+ t

(
σ1 + σ̄1(ε)− σ2 − σ̄2(ε)

)2)1/2

+C

2∑
j=1

min
(√

tσ̄j(ε), ε
)
,

for some constant C only depending on p. Finally, Wp

(
X1,B

t (ε), X2,B
t (ε)

)
is

bounded by means of Theorem 10 and Proposition 3.

We now address the problem of how to compute the Wasserstein distance
between n given increments of two Lévy processes. To that end, fix a time span
T > 0, a sample size n ∈ N and consider the sample (X1

kT/n−X1
(k−1)T/n, X

2
kT/n−

X2
(k−1)T/n)

n
k=1. From Lemma 3 we know that we can measure the distance be-

tween the random vectors (X1
kT/n−X1

(k−1)T/n)
n
k=1 and (X2

kT/n−X2
(k−1)T/n)

n
k=1

in terms of the Wasserstein distance between the marginals. This observa-
tion combined with Theorem 11 allows us to obtain an upper bound for the
Wasserstein distance of order p between the increments of these Lévy pro-
cesses.

Corollary 3. Let Xj, j = 1, 2, be two Lévy processes with characteristics
(bj , σ

2
j , νj), j = 1, 2. Then, with respect to the �r-metric on R

n given by d(x, y)

:=
( ∑N

i=1 |xi − yi|r
)1/r

, r ≥ 1, for all p ∈ [1, 2], ε ≥ 0, T > 0, n ∈ N we have
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Wp

(
(X1

kT/n −X1
(k−1)T/n)

n
k=1, (X

2
kT/n −X2

(k−1)T/n)
n
k=1

)
≤ Tn

1
r−1

∣∣b1(ε)− b2(ε)
∣∣ + T 1/2n

1
r− 1

2

∣∣σ1 + σ̄1(ε)− σ2 − σ̄2(ε)
∣∣

+ C
2∑

j=1

min
(
T 1/2n

1
r− 1

2 σ̄j(ε), n
1
r ε

)
+ n

1
r Wp

(
X1,B

T/n(ε), X
2,B
T/n(ε)

)
,

where C is a constant depending only on p. The term Wp(X
1,B
T/n(ε), X

2,B
T/n(ε))

can be bounded as in Theorem 10 with t = T/n.

In the Euclidean case r = 2 we see that in the bound for the Wasserstein
distance the drift part disappears as n → ∞ (T fixed), while the Gaussian
part remains invariant and the Gaussian approximation of small jumps gives
an error of order min(σ̄j(ε), n

1/2ε). The bound on the larger jumps scales as
n1/2(T/n + (T/n)1/2) (for p = 1 even as T/n1/2) so that the entire bound on
the Wasserstein distance remains bounded as n → ∞.

3.4. Lower bounds

Applying the general lower bound established in Proposition 2 to Lévy processes,
we get the following result:

Corollary 4. Let W be a Brownian motion and Xε be a pure jump Lévy process
with jumps of absolute value less than ε ∈ (0, 1]. This means that Xε has Lévy
triplet (0, 0, νε), supp(νε) ⊂ [−ε, ε] and characteristic function

ϕε
t (u) = E[eiuX

ε
t ] = exp

(
t

∫ ε

−ε

(
eiux − 1− iux

)
νε(dx)

)
.

Let σ̄2(ε) =
∫
x2νε(dx). Then for p ≥ 1

Wp(X
ε
t , σ̄(ε)Wt)

≥ sup
u∈R

∣∣∣ exp(
t
∫ (

eiux − 1− iux
)
νε(dx)

)
− exp

(
t
∫ (iux)2

2 νε(dx)
)∣∣∣

√
2|u|

.

By the bound given in Proposition 2 we usually do not lose in approximation
order as the following lower bound examples demonstrate.

Let us start with the general case that at ε = 1 we have a standardised pure
jump process X1 with E[X1

t ] = 0, Var[X1
t ] = t as for Brownian motion, which

means
∫
xν1(dx) = 0,

∫
x2ν1(dx) = 1. Then rescaling as in Donsker’s Theorem

we consider Xε
t := εX1

ε−2t such that νε(B) = ε−2ν1(ε
−1B) for Borel sets B,

σ̄2(ε) = 1 and

ϕε
t (u) = exp

(
tε−2

∫ 1

−1

(
eiεux − 1

)
ν1(dx)

)
.

Let us further assume that q3 :=
∫
x3ν1(dx) �= 0. Then, taking into account the

first two moments, a Taylor expansion yields
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tε−2

∫ 1

−1

(
eiεux − 1

)
ν1(dx) = − tu2

2
− itεu3

3!
q3 +O(tε2u4).

For t > ε2 we thus obtain at u0 = t−1/2

|ϕε(u0)− e−tu2
0/2|

u0
= t1/2e−1/2

∣∣∣e−iq3εt
−1/2/3!+O(ε2/t)−1

∣∣∣ = ε
( q3√

e3!
+O(ε/

√
t)

)
.

Hence, by Corollary 4 there are constants M > 0 and c > 0 such that for all
t ≥ Mε2

Wp(X
ε
t ,Wt) ≥ cε.

For t ≤ Mε2 we obtain at u0 = (8Mλ1/t)
1/2 with λ1 = ν1(R)

|ϕε
t (u0)− e−tu2

0/2|
u0

≥ t1/2

(8Mλ1)1/2

∣∣∣etε−2
∫
(cos(εu0x)−1)ν1(dx) − e−4Mλ1

∣∣∣
≥ e−2Mλ1 − e−4Mλ1

(8Mλ1)1/2
t1/2.

We conclude

∀t > 0, ε ∈ (0, 1] : Wp(X
ε
t ,Wt) ≥ Kmin(

√
t, ε)

for some positive constant K, depending on ν1, but independent of t and ε,
whenever q3 =

∫
x3ν1(dx) �= 0.

Even for symmetric Lévy measures, not inducing skewness of the distribution,
we can attain the order min(

√
t, ε). If we consider ν1 = 1

2 (δ−1+δ1), νε =
δ−ε+δε

2ε2 ,
we arrive at the same conclusion by computing the distance T1 between Yt(ε)
and N (0, t) as in Remark 3:

T1

(
L (Yt(ε)),N (0, t)

)
= sup

u∈R

∣∣∣∣exp
(
− t

(
1−cos(uε)

ε2

))
− exp

(
− tu2

2

)
u

∣∣∣∣.
If t ≥ ε2, we choose u = 2π

ε and get

T1

(
L (Yt(ε)),N (0, t)

)
≥

∣∣∣∣ ε

2π

(
1− exp

(
− 2π2t

ε2

))∣∣∣∣ ≥ (1− e−2π2

2π

)
ε.

If t < ε2, the choice u = 3√
t
gives

T1

(
L (Yt(ε)),N (0, t)

)
≥

√
t

(
e−2 − e−

9
2

)
3

.

We conclude that also in this case W1(L (Yt(ε)),N (0, t)) ≥ Kmin(
√
t, ε)

holds for some positive constant K, independent of t and ε.
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4. Total variation bounds via convolution

4.1. Notation and some useful properties

Let (X ,F ) be a measurable space and let μ and ν be two probability measures
on (X ,F ).

Definition 4. The total variation distance between μ and ν is defined as

‖μ− ν‖TV = sup
A∈F

∣∣μ(A)− ν(A)
∣∣.

Lemma 6. The total variation distance has the following properties.

1. ‖μ− ν‖TV = 1
2 sup‖Ψ‖∞≤1

∣∣ ∫
X Ψ(x)(μ− ν)(dx)

∣∣.
2. ‖μ− ν‖TV = inf

(
P(X �= Y ) : L (X) = μ, L (Y ) = ν

)
.

Remark 4. Let X be a discrete set, equipped with the Hamming metric
d(x, y) = Ix 
=y. In this case, thanks to Property 2. above, for any probability
measures μ and ν on X we have

W1(μ, ν) = ‖μ− ν‖TV .

The total variation distance does not always bound the Wasserstein distance,
because the latter is also influenced by large distances. However, thanks to the
following classical result, one can get some control on Wp given a bound on the
total variation distance.

Theorem 12 (See [25], Theorem 6.13). Let μ and ν be two probability measures
on a Polish space (X , d). Let p ∈ [1,∞) and x0 ∈ X . Then

Wp(μ, ν) ≤ 2
1
p′

(∫
d(x0, x)

p|μ− ν|(dx)
) 1

p

,
1

p
+

1

p′
= 1.

In particular, if p = 1 and the diameter of X is bounded by D, then

W1(μ, ν) ≤ 2D‖μ− ν‖TV .

In Proposition 4 we will show an inequality that can be thought of as an
inverse of the one above. Namely, the total variation distance between two mea-
sures convolved with a common measure can be bounded by a multiple of the
Wasserstein distance of order 1.

4.2. Wasserstein distance of order 1 and total variation distance

Recall that a real function g is of bounded variation if its total variation norm
is finite, i.e.

‖g‖BV = sup
P∈P

nP−1∑
i=0

|g(xi+1)− g(xi)| < ∞,
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where the supremum is taken over the set P = {P = (x0, . . . , xnP
) : x0 < x1 <

· · · < xnP
} of all finite ordered subsets of R. We will denote by BV (R) the space

of functions of bounded variation.
We now state a lemma that will be useful in the following.

Lemma 7. Let g be a real function of bounded variation and F ⊆ {φ : R →
R : ‖φ‖∞ ≤ 1} ∩ L1(R) a functional class. Suppose that for any φ ∈ F

hφ(t) =

∫
R

φ(y)
(
g(t− y)− lim

x→−∞
g(x)

)
dy

is well defined. Then,
sup
φ∈F

‖hφ‖Lip ≤ ‖g‖BV . (10)

Proof. The proof is an easy consequence of the following classical results on
Lebesgue-Stieltjes measures:

1. For every right-continuous function g : R → R of bounded variation there
exists a unique signed measure μ such that

μ(]−∞, x]) = g(x)− lim
y→−∞

g(y). (11)

2. Let φ ∈ L∞(R) and let g ∈ BV (R) be a right-continuous function. Let μ be
the finite signed measure associated to g as in (11). Then

∫
φ(t− y)μ(dy)

is well defined, measurable in t ∈ R and bounded in absolute value by
‖φ‖∞‖g‖BV .

More precisely, let μ be the finite signed measure associated to g. It is enough to
prove that

∫
φ(t−y)μ(dy) is the weak derivative of hφ since then, using Point 2.

above, we deduce that ‖hφ‖Lip = ‖
∫
φ(·− y)μ(dy)‖∞ ≤ ‖φ‖∞‖g‖BV and hence

(10). The claim above follows by Fubini’s Theorem: for all T > 0∫ T

0

∫
φ(t− y)μ(dy)dt =

∫ ∫
I[0,T ](u+ y)φ(u)duμ(dy)

=

∫
φ(u)(g(T − u)− g(−u))du

=

∫
φ(u)

(
g(t− u)− lim

x→−∞
g(x)

)
du

∣∣∣T
t=0

.

Hence,
∫
φ(t−y)μ(dy) is the weak derivative of

∫
φ(u)(g(t−u)−limx→−∞ g(x))du

as desired.

Proposition 4. Let μ and ν be two measures on (R,B(R)) and G be an ab-
solutely continuous measure with respect to the Lebesgue measure admitting a
density g of bounded variation. Then the total variation distance between the
convolution measures μ ∗G and ν ∗G is bounded by

‖μ ∗G− ν ∗G‖TV ≤ ‖g‖BV

2
W1(μ, ν).
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Proof.

‖μ ∗G− ν ∗G‖TV =
1

2
sup

‖φ‖∞≤1

∣∣∣∣ ∫
R

φ(x)(μ ∗G− ν ∗G)(dx)

∣∣∣∣
=

1

2
sup

‖φ‖∞≤1

∣∣∣∣ ∫
R

(∫
R

φ(x)g(x− t)(μ− ν)(dt)

)
dx

∣∣∣∣
=

1

2
sup

‖φ‖∞≤1

∣∣∣∣ ∫
R

(∫
R

φ(x)g(x− t)dx

)
(μ− ν)(dt)

∣∣∣∣,
the supremum being taken over compactly supported functions φ. Denote by
hφ(t) =

∫
R
φ(x)g(x− t)dx. From the last equality it follows that

‖μ ∗G− ν ∗G‖TV ≤ 1

2
sup

‖φ‖∞≤1

sup
‖ψ‖Lip≤‖hφ‖Lip

∣∣∣∣ ∫
R

ψ(t)(μ− ν)(dt)

∣∣∣∣,
hence, applying Lemma 7 to F = {φ : R → R : ‖φ‖∞ ≤ 1 with compact sup-
port} and Proposition 1, we deduce that

‖μ ∗G− ν ∗G‖TV ≤ ‖g‖BV

2
sup

‖ψ‖Lip≤1

∣∣∣∣ ∫
R

ψ(t)(μ− ν)(dt)

∣∣∣∣ = ‖g‖BV

2
W1(μ, ν).

The upper bound established in Proposition 4 is sharp. To see that, let us
consider the following example.

Example 2. Let μ = δ0, ν = δε and G = N (0, 1) for some ε > 0. Denoting
by ϕ the density of a random variable N ∼ N (0, 1) and by Φ its cumulative
distribution function, we have

‖ν ∗G− μ ∗G‖TV =
1

2

∫
R

|ϕ(x)− ϕ(x− ε)|dx = Φ
(ε

2

)
− Φ

(
− ε

2

)
= 2Φ

(ε

2

)
− 1 =

ε√
2π

+O(ε2).

At the same time it is easy to see that W1(μ, ν) = ε and ‖g‖BV =
√

2
π . There-

fore, the upper bound established in Proposition 4

‖ν ∗G− μ ∗G‖TV ≤ 1√
2π

W1(μ, ν) =
ε√
2π

is exactly the correct estimate up to the first order.

4.3. Total variation distance and Toscani-Fourier distances

For any Lebesgue density f introduce its Fourier transform Ff(u) =∫
eiuxf(x)dx. A first elementary result linking the total variation distance be-

tween convolution measures to Toscani-Fourier metrics is the following.
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Proposition 5. Let μ, ν and G be probability measures and suppose that its
characteristic functions ϕμ, ϕν , ϕG are differentiable. Assume that G has a
Lebesgue density g with mth weak derivative g(m). Then, for all k, j, r ∈ {1, . . . ,
m}, we have

‖μ ∗G− ν ∗G‖TV

≤ C

(
Tk(μ, ν)‖g(k)‖2 +

√
2Tr(μ, ν)‖(xg(x))(r)‖2

+
√
2 sup
u∈R

|ϕ′
μ(u)− ϕ′

ν(u)|
|u|j ‖g(j)‖2

)
for some numerical constant C > 0.

Proof. First of all, remark that if any one among the ‖g(•)‖2, ‖(xg(x))(•)‖2,
T•(μ, ν), or supu∈R

|ϕ′
μ(u)−ϕ′

ν(u)|
|u|• appearing above is infinite, then there is noth-

ing to prove. Therefore, from now on, we will assume that they are all finite.
Since G admits a density g with respect to Lebesgue measure, μ ∗G and ν ∗G
have densities g ∗ μ and g ∗ ν.

Using the Cauchy-Schwarz inequality we have

‖μ ∗G− ν ∗G‖TV =
1

2

∫
1√

1 + x2

√
1 + x2|g ∗ μ(x)− g ∗ ν(x)|dx

≤ C(‖g ∗ μ− g ∗ ν‖2 + ‖x(g ∗ μ− g ∗ ν)‖2),

for some numerical constant C > 0. For all k > 0 an application of the Plancherel
identity yields

‖g ∗ μ− g ∗ ν‖22 =
1

2π
‖ϕG(ϕμ − ϕν)‖22 =

1

2π

∫ |ϕμ(u)− ϕν(u)|2
uk

|ϕG(u)|2ukdu.

Hence,

‖g ∗ μ− g ∗ ν‖2 ≤
√

1

2π
sup
u∈R

|ϕμ(u)− ϕν(u)|
|u|k/2 ‖uk/2ϕG‖2.

In the same way we also have

‖x(g ∗ μ(x)− g ∗ ν(x))‖22 ≤ 1

π
‖ϕ′

G(ϕμ − ϕν)‖22 +
1

π
‖ϕG(ϕ

′
μ − ϕ′

ν)‖22

and we conclude as before that for all r, j > 0

‖x(g ∗ μ(x)− g ∗ ν(x))‖2

≤
√

1

π
sup
u∈R

|ϕμ(u)− ϕν(u)|
|u|r/2 ‖ur/2ϕ′

G‖2 +
√

1

π
sup
u∈R

|ϕ′
μ(u)− ϕ′

ν(u)|
|u|j/2 ‖uj/2ϕG‖2.

It remains to apply the inverse Fourier transform.

Using a different set of hypotheses, one can also establish the following rela-
tion between the total variation distance and the Toscani-Fourier distance.
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Proposition 6. Let μ, ν and G be real probability measures absolutely continu-
ous with respect to the Lebesgue measure. Let fμ, fν and g denote their densities
and Fμ and Fν denote the cumulative distribution functions of μ and ν. Suppose
that Fg ∈ L1 and that Fμ − Fν ∈ L1. Further suppose that the graphs of fμ ∗ g
and fν ∗ g intersect in at most N points. Then,

‖μ ∗G− ν ∗G‖TV ≤ N

2π
T1(μ, ν)

∫
|Fg(u)|du.

Proof. As in the proof of Proposition 4, let us introduce the function

hφ(t) :=

∫
R

φ(x)g(t− x)dx

and recall that

‖μ ∗G− ν ∗G‖TV =
1

2
sup

‖φ‖∞≤1

∣∣∣∣ ∫
R

hφ(t)(μ− ν)(dt)

∣∣∣∣.
Using an integration by part and Plancherel identity, we get∫

R

hφ(t)(μ− ν)(dt) =

∫
R

h′
φ(t)(Fμ(t)− Fν(t))dt

=
1

2π

∫
Fh′

φ(u)F (Fμ − Fν)(u)du

=
1

2π

∫
Fh′

φ(u)
ϕμ(u)− ϕν(u)

−iu
du

≤ T1(μ, ν)
1

2π

∫
|Fh′

φ(u)|du. (12)

Also observe that

sup
‖φ‖∞≤1

∣∣∣∣ ∫
R

hφ(t)(μ− ν)(dt)

∣∣∣∣ = ∫
R

hφ̃(t)(μ− ν)(dt)

where

φ̃(x) =

{
−1 if fμ ∗ g(x) < fν ∗ g(x),
1 if fμ ∗ g(x) ≥ fν ∗ g(x).

Let us denote by −∞ = x0 < x1 < · · · < xN < xN+1 = +∞ the points
of intersections between the graphs of fμ ∗ g and fν ∗ g. In particular φ̃(u) =

±
∑N

i=0(−1)iI[xi,xi+1)(u) with the sign depending on the sign of fμ ∗ g − fν ∗ g
on (−∞, x1). Thus,

h′
φ̃
(u) = ±2

N∑
j=1

(−1)jg(u− xj).

In particular, we get that
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Fh′
φ̃
(u) = ±2

N∑
j=1

(−1)jFg(u)eiuxj ,

hence |Fh′
φ̃
(u)| ≤ 2N |Fg(u)|. This fact, together with (12), concludes the

proof.

Let us observe that another way to link the total variation distance between
convolution measures to the Toscani-Fourier distance is offered by Theorem 2.21
in [3] joint with Proposition 4. More precisely, Theorem 2.21 in [3] states that,
under appropriate hypotheses on μ and ν,

W1(μ, ν) ≤
(
18M

π

)1/3

T2(μ, ν)
1/6,

with M = max
{
E[X2],E[Y 2]

}
, X ∼ μ and Y ∼ ν. Therefore, from Proposition

4, it follows that

‖μ ∗G− ν ∗G‖TV ≤ ‖g‖BV

(
9M

4π

)1/3

T2(μ, ν)
1/6,

where g denotes the density of G. Using some ideas from the proof of Theorem
2.21 in [3] we will be able to prove the following general result.

Proposition 7. Let μ, ν ∈ Pj(R), j ≥ 1, and G be a measure, absolutely
continuous with respect to the Lebesgue measure. Suppose that the density g of
G is j-times weakly differentiable with jth derivative g(j) ∈ L2. Then,

‖μ ∗G− ν ∗G‖TV ≤ C
1/(2j+1)
j ‖g(j)‖2j/(2j+1)

2 Tj(μ, ν)
2j/(2j+1),

where Cj = max
(
E

[
|X + Z|j

]
,E

[
|Y + Z|j

])
with X ∼ μ, Y ∼ ν, Z ∼ G and Z

independent of X and Y .

Proof. Using the same notation as in Proposition 6, we have for all R > 0

‖μ ∗G− ν ∗G‖TV =
1

2

∫
|g ∗ μ(x)− g ∗ ν(x)|dx

≤ 1

2

(∫ R

−R

|g ∗ μ(x)− g ∗ ν(x)|dx+
1

Rj

∫
|x|>R

|x|j |g ∗ μ(x)− g ∗ ν(x)|dx
)

≤ 1

2

(∫ R

−R

|g ∗ μ(x)− g ∗ ν(x)|dx+
Cj

Rj

)
.

By Cauchy-Schwarz inequality,∫ R

−R

|g ∗ μ(x)− g ∗ ν(x)|dx ≤
√
2R‖g ∗ μ− g ∗ ν‖2

holds. Taking R =
( Cj√

2‖g∗μ−g∗ν‖2

)2/(2j+1)
we get

‖μ ∗G− ν ∗G‖TV ≤ 1

2
C

1/(2j+1)
j (

√
2‖g ∗ μ− g ∗ ν‖2)2j/(2j+1).
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Using Plancherel identity and the properties of the Fourier transform, we deduce
that

‖g ∗ μ− g ∗ ν‖22 =
1

2π
‖F (g ∗ μ)− F (g ∗ ν)‖22 =

1

2π
‖Fg(ϕμ − ϕν)‖22

=
1

2π

∫
|Fg(u)|2u2j |ϕμ(u)− ϕν(u)|2

u2j
du

≤ 1

2π
Tj(μ, ν)

2

∫
|Fg(u)|2u2jdu

=
1

2π
T 2
j (μ, ν)‖Fg(j)‖22 = T 2

j (μ, ν)‖g(j)‖22.

It follows that

‖μ ∗G− ν ∗G‖TV ≤ C
1/(2j+1)
j (Tj(μ, ν)‖g(j)‖2)2j/(2j+1).

Remark 5. To better understand the upper bounds presented above, let us
specialise to the case G = N (0, σ2). In order to compare the results presented
in Propositions 5–7 let us start by observing that the following equalities hold.

• If g(x) = 1√
2πσ

e−
x2

2σ2 , then Fg(u) = e−
u2σ2

2 . Therefore,
∫
|Fg(u)|du =

√
2π
σ .

• Also, g′(x) = −x√
2πσ3

e−
x2

2σ2 and g′′(x) = 1√
2πσ3

e−
x2

2σ2 (−1 + x2

σ2 ). It fol-

lows that ‖g′‖22 = 1
4
√
πσ3 , ‖g′′‖22 = 1

πσ5

∫ ∞
0

e−y2

(y2 − 1)2dy = 1
4
√
πσ5 and

‖g‖BV =
√

2
σ2π .

We are now able to compare the previous results for independent random vari-
ables Z ∼ N (0, σ2), X ∼ μ, Y ∼ ν.

Proposition 5 for T1: With a numerical constant C > 0, independent of the
laws of X,Y, Z,

‖L (X + Z)− L (Y + Z)‖TV ≤ C

(
T1(X,Y )

(
1√
σ3

+
1

σ

)
+

1√
σ3

sup
u∈R

|ϕ′
X(u)− ϕ′

Y (u)|
|u|

)
.

Proposition 6: Let N be the number of intersections between the graphs of the
densities of X + Z and Y + Z. Then,

‖L (X + Z)− L (Y + Z)‖TV ≤ N√
2π

T1(X,Y )

σ
.

Proposition 7 for T1:

‖L (X + Z)− L (Y + Z)‖TV

≤
(max

(
E[|X + Z|],E[|Y + Z|]

)
4
√
π

)1/3
(
T1(X,Y )

)2/3
σ

.
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Proposition 7 for T2:

‖L (X + Z)− L (Y + Z)‖TV

≤
(
max

(
E

[
(X + Z)2

]
,E

[
(Y + Z)2

])
16π

)1/5
(T2(X,Y ))4/5

σ2
.

Proposition 4 + Theorem 2.21 in [3]:

‖L (X+Z)−L (Y +Z)‖TV ≤
(
9max

(
E[X2],E[Y 2]

)
√
2π5

)1/3
(T2(X,Y ))1/6

σ
.

We see that Proposition 7 gives a much tighter bound than Proposition 4 +
Theorem 2.21 in [3] when T2(X,Y ) is small.

4.4. Main total variation results

As it was the case in Section 3, in order to obtain an upper bound for the total
variation distance between the marginals X1

t and X2
t of two Lévy processes it

is enough to separetely control the total variation distance between Gaussian
distributions, between the small jumps and the corresponding Gaussian compo-
nent and finally between the big jumps. The latter can be controlled by means
of the following result.

Theorem 13. Let (Xi)i≥1 and (Yi)i≥1 be sequences of i.i.d. random variables
a.s. different from zero and N , N ′ be two Poisson random variables with N
(resp. N ′) independent of (Xi)i≥1 (resp. (Yi)i≥1). Denote by λ (resp. λ′) the
mean of N (resp. N ′). Then,∥∥∥L

( N∑
i=1

Xi

)
− L

( N ′∑
i=1

Yi

)∥∥∥
TV

≤ (λ ∧ λ′)‖L (X1)− L (Y1)‖TV + 1− e−|λ−λ′|.

Proof. Without loss of generality, let us suppose that λ ≥ λ′ and write λ =
α+ λ′, α ≥ 0. By triangle inequality,∥∥∥L

( N∑
i=1

Xi

)
− L

( N ′∑
i=1

Yi

)∥∥∥
TV

≤
∥∥∥L

( N∑
i=1

Xi

)
− L

( N ′′∑
i=1

Xi

)∥∥∥
TV

+
∥∥∥L

( N ′′∑
i=1

Xi

)
− L

( N ′∑
i=1

Yi

)∥∥∥
TV

, (13)

where N ′′ is a random variable independent of (Xi)i≥1 and with the same law as
N ′. The first addendum in (13) can be bounded as follows. Let P be a Poisson
random variable independent of N ′′ and (Xi)i≥1 with mean α. Then,∥∥∥L

( N∑
i=1

Xi

)
− L

( N ′′∑
i=1

Xi

)∥∥∥
TV

=
∥∥∥L

(N ′′+P∑
i=1

Xi

)
− L

( N ′∑
i=1

Xi

)∥∥∥
TV

≤
∥∥∥δ0 − L

( P∑
i=1

Xi

)∥∥∥
TV
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where the last bound follows by subadditivity of the total variation distance.
By definition, it is easy to see that∥∥∥δ0 − L

( P∑
i=1

Xi

)∥∥∥
TV

= P

( P∑
i=1

Xi �= 0
)
≤ 1− e−α.

In order to bound the second addendum in (13) we condition on N ′ and use
again the subadditivity of the total variation joined with the fact that L (N ′) =
L (N ′′): ∥∥∥L

( N ′′∑
i=1

Xi

)
− L

( N ′∑
i=1

Yi

)∥∥∥
TV

=
∑
n≥0

∥∥∥L
( n∑

i=1

Xi

)
− L

( n∑
i=1

Yi

)∥∥∥
TV

P(N ′ = n)

≤
∑
n≥0

n‖L (X1)− L (Y1)‖TV P(N
′ = n)

= λ′‖L (X1)− L (Y1)‖TV .

The treatment of the small jumps is the subject of the following result:

Proposition 8. Let X be a pure jump Lévy process with Lévy measure ν.
Introduce νε = νI|x|≤ε. Then, for all Σ > 0 and ε ∈ (0, 1], we have∥∥∥P (0,Σ,νε)

t − P
(0,
√

Σ2+σ̄2(ε),0)
t

∥∥∥
TV

≤
√

2

πtΣ2
W1

(
P

(0,0,νε)
t , P

(0,σ̄(ε),0)
t

)
≤

√
2

πtΣ2
min

(
2
√

tσ̄2(ε),
ε

2

)
.

Proof. This follows by applying first Proposition 4 and then Theorem 9.

As a consequence of the above estimates on the Wasserstein distances, we
obtain a bound for the total variation distance of the marginals of Lévy processes
with non-zero Gaussian components.

Theorem 14. With the same notation used in Theorem 11 and Section 2.4,
for all t > 0, ε ∈ (0, 1] and for all σi > 0, i = 1, 2, we have:∥∥∥P (b1,σ1,ν1)

t − P
(b2,σ2,ν2)
t

∥∥∥
TV

≤

√
t
2π

∣∣∣b1(ε)− b2(ε)
∣∣∣ +√

2
∣∣∣√σ2

1 + σ̄2
1(ε)−

√
σ2
2 + σ̄2

2(ε)
∣∣∣√

σ2
1 + σ̄2

1(ε) ∨
√

σ2
2 + σ̄2

2(ε)

+

2∑
i=1

√
2

πtσ2
i

min
(
2
√

tσ̄2
i (ε),

ε

2

)
+ t

∣∣λ1(ε)− λ2(ε)
∣∣ + t

(
λ1(ε) ∧ λ2(ε)

)∥∥ νε1
λ1(ε)

− νε2
λ2(ε)

∥∥
TV

,

with νεj = νj(· ∩ (R \ (−ε, ε))) and λj(ε) = νεj (R).
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Proof. By subadditivity of the total variation distance and by the triangle in-
equality,∥∥∥P (b1,σ1,ν1)

t − P
(b2,σ2,ν2)
t

∥∥∥
TV

≤
2∑

i=1

∥∥∥P (0,σi,νi(ε))
t − P

(0,
√

σ2
i+σ̄2

i (ε),0)

t

∥∥∥
TV

+
∥∥∥P (b1(ε),

√
σ2
1+σ̄2

1(ε),0)

t − P
(b2(ε),

√
σ2
2+σ̄2

2(ε),0)

t

∥∥∥
TV

+
∥∥L

(
X1,B

t (ε)
)
− L

(
X2,B

t (ε)
)∥∥

TV
.

The proof follows from Proposition 8, the classical bound

‖N (μ1, σ
2
1)−N (μ2, σ

2
2)‖TV ≤

1√
2π

|μ1 − μ2|+
√
2|σ1 − σ2|

σ1 ∨ σ2
.

and Theorem 13.

Another useful result follows directly from Proposition 7 with j = 1 and
allows to bound the total variation distance for Lévy processes with positive
Gaussian part by the Toscani-Fourier distance for the same Lévy processes, but
with a smaller Gaussian part.

Theorem 15. Let Xi ∼ (bi, σ
2
i , νi), with σi > 0, i = 1, 2, be two Lévy processes.

For any Σ ∈ (0, σ1 ∧ σ2) consider the Lévy processes X̃i ∼ (bi, σ
2
i − Σ2, νi),

i = 1, 2. Then,

∥∥L (X1
t )− L (X2

t )
∥∥
TV

≤
max

(
E[|X1

t |],E[|X2
t |]

)1/3(
T1(X̃

1
t , X̃

2
t )

)2/3
(16π)1/6Σ

√
t

.

5. A statistical application

5.1. Lower bounds in the minimax sense

One of the main goals in statistics is to estimate a quantity of interest from the
data. There are different criteria that can be used to judge the quality of an
estimator. In nonparametric statistics it is common to use a minimax approach.
Let us recall the classical setting. From the data (X1, . . . , Xn) one wants to
recover a quantity of interest θ (e.g. θ is the density of the observations, or
the regression function, or the Léyy density, or the diffusion coefficient, etc.).
In practice θ is unknown (but supposed to belong to a certain parameter space
Θ) and one needs to estimate it via an estimator (a measurable function of

the data) θ̂n = θ̂n(X1, . . . , Xn). To measure the accuracy of the estimator one
computes the minimax risk

R∗
n := inf

Tn

sup
θ∈Θ

E
[
d2(θ, Tn)

]
,

where the infimum is taken over all possible estimators Tn of θ and d is a
semi-distance on Θ. Furthermore, one says that a positive sequence (ψn)n≥1 is
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an optimal rate of convergence of estimators on (Θ, d) if there exist constants
C < ∞ and c > 0 such that

lim sup
n→∞

ψ−2
n R∗

n ≤ C (upper bound) (14)

and

lim inf
n→∞

ψ−2
n R∗

n ≥ c, (lower bound). (15)

The goal is then to construct an estimator θ∗n such that

sup
θ∈Θ

E
[
d2(θ∗n, θ)

]
≤ C ′ψ2

n

where (ψn)n≥1 is the optimal rate of convergence and C ′ < ∞ is a constant.

The usual way to proceed is to build an estimator θ̂n of θ and start the
investigation about its performance firstly via an upper bound like (14). This
is important since the first thing to check is that the considered estimator is
at least consistent, that is automatically implied if supθ∈Θ E

[
d2(θ, θ̂n)

]
→ 0.

After that, a natural question is whether one could construct a better (in terms
of rate of convergence in the class (Θ, d)) estimator. In order to ensure that it
is not possible to obtain a better estimator than the one already constructed
one has to prove a lower bound, that is it is needed to prove that the rate of
convergence of any other possible estimator of θ will not be faster than the
rate obtained in the upper bound. This is in general a difficult task and we
refer to Chapter 2 in [24] for general techniques to prove lower bounds. Without
recalling all the steps needed to prove a lower bound following [24], let us stress
here that one of the fundamental ingredients is to have a fine upper bound
for the total variation distance or other measure distances. To that end the
estimates in Section 4.4 can be of general interest to prove lower bounds in the
minimax sense.

One situation when this general procedure applies is the following, where we
show how to simplify the arguments used in [13] in order to prove the desired
lower bound for an estimator of the integrated volatility.

5.2. How to simplify the proof of the lower bound in [13]

In [13], the authors consider a one-dimensional Itô-semimartingale X with char-
acteristics (B,C, ν):

Bt =

∫ t

0

bsds, Ct =

∫ t

0

csds, ν(dt, dx) = dtFt(dx).

They assume that X belongs to the class Sr
A of all Itô-semimartingales that

satisfy

|bt|+ ct +

∫
(|x|r ∧ 1)Ft(dx) ≤ A ∀t ∈ [0, 1].
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Their goal is to estimate the integrated volatility C at time 1, C(X)1, from
high-frequency observations X i

n
, i = 0, . . . , n. They have an upper bound for

an estimator of C(X)1 and they want to prove that the rate of convergence
attained by that estimator is optimal. To that aim they need to prove that any
uniform rate ψn for estimating C(X)1 satisfies

ψn ≥ (n log n)−
2−r
2 if r > 1. (16)

Following [24], their strategy consists in finding two Lévy processes Xi ∼
(bi, σ

2
i , Fi), i = 1, 2, such that

1. σ2
1 − σ2

2 = an := (n logn)−
2−r
2 , r ∈ (0, 2),

2.
∫
(|x|r ∧ 1)Fi(dx) ≤ K,

3. ‖L ((X1
i/n)1≤i≤n)− L ((X2

i/n)1≤i≤n)‖TV → 0 as n → ∞.

The construction in [13] of the Lévy processes as well as the proof of the con-
vergence in total variation stated in Point 3. above is very involved. Let us now
see how to use Theorem 15 to prove (16) more easily. To that aim consider two
sequences of Lévy processes X1,n ∼ (0, 1 + an, F

1
n) and X2,n ∼ (0, 1, F 2

n) with
Lévy measures F 1

n and F 2
n satisfying the following conditions:

•
∫
R
(|x|r ∧ 1)F i

n(dx) ≤ K, i = 1, 2.

• Define Ψi,n :=
∫
R
(eiux − 1 − iuxI|x|≤1)F

i
n(dx), i = 1, 2. Then Ψ1,n and

Ψ2,n are real positive functions such that

Ψ2,n(u) =
an
2

+ Ψ1,n(u), ∀|u| < un := 2
√
n log n. (17)

It is not difficult to see that Lévy measures F 1
n and F 2

n satisfying such conditions
always exist. In particular, it follows from (17) that the Xi,n, i = 1, 2, have the
same characteristic function for all |u| < un, i.e.:

E

[
e
iuX1,n

1/n

]
= exp

(
− u2

2n
(1 + an)−

Ψ1,n(u)

n

)
,

E

[
e
iuX2,n

1/n

]
= exp

(
− u2

2n
− Ψ2,n(u)

n

)
.

In order to apply Theorem 15 let us observe that X1,n
1/n (resp. X2,n

1/n) is equal

in law to the convolution between a Gaussian distribution N
(
0, 1

8n

)
and X̃1,n

1/n

(resp. X̃2,n
1/n), where X̃1,n ∼

(
0, 7

8 + an, F
1
n

)
(resp. X̃2,n ∼

(
0, 7

8 , F
2
n

)
). We ob-

tain

‖L (X1,n
1/n)− L (X2,n

1/n)‖TV ≤
(32

π

)1/6(
Cnn

3/4T1(μn, νn)
)2/3

,

where C2
n = max

(
E[|X1,n

1/n|],E[|X
2,n
1/n|]

)
. We are therefore left to compute T1(μn,

νn) and show that n‖L (X1,n
1/n)− L (X2,n

1/n)‖TV → 0.
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T1(μn, νn) = sup
u∈R

∣∣∣ exp (
− u2

2n (
7
8 + an)− Ψ1,n(u)

n

)
− exp

(
− 7u2

16n − Ψ2,n(u)
n

)∣∣∣
u

= sup
|u|>un

exp
(
− 7u2

16n ) ·
∣∣∣ exp (

− u2an

2n − Ψ1,n(u)
n

)
− exp

(
− Ψ2,n(u)

n

)∣∣∣
u

≤
exp

(
− 7u2

n

16n )

un
=

exp
(
− 7×4n logn

16n )

2
√
n log n

=
n−9/4

2
√
logn

.

Hence,

‖μn ∗Gn − νn ∗Gn‖TV ≤
(
Cnn

3/4 n−9/4

√
logn

)2/3

=
(32

π

)1/6 C
2/3
n n−1

(logn)1/3
.

Therefore,

‖L ((X1,n
i/n)1≤i≤n)− L ((X2,n

i/n)1≤i≤n)‖TV ≤
√
n‖L (X1,n

1/n)− L (X2,n
1/n)‖TV

≤
(32

π

)1/12( Cn√
logn

)1/3

→ 0,

as desired.
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[21] L. Rüschendorf and J. Woerner: Expansion of transition distributions of
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