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Abstract: Trait allocations are a class of combinatorial structures in which
data may belong to multiple groups and may have different levels of be-
longing in each group. Often the data are also exchangeable, i.e., their
joint distribution is invariant to reordering. In clustering—a special case of
trait allocation—exchangeability implies the existence of both a de Finetti
representation and an exchangeable partition probability function (EPPF),
distributional representations useful for computational and theoretical pur-
poses. In this work, we develop the analogous de Finetti representation
and exchangeable trait probability function (ETPF) for trait allocations,
along with a characterization of all trait allocations with an ETPF. Un-
like previous feature allocation characterizations, our proofs fully capture
single-occurrence “dust” groups. We further introduce a novel constrained
version of the ETPF that we use to establish an intuitive connection be-
tween the probability functions for clustering, feature allocations, and trait
allocations. As an application of our general theory, we characterize the
distribution of all edge-exchangeable graphs, a class of recently-developed
models that captures realistic sparse graph sequences.

Keywords and phrases:Trait allocation, exchangeability, paintbox, prob-
ability function, partition, feature allocation, graph, vertex allocation, edge
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1. Introduction

Representation theorems for exchangeable random variables are a ubiquitous
and powerful tool in Bayesian modeling and inference. In many data analysis
problems, we impose an order, or indexing, on our data points. This index-
ing can arise naturally—if we are truly observing data in a sequence—or can
be artificially created to allow their storage in a database. In this context, ex-
changeability expresses the assumption that this order is arbitrary and should
not affect our analysis. For instance, we often assume a sequence of data points
is an infinite exchangeable sequence, i.e., that the distribution of any finite sub-
sequence is invariant to reordering. Though this assumption may seem weak,
de Finetti’s theorem (de Finetti, 1931; Hewitt and Savage, 1955) tells us that
in this case, we can assume that a latent parameter exists, that our data are
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independent and identically distributed (i.i.d.) conditional on this parameter,
and that the parameter itself has a distribution. Thus, de Finetti’s theorem
may be seen as a justification for a Bayesian model and prior—and, in fact, for
the infinite-dimensional priors provided by Bayesian nonparametrics (Jordan,
2010).

De Finetti-style representation theorems have provided many other useful
insights for modeling and inference within Bayesian analysis. For example, con-
sider clustering problems, where the inferential goal is to assign data points
to mutually exclusive and exhaustive groups. It is typical to assume that the
distribution of the clustering—i.e., the assignment of data points to clusters—is
invariant to the ordering of the data points. In this case, two different representa-
tion theorems have proved particularly useful in practice. First, Kingman (1978)
showed that exchangeability in clustering implies the existence of a latent set
of probabilities (known as the “Kingman paintbox”) from which cluster assign-
ments are chosen i.i.d.. It is straightforward to show from the Kingman paintbox
representation that exchangeable clustering models enforce linear growth in clus-
ter size as a function of the size of the total data. By contrast, many real-world
clustering problems, such as disambiguating census data or clustering academic
papers by originating lab, exhibit sublinear growth in cluster size (e.g., Wallach
et al., 2010; Broderick and Steorts, 2014; Miller et al., 2016). Thus, the Kingman
paintbox representation allows us to see that exchangeable clustering models are
misspecified for these examples. Similarly, Pitman (1995) showed that cluster-
ing exchangeability is equivalent to the existence of an exchangeable partition
probability function (EPPF). The EPPF and similar developments have led to
algorithms that allow practical inference specifically with the Dirichlet process
mixture (Escobar, 1994; Escobar and West, 1995) and more generally in other
clustering models (Pitman and Yor, 1997; Ishwaran and James, 2001, 2003; Lee
et al., 2013).

In this work, we develop and characterize a generalization of clustering mod-
els that we call trait allocation models. Trait allocations apply when data may
belong to more than one group (a trait), and may exhibit nonnegative integer
levels of belonging in each group. For example, a document might exhibit mul-
tiple words in a number of topics, a participant in a social network might send
multiple messages to each of her friend groups, or a DNA sequence might exhibit
different numbers of genes from different ancestral populations. Trait allocations
generalize both clustering, where data must belong to exactly one group, and
feature allocations (Griffiths and Ghahramani, 2005; Broderick, Pitman and Jor-
dan, 2013), where data exhibit binary membership in multiple groups. Authors
have recently proposed a number of models for trait allocations (e.g., Titsias,
2008; Zhou et al., 2012; Zhou, 2014; James, 2017; Broderick et al., 2015; Roy-
chowdhury and Kulis, 2015). But as of yet, there is no characterization either
of the class of exchangeable trait allocation models or of classes of exchange-
able trait allocation models that are particularly amenable to inference. The
consequences of the exchangeability assumption in this setting have not been
explored. In this work, we provide characterizations of both the full class of ex-
changeable trait allocations and those with EPPF-like probability distributions.
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This work not only unifies and generalizes past research on partitions and fea-
ture allocations, but provides a natural avenue for the study of other practical
exchangeable combinatorial structures.

We begin by formally defining trait allocations, random sequences thereof,
and exchangeability in Section 2. In Section 3, we introduce ordered trait allo-
cations via the lexicographic ordering. We use these constructions to establish a
de Finetti representation for exchangeable trait allocations in Section 4 that is
analogous to the Kingman paintbox representation for clustering. Our new rep-
resentation handles dust, the case where some traits may appear for just a single
data point. This work therefore also extends previous work on the special case
of exchangeable feature allocations to the fully general case, whereas previously
it was restricted to the dustless case (Broderick, Pitman and Jordan, 2013).
In Section 5, we develop an EPPF-like function to describe distributions over
exchangeable trait allocations and characterize the class of trait allocations to
which it applies. We call these exchangeable trait probability functions (ETPFs).
Just as in the partition and feature allocation cases, the class of random trait
allocations with probability functions represents a class of trait allocations that
are particularly amenable to approximate posterior inference in practice—and
therefore of particularly pressing interest to characterize. In Section 5, we in-
troduce new concepts we call constrained ETPFs, which are the combinatorial
analogue of earlier work on restricted nonparametric processes (Williamson,
MacEachern and Xing, 2013; Doshi-Velez and Williamson, 2017). In Sections 5
and 6, we show how constrained ETPFs capture earlier probability functions
for numerous exchangeable models within a single framework. In Section 6, we
apply both our de Finetti representation and constrained ETPF to character-
ize edge-exchangeable graphs, a recently developed form of exchangeability for
graph models that allows sparse projective sequences of graphs (Broderick and
Cai, 2015; Crane and Dempsey, 2015; Cai, Campbell and Broderick, 2016; Crane
and Dempsey, 2016a; Williamson, 2016). A similar representation generalizing
partitions and edge-exchangeable (hyper)graphs has been studied in concurrent
work (Crane and Dempsey, 2016b) on relational exchangeability, first introduced
by Ackerman (2015); Crane and Towsner (2015)—but here we additionally ex-
plore the existence of a trait frequency model, the existence of a constrained trait
frequency model and its connection to clustering and feature allocations, and
the various connections between frequency models and probability functions.

1.1. Notation and conventions

Definitions are denoted by the symbol :=. The natural numbers are denoted N :=
{1, 2, . . . } and the nonnegative reals R+ := [0,∞). We let [N ] := {1, 2, . . . , N}
for any N ∈ N. Sequences are denoted with parentheses, with indices suppressed
only if they are clear from context. For example, (xk) is the sequence (xk)k∈N

and (xkj) is the sequence (xkj)k,j∈N, while (xkj)
∞
j=1 is the sequence xk1, xk2, . . .

with k fixed. The notation A ⊂ B means A is a (not necessarily proper) subset
of B. The indicator function is denoted 1 (. . . ); for example, 1 (x ∈ A) is 1 if
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x ∈ A, and 0 otherwise. For any multiset x of elements in a set X , we denote
x(y) to be the multiplicity of y in x for each y ∈ X . Two multisets x, x′ of X
are said to be equal, denoted x = x′, if the multiplicity of all elements y ∈ X
are equal in both x and x′, i.e. ∀y ∈ X , x(y) = x′(y). For any finite or infinite
sequence, we use subscript k to denote the kth element in the sequence. For
sequences of (multi)sets, if k is beyond the end of the sequence, the subscript k
operation returns the empty set. Equality in distribution and almost surely are

denoted
d
= /

a.s.
= , and convergence almost surely/in probability/in distribution

is denoted
a.s.→ /

p→ /
d→. We often use cycle notation for permutations (see

Dummit and Foote (2004, p. 29)): for example, π = (12)(34) is the permutation
π with π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 3, and π(k) = k for k > 4.
We use the notation X ∼ (θj)

∞
j=0 to denote sampling X from the categorical

distribution on {0} ∪ N with probabilities P (X = j) = θj for j ∈ {0} ∪ N. The
symbol×N

SN for a sequence of sets (SN ) denotes S1 × S2 × . . . , their infinite
product space.

2. Trait allocations

We begin by formalizing the concepts of a trait and trait allocation. We assume
that our sequence of data points is indexed by N. As a running example for
intuition, consider the case where each data point is a document, and each
trait is a topic. Each document may have multiple words that belong to each
topic. The degree of membership of the document in the topic is the number of
words in that topic. We wish to capture the assignment of data points to the
traits they express but in a way that does not depend on the type of data at
hand. Therefore, we focus on the indices to the data points. This leads to the
definition of traits as multisets of the data indices, i.e., the natural numbers.
E.g., τ = {1, 1, 3} is a trait in which the datum at index 1 has multiplicity 2,
and the datum at index 3 has unit multiplicity. In our running example, this
trait might represent the topic about sports; the first document has two sports
words, and the third document has one sports word.

Definition 2.1. A trait is a finite, nonempty multiset of N.

Let the set of all traits be denoted T. A single trait is not sufficient to cap-
ture the combinatorial structure underlying the first N ∈ N data in the se-
quence: each datum may be a member of multiple traits (with varying degrees
of membership). The traits have no inherent order just as the topics “sports”,
“arts”, and “science” have no inherent order. And each document may con-
tain words from multiple topics. Building from Definition 2.1 and motivated by
these desiderata, we define a finite trait allocation as a finite multiset of traits.
For example, t4 = {{1}, {3, 4}, {3, 3}, {3, 3}, {1, 1, 4}} represents a collection of
traits expressed by the first 4 data points in a sequence. In this case, index 1 is
a member of two traits, index 2 is a member of none, and so on. Throughout,
we assume that each datum at index n ∈ N, n ≤ N belongs to only finitely
many latent traits. Further, for a data set of size N , any index n > N should
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not belong to any trait; the allocation tN represents traits expressed by only
the first N data. These statements are formalized in Definition 2.2.

Definition 2.2. A trait allocation of [N ] is a multiset tN of traits, where

∀n ∈ N : n ≤ N,
∑
ω∈T

tN (ω) · ω(n) < ∞ (2.1)

∀n ∈ N : n > N,
∑
ω∈T

tN (ω) · ω(n) = 0. (2.2)

Let TN be the set of trait allocations of [N ], and define T to be the set of all
finite trait allocations, T :=

⋃
N TN . Two notable special cases of finite trait al-

locations that have appeared in past work are feature allocations (Griffiths and
Ghahramani, 2005; Broderick, Pitman and Jordan, 2013) and partitions (King-
man, 1978; Pitman, 1995). Feature allocations are the natural combinatorial
structure underlying feature learning, where each datum expresses each trait
with multiplicity at most 1. For example, t4 = {{1}, {3, 4}, {3, 1}, {3}} is a fea-
ture allocation of [4]. Note that each index may be a member of multiple traits.
Partitions are the natural combinatorial structure underlying clustering, where
the traits form a partition of the indices. For example, t4 = {{1, 3, 4}, {2}} is
a partition of [4], since its traits are disjoint and their union is [4]. The theory
in the remainder of the paper will be applied to recover past results for these
structures as corollaries.

Up until this point, we have dealt solely with finite sequences of N data. How-
ever, in many data analysis problems, it is more natural (or at least an acceptable
simplifying approximation) to treat the observed sequence of N data as the be-
ginning of an infinite sequence. As each datum arrives, it adds its own index to
the traits it expresses, and in the process introduces any previously uninstan-
tiated traits. For example, if after 3 observations we have t3 = {{1}, {1, 2}},
then observing the next might yield t4 = {{1}, {1, 2, 4, 4}, {4, 4}}. Note that
when an index is introduced, none of the earlier indices’ memberships to traits
are modified; the sequence of finite trait allocations is consistent. To make this
rigorous, we define the restriction of a trait (allocation), which allows us to
relate two trait allocations tN , tM ∈ T of differing N and M . The restriction
operator |M—provided by Definition 2.3 and acting on either traits or finite
trait allocations—removes all indices greater than M from all traits, and does
not modify the multiplicity of indices less than or equal to M . If any trait
becomes empty in this process, it is removed from the allocation. For exam-
ple, {{1, 3, 4}, {1, 2}, {4}}|1 = {{1}, {1}}. Two trait allocations are said to be
consistent, per Definition 2.4, if one can be restricted to recover the other.
Thus, {{1, 3, 4}, {1, 2}, {4}} and {{1}, {1}} are consistent finite trait alloca-
tions.

Definition 2.3. The restriction |M : T → T of a trait τ to M ∈ N is defined as

τ |M (m) :=

{
τ(m) m ≤ M
0 m > M

, (2.3)
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and is overloaded for finite trait allocations |M : T → TM as

tN |M (τ) :=

{ ∑
ω∈T

1(ω|M = τ) · tN (ω) τ 
= ∅
0 τ = ∅ . (2.4)

Definition 2.4. A pair of trait allocations tM of [M ] and tN of [N ] withM ≤ N
is said to be consistent if tN |M = tM .

The consistency of two finite trait allocations allows us to define the notion
of a consistent sequence of trait allocations. Such a sequence can be thought of
as generated by the sequential process of data arriving; each data point adds
its index to its assigned traits without modifying any previous index. For exam-
ple, ({{1}, {1}}, {{1, 2}, {1}}, {{1, 2}, {1, 3}}, . . . ) is a valid beginning to an
infinite sequence of trait allocations. The first datum expresses two traits with
multiplicity 1, and the second and third each express a single one of those traits
with multiplicity 1. As a counterexample, ({{1, 1}}, {{1, 1}}, {{1, 3}}, . . . )
is not a valid trait allocation sequence, as the third trait allocation is not con-
sistent with either the first or second. This sequence does not correspond to
building up the traits expressed by data in a sequence; when the third datum
is observed, the traits expressed by the first are modified.

Definition 2.5. An infinite trait allocation t∞ = (tN ) is a sequence of trait
allocations of [N ], N = 1, 2, . . . for which

∀N ∈ N, tN+1|N = tN . (2.5)

Note that since restriction is commutative ( · |K |
M

= · |M |
K

= · |K for
K ≤ M), Definition 2.5 implies that all pairs of elements of the sequence (tN )
are consistent. Restriction acts on infinite trait allocations in a straightforward
way: given t∞ = (tN ), restriction to M ∈ N is equivalent to the corresponding
projection, t∞|M := tM .

Denote the set of all infinite trait allocations T∞ ⊂×N
TN . Recall that the

motivation for developing infinite trait allocations is to capture the latent com-
binatorial structure underlying a sequence of observed data. Since this sequence
is random, its underlying structure may also be, and thus the next task is to
develop a corresponding notion of a random infinite trait allocation. Given a se-
quence of probability spaces

(
TN , 2TN , νN

)
for N ∈ N with consistent measures

(νN ), i.e.

∀N ∈ N, νN (tN ) =
∑

tN+1∈TN+1

1 ( tN+1|N = tN ) · νN+1(tN+1), (2.6)

the Kolmogorov extension theorem (Kallenberg, 1997, Theorem 5.16) guaran-
tees the existence of a unique random infinite trait allocation T∞ that satisfies
T∞ ∈ T∞ a.s. and has finite marginal distributions equal to the νN induced by
restriction, i.e.

∀N ∈ N, T∞|N ∼ νN . (2.7)
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The properties of the random infinite trait allocation T∞ are intimately re-
lated to those of the observed sequence of data it represents. In many applica-
tions, the data sequence has the property that its distribution is invariant to
finite permutation of its elements; in some sense, the order in which the data
sequence is observed is immaterial. We expect the random infinite trait allo-
cation T∞ associated with such an infinite exchangeable sequence1 to inherit a
similar property. As a simple illustration of the extension of permutation to in-
finite trait allocations, suppose we observe the sequence of data (x1, x2, x3, . . . )
exhibiting trait allocation sequence T1 = {{1, 1}}, T2 = {{1, 1, 2}, {2}}, T3 =
{{1, 1, 2}, {2}, {3, 3}}, and so on. If we swap x1 and x2 in the data sequence—
resulting in the new sequence (x2, x1, x3, . . . )—the traits expressed by x2 be-
come those containing index 1, the traits for x1 become those containing in-
dex 2, and the rest are unchanged. Therefore, the permuted infinite trait allo-
cation is T ′

1 = {{1}, {1}}, T ′
2 = {{2, 2, 1}, {1}}, T ′

3 = {{2, 2, 1}, {1}, {3, 3}}, and
so on. Note that T ′

1 (resp. T ′
2) is equal to the restriction to 1 (resp. 2) of T2

with permuted indices, while T ′
N for N ≥ 3 is TN with its indices permuted.

This demonstrates a crucial point—if the permutation affects only indices up
to M ∈ N (there is always such an M for finite permutations), we can arrive at
the sequence of trait allocations for the permuted data sequence in two steps.
First, we permute the indices in TM and then restrict to 1, 2, . . . ,M to get the
first M permuted finite trait allocations. Then we permute the indices in TN for
each N > M .

To make this observation precise, we let π be a finite permutation of the
natural numbers, i.e.,

π : N → N, π is a bijection, ∃M ∈ N : ∀m > M, π(m) = m, (2.8)

and overload its notation to operate on traits and (in)finite trait allocations in
Definition 2.6. Note that if π is a finite permutation, its inverse π−1 is also a finite
permutation with the same value ofM ∈ N for whichm > M implies π(m) = m.
Intuitively, π operates on traits and finite trait allocations by permuting their
indices. For example, if π has the cycle (123) and fixes all indices greater than 3,
then π{1, 1, 2, 4} = {2, 2, 3, 4}.
Definition 2.6. Given a finite permutation of the natural numbers π : N → N

that fixes all indices m > M , the permutation of a trait τ under π is defined as

πτ(m) := τ
(
π−1(m)

)
, (2.9)

the permutation of a trait allocation tN of [N ] under π is defined as

πtN (τ) := tN
(
π−1τ

)
, (2.10)

and the permutation of an infinite trait allocation t∞ under π is defined as

πt∞ :=
((

πtmax(M,N)

)∣∣
N

)∞
N=1

. (2.11)

1For an introduction to exchangeability and related theory, see Aldous (1985).
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Fig 1. An example exchangeable trait allocation construction. For each N ∈ N, the trait
membership ξN ∈ K of index N is determined by sampling i.i.d. from the distribution (μξ)ξ∈K

(depicted by colored bars). The resulting (unordered) trait allocation for indices up to 4 is
shown above. Here ξ1 = (1, 0, 2, 0, . . . ), ξ2 = ξ4 = (0, 0, 1, 0, . . . ), and ξ3 = (1, 2, 0, 0, . . . ).

As discussed above, the definition for infinite trait allocations ensures that
the permuted infinite trait allocation is a consistent sequence that corresponds
to rearranging the observed data sequence with the same permutation. Defi-
nition 2.6 provides the necessary framework for studying infinite exchangeable
trait allocations, defined as random infinite trait allocations whose distributions
are invariant to finite permutation.

Definition 2.7. An infinite exchangeable trait allocation, T∞, is a random in-
finite trait allocation such that for any finite permutation π : N → N,

πT∞
d
= T∞. (2.12)

Note that if the random infinite trait allocation is a random infinite par-
tition/feature allocation almost surely, the notion of exchangeability in Def-
inition 2.7 reduces to earlier notions of exchangeability for random infinite
partition/feature allocations (Kingman, 1978; Aldous, 1985; Broderick, Pit-
man and Jordan, 2013). Exchangeability also has an analogous definition for
random finite trait allocations, though this is of less interest in the present
work.

As a concrete example, consider the countable set K of sequences of nonneg-
ative integers ξ ∈ ({0} ∪ N)∞ such that

∑
k ξk < ∞. For each data index, we

will generate an element of K and use it to represent a sequence of multiplicities
in an ordered sequence of traits. In particular, we endow K with probabilities
μξ for each ξ ∈ K. We start from an empty ordered trait allocation. Then for

each data index N ∈ N, we sample a sequence ξN
i.i.d.∼ (μξ)ξ∈K; and for each

k ∈ N, we add index N to trait k with multiplicity ξNk. The final trait al-
location is the unordered collection of nonempty traits. Since each data index
generates its membership in the traits i.i.d. conditioned on (μξ), the sequence
of trait allocations is exchangeable. This process is depicted in Fig. 1. As we
will show in Section 4, all infinite exchangeable trait allocations have a similar
construction.
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3. Ordered trait allocations and lexicographic ordering

We impose no inherent ordering on the traits in a finite trait allocation via the
use of (multi)sets; the allocations {{1}, {3, 3}} and {{3, 3}, {1}} are identical.
This correctly captures our lack of a preferred trait order in many data analysis
problems. However, ordered trait allocations are nonetheless often useful from
standpoints both practical—such as when we need to store a finite trait allo-
cation in an array in physical memory—and theoretical—such as in developing
the characterization of all infinite exchangeable trait allocations in Section 4.

A primary concern in the development of an ordering scheme is consistency.
Intuitively, as we observe more data in the sequence, we want the sequence of
finite ordered trait allocations to “grow” but not be “shuffled”; in other words, if
two finite trait allocations are consistent, the traits in their ordered counterparts
at the same index should each be consistent. For partitions, this task is straight-
forward: each trait receives as a label its lowest index (Aldous, 1985), and the
labels are used to order the traits. This is known as the order-of-appearance
labeling, as traits are labeled in the order in which they are instantiated by
data in the sequence. For example, in the partition t4 = {{1, 3}, {2, 4}} of [4],
{1, 3} would receive label 1 and {2, 4} would receive label 2, so {1, 3} would
be before {2, 4} in the order. Restricting these traits will never change their
order—for instance, {1, 3}|2 = {1} and {2, 4}|2 = {2}, which still each receive
label 1 and 2, respectively. If a restriction leaves a trait empty, it is removed and
does not interfere with any traits of a lower label. For finite feature allocations,
this ordering is inapplicable, since multiple features may have a common lowest
index. Instead, Griffiths and Ghahramani (2005) introduce a left-ordered form
in which one feature precedes another if it contains an index n that the other
does not, and all indices 0 < m < n have the same membership in both features.
For example, {1, 2, 5} precedes {1, 3, 5} in this ordering, since the traits both
have index 1, but only the first has index 2.2 In this section, we show that the
well-known lexicographic ordering—which generalizes these previous orderings
for partitions and feature allocations—satisfies our desiderata for an ordering
on traits. We begin by defining ordered trait allocations.

Definition 3.1. An ordered trait allocation �N of [N ] is a sequence �N =
(�Nk)

K
k=1, K < ∞, of traits �Nk ∈ T such that no trait contains an index

n > N .

Let LN be the set of ordered trait allocations of [N ], and let L =
⋃

N LN

be the set of all ordered finite trait allocations. As in the case of unordered
trait allocations, the notion of consistency is intimately tied to that of restric-
tion. We again require that restriction to M ∈ N removes all indices m > M ,
and removes all traits rendered empty by that process. However, we also re-
quire that the order of the remaining traits is preserved: for example, if �3 =
({3}, {1, 2}, {2}, {1, 1, 2}), the restriction of �3 to 1 should yield ({1}, {1, 1}),

2Other past work (Broderick, Pitman and Jordan, 2013) uses auxiliary randomness to
order features, but this technique does not guarantee that orderings of two consistent finite
trait allocations tN , tM are themselves consistent.
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not ({1, 1}, {1}). Definition 3.2 satisfies these desiderata, overloading the |M
function again for notational brevity.

Definition 3.2. The restriction |M : L → LM of an ordered finite trait alloca-
tion �N to M ∈ N is defined as

�N |M := filter
(
(�Nk|M )

K
k=1

)
, (3.1)

where the filter function removes any empty sets from a sequence while preserv-
ing the order of the nonempty sets.

In the example above, the basic restriction of �3 to 1 would yield (∅, {1}, ∅,
{1, 1}), which the filter function then processes to form �3|1 = ({1}, {1, 1}), as
desired. Analogously to the unordered case, we say two ordered trait allocations
�N , �M , of [N ], [M ], with M ≤ N , are consistent if �N |M = �M , and define
the set of infinite ordered trait allocations L∞ as the set of infinite sequences of
ordered finite trait allocations with �N+1|N = �N ∀N ∈ N.

Given these definitions, we are now ready to make the earlier intuitive notion
of a consistent trait ordering scheme precise. Definition 3.3 states that a function
[ · ] : T → Lmust satisfy two conditions to be a valid trait ordering. The first con-
dition enforces that a trait ordering does not add, remove, or modify the traits
in the finite trait allocation tN ; this implies that trait orderings are injective.
The second condition enforces that trait orderings commute with restriction; in
other words, applying a trait ordering to a consistent sequence of finite trait
allocations yields a consistent sequence of ordered finite trait allocations. For
example, suppose t2 = {{2}, {1, 2}}, t3 = {{2}, {1, 2}, {3}}, and we are given a
proposed trait ordering where [t2] = ({2}, {1, 2}) and [t3] = ({3}, {2}, {1, 2}).
This would not violate either of the conditions and may be a valid trait order-
ing. If instead the ordering was [t3] = ({3}, {1, 2}, {2}), the proposal would
not be a valid trait ordering—the traits {2} and {1, 2} get “shuffled”, i.e.,
[ t3|2] = [t2] = ({2}, {1, 2}) 
= ({1, 2}, {2}) = [t3]|2.

Definition 3.3. A trait ordering is a function [ · ] : T → L such that:

1. The ordering is exhaustive: If [tN ] = (τk)
K
k=1, then tN = {τ1, . . . , τK}.

2. The ordering is consistent : [ tN |M ] = [tN ]|M .

The trait ordering we use throughout is the lexicographic ordering : for two
traits, we pick the lowest index with differing multiplicity, and order the one with
higher multiplicity first. For example, {1, 1, 4} < {1, 2} since 1 is the lowest index
with differing multiplicity, and the multiplicity of 1 is greater in the first trait
than in the second. Similarly, {2, 3} < {2, 4} since 3 has greater multiplicity in
the first trait than the second, and both 1 and 2 have the same multiplicity in
both traits. Definition 3.4 makes this precise.

Definition 3.4. For two traits τ, ω ∈ T, we say that τ < ω if there exists n ∈ N

such that τ(n) > ω(n) and all m ∈ [n− 1] satisfy ω(m) = τ(m).
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We define [ · ] : T → L as the mapping from tN to the ordered trait allocation
�N induced by the lexicographic ordering. The mapping [ · ] is a trait ordering,
as shown by Theorem 3.6. The proof of Lemma 3.5 is provided in Appendix A.

Lemma 3.5. For any pair τ, ω ∈ T, if τ ≤ ω then τ |M ≤ ω|M for all M ∈ N.

Theorem 3.6. The mapping [ · ] is a trait ordering.

Proof. [ · ] is trivially exhaustive: since the restriction operation ·|M acts identi-
cally to individual traits in both ordered and unordered finite trait allocations,
and empty traits are removed, both [ tN |M ] and [tN ]|M have the same multiset
of traits (albeit in a potentially different order). The first trait τ of [tN ] satisfies
τ ≤ ω for any ω ∈ T such that tN (ω) > 0, by definition of [ · ]. By Lemma 3.5,
this implies that τ |M ≤ ω|M for all ω ∈ tN . Therefore, the first trait in [tN ]|M
is the same as the first trait in [ tN |M ]. Applying this logic recursively to tN
with τ removed, the result follows.

4. De Finetti representation of exchangeable trait allocations

We now derive a de Finetti-style representation theorem for infinite exchange-
able trait allocations (Definition 2.7) that extends previous results for partitions
and feature allocations (Kingman, 1978; Broderick, Pitman and Jordan, 2013).
It turns out that all infinite exchangeable trait allocations have essentially the
same form as in the example construction at the end of Section 2, with some
additional nuance.

The high-level proof sketch is as follows. We first use the lexicographic or-
dering from Section 3 to associate an i.i.d. sequence of uniform random labels
to the traits in the sequence, in the style of Aldous (1985). We collect the mul-
tiset of labels for each index into a sequence, called the label multiset sequence;
the consistency of the ordering from Theorem 3.6 implies that this construction
is well-defined. We show that the label multiset sequence itself is exchange-
able in the traditional sequential sense in Lemma 4.3. And we use de Finetti’s
theorem (Kallenberg, 1997, Theorem 9.16) to uncover its construction from con-
ditionally i.i.d. random quantities. Finally, we relate this construction back to
the original set of infinite exchangeable trait allocations to arrive at its repre-
sentation in Theorem 4.5. Throughout the remainder of the paper, T∞ := (TN )

is a random infinite trait allocation and φ∞ := (φk)
i.i.d.∼ Unif(0, 1).

As an example construction of the label multiset sequence, suppose we have

T4 = {{1, 2, 2}, {2, 4}}, and φ∞ := (φk)
i.i.d.∼ Unif(0, 1). The lexicographic or-

dering of T4 is [T4] = ({1, 2, 2}, {2, 4}). The first trait in the ordering {1, 2, 2}
receives the first label in the sequence, φ1, and the second trait {2, 4} receives
the second label, φ2. For each index n ∈ [4], we now collect the multiset of labels
to its assigned traits with the same multiplicity. Index 1 is a member of only the
first trait with multiplicity 1, so its label multiset is {φ1}. Index 2 is a member
of the first trait with multiplicity 2 and the second with multiplicity 1, so its
label multiset is {φ1, φ1, φ2}. Similarly, for index 3 it is ∅, and for index 4 it
is {φ2}. Putting the multisets in order (for index 1, then 2, 3, etc.), the label
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multiset sequence is therefore ({φ1}, {φ1, φ1, φ2}, ∅, {φ2}, . . . ), where the ellipsis
represents the continuation beyond T4 to T5, T6, and so on. While the φk may
be seen as a mathematical convenience for the proof, an alternative interpreta-
tion is that they correspond to trait-specific parameters in a broader Bayesian
hierarchical model. Indeed, our proof would hold for φk from any nonatomic
distribution, not just the uniform. In the document modeling example, each φk

could correspond to a distribution over English words; φk with high mass on
“basketball”, “luge”, and “curling” could represent a “sports” topic. For this
reason, we call the φk labels. Let the set of (possibly empty) finite multisets of
(0, 1) be denoted Y.

Definition 4.1. The label multiset sequence Y∞ := (YN ) of elements YN ∈ Y

corresponding to T∞ and φ∞ is defined by

YN (φ) :=
∑
k

1 (φ = φk) · [TN ]k(N). (4.1)

In other words, YN is constructed by selecting the N th component of T∞,
ordering its traits τ1, . . . , τK , and then adding τk(N) copies of φk to YN for each
k ∈ [K]. Again, the φk can thus be thought of as labels for the traits, and YN is
the multiset of labels representing the assignment of the N th datum to its traits
(hence the name label multiset sequence). This construction of Y∞ ensures that
the “same label applies to the same trait” as N increases: the a.s. consistency
of the ordering [ · ] introduced in Section 3 immediately implies that

∀N ≤ M, YN (φ)
a.s.
=

∑
k

1 (φ = φk) · [TM ]k(N). (4.2)

Definition 4.1 implicitly creates a mapping, which we denote ϕ : T∞ ×
(0, 1)∞ → Y

∞. Since the φk are distinct a.s., we can partially invert ϕ to
recover the infinite trait allocation T∞ corresponding to Y∞ a.s. via

TN (τ)
a.s.
= 1 (∀n > N, τ(n) = 0) · |{φ ∈ (0, 1) : ∀n ≤ N, τ(n) = Yn(φ)}| . (4.3)

The first term in the product—the indicator function—ensures that TN (τ) is
nonzero only for traits τ ∈ T that do not contain any index n > N . The second
term counts the number of points φ ∈ (0, 1) for which the multiplicities in τ
match those expressed by the label multiset sequence for n ≤ N . Thus, there
exists another mapping ϕ̃ : Y∞ → T∞ such that

ϕ̃ (ϕ (T∞, φ∞))
a.s.
= T∞. (4.4)

The existence of the partial inverse ϕ̃ is a crucial element in the characterization
of all distributions on infinite exchangeable trait allocations in Theorem 4.5. In
particular, it guarantees that the distributions over random infinite trait allo-
cations are in bijection with the distributions on label multiset sequences Y

∞,
allowing the characterization of those on Y

∞ (a much simpler space) instead.
As the primary focus of this work is infinite exchangeable trait allocations, we
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therefore must deduce the particular family of distributions on Y
∞ that are in

bijection with the infinite exchangeable trait allocations on T∞.
Lemma 4.3 shows that this family is, as one might suspect, the exchangeable

(in the classical, sequential sense) label multiset sequences. The main result
required for its proof is Lemma 4.2, which states that permutation of T∞ es-
sentially results in the same permutation of the components of Y∞, modulo
reordering the labels in φ∞. In other words, permuting the data sequence rep-
resented by T∞ leads to the same permutation of Y∞. As an example, consider
a setting in which T4 = {{1, 3, 4}, {2}, {2}}, φ∞ = (0.5, 0.4, 0.8, . . . ), and thus
Y∞ = ({0.5}, {0.4, 0.8}, {0.5}, {0.5}, . . . ). For a finite permutation π, we define
πY∞ := (Yπ−1(N)) and πφ∞ := (φπ−1(k)), i.e., permutations act on sequences by
reordering elements. If we permute the observed data sequence that T4 repre-
sents by π = (12)(34), this leads to the permutation of the indices in T4 also by
π, resulting in πT4 = {{2, 3, 4}, {1}, {1}}. If we then reorder φ∞ with a different
permutation π′ = (213), so π′φ∞ = (0.4, 0.8, 0.5, . . . ), then the corresponding
label multiset sequence is Y ′

∞ = ({0.4, 0.8}, {0.5}, {0.5}, {0.5}, . . . ). This Y ′
∞ is

the reordering of Y∞ by π, the same permutation that was used to reorder the
observed data; the main result of Lemma 4.2 is that a π′ always exists to re-
order φ∞ such that this is the case. The proof of Lemma 4.2 may be found in
Appendix A.

Lemma 4.2. For each finite permutation π and infinite trait allocation t∞,
there exists a finite permutation π′ such that

πϕ (t∞, φ∞)
a.s.
= ϕ (πt∞, π′φ∞) . (4.5)

Lemma 4.3. T∞ is exchangeable iff Y∞ = ϕ(T∞, φ∞) is exchangeable.

Proof. Fix a finite permutation π. Then by Lemma 4.2 there exists a collection
of finite permutations πT∞ that depend on T∞ such that

πY∞
a.s.
= ϕ(πT∞, πT∞φ∞). (4.6)

If Y∞ is exchangeable, then using Eq. (4.6) and the definition of ϕ̃ in Eq. (4.4),

T∞
a.s.
= ϕ̃(Y∞)

d
= ϕ̃(πY∞)

a.s.
= πT∞. (4.7)

If T∞ is exchangeable, then again using Eq. (4.6) and noting that φ∞ is a
sequence of i.i.d. random variables and hence also exchangeable,

πY∞
a.s.
= ϕ(πT∞, πT∞φ∞)

d
= ϕ(T∞, φ∞) = Y∞. (4.8)

We are now ready to characterize all distributions on infinite exchangeable
trait allocations in Theorem 4.5 using the de Finetti representation provided by
Definition 4.4. At a high level, this is a constructive representation involving
three steps. Recall that K is the countable set of sequences of nonnegative
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integers (ξk) such that
∑

k ξk < ∞. First, we generate a (possibly random)
distribution over K2, i.e., a sequence (μξ,ξ′)ξ,ξ′∈K of nonnegative reals such that

∑
ξ,ξ′∈K

μξ,ξ′ = 1 and ∀ξ, ξ′ ∈ K, μξ,ξ′ ≥ 0. (4.9)

Next, for each N ∈ N, we sample i.i.d. from this distribution, resulting in two
sequences ξN , ξ′N . The sequence ξN determines the membership of index N in
regular traits—which may be joined by other indices—and ξ′N determines its
membership in dust traits—which are unique to index N and will never be
joined by any other index. In particular, for each k ∈ N, index N joins trait k
with multiplicity ξNk; and for each j ∈ N, index N has ξ′Nj additional unique
traits of multiplicity j. For example, in a sequence of documents generated by
latent topics, one author may write a single document with a number of words
that are never again used by other authors (e.g. Jabberwocky, by Lewis Carroll);
in the present context, these words would be said to arise from a dust topic.
Meanwhile, common collections of words expressed by many documents will
group together to form regular topics. Finally, we associate each trait with an
i.i.d. Unif(0, 1) label, construct the label multiset sequence Y∞, and use our
mapping ϕ̃ to collect these results together to form an infinite trait allocation
T∞. We say a random infinite trait allocation is regular if it has no dust traits
with probability 1, and irregular otherwise.

Definition 4.4. A random infinite trait allocation T∞ has a de Finetti repre-
sentation if there exists a random distribution (μξ,ξ′) on K

2 such that T∞ has
distribution induced by the following construction:

1. generate (φk), (φNj�)
i.i.d.∼ Unif(0, 1) and (ξN , ξ′N )

i.i.d.∼ (μξ,ξ′),
2. for all N ∈ N, define the multisets RN , DN , YN of (0, 1) via

RN (φ) =
∑
k,j

1(φ = φk, ξNk = j) · j (regular traits) (4.10)

DN (φ) =
∑
j,�

1(φ = φNj�, � ≤ ξ′Nj) · j (dust traits) (4.11)

YN (φ) = RN (φ) +DN (φ), (4.12)

3. assemble the label multiset sequence Y∞ = (YN ) and set T∞ = ϕ̃(Y∞).

Theorem 4.5 is the main result of this section, which shows that infinite
exchangeable trait allocations—both regular and irregular—are precisely those
which have a de Finetti representation per Definition 4.4. The proof of Theo-
rem 4.5 approaches the problem by characterizing the distribution of the ex-
changeable label multiset sequence Y∞.

Theorem 4.5. T∞ is exchangeable iff it has a de Finetti representation.

Proof. If T∞ has a de Finetti representation, then it is exchangeable by the
fact that the ξN , ξ′N are i.i.d. random variables. In the other direction, if T∞ is
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exchangeable, then there is a random label multiset sequence Y∞ = ϕ(T∞, φ∞)
which is exchangeable by Lemma 4.3. Since we can recover T∞ from Y∞ via
T∞ = ϕ̃(Y∞), it suffices to characterize Y∞ and then reconstruct T∞.

We split YN into its regular RN and dust DN components—that represent,
respectively, traits that are expressed by multiple data points and those that
are expressed only by data point N—defined for φ ∈ (0, 1) by

DN (φ) =

{
0 ∃M 
= N : YM (φ) > 0
YN (φ) otherwise

(4.13)

RN (φ) = YN (φ)−DN (φ). (4.14)

Choose any ordering (φk) on the countable set {φ ∈ (0, 1) :
∑

N RN (φ) > 0}.
Next, we extract the multiplicities in RN and DN via the sequences ξN , ξ′N ∈ K,

ξ′Nj := |{φ ∈ (0, 1) : DN (φ) = j}| ξNk := RN (φk). (4.15)

Note that we can recover the distribution of Y∞ from that of (ξN , ξ′N )∞N=1 by

generating sequences (φ′
k), (φ

′
Nj�)

i.i.d.∼ Unif(0, 1) and using steps 2 and 3 of Def-
inition 4.4. Therefore it suffices to characterize the distribution of (ξN , ξ′N )∞N=1.
Note that (ξN , ξ′N )∞N=1 is a function of Y∞ such that permuting the elements of
Y∞ corresponds to permuting those of (ξN , ξ′N )∞N=1 in the same way. Thus since
Y∞ is exchangeable, so is (ξN , ξ′N )∞N=1. And since (ξN , ξ′N )∞N=1 is a sequence in a
Borel space, de Finetti’s theorem (Kallenberg, 1997, Theorem 9.16) states that

there exists a directing random measure μ such that (ξN , ξ′N )
i.i.d.∼ μ. Since the

set K
2 is countable, we can represent μ with a probability μξ,ξ′ for each tuple

(ξ, ξ′) ∈ K
2.

The representation in Theorem 4.5 generalizes de Finetti representations for
both clustering (the Kingman paintbox) and feature allocation (the feature
paintbox) (Kingman, 1978; Broderick, Pitman and Jordan, 2013), as shown
by Corollaries 4.7 and 4.8. Further, Corollary 4.8 is the first de Finetti represen-
tation for feature allocations that accounts for the possibility of dust features;
previous results were limited to regular feature allocations (Broderick, Pitman
and Jordan, 2013). Theorem 4.5 also makes the distinction between regular and
irregular trait allocations straightforward, as shown by Corollary 4.6.

Corollary 4.6. An exchangeable trait allocation T∞ is regular iff it has a de
Finetti representation where μξ,ξ′ > 0 implies

∑
k ξ

′
k = 0.

Corollary 4.7. A partition T∞ is exchangeable iff it has a de Finetti represen-
tation where μξ,ξ′ > 0 implies either

•
∑

k ξk = 1 and
∑

k ξ
′
k = 0, or

•
∑

k ξk = 0, ξ′1 = 1, and
∑

k ξ
′
k = 1.

Corollary 4.8. A feature allocation T∞ is exchangeable iff it has a de Finetti
representation where μξ,ξ′ > 0 implies that

• ∀k ∈ N, ξk ≤ 1, and ∀j > 1, ξ′j = 0.
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5. Frequency models and probability functions

The set of infinite exchangeable trait allocations encompasses a very expres-
sive class of random infinite trait allocations: membership in different regular
traits at varying multiplicities can be correlated, membership in dust traits can
depend on membership in regular traits, etc. While interesting, this generality
makes constructing models with efficient posterior inference procedures difficult.
A simplifying assumption one can make is that given the directing measure μ,
the membership of an index in a particular trait is independent of its member-
ship in other traits. This assumption is often acceptable in practice, and limits
the infinite exchangeable trait allocations to a subset—which we refer to as fre-
quency models—for which efficient inference is often possible. Frequency models,
as used in the present context, generalize the notion of a feature frequency model
(Broderick, Pitman and Jordan, 2013) for feature allocations.

At a high level, this constructive representation consists of three steps. First,
we generate random sequences of nonnegative reals (θkj) and (θ′j) such that∑

k,j θkj < ∞,
∑

j θ
′
j < ∞, and ∀k ∈ N,

∑
j θkj ≤ 1. The quantity θkj is the

probability that an index joins regular trait k with multiplicity j, while θ′j is
the average number of dust traits of multiplicity j for each index. Next, each
index N ∈ N independently samples its multiplicity ξNk in regular trait k from
the discrete distribution (θkj)

∞
j=0, where θk0 := 1 −

∑
j θkj is the probability

that the index is not a member of trait k. For each j ∈ N, each index N ∈ N

is a member of an additional ξ′Nj
indep∼ Poiss(θ′j) dust traits of multiplicity j.

Finally, we collect these results together to form an infinite trait allocation T∞.
Note that the above essentially imposes a particular form for μ, as given by
Definition 5.1.

Definition 5.1. A random infinite trait allocation T∞ has a frequency model if
there exist two random sequences (θkj), (θ

′
j) of nonnegative real numbers such

that T∞ has a de Finetti representation with

μξ,ξ′ =

( ∞∏
k=1

θkξk

)
·

⎛
⎝ ∞∏

j=1

(θ′j)
ξ′je−θ′

j

ξ′j !

⎞
⎠ . (5.1)

Although considerably simpler than general infinite exchangeable trait alloca-
tions, this representation still involves a potentially infinite sequence of parame-
ters; a finitary representation would be more useful for computational purposes.
In practice, the marginal distribution of TN provides such a representation (Grif-
fiths and Ghahramani, 2005; Thibaux and Jordan, 2007; James, 2017; Broder-
ick, Wilson and Jordan, 2018). So rather than considering a simplified class of
de Finetti representations, we can alternatively consider a simplified class of
marginal distributions for TN . In previous work on feature allocations (Broder-
ick, Pitman and Jordan, 2013), the analog of frequency models was shown to
correspond to those marginal distributions that depend only on the unordered
feature sizes (the so-called exchangeable feature probability functions (EFPFs)).
In the following, we develop the generalization of EFPFs for trait allocations
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and show that the same correspondence result holds in this generalized frame-
work.

We let κ(tN ) be the number of unique orderings of a trait allocation tN ,

κ(tN ) :=

(∑
τ∈T

tN (τ)
)
!∏

τ∈T
tN (τ)!

, (5.2)

and use the multiplicity profile3 of tN , given by Definition 5.2, to capture the
multiplicities of indices in its traits. The multiplicity profile of a trait is de-
fined to be the multiset of multiplicities of its elements, while the multiplicity
profile of a finite trait allocation is the multiset of multiplicity profiles of its
traits. As an example, the multiplicity profile of a trait {1, 3, 4, 4, 2, 2, 2, 2} is
{1, 1, 2, 4}, since there are two elements of multiplicity 1, one element of mul-
tiplicity 2, and one of multiplicity 4 in the trait. If we are given the finite
trait allocation {{1, 1, 2}, {2}, {3}, {3, 3, 3, 3, 1}}, then its multiplicity profile is
{{1, 2}, {1}, {1}, {1, 4}}. Note that a multiplicity profile is itself a trait alloca-
tion, though not always of the same indices. Here, the trait allocation is of [3],
and its multiplicity profile is a trait allocation of [4].

Definition 5.2. The multiplicity profile · : T → T of a trait τ ∈ T is defined
as

τ(n) := |{m ∈ N : τ(m) = n}| , (5.3)

and is overloaded for finite trait allocations · : T → T as

tN (ξ) :=
∑
τ∈T

1(τ = ξ) · tN (τ). (5.4)

We also extend Definition 5.2 to ordered trait allocations �N , where the mul-
tiplicity profile is the ordered multiplicity profiles of its traits, i.e. �N is defined
such that ∀k ∈ N, �Nk := �Nk.

The precise simplifying assumption on the marginal distribution of TN that
we employ in this work is provided in Definition 5.3, which generalizes past
work on exchangeable probability functions (Pitman, 1995; Broderick, Pitman
and Jordan, 2013).

Definition 5.3. A random infinite trait allocation T∞ has an exchangeable trait
probability function (ETPF) if there exists a function p : N×T → R+ such that
for all N ∈ N,

P (TN = tN ) = κ(tN ) · p
(
N, tN

)
. (5.5)

One of the primary goals of this section is to relate infinite exchangeable trait
allocations with frequency models to those with ETPFs. The main result of this
section, Theorem 5.4, shows that these two assumptions are actually equivalent:

3A very similar quantity is known in the population genetics literature as the site (or
allele) frequency spectrum (Bustamante et al., 2001), though it is typically defined there as
an ordered sequence or vector rather than as a multiset.
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any random infinite trait allocation T∞ that has a frequency model (including
those with random (θkj), (θ

′
j) of arbitrary distribution) has an ETPF, and any

random infinite trait allocation with an ETPF has a frequency model. Therefore,
we are able to use the simple construction of frequency models in practice via
their associated ETPFs.

Theorem 5.4. T∞ has a frequency model iff it has an ETPF.

The key to the proof of Theorem 5.4 is the uniformly ordered infinite trait
allocation, defined below in Definition 5.6. Recall that L∞ is the space of con-
sistent, ordered infinite trait allocations and that L∞ denotes an ordering of
T∞. Here, we develop the uniform ordering L∞: intuitively, for each N ∈ N,
LN+1 is constructed by inserting the new traits in TN+1 relative to TN into
uniformly random positions among the elements of LN . This guarantees that
LN is marginally a uniform random permutation of [TN ] for each N ∈ N, and
that L∞ is a consistent sequence, i.e. L∞ ∈ L∞. There are two advantages to
analyzing L∞ rather than T∞ itself. First, the ordering removes the combinato-
rial difficulties associated with analyzing T∞. Second, the traits are independent
of their ordering, thereby avoiding the statistical coupling of the ordering based
solely on [ · ].

The definition of the uniform ordering L∞ in Definition 5.6 is based on as-
sociating traits with the uniformly distributed i.i.d. sequence φ∞, and ordering
the traits based on the order of those values. To do so, we require a definition
of the finite permutation πn that rearranges the first n elements of φ∞ to be
in order and leaves the rest unchanged, known as the nth order mapping πn

of φ∞. For example, if φ∞ = (0.4, 0.1, 0.3, 0.2, 0.5, . . . ), then π3 is represented
in cycle notation as (321), and π3φ∞ = (0.1, 0.3, 0.4, 0.2, 0.5, . . . ). The precise
formulation of this notion is provided by Definition 5.5.

Definition 5.5. The nth order mapping πn : N → N of the sequence φ∞ is the
finite permutation defined by

πn(k) :=

{
|{j ∈ N : j ≤ n, φj ≤ φk}| k ≤ n
k k > n

. (5.6)

Definition 5.6 shows how to use the nth order mapping to uniformly order
an infinite trait allocation: we rearrange the lexicographic ordering of TN using
the Kth

N order mapping πKN
where KN is the number of traits in TN .

Definition 5.6. The uniform ordering L∞ := (LN ) of T∞ is

�LNk := [TN ]ρ−1
N (k), (5.7)

where ρN := πKN
and KN =

∑
τ∈T

TN (τ) is the number of traits in TN .

Note that we can also define the uniformly ordered label multiset sequence
Y∞ = (YN ) ∈ Y

∞ from the uniform ordering L∞ of T∞ via

YN (φ) :=
∑
k

LNk(N) · 1
(
φ = φρ−1

N (k)

)
, (5.8)
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and recover the original infinite random trait allocation T∞
a.s.
= ϕ̃(Y∞) from the

mapping ϕ̃ in Eq. (4.4).
The proof of Theorem 5.4 relies on Lemma 5.7, a collection of two technical

results associated with uniformly ordered infinite trait allocations L∞ for which
the associated unordered infinite trait allocation T∞ has an ETPF. The first
result states that LN and LN+k are conditionally independent given LN for any
N, k ∈ N; essentially, if the distribution of LN depends only on its multiplicity
profile, knowing the multiplicity profiles of further uniformly ordered trait allo-
cations in the sequence L∞ does not provide any extra useful information about
LN . The second result states that the distribution of LN conditioned on LN is
uniform. The proof of Lemma 5.7 may be found in Appendix A.

Lemma 5.7. If T∞ has an ETPF, and L∞ is the uniform ordering of T∞, then
for all N ∈ N, �N ∈ LN ,

P
(
LN = �N |LN , LN+1, LN+2, . . .

)
= P

(
LN = �N |LN

)
a.s., (5.9)

and P
(
LN = · |LN

)
is a uniform distribution over the ordered trait allocations

of [N ] consistent with LN .

Proof of Theorem 5.4. Let L∞ := (LN ) be the uniform ordering of T∞ := (TN ).
For any N ∈ N, �N ∈ LN , and tN ∈ TN such that �N is an ordering of tN ,

P (LN = �N ) =
∑

t′N∈TN

P (LN = �N |TN = t′N )P (TN = t′N ) (5.10)

= P (LN = �N |TN = tN )P (TN = tN ) (5.11)

= κ(tN )−1
P (TN = tN ) , (5.12)

where the sum collapses to a single term since tN ∈ TN is the unique unordered
version of �N , and P (LN = �N |TN = tN ) = κ(tN )−1 since LN is uniformly
distributed over the possible orderings of TN . Thus

P (TN = tN ) = κ(tN ) · P (LN = �N ) . (5.13)

Suppose T∞ has a frequency model as in Definition 5.1. To show T∞ has an
ETPF, it remains to show that there exists a function p such that

P (LN = �N ) = p
(
N, tN

)
. (5.14)

The major difficulty in doing so is that there is ambiguity in how LN = �N was
generated from the frequency model; any trait �Nk for which �Nk is a singleton
(i.e., �Nk contains a single unique index) may correspond to either a dust or
regular trait. Therefore, we must condition on both the frequency model pa-
rameters and the (random) dust/regular assignments of the K traits in �N . We
let Aj ⊂ [K], j ∈ N be the set of components of �N corresponding to dust
traits of multiplicity j. We further let Q be the set of sequences (Aj) such that
k ∈ Aj =⇒ �Nk = {j} for all k, j ∈ N, i.e., those that are possible dust/regular
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assignments of the traits given �N . Note in particular that Q is a function of �N
but not �N . Then by the tower property,

P(LN = �N ) = E
[
P(LN = �N | (Aj), (θkj), (θ

′
j))

]
. (5.15)

Expanding the inner conditional probability, and defining A = [K] \
⋃

j Aj ,

P(LN = �N | . . . ) = 1((Aj) ∈ Q)

N
∑

j |Aj |
·
∞∏
k=1

θNk0 ·
∑

σ:A→N
σ 1-to-1

∏
k∈A

∞∏
j=1

(
θσ(k)j

θσ(k)0

)�Nk(j)

. (5.16)

The first term in the product relates to the dust. Given that we know the
positions and multiplicities of dust in LN , the only remaining randomness is in
which index expresses each dust trait; and since LN has a uniformly random
order, the probability of any index expressing dust at an index is 1/N . The
indicator expresses the fact that the probability of observing LN = �N is 0 if
it is inconsistent with the dust assignments (Aj). The second and third terms
are the sum over the probabilities of all ways the (θkj) could have generated the
observed regular traits.

Note that the expression in Eq. (5.16) is a function of only N and �N , and
therefore so is P (LN = �N ) in Eq. (5.15). But since LN is a uniformly ordered
trait allocation, P(LN = �N ) is invariant to reordering �N , so it is invariant to
reordering �N ; and since �N is some ordering of the traits in tN , P(LN = �N ) is
a function of only tN and N . Therefore, there exists some function p such that

P(LN = �N ) = p(N, tN ), (5.17)

and T∞ has an ETPF as required.
Next, assume T∞ has an ETPF. Consider the finite subsequence (Ym)Mm=1

and σ-algebra GN := σ
(
ρNφ∞, LN

)
, where M ≤ N , and recall that ρNφ∞

is the N th ordering of φ∞, LN is the uniform ordering of TN , and LN is its
multiplicity profile. Note that

P
(
(Ym)Mm=1 | GN

)
(5.18)

=
∑

�N∈LN

P
(
(Ym)Mm=1 | ρNφ∞, LN = �N

)
P
(
LN = �N |LN

)
(5.19)

=
∑

�N∈LN

P
(
(Ym)Mm=1 | ρNφ∞, LN = �N

)
P

(
LN = �N |

(
LK

)∞
K=N

)
(5.20)

= P

(
(Ym)Mm=1 |

(
ρKφ∞, LK

)∞
K=N

)
(5.21)

almost surely, where the steps follow from the law of total probability, the mea-
surability of LN with respect to σ (LN ), Lemma 5.7, and the measurability of
ρN+Kφ∞ with respect to σ(ρNφ∞) for any K ∈ N. Therefore P

(
(Ym)Mm=1 | GN

)
is a reverse martingale in N , since σ

(
ρKφ∞, LK

)∞
K=N

is a reverse filtration;
so by the reverse martingale convergence theorem (Kallenberg, 1997, Theorem
6.23), there exists a σ-algebra G such that

P
(
(Ym)Mm=1 | GN

) a.s.→ P
(
(Ym)Mm=1 | G

)
N → ∞. (5.22)
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We now study the properties of the limiting distribution. Denoting Ymk :=
Ym(φρ−1

N (k)) for brevity, note that the uniform distribution of LN conditioned

on LN implies that

P
(
Y1k = j | (Ym)Mm=2,GN

)
=

LNk(j)−
∑M

m=2 1 (Ymk = j)

N −M + 1
, j ∈ N ∪ {0} (5.23)

independently across the trait indices k ∈ N. Since
∑M

m=2 1(Ymk=j)

N−M+1

a.s.→ 0 as

N → ∞, we have that Y1 ⊥⊥ (Ym)Mm=2 | G. By symmetry, (Ym)Mm=1 are condi-
tionally independent given G. Since this holds for all finite subsequences, the
result extends to the infinite sequence: Y∞ is an i.i.d. sequence conditioned
on G. It thus suffices to characterize the limit of P (Y1 | GN ).

Define DNj to be the set of indices for “dust-like” traits of multiplicity j,
and RN to be the remaining component indices corresponding to nonempty
“regular-like” traits,

DNj =
{
k ∈ N : LNk = {j}

}
, j ∈ N (5.24)

RN =
{
k ∈ N : LNk 
= ∅

}
\ ∪jDNj . (5.25)

Simulating from P (Y1 | GN ) can be performed in two steps. First, independently
for every k ∈ RN , we set Y1k to j ∈ N with probability LNk(j)/N , and to 0
with probability 1 −

∑
j LNk(j)/N . Then for each j ∈ N, we generate Sj ∼

Binom(|DNj | , 1/N), select a subset of DNj of size Sj uniformly at random,
and set Y1k for each k in the subset to j. Given the almost-sure convergence
of P (Y1 | GN ) as N → ∞, the first step implies the existence of a countable
sequence (φ′

k) in (0, 1) (a rearrangement of some subset of the sequence φ∞)
and sequences of nonnegative reals (θkj)

∞
j=0 such that

θkj = lim
N→∞

LNk(j)

N
, θk0 = 1−

∑
j

θkj , P (Y1(φ
′
k) = j | G) = θkj (5.26)

independently across k ∈ N. Using the law of small numbers (Ross, 2011, The-
orem 4.6) on the binomial distribution for Sj (with shrinking probabilities 1/N

as N → ∞), and the fact that φ∞
i.i.d.∼ Unif(0, 1), the second step implies that

there exists a sequence of positive reals (θ′j) such that

θ′j = lim
N→∞

|DNj | /N, (5.27)

where Y1 additionally has Poiss(θ′j) unique elements uniformly distributed on
(0, 1) with multiplicity j. Finally,

∑
j θkj ≤ 1 by the above construction, and

both
∑

k,j θkj < ∞ and
∑

j θ
′
j < ∞ almost surely, since otherwise the second

Borel–Cantelli lemma combined with the i.i.d. nature of Y∞ conditioned on G
would imply that each Yn is not a finite multiset, which contradicts the assump-
tion that any index is a member of only finitely many traits almost surely. Thus
T∞ = ϕ̃(Y∞) has a frequency model.
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By setting θkj = θ′j = 0 for all k, j ∈ N : j > 1, Theorem 5.4 can be used
to recover the correspondence between random infinite feature allocations with
an exchangeable feature probability function (EFPF) and those with a feature
frequency model, both defined in earlier work by Broderick, Pitman and Jordan
(2013). In the present context, an EFPF is an ETPF where p(N, tN ) > 0 only
for tN that are feature allocations. These are exactly the tN for which tN only
contains traits τ of the form {1, 1, 1, . . . , 1}, i.e., tN (τ) > 0 only if ∀n > 1,
τ(n) = 0.

Corollary 5.8. A random infinite feature allocation has a feature frequency
model iff it has an EFPF.

For infinite exchangeable partitions, the result is stronger: all exchangeable
infinite partitions have an exchangeable partition probability function (EPPF)
(Pitman, 1995), defined as a summable symmetric function of the partition sizes
times K!, where K is the number of partition elements. Theorem 5.4 cannot be
directly used to recover this result: no choice of (θkj), (θ

′
j) in Definition 5.1 or

p(N, tN ) in Definition 5.3 guarantees that the resulting T∞ is a partition. The
key issue is that in trait allocations with frequency models, the membership of
each index in the traits is independent across the traits, while in partitions each
index is a member of exactly one trait. In the EPPF, this manifests itself as
an indicator function that tests whether the traits exhibit a partition structure,
where no such test exists in the ETPF (or EFPF, by extension).

As trait allocations generalize not only partitions, but other combinatorial
structures with restrictions on index membership as well (cf. Section 6), it is of
interest to find a generalization of the correspondence between frequency models
and ETPFs that applies to these constrained structures. We thus require a way
of extracting the memberships of a single index in a trait allocation—referred
to as its membership profile, as in Definition 5.9—so that we can check whether
it satisfies constraints on the combinatorial structure. For example, if we have
the trait allocation t4 = {{1, 1, 2}, {1, 2, 3}, {1}}, then the membership profile of
index 1 is {1, 1, 2}, since index 1 is a member of two traits with multiplicity 1,
and one trait with multiplicity 2. The membership profile of an index may be
empty; for example, here the membership profile of index 4 in t4 is ∅. Finally,
and crucially, the membership profile for an index does not change as more data
are observed: for an infinite trait allocation t∞ ∈ T∞, if τ is the membership
profile of index n in tN for n ≤ N , then for all M ≥ N , τ is the membership
profile of index n in tM .

Definition 5.9. The membership profile of index n in a finite trait allocation

tN is the multiset t
(n)
N of N defined by

t
(n)
N (j) :=

∑
τ∈T

1 (τ(n) = j) · tN (τ). (5.28)

Note that tN is a partition of [N ] if and only if ∀n ∈ [N ] t
(n)
N = {1}, and

∀n > N t
(n)
N = ∅. Likewise, tN is a feature allocation of [N ] if and only if

∀n ∈ [N ] and j ∈ N : j > 1, we have t
(n)
N (j) = 0, and ∀n > N , t

(n)
N = ∅.
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Definitions 5.10 and 5.11 provide definitions of a frequency model and ex-
changeable probability function for combinatorial structures with constraints on
the membership profiles that are analogous to the earlier unconstrained versions
in Definitions 5.1 and 5.3. The intuitive connection to these earlier definitions is
made through rejection sampling. First, we define an acceptable set of member-
ship profiles, known as the constraint set C ⊂ T∪{∅}. Then, for trait allocations
with a constrained exchangeable trait probability function (CETPF) in Defini-
tion 5.11, we generate TN from the associated unconstrained ETPF and check
if all indices n ∈ [N ] have membership profiles falling in C. If this check fails, we
repeat the process, and otherwise output TN as a sample from the distribution.
Likewise, for trait allocations with a constrained frequency model, we generate
Yn, n = 1, 2, . . . , N , progressively checking if all the indices in the associated
Tn, n = 1, 2, . . . , N have membership profiles in C. If any check fails, we repeat
the generation of Yn for that index n ∈ N until it passes. We continue this
process until we reach N ∈ N and output TN as a sample from the distribution.
To sample T∞, we do the same thing but do not terminate the sequential con-
struction at any finite N ∈ N. Constrained frequency models and CETPFs are
the combinatorial analogue of restricted nonparametric processes (Williamson,
MacEachern and Xing, 2013; Doshi-Velez and Williamson, 2017).

Definition 5.10. A random infinite trait allocation T∞ has a constrained fre-
quency model with constraint set C ⊂ T ∪ {∅} if it has a frequency model with
step (2) from Definition 4.4 replaced by

2. For N = 1, 2, . . . ,

(a) generate YN = RN +DN as in step (2) of Definition 4.4,

(b) let YN be the multiset of N defined by

YN (n) := |{φ ∈ (0, 1) : YN (φ) = n}| , (5.29)

(c) if YN ∈ C, continue; otherwise, go to step 2a.

Note that in Definition 5.10, YN is precisely the membership profile of index
N . That is to say, if we were to construct T∞ from Y∞ = (Y1, . . . , YN , ∅, ∅, . . . ),
then YN = T

(N)
N . Using YN instead of this construction simplifies the definition

considerably.

Definition 5.11. An infinite trait allocation T∞ has a constrained exchangeable
trait probability function (CETPF) with constraint set C ⊂ T∪{∅} if there exists
a function p : N× T → R+ such that for all N ∈ N,∑

tN∈TN

κ (tN ) · p
(
N, tN

)
< ∞ (5.30)

and

P (TN = tN ) = κ (tN ) · p
(
N, tN

)
·

N∏
n=1

1
(
t
(n)
N ∈ C

)
. (5.31)
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The extension of Theorem 5.4—a correspondence between random infinite
trait allocations T∞ with constrained frequency models and CETPFs in Defi-
nitions 5.10 and 5.11—that applies to constrained combinatorial structures is
given by Theorem 5.12.

Theorem 5.12. T∞ has a constrained frequency model with constraint set C iff
it has a CETPF with constraint set C.

Proof. Suppose T∞ has a constrained frequency model with constraint set C.
For finite N ∈ N, generating TN from the constrained frequency model is equiv-
alent to generating it from the associated unconstrained frequency model (i.e.,
removing the rejection in step 2c of Definition 5.10), and then rejecting TN

if
∏N

n=1 1
(
T

(n)
N ∈ C

)
= 0. Since generating TN from an unconstrained fre-

quency model implies it has an ETPF by Theorem 5.4—which inherently satis-
fies the summability condition in Definition 5.3 because it is itself a probability
distribution—and the final rejection step is equivalent to multiplying the distri-

bution of TN by
∏N

n=1 1
(
T

(n)
N ∈ C

)
and renormalizing, T∞ has a CETPF with

constraint set C.
Next, suppose T∞ has a CETPF with constraint set C. We can reverse the

above logic: since the associated ETPF is summable, we can generate TN by

simulating from the (normalized) ETPF and rejecting if
∏N

n=1 1
(
T

(n)
N ∈ C

)
= 0.

The ETPF has an associated frequency model by Theorem 5.4. Instead of re-
jecting TN after generating all Yn, n = 1, 2, . . . , N , we can reject after each index
n ∈ N based on progressively constructing Tn, n = 1, 2, . . . , N .

We can, of course, recover Theorem 5.4 from Theorem 5.12 by setting C =
T∪{∅}. But Theorem 5.12 also allows us to recover earlier results—using a novel
proof technique—about the correspondence of infinite exchangeable partitions
and partitions with an EPPF in Corollary 5.13. The proof of Corollary 5.13
uses the fact that the EPPF is a constrained EFPF; it is noted that other
connections between classes of probability functions for clustering and feature
allocation have been previously established (Roy, 2014).

Corollary 5.13. An infinite partition T∞ is exchangeable iff it has an EPPF.

Proof. Suppose T∞ has an EPPF. The EPPF is a CETPF with C = {{1}},
and thus T∞ is exchangeable by inspection of Definition 5.11; the probability is
invariant to finite permutations of the indices. In the other direction, if T∞ is
an infinite exchangeable partition, then it has a de Finetti representation of the
form specified in Corollary 4.7; for notational brevity define wk = μξ,ξ′ when
ξk = 1 and w0 = μξ,ξ′ when ξ′1 = 1. Note in particular that

∑∞
k=0 wk = 1, and

each index n ∈ N selects its trait from the distribution (wk)
∞
k=0, where selecting

0 implies selecting a dust (or unique) trait. We seek a constrained frequency
model equivalent to this de Finetti representation, so we set θkj = θ′j = 0 for all
k, j ∈ N : j > 1 and seek (θk1) and θ′1 such that

e−θ′
1θ′1

∏
k

θk0 ∝ w0 and ∀k ∈ N, e−θ′
1θk1

∏
��=k

θ�0 ∝ wk. (5.32)
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Dividing by
∏

k θk0, this is equivalent to finding (θk1) and θ′1 such that

θ′1 ∝ w0 and ∀k ∈ N,
θk1
θk0

∝ wk. (5.33)

We have a degree of freedom in the proportionality constant, so set that equal
to 1 and solve each equation by noting that θk1 + θk0 = 1, yielding

θk1 =
wk

wk + 1
for k ∈ N, θ′1 = w0. (5.34)

The infinite exchangeable partition T∞ has a constrained frequency model with
constraint set C = {{1}} based on (θkj), (θ

′
j). By Theorem 5.12 it thus has a

CETPF with the same constraint set C, which is an EPPF.

6. Application: vertex allocations and edge-exchangeable graphs

A natural assumption for random graph sequences with N-labeled vertices—
arising from online social networks, protein interaction networks, co-authorship
networks, email communication networks, etc. (Goldenberg et al., 2010)—is
that the distribution is projective and invariant to reordering the vertices, i.e.,
the graph is vertex exchangeable. Under this assumption, however, the Aldous–
Hoover theorem (Aldous, 1981; Hoover, 1979) for exchangeable arrays guar-
antees that the resulting graph is either dense or empty almost surely, an
inappropriate consequence when modeling the sparse networks that occur in
most applications (Mitzenmacher, 2003; Newman, 2005; Clauset, Shalizi and
Newman, 2009). Standard statistical models, which are traditionally vertex ex-
changeable (Lloyd et al., 2012), are therefore misspecified for modeling real-
world networks. This model misspecification has motivated the development
and study of a number of projective, exchangeable network models that do not
preclude sparsity (Caron and Fox, 2017; Veitch and Roy, 2015; Borgs et al.,
2018; Crane and Dempsey, 2016a; Cai, Campbell and Broderick, 2016; Herlau
and Schmidt, 2016; Williamson, 2016). One class of such models assumes the
network is generated by an exchangeable sequence of (multisets of) edges—
the so-called edge-exchangeable models (Broderick and Cai, 2015; Crane and
Dempsey, 2015; Cai, Campbell and Broderick, 2016; Crane and Dempsey, 2016a;
Williamson, 2016). These models were studied in the generalized hypergraph
setting in concurrent work by Crane and Dempsey (2016b). In this section we
provide an alternate view of edge-exchangeable multigraphs as a subclass of infi-
nite exchangeable trait allocations called vertex allocations, thus guaranteeing a
de Finetti representation. We also show that the vertex popularity model, a stan-
dard example of an edge-exchangeable model, is a constrained frequency model
per Definition 5.10, thus guaranteeing the existence of a CETPF which we call
the exchangeable vertex probability function (EVPF). We begin by considering
multigraphs without loops, i.e., edges can occur with multiplicity and all edges
contain exactly two vertices. We then discuss the generalization to multigraphs
with edges that can contain one vertex (i.e., a loop) or two or (finitely many)
more vertices (i.e., a hypergraph).
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Fig 2. Top: the graph encoded by the vertex allocation t4 = {{1, 2, 4}, {2}, {1, 4}, {3}, {3}}.
The four steps show the sequential construction process of the graph. Edge labels correspond
to indices, and each trait is a vertex. One or both of the vertices connected to edge 3 and the
vertex connected only to edge 2 may be dust; the remaining two are guaranteed to be regular
as they connect to multiple unique edge labels (i.e. both 1 and 4). Bottom: the same graph
construction with the edges reordered by the permutation π = (314)(2), resulting in the vertex
allocation πt4 = {{4, 2, 3}, {2}, {4, 3}, {1}, {1}}. If the vertex allocation is exchangeable, these
sequences have equal probability.

In the graph setting, the traits correspond to vertices, and the data indices in
each trait correspond to the edges of the graph. Each data index has multiplicity
1 in exactly two traits—encoding an edge between two separate vertices—as
specified in Definition 6.1. Fig. 2 shows an example encoding of a graph as a
vertex allocation.

Definition 6.1. A vertex allocation of [N ] is a trait allocation of [N ] in which
each index has membership profile equal to {1, 1}.

Definition 6.1 and Theorem 4.5 together immediately yield a de Finetti rep-
resentation for edge-exchangeable graphs, provided by Corollary 6.2. There are
three cases: an edge is either a member of two regular vertices, one dust vertex
and one regular vertex, or two dust vertices. These three cases are listed in order
in Corollary 6.2.

Corollary 6.2. An infinite vertex allocation T∞ is exchangeable iff it has a de
Finetti representation such that μξ,ξ′ > 0 implies that either

1. ∃k 
= j such that ξk = ξj = 1,
∑

k ξk = 2, and
∑

k ξ
′
k = 0,

2. ∃k such that ξk = 1,
∑

k ξk = 1, ξ′1 = 1, and
∑

k ξ
′
k = 1, or

3.
∑

k ξk = 0, ξ′1 = 2, and
∑

k ξ
′
k = 2.

Definition 6.1 and Corollary 6.2 can be modified in a number of ways to better
suit the particular application at hand. For example, if loops are allowed—
useful for capturing, for example, authors citing their own earlier work in a
citation network—the membership profile of each index can be either {1, 1} or
{1}. This allows indices to be a member of a single trait with multiplicity 1,
encoding a loop on a single vertex. If edges between more than two vertices are
allowed—that is, we are concerned with hypergraphs—then we may repurpose
the definition of a feature allocation, with associated de Finetti representation
in Corollary 4.8, where we view the features as vertices. If N-valued weights
are allowed on the multigraph edges, they can be encoded using multiplicities
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greater than 1. In this case, the index membership profiles must be of the form
{j, j} for j ∈ N, which encodes an edge of weight j. Weighted loops may be
similarly obtained by allowing membership profiles of the form {j} for j ∈ N.
This might be used, for example, to capture an author citing the same work
multiple times in a single document. Weighted hypergraphs are trait allocations
without any restrictions.

Vertex popularity models (Caron and Fox, 2017; Cai, Campbell and Broder-
ick, 2016; Crane and Dempsey, 2016a; Palla, Caron and Teh, 2016; Herlau and
Schmidt, 2016; Williamson, 2016)4 are a simple yet powerful class of network
models. There are a number of different versions, but all share the common
feature that each vertex is associated with a nonnegative weight representing
how likely it is to take part in an edge. Here we adopt a particular construction
based on a sequence of edges: all (potentially infinitely many) vertices k ∈ N

are associated with a weight wk ∈ (0, 1) such that
∑

k wk < ∞, and we sample
an edge between vertex k and � with probability proportional to wkw�. For an
edge-exchangeable vertex popularity model, assuming no loops, Theorem 5.4 en-
forces that this model has an associated exchangeable vertex probability function
(EVPF), given by Definition 6.3.

Definition 6.3. An exchangeable vertex probability function (EVPF) is a
CETPF with constraint set C = {{1, 1}}.
Corollary 6.4. A regular infinite exchangeable vertex allocation has a vertex
popularity model iff it has an EVPF.

Proof. We use a similar technique to the proof of Corollary 5.13—we seek a
constrained frequency model (a sequence (θkj) and set C) that corresponds to
the vertex popularity model with weights (wi), and then use Theorem 5.12 to
obtain a correspondence with a CETPF (and in particular, an EVPF). We let
θ′j = 0 for all j ∈ N, let θkj = 0 for all j ∈ N : j > 1, and seek (θk1) such that

∀k, � ∈ N : k 
= �, θk1θ�1
∏

m �=k,�

θm0 ∝ wkwj . (6.1)

Dividing by
∏

k θk0, and setting the proportionality constant to 1, Eq. (6.1) is
equivalent to

∀k, � ∈ N : k 
= �,
θk1
θk0

θ�1
θ�0

= wkw�. (6.2)

Eq. (6.2) may be solved, noting that ∀k ∈ N, θk0 + θk1 = 1, by

θk1 =
wk

1 + wk
for k ∈ N. (6.3)

Therefore the vertex popularity model with weights (wi) is equivalent to a con-
strained frequency model with θk1 = wk/(1 + wk) for k ∈ N, θkj = 0 for j > 1,

4These have appeared in previous work as “graph frequency models” (Cai, Campbell and
Broderick, 2016) or left unnamed, and the weights wk are occasionally referred to as “socia-
bility parameters” (Caron and Fox, 2017; Palla, Caron and Teh, 2016).
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θ′j = 0 for all j ∈ N, and C = {{1, 1}} as specified above. Theorem 5.12 guar-
antees that the vertex popularity model has a CETPF with constraint set C,
and likewise that any CETPF with constraint set C yields a vertex popularity
model by inverting the relation in Eq. (6.3).

7. Conclusions

In this work, we formalized the idea of trait allocations—the natural extension
of well-known combinatorial structures such as partitions and feature alloca-
tions to data expressing latent factors with multiplicity greater than one. We
then developed the framework of exchangeable random infinite trait allocations,
which represent the latent memberships of an exchangeable sequence of data.
The three major contributions in this framework are a de Finetti-style represen-
tation theorem for all exchangeable trait allocations, a correspondence theorem
between random trait allocations with a frequency model and those with an
ETPF, and finally the introduction and study of the constrained ETPF for
capturing random trait allocations with constrained index memberships. These
contributions apply directly to many other combinatorial structures, such as
edge-exchangeable graphs and topic models.

Appendix A: Proofs of results in the main text

Proof of Lemma 3.5. If τ = ω, then τ |M = ω|M (and hence τ |M ≤ ω|M ) for
all M ∈ N trivially. Otherwise, τ < ω. Let m ∈ N be the minimum index in τ
with τ(m) > ω(m). If M ≥ m, then τ |M (m) > ω|M (m) and τ |M (j) = ω|M (j)
for j < m, so τ |M < ω|M by Definition 3.4. If M < m, then τ |M = ω|M , since
τ(n) = ω(n) for any n < m. Therefore, τ |M ≤ ω|M .

Proof of Lemma 4.2. We prove the result for nonrandom φ∞; since the π′ we
develop does not depend on φ∞, the result holds for all distinct sequences of
labels and thus almost surely for i.i.d. uniform φ∞ as in the main text as well.

Suppose π fixes indices greater than N . Then using Definition 2.6, πtN is tN
with indices permuted. Let KN =

∑
τ∈T

tN (τ) < ∞, the number of traits in tN .
Then let π′ be the unique finite permutation that maps the index of each trait τ
in [tN ] to its corresponding trait πτ in [πtN ], while preserving monotonicity for
any traits of multiplicity greater than 1. Mathematically, π′ fixes all k > KN ,

sets π
(
[tN ]π′−1(k)

)
= [πtN ]k for all k ∈ [KN ], and satisfies π′(k+1) = π′(k)+1

for all k ∈ [KN − 1] such that [tN ]k = [tN ]k+1. Clearly such a permutation
exists because πtN contains the same traits as tN with indices permuted by
Definition 2.6, and the permutation is unique because any ambiguity (where tN
contains traits with multiplicity greater than 1) is resolved by the monotonicity
requirement. The monotonicity requirement also implies that π′ satisfies the
desired ordering condition for all M ≥ N , i.e.

∀k,M ∈ N : M ≥ N, π
(
[tM ]π′−1(k)

)
= [πtM ]k, (A.1)



2318 T. Campbell et al.

since if an index M > N disambiguates two traits, the fact that π fixes all
M > N means that these two traits have the same relative order in [tM ] and
[πtM ]. Set y′∞ = ϕ(πt∞, π′φ∞). By Definition 4.1 and Eq. (A.1), we have

∀M > N, y′M (φk) = [πtM ]π′(k)(M) = π ([tM ]k) (M), (A.2)

and since π fixes indices greater than N (in particular π(M) = π−1(M) = M),

π ([tM ]k) (M) = [tM ]k(M) = yM (φk) = yπ−1(M)(φk), (A.3)

so y′∞ = πy∞ at all indices greater than N . For the remaining indices, we use
Definitions 2.6 and 4.1, the consistency of the trait ordering in Definition 3.4,
and the definition of π′ in sequence:

∀M ≤ N, y′M (φk) = [(πtN )|M ]
π′(k)(M) = [πtN ]π′(k)(M) = π ([tN ]k) (M).

(A.4)

By the definition of permutations of traits in Eq. (2.9),

π ([tN ]k) (M) = [tN ]k(π
−1(M)). (A.5)

Finally, again using the consistency of the trait ordering and the fact that
π−1(M) ≤ N , we recover the definition of an element in the original label
multiset sequence,

[tN ]k(π
−1(M)) =

[
tπ−1(M)

]
k
(π−1(M)) = yπ−1(M)(φk). (A.6)

Thus y′∞ = πy∞ at all indices less than or equal to N , and the result follows.

Proof of Lemma 5.7. For the first statement of the lemma, we need to show that
LN is independent of LN+1, . . . , LN+M given LN for any M ∈ N. We abbreviate
LN+1, . . . , LN+M with LN↑M , and abbreviate statements of probabilities by
removing unnecessary equalities going forward, e.g. we replace P (LN = �N . . . )
with P (LN . . . ). The fact that LN is a function of LN and Bayes’ rule yields

P
(
LN |LN , LN↑M

)
=

P
(
LN↑M |LN

)
P
(
LN↑M |LN

)P (
LN |LN

)
, (A.7)

so we require that

P
(
LN↑M |LN

)
= P

(
LN↑M |LN

)
. (A.8)

Using the law of total probability,

P
(
LN↑M |LN

)
=

∑
LN+M

P
(
LN↑M |LN+M

)
P (LN |LN+M )

P (LN+M )

P (LN )
. (A.9)

Since both LN and LN↑M are functions of LN+M , the first two probabilities
on the right hand side are actually indicator functions. Moreover, knowing LN
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and LN↑M determines LN+M uniquely, since the differences between LN+m and
LN+m+1 for m = 0, 1, . . . ,M allow one to build up to LN+M sequentially from
LN . Thus there is a unique value L


N+M such that

P
(
LN↑M |LN

)
=

P
(
L

N+M

)
P (LN )

, (A.10)

where L

N+M satisfies

L

N+M

∣∣
N

= LN and ∀m ∈ [M ], L

N+M

∣∣
N+m

= LN+m. (A.11)

If we replace LN with any L′
N such that LN = L′

N , we have that the correspond-

ing L′

N+M satisfies L′


N+M = L

N+M . By the ETPF assumption, the marginal

distributions of LN and LN+M depend on only their multiplicity profiles, so

P
(
LN↑M |LN

)
=

P
(
L

N+M

)
P (LN )

=
P
(
L′

N+M

)
P (L′

N )
= P

(
LN↑M |L′

N

)
, (A.12)

and so summing over all such L′
N ,

P
(
LN↑M |LN

)
=

1∣∣∣{L′
N : L′

N = LN

}∣∣∣
∑

L′
N
:L′

N=LN

P
(
LN↑M |L′

N

)
. (A.13)

Therefore P
(
LN↑M |LN

)
is a function of only LN , as desired. To show that

LN |LN has the uniform distribution over all ordered trait allocations LN with
the given multiplicity profile,

P
(
LN |LN

)
∝ P

(
LN |LN

)
P (LN ) , (A.14)

which by the ETPF assumption is a constant for any LN with the given multi-
plicity profile, and 0 otherwise.
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