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Abstract: An envelope is a targeted dimension reduction subspace for si-
multaneously achieving dimension reduction and improving parameter es-
timation efficiency. While many envelope methods have been proposed in
recent years, all envelope methods hinge on the knowledge of a key hy-
perparameter, the structural dimension of the envelope. How to estimate
the envelope dimension consistently is of substantial interest from both
theoretical and practical aspects. Moreover, very recent advances in the
literature have generalized envelope as a model-free method, which makes
selecting the envelope dimension even more challenging. Likelihood-based
approaches such as information criteria and likelihood-ratio tests either can-
not be directly applied or have no theoretical justification. To address this
critical issue of dimension selection, we propose two unified approaches –
called FG and 1D selections – for determining the envelope dimension that
can be applied to any envelope models and methods. The two model-free
selection approaches are based on the two different envelope optimization
procedures: the full Grassmannian (FG) optimization and the 1D algorithm
[11], and are shown to be capable of correctly identifying the structural di-
mension with a probability tending to 1 under mild moment conditions
as the sample size increases. While the FG selection unifies and general-
izes the BIC and modified BIC approaches that existing in the literature,
and hence provides the theoretical justification of them under weak moment
condition and model-free context, the 1D selection is computationally more
stable and efficient in finite sample. Extensive simulations and a real data
analysis demonstrate the superb performance of our proposals.

Keywords and phrases:Dimension reduction, envelope models and meth-
ods, information criterion, model selection.
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1. Introduction

Envelope methods provide means to achieve sufficient dimension reduction and
estimation efficiency on a wide range of multivariate statistics problems. The
first envelope method was introduced by Cook et al. [7] in multivariate linear
regression to gain efficiency in parameter estimation. Various types of envelope
models have been further proposed in multivariate linear regression [22, 5, 10, 4,
etc.]. More recently, Cook and Zhang [9] proposed a new definition and frame-
work of envelope that adapted envelope methods to any multivariate parameter
estimation procedure. Envelope methods now can be constructed in the model-
free context, and are no longer restricted to likelihood-based estimation or strin-
gent regression model assumptions. This greatly facilitates further adaptations
of envelope methods to many potential fields such as tensor decomposition and
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regression with neuroimaging applications [17, 25], Aster models for life history
analysis [15, 14], etc.

Most envelope methods rely on the knowledge of the envelope dimension
(perhaps an exception is to apply bootstrap model averaging over the envelope
dimension to estimate the regression coefficient [13]). However, selecting enve-
lope dimension is a theoretically challenging but crucial issue that becomes a
severe nag in applications. Even for likelihood-based envelope methods, where
information criteria and likelihood-ratio tests are widely used, no theoretical
justification is known when the likelihood is mis-specified. To the best of our
knowledge, all existing envelope dimension selection procedures in the literature
fall into two categories – either (1) theoretically justified procedures that rely-
ing on strong model and distributional assumptions, or, (2) selection procedures
based on heuristics such as cross-validation and heuristic information criteria.
For example, Schott [20] provided some pioneering results for likelihood-ratio
tests, [10] developed a sequential asymptotic χ2-test based on rank estimation
from Bura and Cook [2], and Cook and Su [8] have shown model selection con-
sistency of BIC under their scaled envelope model and normally distributed
errors. All such procedures require the linear model assumption and normality
assumptions on either the error or even on the joint distribution of (Y,X). It
is thus difficult to generalize such approaches to the model-free context and
to justify such approaches without normality assumptions. On the other hand,
information criteria such as AIC [1] and BIC [21] are widely used in enve-
lope literature ever since the first paper in envelope [7]. More recently, Li and
Zhang [17] proposed a modified BIC criterion for the more complicated tensor
envelope regression models to estimate the dimension of tensor envelopes on
each mode of the tensor. Unfortunately, there is no theoretical justification for
BIC or modified BIC in envelope models while the normal assumption or the
model assumption is violated. Specifically, without the normality assumption,
the envelope estimator is still applicable and is

√
n-consistent estimator for the

parameter of interest if we know the true dimension of the envelope, but there
is no theory or method available (to the best of our knowledge) for selecting the
envelope dimension consistently without relying on the normality assumption or
the likelihood. One motivation of this paper is to formally address the theoret-
ical challenges in envelope dimension selection without requiring distributional
or model assumptions.

Given the dimension of an envelope, envelope estimation generally reduces
to solving for Γ̂ that minimizes the objective function of the following form,

J(Γ) = log | ΓTMΓ | + log | ΓT(M+U)−1Γ |, (1.1)

where M, U ∈ Rp×p are symmetric matrices such that M > 0 and U ≥ 0, and
Γ ∈ Rp×u is the basis matrix such that ΓTΓ = Iu with u being the dimension of
M-envelope of U (cf. Definition 2.2). We will review the formal definitions and
estimation procedures in Section 2.

In multivariate linear envelope models, it can be shown [9] that the par-
tially maximized log-likelihood function is (−n/2) times certain sample version



Model-free envelope dimension selection 2195

of (1.1). Furthermore, given a parameter vector of interests θ ∈ Rp and some

standard
√
n-consistent estimator θ̂, the particular choice of U = θθT and M

being the asymptotic covariance of θ̂ reproduces the envelope methods in the

literature. The envelope estimator θ̂Env = Γ̂Γ̂
T

θ̂ is asymptotically more efficient
than the standard estimator θ̂ in various contexts such as linear and generalized
linear models. Such envelope estimation, which solves for Γ̂ based on (1.1) and

then plugs-in θ̂Env = Γ̂Γ̂
T

θ̂, is essentially a two-stage projection pursuit multi-
variate parameter estimation relying on a generic objective function of envelope
basis. Our new formulation in Section 3.1 offers a way of viewing model-free
envelope estimation as an alternative quasi-likelihood approach involving a key
matrix M, a parameter of interest θ, and a feasible parametrization set Ak for
optimization. This connection greatly deepens our understanding of model-free
envelope methods, and is the key to prove consistency in envelope dimension
selection without any stringent normality assumptions as in the literature. It
shows that even when no likelihood function is available, we can construct a
quasi-likelihood based on methods of moments. We expect that this connec-
tion will also facilitate the construction of envelope methods in future research,
especially when a likelihood function is not available.

The non-convex optimization with orthogonality constraints in (1.1) is diffi-
cult to solve and has no explicit solution, and thus brings both computational
and theoretical challenges for envelope model estimation and inference. To ad-
dress the dimension selection problem, it is desirable to combine the efficient
computational methods with the selection criteria. In this paper, we propose two
unified and model-free envelope dimension selection procedures that are applica-
ble to any envelope methods, either model-based or model-free, and suitable for
any envelope estimation, either likelihood-based or moment-based. Consistency
in selecting the envelope dimension is established for both procedures under
mild moment conditions and without requiring any particular models.

The first one is called the FG procedure, based on fully optimizing the en-
velope objective function over a sequence of Grassmannians with increasing
dimensions. The FG procedure is closely related to the BIC and is shown to
include the BIC and the modified BIC [17] as special cases. Thus it provides
solid theoretical justifications for the popular use of BIC in envelope dimension
selection under non-normality and potential model mis-specifications.

The second one is called the 1D procedure, based on a recent envelope al-
gorithm [11, cf. 1D algorithm] that sequentially optimizes a series of objective
functions derived from (1.1) over one-dimensional Grassmannians. This can lead
to faster, more accurate and stable envelope estimation and dimension selection.
Moreover, because the FG envelope estimation can not guarantee “nested” en-
velope subspace estimates with increasing dimensions, the sequentially nested
1D envelope subspace estimates become even more desirable for its computa-
tional simplicity and stability. However, as one of our interesting theoretical
findings, simply plugging in the results from 1D algorithm into the FG criterion
(or BIC/modified BIC) will not guarantee consistency in selecting envelope di-
mensions. We thus proposed a new 1D criterion and established consistency in
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envelope dimension selection with it.

The contributions of this paper are multi-fold. First of all, ever since the
introduction of envelope methods [7], there lacks a theoretically well justified
approach to selecting its structural dimension in practice. Although [7] sug-
gested that an information criterion like AIC or BIC may be used to select the
structural dimension, no theoretical results were presented to show that such an
approach leads to consistent selection if the normality assumption is dropped.
In the later papers, BIC has also been applied or modified [17, e.g.] as a work-
ing method to select the dimension beyond linear models, while no study exists
on the consistency of the BIC type selection. Our paper closes these theoret-
ical gaps for the first time in this research area. Our results complement the
existing papers on envelope methods by providing theoretical support to their
data analysis. Our studies overcome some major difficulties since we do not rely
on any likelihood or model assumptions. Now all the moment-based and the
model-free envelope methods (and even future envelope methods) are finally
completed with a properly justified model selection criterion. Secondly, our new
formulation in Section 3.1 offers a way of viewing model-free envelope estima-
tion as an alternative quasi-likelihood approach that facilitate the construction
of envelope methods in future research, especially when a likelihood function is
not available. Thirdly, the FG and 1D selection criteria proposed in this paper
are tied to the estimation methods in the sense that the FG criterion must be
applied with the FG estimator and the 1D criterion must be applied with the
1D estimator. Plugging in an arbitrary root-n consistent estimator into either
criteria will generally not guarantee consistency in envelope dimension selection.
The link between the estimation methods and selection criteria offers a crucial
guidance in practice.

2. Review of envelopes and the 1D algorithm

We first review the definitions of reducing subspace and envelope. Besides being
the basis for envelope methods, the concept of reducing subspace is also com-
monly used in functional analysis [3], but the notion of “reduction” differs from
the usual understanding in statistics.

Definition 2.1. (Reducing Subspace) A subspace R ⊆ Rp is said to be a reduc-
ing subspace of M ∈ Rp×p if R decomposes M as M = PRMPR +QRMQR,
where PR is the projection matrix onto R and QR = Ip −PR is the projection
onto R⊥. If R is a reducing subspace of M, we say that R reduces M.

Definition 2.2. (Envelope) The M-envelope of span(U), denoted by EM(U),
is the intersection of all reducing subspaces of M > 0 that contain span(U).

It can be shown that EM(U) is unique and always exists. The dimension of
EM(U), denoted by u, 0 ≤ u ≤ p, is important for all envelope methods. A
smaller u usually indicates more efficiency gain can be achieved by taking the
advantage of envelope structures.
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To see the advantages of envelopes, consider the classical multivariate linear
model as an example,

Yi = βXi + εi, i = 1, . . . , n, (2.1)

where Yi ∈ Rp×1 is the multivariate response, εi ∼ N(0p,Σ) is independent of
Xi ∈ Rq. To estimate β ∈ Rp×q, Cook et al. [7] seeks the envelope EΣ(β) ⊆ Rp

(cf. Definition 2.2). Let Γ ∈ Rp×u be a semi-orthogonal basis matrix of EΣ(β),
whose orthogonal completion is Γ0 ∈ Rp×(p−u). The definition of EΣ(β) has two
implications: (1) ΓTY contains all the information about β because β resides in
EΣ(β); (2) ΓTY is independent of ΓT

0Y given X because by Definition 2.1, we
can write Σ = ΓΓTΣΓΓT+Γ0Γ

T

0ΣΓ0Γ
T

0 = ΓΩΓT+Γ0Ω0Γ
T

0 for some Ω and Ω0.
Hence, we can safely reduce immaterial variability in the data by eliminating
ΓT

0Y. Consequently, the envelope estimator promotes efficiency in estimation.
We emphasize that the application of envelopes do not rely on the regression

model (2.1). Definition 2.2 is generic and only involves two matrices M and U.
In a general statistical estimation problem of some parameter vector θ ∈ Rp,
Cook and Zhang [9] generalized the notion of envelopes as a way to improve some

“standard” existing
√
n-consistent estimator θ̂. In such general cases where the

likelihood function need not be known, they proposed to construct the envelope
EM(U) with U = θθT and M being the asymptotic covariance of θ̂. To obtain
a semi-orthogonal basis matrix estimate for the envelope, EM(U) = EM(θ), we

solve for Γ̂ ∈ Rp×u that minimizes the generic moment-based objective function:

Jn(Γ) = log | ΓTM̂Γ | + log | ΓT(M̂+ Û)−1Γ | . (2.2)

Given the true envelope dimension u, the
√
n-consistency of the estimated en-

velope is established in [11], which we review in the following.

Proposition 2.1. Let Γ̂u ∈ Rp×u, 0 ≤ u ≤ p, be the minimizer of Jn(Γ) in

(2.2), where u is the envelope dimension of EM(U) ⊆ Rp. If M̂ and Û are√
n-consistent in (2.2), then PΓ̂u

= Γ̂uΓ̂
T

u is a
√
n-consistent estimate for the

projection onto the envelope EM(U).

After obtaining Γ̂ from minimizing the above objective function, the envelope

estimator of θ is set as θ̂Env = Γ̂Γ̂
T

θ̂ = PΓ̂θ̂. Therefore, the envelope estimator

θ̂Env = Γ̂Γ̂
T

θ̂ is
√
n-consistent and can be much accurate than the standard

estimator θ̂.
Different choices of M̂ and M̂+ Û lead to different envelope methods in the

literature. Table 1 summarizes some commonly used sample estimators {M̂, Û}
for envelope regression. We use SA to denote the sample covariance matrix of
a random vector A and use SA|B to denote the sample conditional covariance
of A | B. For the partial envelope method, X = (X1,X2), where X1 is the
important predictor. For the generalized linear model, SX(W ) is the weighted
sample covariance defined in Cook and Zhang [9], where more detailed discussion

on the choices of M̂ and Û can be found.
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Table 1

Some commonly used sample estimators for envelope regression: response envelope [7],
partial envelope [22] and predictor envelope [5] for linear models, and envelopes for

generalized linear models [9].

Response Partial Predictor Generalized Linear Model

M̂ SY|X SY|X SX|Y SX(W ) or SX

M̂+ Û SY SY|X2
SX M̂+ β̂SX(W )β̂

T

When the envelope dimension u becomes large, especially when p is not small,
the computation based on the full Grassmannian (FG) optimization of (2.2) can
be expensive and requires good initial values to circumvent the issue with local
minima. When selecting the envelope dimension, this computational issue is even
worse: we need to conduct the optimization repeatedly for k = 1, . . . , p since the
solutions is not nested as we increase k, that is, span(Γ̂k) � span(Γ̂k+1). Thus, in
Section 3.3 we propose a computationally efficient alternative to the FG envelope
dimension selection approach that is based on FG optimization of (2.2). Our
new approach is based on the 1D algorithm proposed by Cook and Zhang [11]
that breaks down the FG optimization of (2.2) to “one-direction-at-a-time”. We
review the population 1D algorithm in the following.

For k = 0, . . . , p − 1, let gk ∈ Rp denote the k-th sequential direction to be
obtained. Let Gk = (g1, . . . ,gk), and (Gk,G0k) be an orthogonal basis for Rp

and set initial value g0 = G00 = 0. Define Mk = GT

0kMG0k, Uk = GT

0kUG0k,
and the objective function after k sequential steps

φk(w) = log(wTMkw) + log{wT(Mk +Uk)
−1w}, (2.3)

which has to be minimized overw ∈ Rp−k subject towTw = 1. The (k+1)-th en-
velope direction is gk+1 = G0kwk+1, where ŵk+1 = argminwTw=1 φk(w). The
1D algorithm produces a nested solution path that contains the true envelope:
span(G1) ⊂ · · · ⊂ span(Gu) = EM(U) ⊂ span(Gu+1) ⊂ · · · ⊂ span(Gp) = Rp.

As we replace M and U in the above optimization with some
√
n-consistent M̂

and Û, we will obtain sequential
√
n-consistent estimates Ĝk = (ĝ1, . . . , ĝk) ∈

Rp×k, k = 1, . . . , p. The
√
n-consistency of the 1D algorithm is established in

[11], which we review in the following.

Proposition 2.2. Under the same assumptions as Proposition 2.1, PĜu
=

ĜuĜ
T
u is a

√
n-consistent estimate for the projection onto the envelope EM(U).

This proposition suggests that the 1D algorithm share the same convergence
rate as the FG optimization, while faster, stable and nested solutions are pro-
duced. Therefore, by Propositions 2.1 and 2.2, both the FG and 1D estima-

tors are
√
n-consistent given the true envelope dimension and

√
n-consistent M̂

and Û.
In most applications,

√
n-consistent M̂ and Û are easy to obtain, but there

lacks a theoretically justified method to choose the crucial hyperparameter u
under the generality of the envelope methods. We assume

√
n-consistency of

M̂ and Û to their population counterparts M > 0 and U ≥ 0 throughout
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the exposition and focus on the selection of dimension u. For the matrices M̂
and Û in Table 1, their

√
n-consistency is easily justified: for response envelope

and partial envelope, it suffices to assume the error term in the linear model is
i.i.d. with finite fourth moments; and for the predictor envelope and generalized
linear model envelope, it suffices to assume the predictor X is i.i.d. with finite
fourth moments.

Very recently, Cook and Zhang [12] proposed an envelope coordinate descent
(ECD) algorithm that is even faster than the 1D algorithm without loss of
accuracy. In particular, the ECD algortihm and the 1D algorithm solve the
same sequence of objective functions (2.3); and they share the same theoretical
properties. Therefore, all the theoretical results presented in this paper are all
true when we substitute the 1D algorithm for the ECD algorithm.

3. Envelope dimension selection

3.1. A new quasi-likelihood argument for model-free envelope
estimation

The generic moment-based envelope estimation of θ is essentially a two-stage
estimator, where the first stage is estimating an envelope basis Γ̂ from Jn(Γ)
and the second stage is projecting the standard estimator onto the estimated en-

velope subspace: θ̂Env = Γ̂Γ̂
T

θ̂ to eliminate immaterial variation. The objective
function Jn(Γ) has previously been proposed and studied by Cook and Zhang
[11] and Cook and Zhang [9] purely for estimating an envelope basis, but it is

still difficult to understand the effect and implication of Jn(Γ) on θ̂Env and to

study the asymptotic distribution of θ̂Env.
We show that Jn(Γ) can be viewed as a quasi-likelihood function. Moreover,

our results connect Jn(Γ) with the joint estimation of M and θ that leads to
both the standard and the envelope estimators. Define

�n(M,θ) = log |M|+ trace
[
M−1

{
M̂+ (θ̂ − θ)(θ̂ − θ)T

}]
. (3.1)

Then, given a working dimension k = 0, . . . , p, that is not necessarily the true
envelope dimension u, the envelope estimation is a constrained minimization of
(3.1) over the following feasible parameter set,

Ak = {(M,θ) : M = ΓΩΓT + Γ0Ω0Γ
T

0 > 0, θ = Γη,η ∈ Rk×1,

and (Γ,Γ0)
T(Γ,Γ0) = Ip}, (3.2)

where A0 is defined as A0 = {(M,θ) : M > 0,θ = 0}, and the standard
estimator is achieved at Ap.

Under the envelope parametrization of M = M(Γ,Ω,Ω0) and θ = θ(Γ,η) in
(3.2), �n(M,θ) in (3.1) is now an over-parametrized objective function for the
envelope estimation: �n(M,θ) = �n(Γ,Ω,Ω0,η). We show that this constrained

optimization problem reproduces Jn(Γ) and θ̂Env in Cook and Zhang [9].
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Lemma 3.1. The minimizer of �n(M,θ) in (3.1) under the envelope parame-

trization in (3.2) is M̂Env = Γ̂Γ̂
T

M̂Γ̂Γ̂
T

+ Γ̂0Γ̂
T

0M̂Γ̂0Γ̂
T

0 and θ̂Env = Γ̂Γ̂
T

θ̂,

where Γ̂ is the minimizer of the partially optimized objective function �n(Γ) =

minΩ,Ω0,η �n(Γ,Ω,Ω0,η) = Jn(Γ) + log |M̂+ Û|+ p for Û = θ̂θ̂
T

.

Lemma 3.1 shows that, although Jn(Γ) is not an objective function for θ,
it can be viewed as a partially minimized quasi-likelihood function �n(M,θ)
under the envelope parametrization, up to an additive constant difference. Our
dimension selection method is based on this quasi-likelihood formulation that is
completely generic and model-free. This new finding and formulation will largely
facilitate our theoretical derivation of envelope dimension selection consistency
in the next two sections.

3.2. Dimension selection based on the full Grassmannian
optimization

We first discuss some properties about Jn(Γ) defined in (2.2) to motivate our
dimension selection criterion. It can be shown that Jn(Γ) converges uniformly
in probability to its population counterpart J(Γ) = log |ΓTMΓ| + log |ΓT(M +
U)−1Γ|. To distinguish estimators at different envelope working dimensions, let

Γk and Γ̂k ∈ Rp×k denote the minimizers of the population objective function
J(Γ) and the sample objective function Jn(Γ) at dimension k. The objective
functions Jn(Γ) and J(Γ) are well-defined only for envelope dimension k =
1, . . . , p. But (3.1) and (3.2) are well-defined for k = 0. For k = 0, we can

show that minA0 �n(M,θ) = log |M̂ + Û| + p is achieved at M̂Env,0 = M̂ and

θ̂Env,0 = 0. Therefore, we define Jn(Γk) = J(Γk) = 0 for k = 0. Consequently,
we have the following results.

Lemma 3.2. If u = 0, then J(Γk) = 0 for all k = 0, . . . , p. If u > 0, then
J(Γu) < J(Γk) < 0, for 0 < k < u, and J(Γk) = J(Γu) < 0, for k ≥ u.
Moreover, for 0 ≤ u < k, EM(U) ⊂ span(Γk).

Lemma 3.2 shows that, J(Γk) is strictly greater than J(Γu) when k < u,
and remains constant once k exceeds u. We thus propose to select the envelope
dimension via minimizing the following criterion,

In(k) ≡ Jn(Γ̂k) +
C · k · log(n)

n
, k = 0, 1, . . . , p, (3.3)

where C > 0 is a constant and In(0) = 0. Under envelope linear models [7, 22,
5, e.g.], this FG criterion is closely related to the likelihood-based BIC. More
specifically, In(k) is exactly the BIC for envelope linear models if we let Ck
matches the number of free parameters. For response envelope model [7], this
means C = p is the total number of predictors; and for partial envelope model
[22], C = p1 is the number of primary predictors X1; for predictor envelope
model [5], C = r is the number of response variables. We will discuss more about
the choice of C later in Section 3.4. The envelope dimension is selected as ûFG =
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argmin0≤k≤p In(k), where we use subscript FG to denote full Grassmannian
optimization of Jn(Γ). The criterion (3.3) has a form similar to the Bayesian

information criterion, but has the fundamental difference that Jn(Γ̂k) is not a
likelihood function. Properties of In are not easy to obtain, as the results for
likelihood functions do not apply here. Nevertheless, we can show that (3.3)
leads to consistent dimension selection without likelihood arguments.

Theorem 3.1. For any constant C > 0 and
√
n-consistent M̂ and Û in (3.3),

we have Pr(ûFG = u) → 1 as n → ∞.

We have three remarks about the results in Theorem 3.1. First, Theorem 3.1
reveals that the choice of C does not affect the consistency of our proposed
dimension selection procedure. We will discuss more on the role of this constant
C in Section 3.4. Second, the consistency shown in Theorem 3.1 does not re-
quire any model assumptions. Therefore, (3.3) can be applied to any models
with the envelope structure. Third, in the heavily-studied case of multivariate
linear regression model, Jn(Γ) will reproduce the normal likelihood-based ob-

jective function if we plug in appropriate choices of M̂ and Û [Section 1.3; 9].
In such cases, (3.3) will reproduce the Bayesian information criteria for mul-
tivariate linear envelope models, where the same criterion in (3.3) has been
used without any justification but yielded good results. The following Corollary
to Theorem 3.1 confirmed that the envelope dimension ûBIC selected from the
Bayesian Information Criterion is indeed consistent.

Corollary 3.1. Suppose that the sample covariance matrices SX, SY and SXY

are
√
n-consistent, then for envelope linear models, we have Pr(ûBIC = u) → 1

as n → ∞.

Corollary 3.1 reinforces the message that, although envelope estimates are
typically constructed under some normality assumptions, normality is generally
not essential for the application of envelope estimates. Previous studies of enve-
lope linear models [7, 22, 5, 4] have shown that the envelope estimators obtained
by maximizing the normality-based likelihood function are still

√
n-consistent

and asymptotically normal even when the normality assumption is violated and
the likelihood is mis-specified. Corollary 3.1 further showed that, even when the
likelihood function is mis-specified due to non-normality, it can still help with
selecting the dimension correctly. To the best of our knowledge, this is the first
time in the literature that an envelope dimension selection criterion is justified
without stringent likelihood assumptions. For the same reason, the modified
BIC in Li and Zhang [17] is also able to select the tensor envelope dimension
consistently since it’s also a special case of our FG criterion.

3.3. Dimension selection based on the 1D estimation

As mentioned earlier in Section 2, the FG optimization can not guarantee nested
envelope subspace, span(Γ̂k) � span(Γ̂k+1), while the 1D algorithm always pro-

duces a strictly nested solution path: span(Ĝk) ⊂ span(Ĝk+1). Therefore, it is
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an intuitive practice [10, 17, e.g.] to select envelope dimension based on BIC

using the 1D envelope estimator. However, simply replacing Γ̂k with the 1D
estimator Ĝk in BIC, or the FG criterion in general (3.3), may not produce

asymptotically consistent envelope dimension selection results since Ĝk is not a
local optimizer of Jn(Γ). Therefore, when applying the 1D algorithm, we pro-
pose to select the envelope dimension via minimizing the following 1D criterion
instead of the FG criterion,

I1D
n (k) ≡

k∑
j=1

φj,n(ŵj) +
C · k · log(n)

n
, k = 0, 1, . . . , p, (3.4)

where C > 0 is a constant, I1D
n (0) = 0, and the function φj,n(w) is the sample

version of φj(w) defined in (2.3). We select the envelope dimension selected as
û1D = argmin0≤k≤p I1D

n (k).

Theorem 3.2. For any constant C > 0 and
√
n-consistent M̂ and Û in (3.4),

Pr(û1D = u) → 1 as n → ∞.

We have two remarks about the 1D criterion I1D
n (k). First, it is easy to see

that
∑k

j=1 φj,n(ŵj) serves as the same role as Jn(Γ̂k) in the full Grassmannian
optimization criterion In(k) in (3.3). But the change of criterion here is critical

as we have a different optimization problem. In fact, simply replacing Γ̂k in the
FG criterion (3.3) with the 1D solution Ĝk will not guarantee consistency in the

selection. This is due to the fact that Ĝk, although a
√
n-consistent envelope ba-

sis estimator, is not a local minima of the full Grassmannian objective function
Jn(Γ). Instead, using

∑k
j=1 φj,n(ŵj) is indeed necessary for envelope dimension

selection based on the 1D algorithm. Secondly, the computational cost of obtain-
ing I1D

n (k), k = 1, . . . , p, is much less than that of In(k), k = 1, . . . , p. This is
not only because the 1D algorithm is much faster and more stable than the FG
optimization, but also due to the sequential nature of the 1D algorithm. For the
1D algorithm, we only need to run it once to estimate the (p − 1)-dimensional

envelope Ĝp−1 to obtain all the values of I1D
n (k), k = 1, . . . , p. For the full Grass-

mannian approach, it requires estimation of each envelope basis Γ̂1, . . . , Γ̂p−1

separately and the computation for Γ̂p−1 alone can be more costly than obtain-

ing Ĝp−1. Therefore, in practice, we would strongly recommend using the 1D
approach instead of the FG approach, when p is large. Simulation studies in
the next section also show that the 1D approach is much more accurate and
effective than the FG approach.

3.4. Role of C

Our proposed model-free criteria (3.3) and (3.4) are motivated from the BIC,
and as we mentioned earlier in Corollary 3.1, the FG criterion (3.3) indeed
includes the BIC for envelope linear models as a special choice. Specifically,
the first term Jn(Γ̂k) in (3.3) will be the (2/n) times the negative normal



Model-free envelope dimension selection 2203

log-likelihood with appropriate choices of M̂ and Û, whereas the second term
Ck log(n)/n corresponds to the penalty term on the number of parameters in
the linear envelope models. In the 1D criterion, the first term has no likelihood
interpretation but is analogous to the first term in the FG criterion, thus the
same penalty on the number of parameters were used. Because of these con-
nections and connections with BIC, we suggest to use C = 1 for both the FG
and the 1D criteria when the parameter θ is naturally a vector. In other situ-
ations, where θ is naturally a matrix-valued or even tensor-valued parameters,
we would try to match Ck with the number of parameters in the model.

Although we focused on a vector-valued parameter θ ∈ Rp in the quasi-
likelihood argument of �n(M,θ), the theoretical results in Lemma 3.1 and The-
orems 3.1 & 3.2 do not impose any restriction on θ being a vector. Our proofs
are in fact written for a matrix-valued θ ∈ Rp×q and can be straightforwardly
extended to tensor-valued θ. In such cases, matching Ck with the number of
parameters would give C = q for θ ∈ Rp×q when we are enveloping the column
space of θ. Also, the term (θ̂ − θ)(θ̂ − θ)T in �n(M,θ) may also be replaced by

a weighted version (θ̂− θ)W(θ̂− θ)T for some W ∈ Rq×q to tie more closely to
the likelihood function for potentially improved efficiency. See Cook and Zhang
[9] (Definition 4 and Proposition 7 in the Supplement) for a detailed discussion
on enveloping a matrix-valued parameter and choices of W > 0.

The proposed envelope dimension selection approaches in this paper are as

flexible as possible, since we only require
√
n-consistent M̂ and Û for the en-

velope EM(U) without additional assumptions on distributions of variables or
specific models. The theoretical developments, i.e. Theorems 3.1 and 3.2, only
require C to be a positive constant to guarantee asymptotically correct selec-
tion of the envelope dimension with probability one. However, in finite sample,
the selection of envelope dimension may be affected by the choice of C. It is
hard to describe qualitatively the effect C on the dimension selection, because
that depends on many factors such as the signal-to-noise ratio of the data, the
sample size, the total number of parameters, the efficiency and the variance of

the
√
n-consistent estimators M̂ and Û, etc. Nonetheless, from the proposed

criteria (3.3) and (3.4), we know that smaller C leads to a more conservative
choice of the envelope dimension, potentially overestimation (û > u), and larger
C leads to a more aggressive choice and potentially underestimation (û < u).
From our experience, the number C should be set to its default value C = 1
when there is no additional model assumption or prior information. When we
know additional model assumption or prior information, C should be set such
that Ck best matches the degree-of-freedom or total number of free parameters
of the model or estimation procedure. For example,if the envelope is envelop-
ing a vector-valued parameter, e.g. linear or generalized linear regression with
univariate response or predictor, then let C = 1; if the envelope is enveloping
a matrix or tensor valued parameter, then usually the best result comes from
C > 1, where Ck should be obtained from calculating the total number of free
parameters, which relate to the dimension of the matrix/tensor as well as the
true rank of the parameter matrix/tensor [4, e.g.]. In the next section, we use
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Table 2

Frequencies of selected dimensions for a generic EM(U) with p = 20 and u = 5.

1D selection FG selection
(I) (II) (III) (I) (II) (III)

n û1D = 5 ûFG = 5 ûFG = 6 ûFG = 5 ûFG = 6 ûFG = 5 ûFG = 6
150 98 45 67 59.5 24 66 12.5 28.5 44.5
200 99 75.5 94 66 23 77.5 15.5 39.5 47
250 100 95 97 70 24 82.5 14.5 33 48
300 100 99.5 99 67.5 24 85 13.5 40.5 47
400 100 100 100 75.5 18.5 84.5 14 49 41
800 100 100 100 84.5 13.5 91 8.5 56 39.5

C = 1 for generic envelopes, where we have no information about the model,
and also use C = 1 for envelope models (simulation Section 4.2 and real data
Section 4.5) where the parameter of interest is a vector; then in Section 4.3
we study the effect of C for a matrix valued parameter. The numerical results
further support our opinion in the above.

4. Numerical studies

4.1. Generic envelopes

In this section, we present numerical studies of dimension selection for a generic
envelope EM(U) = span(Γ), where M = ΓΩΓT + Γ0Ω0Γ

T

0 and U = ΓΦΓT

follow the envelope structure. In this section, we use p = 20 and u = 5. The
envelope basis matrix Γ ∈ Rp×u is a randomly generated semi-orthogonal matrix
and then Γ0 ∈ Rp×(p−u) is the orthogonal completion of Γ such that (Γ,Γ0) is
orthogonal. For Φ, we generate A ∈ Ru×u with each element aij sampled from
the uniform distribution over [0,1]. Then we set Φ = AAT. We considered the
following three different models for the symmetric positive definite matrices Ω
and Ω0. Model (I): both Ω and Ω0 are randomly generated independently in
the same way as Φ. Model (II): Ω and Ω0 are each generated as ODOT with O
being an orthogonal matrix and D being a diagonal matrix of positive elements
on its diagonal. We set the diagonal elements in D for Ω as 1, . . . , u, and the
diagonal elements in D for Ω0 as exp(−4), exp(−3.5), . . . , exp(3). Model (III):
all parameters are the same as Model (II) except that Ω0 is now 0.1Ip−u.

We simulated 200 pairs of sample matrices from Wishart distributions, M̂ ∼
Wp(M/n, n) and Û ∼ Wp(U/n, n) so that they are

√
n-consistent for their

population counterparts. We vary the sample size n from 150 to 800. In Table 2,
we report the percentages of selecting the envelope dimension correctly by the
two proposed approaches. In all three models, the 1D criterion is very effec-
tive and provides consistent selection of u: the percentage of correctly selecting
the envelope dimension is monotonically approaching 1 as the sample size in-
creases. The FG criterion is less competitive but still gives reasonable results
especially because the total number of free parameters in Γ, Ω, Ω0 and Φ is
p(p+1)/2+u(u+1)/2 = 225 which is not a small number comparing to n. For
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Table 3

Selection and estimation results for three different envelope models. Left panel includes
percentages of correct selection. Right panel includes means and standard errors of
‖β̂ − β‖F for the standard estimator and the envelope estimators with either true or

estimated dimensions.

Correct Selection % Estimation Error ‖β̂ − β‖F
Standard Envelope

Model n 1D FG CV true u 1D FG CV S.E.≤

Linear
150 93 81 65.5 0.49 0.31 0.33 0.33 0.36 0.015
300 99 92 62.5 0.32 0.19 0.19 0.20 0.27 0.008
600 99 92.5 68 0.23 0.13 0.14 0.14 0.18 0.007

Logistic
150 72 77.5 24.5 2.16 0.56 0.67 0.60 1.41 0.072
300 92 89.5 39 1.40 0.34 0.35 0.34 0.82 0.042
600 98 94 27 0.98 0.22 0.22 0.24 0.56 0.030

Cox
150 58 54 NA 1.33 1.24 1.22 1.23 NA 0.022
300 83 75.5 NA 0.98 0.90 0.89 0.90 NA 0.013
600 100 93 NA 0.79 0.72 0.72 0.72 NA 0.008

the FG approach, we also reported the percentage of ûFG = 6 in Table 2, which
demonstrates a clear tendency for the FG approach to over-estimate the enve-
lope dimension. From Lemma 3.2, the over-estimated envelope dimension will
result in a larger subspace that contains the true envelope. Thus over-estimating
u eventually still leads to consistent and unbiased envelope estimator for θ and
cause much less harm than under-estimating u.

4.2. Envelope models

In this section, we simulate three different envelope models where the enve-
lope dimension is u = 2 for p = 10. The three models are: the multivariate
linear model (2.1), the logistic regression model and the Cox proportional haz-
ard model. For the linear regression in (2.1), we generated Xi and εi inde-
pendently from N(0, 1) and Np(0,Σ), where β = Γη, η = (1, 1)T, and Σ =
ΓΩΓT+Γ0Ω0Γ

T

0. The covariance Ω and Ω0 are each generated as ODOT similar
to Model (II) in Section 4.1. We set the eigenvalues as 1, 5 in Ω,
and exp(−4), exp(−3), . . . , exp(3) in Ω0. For the logistic regression: Yi ∼
Bernoulli(logit(βTXi)), we simulate Xi from Np(0,ΣX) where the parameters
ΣX and β are the same as Σ and β in the linear model. For the Cox model,
we follow the simulation model in Cook and Zhang [9] and let the survival time
follow a Weibull distribution with scale parameter exp(βTX/5) and shape pa-
rameter 5, which gives hazard rate h(Y | X) = 5Y 4 · exp(βTX). The censoring
variable δi is generated from Bernoulli(0.5) distributions, which gives censoring
rates of approximately 50%. Then the data (Yi, δi,Xi), i = 1, . . . , n, are used to
fit the envelope Cox model, where Yi is the failure time, δi = 0 or 1 indicating
whether the failure time is censored or observed, Xi is the predictor vector.
Data generation for Xi is similar to the logistic regression set-up, except for
Ω0 = 0.1I8 and η = (0.2, 0.2)T.

For each of the above models, we consider sample size n = 150, 300 and 600
and generated 200 data sets for each of the sample sizes. Table 3 summarizes the
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Table 4

Multivariate linear regression, response envelope model with multivariate response of
dimension p = 10 and envelope dimension u = 2. The parameter of interest is the 10× 3
regression coefficient matrix, where q = 3 is the number of predictors, and hence the best

choice of C should be C = q = 3. The left panel summarizes percentages of correct selection;
and the right panel summarizes the average of selected dimension.

Correct Selection % Average selected û
1D FG 1D FG

n 150 300 600 150 300 600 150 300 600 150 300 600
C = 1 38 59 63 23 42 52 2.95 2.53 2.46 3.51 2.90 2.62
C = 3 92 100 100 92 100 100 1.94 2.00 2.00 2.00 2.00 2.00
C = 5 66 100 100 86 100 100 1.66 2.00 2.00 1.86 2.00 2.00
C = 10 5 55 100 19 95 100 1.05 1.55 2.00 1.19 1.95 2.00

percentages of correctly selected envelope dimension and the estimation error
‖β̂−β‖F in each of the simulations, where we compare the standard estimators
(e.g. least squares, likelihood and partial likelihood estimators) to the envelope
estimators using the true dimension or using the selected dimensions. In addition
to the proposed 1D and FG selection procedures, we also compare with select-
ing envelope dimension based on prediction errors from five-fold cross-validation
for Linear and Logistic regression models. Regarding dimension selection accu-
racy, both 1D and FG procedures have produced satisfactory results and are
substantially more accurate than the cross-validation procedure. Moreover, the
accuracy of both 1D and FG selections improves quickly with increasing sample
size, while the improvement in cross-validation with increasing sample size is
not guaranteed. For our proposed method, the percentage of correct selection
is low only for the Cox model at sample size n = 150, which is a small num-
ber considering the 50% censoring rate. The cross-validation procedure is not
directly applicable (at least not trivially) for Cox model. For all scenarios, there
is no significant difference among envelope estimators with the true or the es-
timated dimension by 1D and FG procedures, which are all significantly better
than the standard estimator. However the cross-validation tends to over-select
the envelope dimension, which leads to less efficient estimation.

4.3. Matrix-valued parameter

As an illustration of the effect of C, we simulated data from the multivariate
linear regression model (2.1), where we considered the response envelope model
with multivariate response of dimension p = 10 and envelope dimension u = 2.
The parameter of interest is the 10×3 regression coefficient matrix, where q = 3
is the number of predictors, and hence from our discussion in Section 3.4 we
expect the best choice of C to be C = q = 3. The parameters and data are
generated in same way as the single predictor linear model in Section 4.2, where
we still set elements in η ∈ Ru×q as all ones to get β = Γη. From Table 4,
we have the following observations: (1) for all values of C, the percentage of
correct selection goes toward 1 when the sample size goes to infinity (even for
C = 1, the percentage goes slowly but steadily to 90% as we keep increase the
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sample size to 6000); this also numerically verifies our theoretical results; (2) the
“best” choice is apparently C = 3 because this lets the penalty Ck in the criteria
matches the number of parameters in the model; (3) from the average value of
selected û, we see that C > 3 leads to underestimation of u when the sample size
is small and C < 3 leads to overestimation; (4) C = 1 with the 1D criterion is a
“robust” choice, even for the small sample size n = 150 the averaged selection
is 2.95.

We make two additional remarks on the performance of C = 1. On one hand,
the average dimension is only slightly larger than the true dimension even for
small sample size. In the situations when C = 1 is not the optimal choice, the
1D criterion with C = 1 may overestimate the dimension by a small amount.
On the other hand, overestimation of the dimension slightly is much less of an
issue comparing to the issue of underestimating the envelope dimension. If we
apply envelope methods with a slightly larger structural dimension, estimation
of the parameter is still unbiased. The slightly larger structural dimension will
only lead to some efficiency loss. Meanwhile, if the dimension is underestimated,
the envelope estimator will be biased and important directions will be missed.
Fortunately, underestimation is not likely to happen, according to the simulation
results in Table 4.

4.4. Scale invariance

In this section, we investigate the scale invariance property of envelopes. By
Definition 2.2, it is easy to see that the envelope EM(U) = EaM(bU) for any
constants a > 0 and b > 0. Let λ = b/a > 0 reflects the potential scale changes
in M and U. In a model-free context, the population objective function (1.1)
is equivalent to Jλ(Γ) = log |ΓTMΓ| + log |ΓT(M + λU)Γ|, which is minimized
by span(Γ) = EM(U); however, the corresponding sample objective function
Jn,λ(Γ) will produce different

√
n-consistent estimators for the envelope. This

could potentially lead to different dimension selection results. Nonetheless, our
theorems still applies and the 1D and FG procedures are still consistent.

To empirically study the effect of λ on envelope estimation and thus on
dimension selection, we use the same response envelope model from Section 4.2.
Table 5 summarizes the results for different choices of λ = {0.01, 0.1, 1, 10, 100}
for replacing Û with λÛ. In our experience, λ introduces the trade-off between

information about the envelope from M̂ and Û. Heuristically speaking, if Û is

estimated more efficiently than M̂, then we probably can improve the envelope
estimation by introducing a λ > 1. However in most context, especially in
envelope regression, the optimal choice seems to be λ = 1, which reproduces
the likelihood-based objective functions in the literature. It is possible that
some choices of λ = 1 may produce better finite-sample results, but it is often

appropriate to choose λ = 1 to keep M̂ and Û in the same unit. For example,

in the response envelope model (cf. Table 1), the natural choice of M̂ and

Û corresponds to the sample covariance matrices of residual and fitted value,
respectively. Thus it is natural to keep them in the same scale and unit.
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Table 5

Percentage of correct dimension selection in the response envelope model. The original scale
is λ = 1, which corresponds to the likelihood-based objective function.

λ 0.01 0.1 1 10 100

n = 150
1D 0 1 93 49.5 55.5
FG 0 1 81 33.5 11.5

n = 600
1D 0 57.5 99 57 54
FG 0 57.5 92.5 55 19.5

Fig 1. Colon cancer tissue data: averaged mis-classification error rates for moment-based
envelope estimators with various dimension based on 100 random data splitting. The standard
logistic regression is the rightmost point, where u = p = 22.

4.5. Real data illustration

For a real data illustration, we revisit the data set for envelope logistic re-
gression in Cook and Zhang [9]. The data is from a colonoscopy study where
105 adenomatous (precancerous) tissue samples and 180 normal tissue samples
were illuminated with ultraviolet light so that they fluoresce at difference wave-
lengths. The purpose of the study is to classify the total n = 285 tissue samples
into the two classes, i.e. Y = 1 (adenomatous) and Y = 0 (normal), using the
p = 22 predictors that are from laser-induced fluorescence spectra measured as
8nm spacing from 375 to 550 nm. More details of such colonoscopy study and
a similar data set can be found in Hawkins and Maboudou-Tchao [16].

For this data set, we study the moment-based envelope estimators based on
the 1D algorithm as an alternative to the likelihood-based approach demon-
strated in Cook and Zhang [9]. Using the model-free dimension selection cri-
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terion developed in this paper, envelope dimension u = 2 is selected by both
the FG approach (3.3) and the 1D approach (3.4) developed in this paper. We
then randomly split the data into 80% training samples (228 samples) and 20%
testing samples (57 samples) repeatedly for 100 times and fit the 1D moment-
based envelope estimator for various dimensions and evaluate its classification
power on the testing data set. As a result, the averaged mis-classification er-
ror rate is 0.1647 with standard error 0.0051 for the envelope estimator with
selected dimension u = 2, much better than 0.1802 with standard error 0.0047
from fitting with u = 1 (if we underestimate the envelope dimension), and also
much better than 0.1789 with standard error 0.0054 from the standard logistic
regression. Figure 1 further summarizes the averaged error rate for envelope
estimators with various dimensions from u = 1 to u = 22. Clearly, u = 2 is the
desirable envelope dimension for this data set that is selected by our model-free
criteria.

On the other hand, if we assume the predictor is normal then the envelope
MLE, given the envelope dimension u, can be obtained use the iterative algo-
rithm [9, Algorithm 1]. Standard BIC approach for selecting u is then applicable
based on the full likelihood of (Y,X). As a result, u = 1 is selected. However, en-
velope MLE with u = 1 will give bad classification result and Cook and Zhang
[9] also used u = 2 for their envelope MLE, where the dimension is selected
based on five-fold cross-validation. To further compare u = 1 versus u = 2,
we considered the likelihood-ratio statistics for comparing the corresponding
two envelope estimators with the standard estimator (i.e. the full model with
u = p). For u = 2, the likelihood-ratio test gives a p-value of 0.104, which
suggest that the envelope estimator and the standard estimator are consistent
with each other although the envelope estimator has much improved prediction
accuracy. Other other hand, for u = 1, the likelihood-ratio test gives a p-value
of 1.48× 10−6, which is clear evidence against the envelope model with u = 1.
Clearly, likelihood-ratio, cross-validation, and our proposed 1D and FG selec-
tion procedures all agree on u = 2, while standard BIC fails and selects u = 1.
In addition, our 1D selection procedure is more than 7 times faster than the
five-fold cross-validation based on 1D algorithm.

For this data set, the most likely reason for the standard BIC to fail to select
a “reasonable” envelope dimension is probably due to the non-normality in the
predictors. While cross-validation is computationally more expensive and has
no theoretical justification, our proposed 1D and FG selection approaches can
relax the normality assumption and select the asymptotically consistent and
practically useful envelope dimension.

5. Discussion

In this paper, we proposed two envelope dimension selection procedures, based
on the most general envelope definition from [9] and the two generic envelope
estimation algorithms (FG and 1D algorithms) from [11]. The two dimension
selection procedures are widely applicable, easy-to-implement, theoretically jus-
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Table 6

The values of φk(wk), k = 1, . . . , p, when replace U by λU in the original response envelope
model as in Table 3. The envelope dimension is u = 2.

λ 0.01 0.1 1 10 100
φ1(w1) -0.01 -0.13 -0.83 -2.33 -4.53
φ2(w2) -0.001 -0.01 -0.09 -0.08 -0.003

φk(wk), k ≥ 3 0 0 0 0 0

tified, and have very encouraging performances in our numerical studies. Com-
pared to k-fold cross-validation, the computational complexity of our procedure
is reduced for at least k times. More importantly, the accuracy of the proposed
method for selecting the true envelope dimension is shown to be much better
than the cross-validation’s result. Also, in some cases where cross-validation is
not directly applicable, our procedure is still straightforward to implement.

This paper addresses the dimension selection problem and unified theory is
provided (Theorems 3.1 and 3.2). In practice, the envelope dimension selection
depends on the accuracy of envelope estimation. This motivated us to propose
the 1D procedure that is computationally more feasible and is shown to be
more accurate than FG procedure in selecting envelope dimension. For future
research, we believe it is possible to adjust our criteria according to more efficient
envelope estimation, possibly in high-dimensional settings.

In studying the distance between subspaces spanned by sample and pop-
ulation eigenvectors, gaps between the eigenvectors of interests and the rest
eigenvectors is often a key ingredient of the theoretical results [23, e.g.]. Al-
though the envelope is indeed a subspace spanned by eigenvectors of M that
intersects with U, the sample estimator of envelope is not obtained via sample

eigenvectors M̂. This makes it difficult to bound the distance between sample

and population envelopes. The distance, D(Γ̂,Γ) ≡ ‖Γ̂Γ̂
T

− ΓΓT‖F , is shown
to be Op(n

−1/2) (Propositions 2.1 and 2.2). But it will be difficult to further
improve on this rate. However, our 1D criterion motivates us to view the min-
ima of the 1D algorithm objective functions (2.3), φk(wk), k = 1, . . . , p, as an
analogy to the eigenvalues in eigen-problems. The eigenvalue gap in eigenspace
estimation is analogous to φu(wu) in envelope estimation because φk(wk) < 0
for k ≤ u and equals 0 for k > u. Intuitively, the bigger the gap φu(wu), the
easier to select envelope dimension in practice. In Table 6, we report the values
of φk(wk), k = 1, . . . , p, when replace U by λU in the original response envelope
model as in Table 3. Recall from the finite sample results in Table 5, the best
case scenario (i.e. highest percentage in selecting dimension correctly) is λ = 1
followed by λ = 10. The gap φ2(w2) (u = 2) in Table 6 confirms our conjecture
that this gap is a good indicator for envelope estimation and dimension selection
accuracy. Unfortunately, without prior knowledge of the envelope dimension u,
it is impossible to estimate this quantity. Further theoretical analysis on this
gap φu(wu) is beyond the scope of this paper and left as a future research topic.

It is also worth mentioning that there have been many methods for deter-
mining the dimension of a sufficient dimension reduction subspace [24, 29, 18,
26, 6, 19, 28, 27, for example], but the envelope dimension selection problem
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is very different and arguably more difficult in two aspects. First, sufficient
dimension reduction methods are restricted to regression problems, whereas en-
velope methods can be applied to any multivariate parameter estimation. Our
work provides a unified approach to select the structure dimension of envelopes
under its full generality. Secondly, many sufficient dimension reduction meth-
ods can be formulated as a generalized eigenvalue problem where the dimen-
sion of interest is the rank of some kernel matrix. For envelopes, this is not
so straightforward, as the envelopes are usually estimated from Grassmannian
optimization where no analytic solution can be derived. This is also a part of
the reason why we need two different criteria for different envelope optimizing
procedures. BIC-type criteria have already been used extensively, with proven
selection consistency, in the dimension determination problems for sufficient di-
mension reduction [26, 27]. While the log-likelihood term in those BIC-type
criteria can usually be expressed explicitly as a function of eigenvalues (e.g.
equation (10) in Zhu et al. [26]), or modified as the ratio of sums of squared
eigenvalues (equation (6.1) in Zhu et al. [27]), the envelope objective function
can not be further simplified to derive its asymptotic properties. Hence, studies
on the envelop methods such as in this paper requires much more efforts in the
technical proofs. The key technical trick is our new quasi-likelihood formulation
in Section 3.1 which is useful for future studies on model-free envelopes.

Appendix A: Some useful preparation

Proof for Corollary 3.1 is omitted as it is straightforward from Theorem 3.1.
The remaining proofs are provided in this Appendix. We will need to apply the
following Proposition A.1 and Lemma A.1, which are obtained from Cook and
Zhang [11, Propositions 2, 3, 5 and 6] and Cook et al. [5, Lemmas 6.2 and 6.3],
for our proofs.

Proposition A.1. If k = u, then span(Γk) = span(Gk) = EM(U); if, in

addition, M̂ and Û are both
√
n-consistent, then Γ̂kΓ̂

T

k and ĜkĜ
T

k are both√
n-consistent for the projection onto EM(U).

Lemma A.1. Suppose that M > 0 is a p × p symmetric matrix (Γ,Γ0) is an
orthogonal basis matrix for Rp, then log |M| = log |ΓT

0MΓ0| − log |ΓTM−1Γ| ≤
log |ΓT

0MΓ0|+log |ΓTMΓ|, where the second equality holds if and only if span(Γ)
is a reducing subspace of M.

Appendix B: Proof for Lemma 3.1

Proof. First, we substitute M = ΓΩΓT + Γ0Ω0Γ
T

0 and θ = Γη into �n(M,θ)
and expand it explicitly as

�n(M,θ) = log |Ω|+ log |Ω0|
+ trace

[
(ΓΩ−1ΓT + Γ0Ω

−1
0 · ΓT

0) ·
{
M̂+ (θ̂ − Γη)(θ̂ − Γη)T

}]
≡ �n(Γ,Ω,Ω0,η)
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where the first part is from log |M| = log |ΓΩΓT +Γ0Ω0Γ
T

0| = log |Ω|+log |Ω0|.
We next show that Jn(Γ) is obtained by partially minimizing �n(Γ,Ω,Ω0,η)
over η, Ω and Ω0. Taking derivative of �n(Γ,Ω,Ω0,η) with respect to η and
set it equaling zero, we have

0 = (ΓΩ−1ΓT + Γ0Ω
−1
0 · ΓT

0) · (2η − 2ΓTθ̂),

which leads to the minimizer η̂(Γ) = ΓTθ̂. As a result, θ̂(Γ) = ΓΓTθ̂ = PΓθ̂.
Furthermore, the partially minimized �n is now

�n(Γ,Ω,Ω0) = log |Ω|+ log |Ω0|
+ trace

[
(ΓΩ−1ΓT + Γ0Ω

−1
0 · ΓT

0)

·
{
M̂+ (θ̂ −PΓθ̂)(θ̂ −PΓθ̂)

T

}]
= log |Ω|+ log |Ω0|
+ trace

[
(ΓΩ−1ΓT + Γ0Ω

−1
0 · ΓT

0) ·
{
M̂+QΓθ̂θ̂

T

QΓ

}]

= log |Ω|+ log |Ω0|+ trace(ΓΩ−1ΓT · M̂)

+ trace
{
Γ0Ω

−1
0 ΓT

0 · (M̂+QΓθ̂θ̂
T

QΓ)
}

= log |Ω|+ log |Ω0|+ trace(Ω−1 · ΓTM̂Γ)

+ trace
{
Ω−1

0 · ΓT

0(M̂+QΓθ̂θ̂
T

QΓ)Γ0

}
.

It is a well-known fact (from normal likelihood) that S = argminΣ>0{trace
(Σ−1S) + log |S|}. This leads to the minimizers Ω̂(Γ) = ΓTM̂Γ and Ω̂0(Γ) =

ΓT

0(M̂+QΓθ̂θ̂
T

QΓ)Γ0 = ΓT

0(M̂+ θ̂θ̂
T

)Γ0 = ΓT

0(M̂+Û)Γ0 from the last equality
of �n(Γ,Ω,Ω0) above. The partially minimized objective function of Γ is finally

�n(Γ) = log |Ω̂(Γ)|+ log |Ω̂0(Γ)|+ u+ p− u

= log |ΓTM̂Γ|+ log |ΓT

0(M̂+ Û)Γ0|+ p

= log |ΓTM̂Γ|+ log |ΓT(M̂+ Û)−1Γ|+ log |M̂+ Û|+ p,

where the last equality is obtained from Lemma A.1. Thus, we have proven

that �n(Γ) = Jn(Γ)+ log |M̂+ Û|+ p and the minimizer Γ̂ for Jn(Γ) is also the
minimizer of the partially minimized negative quasi-likelihood function �n(Γ). It

is then straightforward to see that M̂Env = Γ̂Ω̂(Γ̂)Γ̂
T

+Γ̂0Ω̂0(Γ̂)Γ̂
T

0 = PΓ̂M̂PΓ̂+

QΓ̂M̂QΓ̂ and θ̂Env = Γ̂η̂(Γ̂) = PΓ̂θ̂.

Appendix C: Proof for Lemma 3.2

Proof. The Lemma’s proof is similar to the proof of Lemma 6.3 of Cook et al.
(2013). For completeness, we provide a complete proof here. For u = 0, it is clear
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that U = 0 and thus span(Γk) will be any k-dimensional reducing subspace of
M for all k and J(Γk) = 0 = J(Γu). For u ≥ 1, we write J(Γ) as

J(Γ) = log |ΓTMΓ|+ log |ΓT(M+U)−1Γ|
= log |ΓTMΓ|+ log |ΓT

0(M+U)Γ0| − log |M+U|
≥ log |ΓTMΓ|+ log |ΓT

0MΓ0| − log |M+U|
≥ log |M| − log |M+U|,

where the first inequality attains its equality if and only if ΓT

0UΓ0 = 0, which
is equivalent to span(U) ⊆ span(Γ); the second inequality attains its equality if
and only if span(Γ) is a reducing subspace ofM. Since the envelope EM(U) is the
smallest subspace satisfying both conditions, k = u is the minimum dimension
for J(Γk) to achive the minimum J(Γu) = log |M| − log |M + U| < 0. Hence,
J(Γu) < J(Γk) < 0, for 0 < k < u. So far, we only left to show that the
minimum value J(Γu) is achievable by J(Γk) for k > u. Consider decomposing
M as M = ΓuΩΓT

u+Γ0uΩ0Γ
T

0u, let Bk−u ∈ R(p−u)×(k−u) be a semi-orthogonal
basis for a reducing subspace of Ω0. Then by letting Γk equal to (Γu,Ak−u),
where Ak−u = Γ0uBk−u ∈ Rp×(k−u), it is straightforward to see that Γk is
a reducing subspace of M that contains span(U) thus the minimum of the
objective function is achieved: J(Γk) = J(Γu).

Appendix D: Proof for Theorem 3.1

Proof. We need to show that Pr (In(k)− In(u) > 0) → 1 as n → ∞ for both
0 ≤ k < u and 0 ≤ u < k scenarios. By definition of In(k), we have

In(k)− In(u) = Jn(Γ̂k)− Jn(Γ̂u) + (k − u) · log(n)/n. (D.1)

Firstly, for 0 ≤ k < u, suffice it to show that Jn(Γ̂k) − Jn(Γ̂u) = J(Γk) −
J(Γu) + op(1), where J(Γu) < J(Γk) < 0 from Lemma 3.2. We have Jn(Γ̂j) =
J(Γj) + op(1) for all j = 1, . . . p, because both the sample and population ob-
jective functions are essentially optimized over Grassmannian, i.e. Γ affects the
objective functions Jn(Γ) and J(Γ) only through span(Γ). The functions are

differentiable and the derivative ∇kJn(Γ̂k) = ∇uJn(Γ̂k) = 0, where ∇k and ∇u

are derivatives over the Grassmannians Gr(p, k) and Gr(p, u), respectively.

Next, for 0 ≤ u < k, we show in the following that Jn(Γ̂k) − Jn(Γ̂u) =
J(Γk) − J(Γu) + Op(n

−1) = Op(n
−1). It follows from (D.1) that the dominant

term in In(k)−In(u) is (k−u) · log(n)/n, which is a positive number. Therefore,
Pr (In(k)− In(u) > 0) → 1 as n → ∞ for 0 ≤ u < k. The special case of u = 0
is included in the derivation, as J(Γu) = J(Γk) = 0 for all k and Γk can be any
k-dimensional reducing subspace of M.

To show that Jn(Γ̂k) − Jn(Γ̂u) = Op(n
−1) for k > u, we use the nega-

tive quasi-likelihood function �n(M,θ) in (3.1). By Lemma 3.1, we know that

Jn(Γ̂k)− Jn(Γ̂u) = �n(Γ̂k)− �n(Γ̂u) = �n(M̂Env,k, θ̂Env,k)− �n(M̂Env,u, θ̂Env,u),

where M̂Env and θ̂Env is defined in Lemma 3.1 and we use additional subscript
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k and u to distinguish different envelope basis Γ̂ in M̂Env and θ̂Env. We fur-
ther use ψ = {vechT(M), vecT(θ)}T ∈ Rp(p+1)/2+pq to denote the vector of all
unique parameters in the quasi-likelihood function and write �n(ψ) ≡ �n(M,θ),

and define ψ̂, ψ̂k and ψ̂u from the estimators (M̂, θ̂), (M̂Env,k, θ̂Env,k) and

(M̂Env,u, θ̂Env,u), respectively. To show �n(ψ̂k) − �n(ψ̂u) = Op(n
−1), we con-

sider Taylor expansion of �n(ψ̂k) at ψ̂u: �n(ψ̂k) = �n(ψ̂u)+ �′n(ψ̂u)(ψ̂k − ψ̂u)+

(1/2)(ψ̂k − ψ̂u)
T�′′n(ψ̃u)(ψ̂k − ψ̂u) and

�n(ψ̂k)− �n(ψ̂u) = �′n(ψ̂u)(ψ̂k − ψ̂u) + (1/2)(ψ̂k − ψ̂u)
T�′′n(ψ̃u)(ψ̂k − ψ̂u),

where ψ̃u is in the neighborhood of ψ̂u so that we can find a series of ψ̃u such

that �′′n(ψ̃u) converge in probability to a positive definite matrix in probability

as n → ∞. Since k > u, the estimators ψ̂k is unbiased and
√
n-consistent. Recall

that the objective function �n(M,θ) = log |M|+trace[M−1{M̂+(θ̂−θ)(θ̂−θ)T}]
is smooth and arbitrarily order differentiable with respect to M > 0 and θ,
and thus with respect to their unique elements vector ψ. Therefore �′n(ψ) is a

smooth differentiable function of ψ such that �′n(ψ̂u) = �′n(ψ̂) + Op(n
−1/2) =

0 + Op(n
−1/2). For some ψ̃u in the neighborhood of ψ̂u that ψ̃u → ψu in

probability, �′′n(ψ̃u) = Op(1). Since both ψ̂k and ψ̂u is
√
n-consistent and can

be writen as ψ+Op(n
−1/2), we have �n(ψ̂k)−�n(ψ̂u) = Op(n

−1/2)∗Op(n
−1/2)+

Op(n
−1/2) ∗Op(1) ∗Op(n

−1/2) = Op(n
−1).

Appendix E: Proof for Theorem 3.2

Proof. We re-write I1D
n (k), k = 1, . . . , p, as I1D

n (k) =
∑k

j=1{φj(ŵj)+log(n)/n}.
The increment I1D

n (k) − I1D
n (k − 1) = φk,n(ŵk) + log(n)/n is exactly the

full Grassmannian criterion for the envelope EMk
(Uk) evaluated at the one-

dimensional envelope estimator. From the following proof, we will show that
the negative term φk,n(ŵk) dominates the positive term log(n)/n for k < u
because the envelope EMk

(Uk) has dimension greater than 0, then the positive
term log(n)/n will dominate the negative term for k > u because the envelope
EMk

(Uk) has dimension zero. More specifically, we claim that the following two
statements are true:

1. for j ≤ u, φj,n(ŵj)+log(n)/n converges to a negative constant φj(wj) < 0,
in probability, as n → ∞; and

2. for j > u, φj,n(ŵj) = Op(n
−1) and Pr (φj(ŵj) + log(n)/n > 0) → 1 as

n → ∞.

Then the first statement implies that, for j < u, Pr
(
I1D
n (k)− I1D

n (u) > 0
)
→ 1

as n → ∞; and the second statement implies that for j > u, Pr
(
I1D
n (k) −

I1D
n (u) > 0

)
→ 1 as n → ∞. The conclusion, Pr(û1D = u) → 1 as n → ∞, thus

follows from the above two statements, which are proved in the following.
From Proposition 4 in Cook and Zhang [11], we know that wk+1 ∈ EMk

(Uk)
implies gk+1 = G0kwk+1/||wk+1|| ∈ EM(U), and that EMk

(Uk) has dimen-
sion greater than zero (i.e. EMk

(Uk) not equals to the origin) if and only if
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k ≤ u. Then, for j ≤ u, the first statement follows because φj,n(w) is a smooth
differentiable function of w and ŵj is

√
n-consistent for wj (in terms of their

projection matrices, upon which the functional value φn,j(w) solely depends).
The function φj,n(ŵj) converges to a negative value φj(wj) < 0 in probability
as shown in the proof of Propositions 5 and 6 in Cook and Zhang [11]. The proof

of Theroem 3.1 only requires M̂ and Û to be
√
n-consistent estimators. Now

M̂k and Ûk are also
√
n-consistent [Proposition 6; 11]. For j > u, the second

statement φj,n(ŵj) − 0 = Op(n
−1) can be proved following the lines of proof

for Theroem 3.1, by replacing Jn(Γ̂), EM(U) with φn,j(ŵ) and EMk
(Uk) and

by noticing this is the special case of k = 1 > u = 0 for Theroem 3.1.
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