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Abstract: This paper rigourously introduces the asymptotic concept of
high dimensional efficiency which quantifies the detection power of different
statistics in high dimensional multivariate settings. It allows for compar-
isons of different high dimensional methods with different null asymptotics
and even different asymptotic behavior such as extremal-type asymptotics.
The concept will be used to understand the power behavior of different test
statistics as the performance will greatly depend on the assumptions made,
such as sparseness or denseness of the signal. The effect of misspecification
of the covariance on the power of the tests is also investigated, because in
many high dimensional situations estimation of the full dependency (co-
variance) between the multivariate observations in the panel is often either
computationally or even theoretically infeasible. The theoretic quantifica-
tion by the theory is accompanied by simulation results which confirm the
theoretic (asymptotic) findings for surprisingly small samples. The devel-
opment of this concept was motivated by, but is by no means limited to,
high-dimensional change point tests. It is shown that the concept of high
dimensional efficiency is indeed suitable to describe small sample power.
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1. Introduction

There has recently been a renaissance in research for statistical methods for
change point problems (Horváth and Rice, 2014). This has been driven by ap-
plications where non-stationarities in the data can often be best described as
change points in the data generating process (Eckley et al., 2011; Frick et al.,
2014; Aston and Kirch, 2012b). However, data sets are now routinely consider-
ably more complex than univariate time series classically studied in change point
problems (Page, 1954; Robbins et al., 2011; Aue and Horváth, 2013; Horváth
and Rice, 2014), and as such methodology for detecting and estimating change
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points in a wide variety of settings, such as multivariate (Horváth et al., 1999;
Ombao et al., 2005; Aue et al., 2009b; Kirch et al., 2015) functional (Berkes
et al., 2009; Aue et al., 2009a; Hörmann and Kokoszka, 2010; Aston and Kirch,
2012a; Torgovitski, 2015) and high dimensional settings (Bai, 2010; Horváth
and Hušková, 2012; Chan et al., 2012; Enikeeva and Harchaoui, 2013; Cho and
Fryzlewicz, 2015) have recently been proposed. In panel data settings, these in-
clude methods based on taking maxima statistics across panels coordinate-wise
(Jirak, 2015), use of scan statistic approaches (Enikeeva and Harchaoui, 2013),
using sparsified binary segmentation for multiple change point detection (Cho
and Fryzlewicz, 2015), uses of double CUSUM procedures (Cho, 2015), as well
as those based on structural assumptions such as sparsity (Wang and Samworth,
2016).

In this paper, we develop a theoretic framework to understand and compare
the power behavior of simple mean change tests in high dimensional settings.
As benchmarks we investigate a class of tests based on projections, where the
optimal (oracle) projection test is closely related to the likelihood ratio test un-
der the knowledge of the direction of the change giving an upper benchmark. As
a lower benchmark we consider a projection into a random direction. Secondly,
we closely examine the power behavior of a universal change point test in this
setting that has been introduced by Horváth and Hušková (2012). Here, we take
universal to mean that its power behaviour does not depend on how sparse or
dense the change is across the multivariate vector. The results and techniques,
we introduce, can subsequently be extended to more complex change point set-
tings as well as different statistical frameworks, such as two sample tests. In fact,
Cho (2015) has already extended the findings from a preprint of this paper to
some additional change point tests that have recently been proposed. We make
use of the following two key concepts: Firstly, we consider contiguous changes
where the size of the change tends to zero as the sample size and with it the
number of dimensions increases leading to the notion of high dimensional effi-
ciency. This concept is closely related to Asymptotic Relative Efficiency (ARE)
(see Lehmann (1999, Sec. 3.4) and Lopes et al. (2011) where ARE is used in a
high dimensional setting).

Optimal power in the sense of the oracle projection is only achieved if infor-
mation about the direction of the change are known, where known can include
assumptions such as sparse or balanced changes, meaning that there exists a
small change of similar magnitude in each component. However, such proce-
dures typically break down to the power of a random projection henceforth
called tolerable power if those assumptions are not met. In addition, inherent
misspecification in other parts of the model, such as the covariance structure,
will have a detrimental effect on detection, which can result in procedures having
no better than tolerable power.

We will consider a simple setup for our analysis, although one which is inher-
ently the base for most other procedures, and one which can easily be extended
to complex time dependencies and change point definitions using corresponding
results from the literature (Kirch and Kamgaing, 2015, 2016). For a set of ob-
servations Xi,t, 1 � i � d = dT , 1 � t � T , the change point model is defined to
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be

Xi,t = μi + δi,T g(t/T ) + ei,t, 1 � i � d = dT , 1 � t � T, (1.1)

where E ei,t = 0 for all i and t with 0 < σ2
i = var ei,t < ∞ and g : [0, 1] → R is a

Riemann-integrable function. Here δi,T indicates the size of the change for each
component. This setup incorporates a wide variety of possible changes by the
suitable selection of the function g, as will be seen below. For simplicity, for now
it is assumed that {ei,t : t ∈ Z} are independent, i.e. we assume independence
across time but not location. If the number of dimensions d is fixed, the results
readily generalise to situations where a multivariate functional limit theorem
exists as is the case for many weak dependent time series. If d can increase
to infinity with T , then generalizations are possible if the {ei,t : 1 � t � T}
form a linear process in time but the errors are independent between components
(dependency between components will be discussed in detail in the next section).
Existence of moments strictly larger than two is needed in all cases.

The change (direction) is given by Δd = (δ1,T , . . . , δd,T )
′ and the type of

alternative is given by the function g in rescaled time. While g is defined in a
general way, it includes as special cases most of the usual change point alterna-
tives, for example,

• At most one change (AMOC): g(u) =

{
0 0 ≤ u ≤ θ
1 θ < u ≤ 1

• Epidemic change (EC): g(u) =

⎧⎨⎩
0 0 ≤ u ≤ θ1
1 θ1 < u < θ2
0 θ2 < u ≤ 1

The form of g will influence the choice of test statistic to detect the change
point. As in the above two examples in the typical definition of change points
the function g is modelled by a step function (which can approximate many
smooth functions well). In such situations, test statistics based on partial sums
of the observations have been well studied (Csörgő and Horváth, 1997). We focus
on test statistics for the AMOC situation and show these statistics are robust
(in the sense of still having non-zero power) to a wide variety of g. We derive
the asymptotic theory for these partial sum processes and the results readily
carry over to other statistics based on change point tests such as the ones for
epidemic change points.

The model in (1.1) is defined for univariate (d = 1), multivariate (d fixed)
or panel data (d → ∞). The panel data (also known as “small n large p” or
“high dimensional low sample size”) setting is able to capture the small sample
properties very well in situations where d is comparable or even larger than
T using asymptotic considerations. In this asymptotic framework the detection
ability or efficiency of various tests can be defined by the rates at which vanishing
alternatives can still be detected. However, many of our results, particularly for
the proposed projection tests, are also qualitatively valid in the multivariate or
d fixed setting.

The paper proceeds as follows. In Section 2, the concept of high dimensional
efficiency as a way of comparing the power of high dimensional tests is intro-
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duced. Also in Section 2, we derive the high dimensional efficiency for the panel
based change point statistics already suggested in Horváth and Hušková (2012).
This will be done for a correctly specified covariance structure as well as if the
covariance assumptions are violated. In Section 3 we develop the asymptotic
theory for projection statistics which will act as a lower and upper benchmark
for the panel change point test from the previous section. Here, too, misspeci-
fication will be taken into account. In Section 3.4 we summarize and interpret
the high dimensional efficiency for a wide range of high dimensional change
point tests recently proposed in the literature based on results obtained by Cho
(2015). Section 4 provides a short illustrative example with respect to multivari-
ate market index data. Section 5 concludes with some discussion of the different
statistics proposed. The proofs in addition to some further illustrative material
is given in an appendix. In addition, rather than a separate simulation sec-
tion, simulations will be interspersed throughout the theory. They complement
the theoretic results, confirming that the conclusion are already valid for small
samples, thus verifying that the concept of high-dimensional efficiency is indeed
suitable to understand the power behavior of different test statistics. In all cases
the simulations are based on 1000 repetitions of i.i.d. normally distributed data
for each set of situations, and unless otherwise stated the number of time points
is T = 100 with the change (if present) occurring half way through the series.
Except in the simulations concerning size itself, all results are empirically size
corrected to account for the size issues for the multivariate (panel) statistic that
will be seen in Figure 3.1.

2. High dimensional efficiency and a universal panel mean change
test

In this section, we will first derive a theoretic framework called high dimen-
sional efficiency – an asymptotic concept to compare the power of several high
dimensional tests. Secondly, we will calculate this high dimensional efficiency
for universal panel CUSUM tests (with d → ∞) introduced by Horváth and
Hušková (2012) extending a multivariate setting with d fixed (Horváth et al.,
1999). Since we do not assume Gaussianity in order to obtain the corresponding
limits it is necessary to assume independence between components, because the
proofs are based on a central limit theorem across components. As such they
cannot be generalized to uncorrelated (but dependent) data unless in the Gaus-
sian case. For this reason, we cannot easily derive the asymptotic theory after
standardization of the data. This is different from the multivariate situation,
where this can easily be achieved. This test is related to a test in the high-
dimensional two-sample situation by Srivastava and Du (2008) who consider
some kind of misspecification of the covariance structure but under the stronger
assumption of Gaussianity of the data.

We are interested in a comparison of the high dimensional efficiency under
different covariance structures, which yield weighting matrices A, for example,
the correctly specified covariance, i.e. A = Σ−1, in addition to a comparison in
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the misspecified case, A = M−1, for some M not equal to the true covariance.
The latter has already been discussed in one particular case by Horváth and
Hušková (2012). To be precise, a common factor is introduced and the limit
of the statistic (with A = Λ−1) under the assumption that the components
are independent (i.e. Λ being a diagonal matrix) is considered. Because of the
necessity to estimate the unknown covariance structure for practical purposes,
the same qualitative effects as discussed here can be expected if a statistic and
corresponding limit distribution were available for the covariance matrix Σ.

2.1. High dimensional efficiency

As the main focus of this paper is to compare several test statistics with respect
to their detection power, we introduce a new asymptotic concept that allows
us to understand this detection power in a high dimensional context. In the
subsequent sections, simulations accompanying the theoretic results will show
that this concept is indeed able to give insight into the small sample detection
power. Thus this concept provides a theoretic tool for a power comparison, which
– unlike simulation studies – gives a simultaneous insight into a large variety of
situations.

Consider a typical testing situation, where (possibly after reparametrization)
we test

H0 : vd = 0, against H1 : vd �= 0, (2.1)

for some parameter vector vd ∈ R
ld . In this paper, this vector will be the change,

i.e. vd = Δd = (δ1,T , . . . , δd,T )
′. However, it could also be the mean vector in a

one-sample location problem (ld = d), or the difference of the mean vectors in a
two-sample model (ld = d). For change point testing in parametric time series
models it could be the difference of the corresponding parameter vectors, where
ld is the effective dimension given by the number of unknown parameters in the
situation where d-dimensional data is observed.

To understand the small sample power of different statistics we consider local
or contiguous alternatives with vd = vd,T → 0 (as T → ∞). For a panel setting
we define:

Definition 2.1. Consider the testing situation (2.1) with sample size T →
∞ and sample dimension d = dT → ∞. The (absolute) high dimensional
efficiency E = E(d) of a test statistic T (X1, . . . ,XT ) is a sequence of functions

E(d) : Rld → R+ : vd �→ E(d)(vd),

such that

(i) T (X1, . . . ,XT )
L−→ L for some non-degenerate limit distribution L under

H0,

(ii) T (X1, . . . ,XT )
P−→ ∞ if

√
T E(vd) → ∞,

(iii) T (X1, . . . ,XT )
L−→ L if

√
T E(vd) → 0.
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Obviously, E is only defined up to multiplicative constants, and has to be under-
stood as a representative of the class E1 ∼ E2 iff

0 < c � lim inf
T→∞

E1(vd)

E2(vd)
� lim sup

T→∞

E1(vd)

E2(vd)
� C < ∞

for all sequences of alternatives vd and some constants c, C only depending on
E1 and E2.
Remark 2.1. The above definition has the following connection to minimax
optimality: If

√
TE(vd) is equal to the minimax separation rate in the sense

of (Ingster and Suslina, 2012) (for a given norm), then the corresponding test
is in fact minimax optimal in that sense (with respect to that norm).
Additionally, the above notion allows us to compare the power behavior for
particular types of alternatives (such as e.g. sparse alternatives) of different
test statistics leading to the notion of relative high dimensional efficiency,
where it is not constants that are of interest but dependence on d. For example a
high dimensional efficiency of 2d‖vd‖ is a factor

√
d better than one of 10

√
d‖vd‖

resulting in a relative high dimensional efficiency of
√
d for the first test versus

the second one. As in the classical interpretation this means that the magnitude
of ‖vd‖ can be a factor 1/

√
d (again up to constants) smaller for the first test

and still have the same detection power as the second test.

In particular a test has asymptotic power one for a sequence of alternatives
if
√
T E(vd) → ∞, but a power equal to the level if

√
T E(vd) → 0. Typically,

for
√
T E(vd) → α �= 0 it holds T (X1, . . . ,XT )

L−→ L(α)
D
�= L, usually resulting

in an asymptotic power strictly between the level and one. In the classic notion
(with d constant) of absolute relative efficiency (ARE, or Pitman Efficiency) for
test statistics with a standard normal limit it is the additive shift between L(α)
and L (see Lehmann, 1999, Sec 3.4) that shows power differences for different
statistics. Consequently, this shift has been used to define asymptotic efficiency.
This idea has been considered in high dimensional settings by Lopes et al.
(2011) as well as Wang et al. (2015) in a two-sample setting and by Srivastava
and Du (2008) in the one-sample setting where the tests considered all converge
to a standard normal limit – an assumption that is not true for most change
point tests.

It turns out that the distinction made by the rates as captured by the high
dimensional efficiency is already sufficient to compare the power behavior of the
change point tests in this paper. In fact, if those rates differ, then the classic
asymptotic relative efficiency is not defined (or rather yields 0 or ∞). It is only
in situations, where the high dimensional efficiency of two tests is equal as e.g.
in Lopes et al. (2011); Wang et al. (2015); Srivastava and Du (2008), that the
constants as in the classic notion of efficiency become important to understand
the differences in efficiency.

For standard test statistics exhibiting the usual distributional asymptotics,
the above definition guarantees that the high dimensional efficiency E(vd) only
depends on the type of alternatives and the dimension d but not on the sample
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size T . The reason is that the rate with respect to the sample size of contigu-
ous alternatives is the same as in classical testing namely

√
T . Nevertheless,

the above concept also allows the investigation of test statistics exhibiting e.g.
extreme-value behavior, which is often the case in change point analysis and
appears for high dimensional change point tests see e.g. Chan et al. (2012) or
Jirak (2015). In these examples, the high dimensional efficiency will now typi-
cally also depend on T as due to the extremal behavior the rate will no longer
be

√
T but

√
T/ log log T . However, since the Logarithm converges very slowly,

the dependence on d may be much more important. As illustrative example the
maximum-likelihood CUSUM statistic which is an extreme-value-type change
point test will be compared to a differently weighted CUSUM statistic with
standard distributional asymptotics for d = 1 in Section A in the appendix.

2.2. Illustrative examples of spatial dependencies

In order to be able to prove asymptotic results for change point statistics even
if d → ∞, we need to make the following assumptions on the underlying error
structure. This is much weaker than the independence assumption of the uni-
versal panel statistic from the previous section as considered by Horváth and
Hušková (2012). Furthermore, we do not need to restrict the rate with which d
grows. If we do have restrictions on the growth rate in particular for the multi-
variate setting with d fixed, these assumptions can be relaxed and more general
error sequences can be allowed.

Assumption A. 1. Let η1,t(d), η2,t(d), . . . be independent with E ηi,t(d) = 0,
var ηi,t(d) = 1 and E |ηi,t(d)|ν � C < ∞ for some ν > 2 and all i and d. For
t = 1, . . . , T we additionally assume for simplicity that (η1,t(d), η2,t(d), . . .) are
identically distributed (leading to data which is identically distributed across
time). The errors within the components are then given as linear processes of
these innovations:

el,t(d) =
∑
j�1

al,j(d)ηj,t(d), l = 1, . . . , d,
∑
j�1

al,j(d)
2 < ∞

or equivalently in vector notation et(d) = (e1,t(d), . . . , ed,t(d))
′ and aj(d) =

(a1,j(d), . . . , ad,j(d))
′

et(d) =
∑
j�1

aj(d)ηj,t(d).

These assumptions allow us to consider many varied dependency relation-
ships between the components (and we will concentrate on within the compo-
nent dependency at this point, as temporal dependency adds multiple layers of
notational difficulties, but little in the way of insight as almost all results gener-
alise simply for weakly dependent and linear processes including the particular
cases we will now discuss).
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The following three cases of different spatial dependency structures are very
helpful in understanding the effect of misspecification of the covariance structure
on the high dimensional efficiency. They will be used as examples throughout
the paper:

Case C. 1 (Independent Components). The components are independent, i.e.
aj = (0, . . . , sj , . . . , 0)

′ the vector which is sj > 0 at point j and zero everywhere
else, j � d, and aj = 0 for j � d+ 1. In particular, each channel has variance

σ2
j = s2j .

Case C. 2 (Fully Dependent Components). There is one common factor to
all components, leading to completely dependent components, i.e. a1 = Φd =
(Φ1, . . . ,Φd)

′, aj = 0 for j � 2. In this case,

σ2
j = Φ2

j .

This case, while being somewhat pathological, is useful for gaining intuition into
the effects of possible dependence and also helps with understanding the next
case.

Case C.3 (Mixed Components). The components contain both an independent
and dependent term. Let aj = (0, . . . , sj , . . . , 0)

′ the vector which is sj > 0 at
point j and zero everywhere else, and ad+1 = Φd = (Φ1, . . . ,Φd)

′, aj = 0 for
j � d+ 2. Then

σ2
j = s2j +Φ2

j

This mixed case allows consideration of dependency structures between cases
C.1 and C.2. It is used in the simulations with Φd = Φ(1, . . . , 1)′, where Φ = 0
corresponds to C.1 and Φ → ∞ corresponds to C.3. We also use this particular
example for the universal panel statistic in this section to quantify the effect of
misspecification.

Of course, many other dependency structures are possible, but these three
cases give insight into the cases of no, complete and some dependency respec-
tively.

2.3. Efficiency for universal change point test for independent
panels

Multivariate CUSUM statistics have been adapted to the panel data setup under
the assumption of independent components by Bai (2010) for estimation as well
as Horváth and Hušková (2012) for testing. Those statistics are obtained as
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weighted maxima or sum of the following (univariate) partial sum process

Vd,T (x) =
1√
d

d∑
i=1

(
1

σ2
i

Z2
T,i(x)−

�Tx(T − �Tx)
T 2

)
, (2.2)

where ZT,i(x) =
1

T 1/2

⎛⎝�Tx�∑
t=1

Xi,t −
�Tx
T

T∑
t=1

Xi,t

⎞⎠ (2.3)

with Xd(t) = (X1,1, . . . , Xd,T )
′ and σ2

i = var ei,1.
Theorem B.1 in the appendix gives a central limit theorem for errors as in

Case C.1 for this partial sum process (under the null) from which null asymp-
totics of the corresponding statistics can be derived if d

T 2 → 0. This was proven
by Horváth and Hušková (2012, Theorem 1) who did allow for a linear process
structure across time. However, the independence across components cannot be
dropped, which has some effects on the high dimensional efficiency that we will
investigate in Section 2.4. For the corresponding Darling-Erdösz-type theorem
as discussed in Chan et al. (2012) the quite restrictive assumption d

T 2 → 0 can be
dropped. The corresponding test is related to the weighted CUSUM test M2 as
discussed in Appendix A for the univariate case, which also exhibits a Darling-
Erdösz-type asymptotic. As in the discussion there, this Darling-Erdösz-test
has similar high dimensional efficiency as max0�x�1 Vd,T (x) up to an additional
log-term, but will not be discussed here in detail.

The following theorem derives the high dimensional efficiency in this setting
for the universal panel statistics such as max0�x�1 Vd,T (x), which we use in

simulations with both known and estimated standard deviations, or
∫ 1
0
Vd,T (x).

Theorem 2.1. Let Case C.1 hold with σ2
i = s2i � c > 0 for all i, which implies

in particular that Σ = diag(σ2
1 , . . . , σ

2
d), and lim supd→∞

1
d

∑d
i=1 E |ei,t|ν < ∞

for some ν > 4. Furthermore, let d
T 2 → 0. Then, the high dimensional efficiency

of the universal panel statistic tests is given by

E1(Δd) =
1

d1/4
‖Σ−1/2Δd‖,

where ‖ · ‖ refers to the Euclidean norm.

Most notably the efficiency of this test statistic unlike test statistics partic-
ularly developed for sparse changes as discussed in Section 3.4 only depends
on the magnitude of the covariance scaled change but not on how the mass of
the change is placed within the vector (i.e. if it is balanced across the vector or
only sparsely in a few components). Proposition 1 in Baraud et al. (2002) shows
that the minimax separation rate in the L2-norm for the signal detection prob-
lem (which also provides lower bounds for the present change point problem) is
given by d1/4/

√
T , i.e. no uniform test exists in the above change point situation

when
√
TE1(Δd) → 0. Consequently, the test by Horváth and Hušková (2012)

achieves L2-minimax optimality in the sense of (Ingster and Suslina, 2012) and
cannot be improved uniformly over all Δ.
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For constant magnitude of the change the efficiency is given by d−1/4 and as
such will turn out to be a magnitude of d−1/4 worse than oracle efficiency but
a magnitude of d−1/4 better than tolerable efficiency (as obtained by a random
projection).

We can see the finite sample nature of this phenomena in Figure 3.2 (a).

2.4. Efficiency of universal change point tests under dependence
between components

We now turn again to the misspecified situation, where we use the above statis-
tic in a situation where components are not uncorrelated. Following Horváth
and Hušková (2012), we consider the mixed case C.3 for illustration. The next
proposition derives the null limit distribution for that special case. It turns
out that the limit as well as convergence rates depend on the strength of the
contamination by the common factor.

Lemma 2.2. Let Case C.3 hold with ν > 4, 0 < c � si � C < ∞ and
Φ2

i � C < ∞ for all i and some constants c, C and consider Vd,T (x) defined as
in (2.2), where σ2

i = var ei,1 but the rest of the dependency structure is not taken
into account. The asymptotic behavior of Vd,T (x) then depends on the behavior
of

Ad :=

d∑
i=1

Φ2
i

σ2
i

.

a) If Ad/
√
d → 0, then the dependency is negligible, i.e.

Vd,T (x)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
,

where W (·) is a standard Wiener process.
b) If Ad/

√
d → ξ, 0 < ξ < 1, then

Vd,T (x)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
+ ξ (B2(x)− x(1− x)),

where W (·) is a standard Wiener process and B(·) is a standard Brownian
bridge.

c) If Ad/
√
d → ∞, then

√
d Vd,T (x)

Ad

D[0,1]−→ B2(x)− x(1− x),

where {B(x) : 0 � x � 1} is a standard Brownian bridge.

Because Ad in the above theorem cannot feasibly be estimated, this result
cannot be used to derive critical values for panel test statistics. Consequently,



High dimensional efficiency 1911

the exact shape of the limit distribution in the above lemma is not important.
However, the lemma is necessary to derive the high dimensional efficiency of the
panel statistics in this misspecified case. Furthermore, it indicates that using the
limit distribution from the previous section to derive critical values will result
in asymptotically wrong sizes if a strong contamination by a common factor is
present. The simulations in Figure 3.1 also confirm this fact and show that the
size distortion can be enormous. It does not matter whether the variance of the
components in the panel statistic takes into account the dependency or simply
uses the noise variance (Figure 3.1(a)), or whether a change is accounted for
or not in the estimation (Figure 3.1(b)-(c)). This illustrates, that the full panel
statistic is very sensitive with respect to deviations from the assumed underlying
covariance structure in terms of size.

In the situation of a) and b) above, the dependency structure introduced by
the common factor is still small enough asymptotically to not change the high
dimensional efficiency as given in Theorem 2.1, which is analogous to the proof
of Theorem 2.1. Therefore, we will now concentrate on situation c), which is
the case where the noise coming from the common factor does not disappear
asymptotically.

Theorem 2.3. Let the assumptions of Lemma 2.2 on the errors be fulfilled
and Ad/

√
d → ∞, then the corresponding panel statistics have high dimensional

efficiency

E2(Δd) =
1√
Ad

√
Δ′

d diag

(
1

s21 +Φ2
1

, . . . ,
1

s2d +Φ2
d

)
Δd.

Corollary 3.8 below will show that the efficiency of the universal panel test
becomes as bad as the tolerable efficiency if Ad/d → A > 0, which is typically
the case if the dependency is non-sparse and non-negligible.

3. Change points and projections

3.1. Projections

We now describe how projections can be used to obtain change point statistics
in high dimensional settings, which will be used as an upper (in the form of an
oracle projection) and a lower benchmark (in the form of a random projection)
statistics for other change point tests.

In model (1.1), the change Δd = (δ1,T , . . . , δd,T )
′ (as a direction) is always

a rank one (vector) object no matter the number of components d. This obser-
vation suggests that knowing the direction of the change Δd in addition to the
underlying covariance structure can significantly increase the signal-to-noise ra-
tio. Furthermore, for μ and Δd/‖Δd‖ (but not ‖Δd‖) known with i.i.d. normal
errors, one can easily verify that the corresponding likelihood ratio statistic is
obtained as a projection statistic with projection vector Σ−1Δd, which can also
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be viewed as an oracle projection. Under (1.1) it holds

〈Xd(t),pd〉 = 〈μ,pd〉+ 〈Δd,pd〉g(t/T ) + 〈et,pd〉,

whereXd(t) = (X1,t, . . . , Xd,T )
′, μ = (μ1, . . . , μd)

′ and et = (e1,t, . . . , ed,t)
′. The

projection vector pd plays a crucial role in the following analysis and will be
called the search direction. Because multiplicative constants do not change the
signal-to-noise ratio nor the high dimensional efficiency, we will always use the
normalized vector ‖pd‖ = 1 for simplicity. This representation shows that the
projected time series exhibits the same behavior as before as long as the change
is not orthogonal to the projection vector. Furthermore, the power is better
the larger 〈Δd,pd〉 and the smaller the variance of 〈et,pd〉. Consequently, an
optimal projection in terms of power depends on Δd as well as Σ = var e1.

3.2. Efficiency of change point tests based on projections

In this section, we derive the efficiency of change point tests based on projec-
tions under rather general assumptions. Furthermore, we will see that the size
behavior is very robust with respect to deviations from the assumed underly-
ing covariance structure. The power on the other hand turns out to be less
robust but more so than statistics taking the full multivariate information into
account.As special cases, we then obtain our benchmark efficiencies, the ora-
cle efficiency and the tolerable efficiency (obtained from random projections) in
Section 3.3.

Standard statistics such as the CUSUM statistic are based on partial sum
processes, so in order to quantify the possible power gain by the use of projec-
tions we will consider the partial sum process of the projections, i.e.

Ud,T (x) = 〈ZT (x),pd〉 =
1√
T

�Tx�∑
t=1

⎛⎝〈Xd(t),pd〉 −
1

T

T∑
j=1

〈Xd(j),pd〉

⎞⎠ , (3.1)

where ZT,i is as in (2.3). Different test statistics can be defined for a range of
g (see Section C.1 in the appendix for more details). One popular test statistic
designed for the at-most-one-change (but with power against any non-constant
g) is the max-type statistic, analogous to that for the universal panel test given
above.

In this section we first derive a functional central limit theorem for the process
Ud,T (x), which implies the asymptotic null behavior for these tests. Then, we
derive the asymptotic behavior of the partial sum process under contiguous
alternatives to obtain the high dimensional efficiency for projection statistics.

3.2.1. Null asymptotics

As a first step towards the efficiency of projection statistics, we derive the null
asymptotics. This is also of independent interest if projection statistics are ap-
plied to a given data set in order to find appropriate critical values. In the
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Fig 3.1: Size of tests as the degree of dependency between the components
increases. As can be seen, all the projection methods, Oracle, Quasi-Oracle, Pre-
Oracle and Random projections defined in Section 3.3 maintain the size of the
tests. Those based on using the full information, the universal test (indicated as
H&H) as described in Section 2 have size problems as the degree of dependency
increases. The simulations correspond to Case C.3 with sj = 1,Φj = φ, j =
1, . . . , d with d = 200, where φ is given on the x-axis).

following theorem d can be fixed but it is also allowed that d = dT → ∞, where
no restrictions on the rate of convergence are necessary.

Theorem 3.1. Let model (1.1) hold. Let pd be a possibly random projection
independent of {ei,t : 1 � t � T, 1 � i � d}. Furthermore, let τ2(pd) �= 0 (almost
surely), which means that the projected data is not degenerate with probability
one. Under Assumption A.1 and if {pd} is independent of {ηi,t(d) : i � 1, 1 �
t � T}, then it holds under the null hypothesis{

Ud,T (x)

τ(pd)
: 0 � x � 1 |pd

}
D[0,1]−→ {B(x) : 0 � x � 1} a.s., (3.2)

where B(·) is a standard Brownian bridge. The assertions remain true if τ2(pd)
is replaced by τ̂2d,T such that for all ε > 0

P

(∣∣∣∣∣ τ̂2d,T
τ2(pd)

− 1

∣∣∣∣∣ > ε |pd

)
→ 0 a.s. (3.3)

Assumption A.1 can be replaced by a different assumption which is always
fulfilled in the multivariate case but often too restrictive in the panel situation
(see Theorem C.1 in the appendix for more details). Lemma C.2 shows that the
following estimators fulfill (3.3):

τ̂21,d,T (pd) =
1

T

T∑
j=1

(
p′
det(d)−

1

T

T∑
i=1

p′
det(d)

)2
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τ̂22,d,T (pd) =
1

T

⎛⎜⎝k̂d,T∑
j=1

⎛⎝p′
dej(d)−

1

T

k̂d,T∑
i=1

p′
dei(d)

⎞⎠2

+

′∑
j=k̂d,T+1

⎛⎝p′
det(d)−

1

T

T∑
i=k̂d,T+1

p′
dei(d)

⎞⎠2
⎞⎟⎠ ,

where k̂d,T = arg max
t=1,...,T

Ud,T (t/T ).

The second estimator is typically used in an at-most-one-change setting as it
usually leads to a small-sample power improvement for the corresponding tests
as it is also consistent under the at-most-one-change alternative.

From Theorem 3.1 one can easily derive the null asymptotics for standard
change point tests such as the max-type and sum-type tests (see Corollary C.3
in the appendix for more details). As can be seen in Figure 3.1, regardless of
whether the variance is known or estimated, the projection methods all maintain
the correct size even when there is a high degree of dependence between the
different components (the specific projection methods will be characterised in
Section 3.3 below).

3.2.2. Absolute high dimensional efficiency

We are now ready to derive the high dimensional efficiency of projection statis-
tics. Furthermore, we show that a related estimator for the location of the change
is asymptotically consistent.

Theorem 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Then, the max-
type statistic based on 3.1 has the following absolute high dimensional efficiency:

E3(Δd,pd) :=
‖Δd‖‖pd‖ cos(αΔd,pd

)

τ(pd)
=

|〈Δd,pd〉|
τ(pd)

, (3.4)

where τ2(pd) is as in Theorem 3.1 and αu,v is the (smallest) angle between u
and v. In addition, the asymptotic power increases with increasing multiplicative
constant.

The assertion remains true under the assumptions of Theorem C.1 as well
as for the max and sum-type statistics with a weight function w(·) as in Corol-

lary C.3 fulfilling w2(x)
(∫ x

0
g(t) dt− x

∫ 1
0
g(t) dt

)2
�= 0.

In the following, E3(Δd,pd) is fixed to the above representative of the class,
so that different projection procedures with the same rate but with different
constants can be compared.

Remark 3.1. For random projections the high dimensional efficiency is a ran-
dom variable. The convergences in Definition 2.1 is understood given the projec-
tion vector pd, where we get either a.s.-convergence or P -stochastic convergence
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depending on whether
√
T E3(Δd,pd) converges a.s. or in a P -stochastic sense

(in the latter case the assertion follows from the subsequence-principle).

The above result shows in particular that sufficiently large changes (as defined
by the high dimensional efficiency) are detected asymptotically with power one.
For such changes in the at-most-one-change situation, one can easily derive that
the corresponding change point estimator is consistent in rescaled time (see
Corollary C.4 in the appendix).

Remark 3.2. The proof shows in particular that all deviations from a station-

ary mean are detectable with asymptotic power one as
∫ x
0
g(t) dt−x

∫ 1
0
g(t) dt �=

0 for non-constant g. It is this g function which determines which weight function
gives best power.

Remark 3.3. We derive the high dimensional efficiency for a given g and disap-
pearing magnitude of the change ‖Δd‖. For an epidemic change situation with
g(x) = 1{ϑ1<x�ϑ2} for some 0 < ϑ1 < ϑ2 < 1, this means that the duration of
the change is relatively large but the magnitude relatively small with respect to
the sample size. Alternatively, one could also consider the situation, where the
duration gets smaller asymptotically (see e.g. Frick et al. (2014)) resulting in a
different high dimensional efficiency, which is equal for both the projection as
well as the multivariate or panel statistic, as long as the same weight function
and the same type of statistic (sum/max) is used. Some preliminary investiga-
tions suggest that in this case using projections based on principle component
analysis similar to Aston and Kirch (2012a) can be advantageous, however this
is not true for the setting discussed in this paper.

In the next section we will further investigate the high dimensional efficiency
and see that the power depends essentially on the angle between Σ1/2pd and the
’standardized’ change Σ−1/2Δ if Σ is invertible. In fact, the smaller the angle
the larger the power. Some interesting insight can also come from the situation
where Σ is not invertible by considering case C.2 above (and this is given in
section C.4 of the appendix).

3.3. High dimensional efficiency of oracle and random projections

In this section, we will further investigate the high dimensional efficiency of
certain particular projections that can be viewed as benchmark projections. In
particular, we will see that the efficiency depends only on the angle between the
projection and the change both properly scaled with the underlying covariance
structure.

The highest efficiency is obtained by o = Σ−1Δd as the next theorem shows,
which will be called the oracle projection. This oracle is equivalent to a pro-
jection after first standardizing the data on the ’new’ change Σ−1/2Δd. The
corresponding test is related to the likelihood ratio statistic for i.i.d. normal in-
novations, where both the original mean and the direction (but not magnitude)
of the change are known. This oracle is effectively the optimal linear classifier
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Fig 3.2: As can be seen in (a), the search projection method decreases similarly
to cosine of the angle, while the random projection and universal panel tests
(H&H) as introduced in Section 2 are given for comparison. In (b) as predicted
by theory we get roughly constant power for fixed angle projection tests (as
‖Δd‖ is constant), while results in decreasing power for both the panel statistic
test and random projections as predicted by theory.

as proposed by Delaigle and Hall (2012). As a lower (worst case) benchmark
we consider a scaled random projection rd,Σ = Σ−1/2rd, where rd is a random
projection on the d-dimensional unit sphere. This is equivalent to a random
projection onto the unit sphere after standardizing the data. Both projections
depend on Σ which is usually not known so that it needs to be estimated. The
latter is rather problematic in particular in high dimensional settings without
additional parametric or sparsity assumptions (see Zou et al. (2006), Bickel and
Levina (2008) and Fan et al. (2013) including related discussion, and Cai and
Liu (2011) for a case where the assumption of sparsity can be used to facilitate
direct estimation of the vector of interest without full covariance estimation).
Furthermore, it is actually the inverse that needs to be estimated which results
in additional numerical problems if d is large. For this reason we check the ro-
bustness of the procedure with respect to not knowing or misspecifying Σ in a
second part of this section.

3.3.1. Correctly scaled projections

In this section we characterize which projection yields an optimal high dimen-
sional efficiency associated with the highest power if the covariance matrix Σ is
invertible. In Section C.4 in the appendix, we look at the situation if Σ is not
invertible.

Proposition 3.3. If Σ is invertible, then

E3(Δ,pd) = ‖Σ−1/2Δd‖ cos(αΣ−1/2Δd,Σ1/2pd
). (3.5)
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Proposition 3.3 shows in particular, that after standardizing the data, i.e. for
Σ = Id, the power depends solely on the cosine of the angle between the oracle
and the projection (see Figure 3.2 (a)).

From the representation in this proposition it follows immediately that the
’oracle’ choice for the projection to maximize the high dimensional efficiency is
o = Σ−1Δd as it maximizes the only term which involves the projection namely
cos(αΣ−1/2Δd,Σ1/2pd

). Therefore, we define:

Definition 3.1. The projection o = Σ−1Δd is called oracle if Σ−1 exists.
Since the projection procedure is invariant under multiplications with non-zero
constants of the projected vector, all non-zero multiples of the oracle have the
same properties, so that they correspond to a class of projections.

By Proposition 3.3 the oracle choice leads to a high dimensional efficiency of
E3(Δd,o) = ‖Σ−1/2Δd‖.

Another way of understanding the Oracle projection is the following: If we
first standardize the data, then for a projection on a unit (w.l.o.g.) vector the
variance of the noise is constant and the signal is given by the scalar product
of Σ−1/2Δ and the (unit) projection vector, which is obviously maximized by
a projection with Σ−1/2Δ/‖Σ−1/2Δ‖ which is equivalent to using pd = Σ−1Δ
as a projection vector for the original non-standardized version.

So, if we know Σ and want to maximize the efficiency respectively power
close to a particular search direction sd of our interest, we should use the scaled
search direction sΣ,d = Σ−1sd as a projection.

Because the cosine falls very slowly close to zero, the efficiency will be good
if the search direction is not too far off the true change. From this, one could get
the impression that even a scaled random projection rΣ,d = Σ−1/2rd may not do
too badly, where rd is a uniform random projection on the unit sphere. This is
equivalent to using a random projection on the unit sphere after standardizing
the data, which also explains the different scaling as compared to the oracle or
the scaled search direction, where the changeΔd is also transformed to Σ−1/2Δd

by the standardization. However, since for increasing d the space covered by the
far away angles is also increasing, the high dimensional efficiency of the scaled
random projection is not only worse than the oracle by a factor

√
d but also by

a factor d1/4 than the universal statistic discussed in Section 2.
The following theorem shows the high dimensional efficiency of the scaled

random projection.

Theorem 3.4. Let the alternative hold, i.e. ‖Δd‖ �= 0. Let rd be a random
uniform projection on the d-dimensional unit sphere and rΣ,d = Σ−1/2rd, then
for all ε > 0 there exist constants c, C > 0 (not depending on the dimension d),
such that

P

(
c � E2

3 (Δd, rΣ,d)
d

‖Σ−1/2 Δd‖2
� C

)
� 1− ε.

Such a random projection on the unit sphere can be obtained as follows: Let
X1, . . . , Xd be i.i.d. N(0,1), then rd = (X1, . . . , Xd)

′/‖(X1, . . . , Xd)
′‖ is uniform

on the d-dimensional unit sphere (Marsaglia, 1972).
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Comparing the high dimensional efficiency of the scaled random projection
with the one obtained for the oracle projection (confer Proposition 3.3) it be-
comes apparent that we lose an order

√
d. The universal panel statistic taking

the full multivariate information into account has a high dimensional efficiency
between those two losing d1/4 in comparison to the oracle but gaining d1/4 in
comparison to a scaled random projection. From these results one obtains a cone
around the search direction such that the projection statistic has higher power
than the universal panel statistic, if the true change falls within this cone.

Figure 3.2 (b) shows the results of some simulations showing that a change
that can be detected for the oracle with constant power as d increases rapidly
loses power for the panel statistic as predicted by its high dimensional efficiency
in Section 2 as well as for the random projection. This and the following sim-
ulations show clearly that the concept of high dimensional efficiency is indeed
capable of explaining the small sample power of a statistic very well.

3.3.2. Misscaled projections with respect to the covariance structure

The analysis in the previous section requires the knowledge or a precise estimate
of the inverse (structure) of Σ. However, in many situations such an estimate
may not be feasible or too imprecise due to one or several of the below reasons,
where the problems get worse due to the necessity for inversion.

• If d is large in comparison to T statistical estimation errors can accumulate
and identification may not even be possible (Bickel and Levina, 2008).

• The theory can be generalized to time series errors but in this case the
covariance matrix has to be replaced by the long-run covariance (which is
proportional to the spectrum at 0) and is much more difficult to estimate
(Aston and Kirch, 2012b; Kirch and Tadjuidje Kamgaing, 2012).

• Standard covariance estimators will be inconsistent under alternatives
as they are contaminated by the change points. Consequently, possible
changes have to be taken into account, but even in a simple at most one
change situation it is unclear how best to generalize the standard univari-
ate approach as in (C.6) as opposed to (C.5) to a multivariate situation as
the estimation of a joint location already requires an initial weighting for
the projection (or the multivariate statistic). Alternatively, component-
wise univariate estimation of the change points could be done but require
a careful asymptotic analysis in particular in a setting with d → ∞.

• If d is large, additional numerical errors may arise when inverting the
matrix (Higham, 2002, Ch 14).

We will now investigate the influence of misspecification or estimation errors
on the high dimensional efficiency of a misscaled oracle oM = M−1Δd in
comparison to the misscaled random projection rM,d = M−1/2rd, where we
only assume that the assumed covariance structure M is symmetric and positive
definite and assumption A.1 is fulfilled.
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Theorem 3.5. Let the alternative hold, i.e. ‖Δd‖ �= 0. Let rd be a random pro-
jection on the d-dimensional unit sphere and rM,d = M−1/2rd be the misscaled
random projection. Then, there exist for all ε > 0 constants c, C > 0, such that

P

(
c � E2

3 (Δd, rM,d)
tr
(
M−1/2ΣM−1/2

)
‖M−1/2Δd‖2

� C

)
� 1− ε,

where tr denotes the trace.

We are now ready to prove the main result of this section stating that the
high dimensional efficiency of a misscaled oracle can never be worse than the
corresponding misscaled random projection.

Theorem 3.6. Let Assumption A.1 hold. Denote the misscaled oracle by oM =
M−1Δd, then

E2
3 (Δd,oM ) � ‖M−1/2Δd‖2

tr(M−1/2ΣM−1/2)

where tr denotes the trace and equality holds iff there is only one common factor
which is weighted proportional to Δd,

Because it is often assumed that components are independent and it is usu-
ally feasible to estimate the variances of each component, we consider the cor-
respondingly misscaled oracles, which are scaled with the identity matrix (pre-
oracle) respectively with the diagonal matrix of variances (quasi-oracle). The
quasi-oracle is of particular importance as it uses the same type of misspecifi-
cation as the universal panel statistic discussed in Section 2.

Definition 3.2. (i) The projection po = Δd is called pre-oracle.
(ii) The projection qo = Λ−1

d Δd = (δ1/σ
2
1 , . . . , δd/σ

2
d)

′, Λd = diag(σ2
1 , . . . , σ

2
d)

is called quasi-oracle, if σ2
j > 0, j = 1, . . . , d.

As with the oracle, these projections should be seen as representatives of a
class of projections.

The following proposition shows that in the important special case of un-
correlated components, the (quasi-)oracle and pre-oracle have an efficiency of
same order if the variances in all components are bounded and bounded away
from zero. The latter assumption is also needed for the panel statistic below
and means that all components are on similar scales. In addition, the efficiency
of the quasi-oracle is even in the misspecified situation always better than an
unscaled random projection.

Proposition 3.7. Assume that all variances are on the same scale, i.e. there
exist c, C such that 0 < c � σ2

i < C < ∞ for i = 1, . . . , d.

a) Let Σ = diag(σ2
1 , . . . , σ

2
d), then

c2

C2
E2
3 (Δd, qo) � E2

3 (Δd, po) � E2
3 (Δ, qo) = ‖Σ−1/2Δd‖2.
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b) Under Assumption A.1, it holds

E2
3 (Δd, qo) �

c2

C2

‖Δd‖2
tr(Σ)

.

The next corollary shows that the efficiency of the quasi oracle (which is

scaled with diag
(

1
s21+Φ2

1
, . . . , 1

s2d+Φ2
d

)
analogously to the panel statistic) is always

at least as good as the efficiency of the universal panel statistic. Additionally,
the efficiency of the universal panel statistic becomes as bad as the efficiency of
the corresponding (diagonally) scaled random projection (tolerable efficiency) if
Ad/d → A > 0, which is typically the case if the dependency is non-sparse and
non-negligible.

Corollary 3.8. Let the assumptions of Lemma 2.2 on the errors be fulfilled,
then the following assertions hold:

a) The high dimensional efficiency of the quasi-oracle is always at least as good
as the one of the misspecified panel statistic, i.e. with Σ = diag(σ2

1 , . . . , σ
2
d)+

ΦΦ′, Λd = diag(σ2
1 , . . . , σ

2
d), it holds

E2
3 (Δd, qo) �

Δ′
dΛ

−1
d Δd

1 +Ad
,

where equality holds iff Δd ∼ Φ.
b) If Ad/d → A > 0, then the high dimensional efficiency of the panel statistic

is as bad as a randomly scaled projection, i.e.

E2
2 (Δd) =

Δ′
dΛ

−1
d Δd

d
(Ad + o(1)).

In particular, for Ad/d → A > 0 the efficiency of the misscaled panel statistic
is always as bad as the efficiency of the random projection, this only holds for
the misscaled (quasi-) projection if Δd ∼ Φ. This effect can be clearly see in
Figures 3.3 and 3.4, where in all cases H&H Sigma refers to the panel statistic
using known variance, and H&H Var uses an estimated variance, showing again
that this concept of efficiency is very well suited to understand the small sam-
ple power behavior of the corresponding statistics. Additionally, the following
assertions are confirmed by the simulations:

1) The power of the pre- and quasi-oracle is always better than the power of
the misscaled random projection (the random projection assumes an identity
covariance structure).

2) The power of the (correctly scaled) oracle can become as bad as the power
of the (misscaled) random projection but only if Φd ∼ Δd. In this case the
power of the misscaled panel statistic (i.e. where the statistic but not the
critical values are constructed under the wrong assumption of independence
between components) is equally bad.
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Fig 3.3: Power of tests as the angle between the change and the direction of
dependency increases. As can be seen, if the change lies in the direction of de-
pendency, then all methods struggle, which is in line with the theory of Section
3.3. However, if the change is orthogonal to the dependency structure the projec-
tion method works regardless of whether the dependency is taken into account
or not. H&H Sigma and Var as in Section 2 represent the universal panel tests
taking into account the true or estimated variances of the components. All re-
sults are empirically size corrected to account for the size issues seen in Figure
3.1. (sj = 1, Φj = φ, j = 1, . . . , d with d = 200, ‖Δd‖ = 0.05

√
d, corresponding

to Case C.3), with φ as given on the x-axis.

3) While the power of the (misscaled) panel statistic becomes as bad as the
power of the (misscaled) random projection for φ → ∞ irrespective of the
angle between Δd and Φd, it can be significantly better for the pre- and
quasi-oracle. In fact, we saw above that the high dimensional efficiency of the
misspecified panel statistic will be of the same order as a random projection
for any choice Φd with Φ′

dΦd ∼ d, irrespective of the direction of any change
that might be present.
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Fig 3.4: Power of tests as the dependency increases. The covariance struc-
ture becomes closer to degenerate across the three graphs, but in all cases the
pre-oracle and quasi-oracle still outperform random projections, although they
become closer as the degeneracy increases. Here different variances are used
across components, namely si = 0.5 + i/d, Φi = φi, i = 1, . . . , d, d = 200,
angle(Φ,Δd)=π/4, corresponding to Case C.3, and size of change as given on
the x-axis (multiplied by

√
d).

We will now have a closer look at the three standard examples in order to
understand the behavior in the simulations better (Case C.1 is included in the
simulations for Φ = 0, while C.3 is the limiting case for Φ → ∞).

Case C.1 (Independent components). If the components are uncorrelated, each
with variance σ2

i , i.e. Σ1 = diag(σ2
1 , . . . , σ

2
d), we get

tr(Σ1) =

d∑
j=1

σ2
j ,

which is of order d if 0 < c � σ2
j � C < ∞. Proposition 3.7, Theorem 3.4 and

Theorem 3.5 show that in this situation both the high dimensional efficiency of
the pre- and (quasi-)oracle are of an order

√
d better than the correctly scaled

and unscaled random projection.

The second case shows that high dimensional efficiency of misscaled oracles
can indeed become as bad as a random projection and helps in the understanding
of the mixed case:

Case C. 2 (Fully dependent components). As noted in section C.4 of the ap-
pendix, we have to distinguish two cases:

(i) If Δd is not a multiple of Φd, then the power depends on the angle of the
projection with Φd with maximal power for an orthogonal projection. So
the goodness of the oracles depends on their angle with the vector Φd.

(ii) If Δd is a multiple of Φd, the pre- and quasi-oracle are not orthogonal
to the change, hence they share the same high dimensional efficiency with
any scaled random projection as all random projections are not orthogonal
to Φd with probability 1.
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We can now turn to the mixed case that is also used in the simulations.

Case C.3 (Mixed case). Let aj = (0, . . . , sj , . . . , 0)
′ the vector which is sj > 0

at point j and zero everywhere else, and ad+1 = Φd = (Φ1, . . . ,Φd)
′, aj = 0 for

j � d+ 2. Then Σ3 = diag(s21, . . . , s
2
d) +ΦdΦ

′
d and

tr(Σ3) =

d∑
j=1

s2j +

d∑
j=1

Φ2
j . (3.6)

The high dimensional efficiency of the pre-oracle can become as bad as for
the random projection if the change Δd is a multiple of the common factor Φd

and there is a substantial common effect. This is similar to Case C.2 (which
can be seen as a limiting case for increasing ‖Φd‖). Intuitively, the problem is
the following: By projecting onto the change, we want to maximize the signal
i.e. the change in the projected sequence while minimizing the noise. In this
situation however, the common factor dominates the noise in the projection as
it essentially adds up in a linear manner, while the uncorrelated components add
up only in the order of

√
d (CLT). Now, projecting onto Δd = Φd maximizes

not only the signal but also the noise, which is why we cannot gain anything
(but this also holds true for other procedures such as the universal panel tests).

A different interpretation is the following one: In situation C.3, each compo-
nent has a common factor {ηt} weighted according to Φd plus some independent
noise. If a change occurs in sync with the common factor it will be difficult to
detect as in order to get the correct size, we have to allow for the random move-
ments of {ηt} thus increasing the critical values in that direction. In directions
orthogonal to it, we only have to take the independent noise into account which
yields comparably smaller noise in the projection. In an economic setting, this
driving factor could for example be thought of as an economic factor behind
certain companies (e.g. ones in the same industry). If a change occurs in those
companies proportional to this driving factor it will be difficult to distinguish
a different economic state of this driving factor from a mean change that is
proportional to the influence of this factor.

A mathematical analysis is given in Section C.5 in the appendix.

3.4. Data driven projections and high dimensional efficiency of
some sparse change point tests

When using data-driven projections one has to be very careful as the projection
will typically have an effect on the null asymptotic of the projection test requir-
ing larger critical values. The reason is that in high-dimensional settings there
are always directions in which the CUSUM statistic of the projected time series
will become very large by chance. This effect can be made smaller by requiring
additional assumptions such as sparsity.

In fact, most current change point tests for high dimensional data assume
sparsity of the change point (Jirak, 2015; Cho and Fryzlewicz, 2015; Wang and
Samworth, 2016) as well as possibly likelihood based considerations Chan and
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Walther (2015). Some of these tests are effectively based on projections. For
example, Jirak (2015) uses the maximum (resulting in an extreme-value be-
havior) of all projections on unit vectors consisting of all zeroes and just one
one. Cho and Fryzlewicz (2015) use thresholding, which can also be viewed as a
data-driven projection into a lower dimensional space. Most notably, Wang and
Samworth (2016) use a data-driven projection based on a sparse singular value
decomposition of the high-dimensional CUSUM matrix. Due to the sparseness
assumption the noise level of the projection can be kept at bay, which is no
longer the case if an unconstrained singular value decomposition is used.

Furthermore, using a preprint version of this paper, Cho (2015) derived the
high dimensional efficiency for a number of tests including the tests by Jirak
(2015), Enikeeva and Harchaoui (2013), Cho and Fryzlewicz (2015) as well as the
Double CUSUM statistic introduced in that paper (see Table 1 in Cho (2015)).
It turns out, that the tests by Jirak (2015), Cho and Fryzlewicz (2015) as well
as the scan statistic by Enikeeva and Harchaoui (2013) achieve oracle efficiency
(up to a log-term) for sparse changes but only tolerable efficiency for balanced
changes. The linear test statistic introduced by Enikeeva and Harchaoui (2013)
has the same power behavior as the universal panel test statistic discussed in
this paper. The efficiency of the double CUSUM statistic introduced in Cho
(2015) depends on the number of components with a mean change in addition
to a parameter choice of the statistic. Depending on the combination of choice
of this parameter and the number of components contaminated it can achieve
both oracle efficiency and tolerable efficiency.

This discussion shows that considering the high dimensional efficiency yields
understanding about for which change alternatives a given test has particularly
good power and at what cost this comes with respect to other changes.

4. Data example

As an illustrative example which shows the small sample behaviour of the statis-
tics illustrated above also apply in real data, we examine the stability of change
points detected by different methods in several world stock market indices. More
specifically, the Fuller Log Squared Returns (Fuller, 1996, p 496) of the FTSE,
NASDAQ, DAX, NIKKEI, Hang Seng and CAC 1 indices for the year 2015 were
examined for change points. Tests based on the multivariate statistics using full
covariance estimates, a multivariate statistic using only variance estimates (i.e.,
a diagonal covariance structure), a projection statistic in the average direction
(1, 1, 1, 1, 1, 1)′, and a projection statistic in the direction of European coun-
tries vs non-European countries (1,−1, 1,−1,−1, 1)′ (orthogonal to the average
direction) were carried out. Given the considerable dependence between the dif-
ferent components, we would expect economies to likely rise and fall together,
justifying the use of the former projection direction. However, we think it un-
likely that there will be changes of the kind that when European markets goes

1We only use a small number of series to allow reliable estimates for the covariance to be
used in the full multivariate statistic.
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Fig 4.1: Estimated change point locations for the market indices from binary
segmentation based on different test statistics and different spans of data. First
Column: Data from Jan-Nov 2015, Second Column: Data from all of 2015. First
Row: Multivariate statistic with full covariance estimation; Second Row: Multi-
variate Statistic with Diagonal Variance Estimate; Third Row: Projection Statis-
tic in direction (1, 1, 1, 1, 1, 1)′. Red vertical lines indicate changes deemed to be
significant at 5% level.

up, non-European markets go down, and visa versa, so take this projection as
an example of direction where no change is likely. It should be noted at this
point that the multivariate statistic treats both of these alternatives as equally
likely. As there are possible multiple changes points in this data, we examine
stability by performing binary segmentation using the proposed tests, firstly on
data from January to November 2015, and then subsequently adding in the data
from December 2015.

As can be seen in Figure 4.1, the multivariate test statistic is considerably
less robust than the average projection based statistic, both to the length of
the data, as well as to the choice of the covariance estimate. The major cause
of this instability was that the CUSUM statistic over time had two peaks, but
the location of the maximal peak differed from one to the other when further
data was added. This caused knock-on effects in the entire binary segmentation.
Here, in all cases, independence in time was assumed as once the changes were
accounted for, there was little evidence of temporal dependence in the data.
However, even if time series dependence is accounted for by using an estimate
of the long run covariance in place of the independent covariance estimate,
there is no difference in the qualitative conclusions (although the change points
themselves varied considerably in all cases depending on the parameters chosen
in the long run covariance estimation procedure (Politis, 2005)). In addition,
the projection estimate was robust to whether the direction was scaled by the
full covariance, the diagonal of the covariance or not scaled at all, as well as to
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Table 4.1

Location, Statistic and p-value for the changes found in the 2015 market index data. (Limit
Distributions: Multivariate: sum of six independent Brownian Bridges; Projection: Single

Brownian Bridge)

Multivariate: Full Covariance
Day 143 169
Statistic Value 6.8541 5.1581
p 0.0012 0.0173

Multivariate: Diagonal Covariance
Day 144 169
Statistic Val 9.9995 11.7030
p-value < 10−5 < 10−5

Projection: scaled (111111)′

Day 12 110 121 144 169
Statistic Value 2.1307 3.5390 2.9518 3.3173 2.0900
p 0.0285 0.0017 0.0057 0.0027 0.0307

increasing the length of the data.
The p-values for the changes on full year’s data are given in Table 4.1. While

it can be seen that the projection p-vals are larger for the two common change
points than in the multivariate case, the same changes are detected with all
methods. However, additional changes are found with the projection method,
and the p-vals are well below the critical value of 5%. This shows that having
knowledge of the likely direction of change can allow further changes to be
found beyond those in an unrestricted multivariate search. As expected though,
using an unlikely direction does not find change points, with the hypothesis that
there are no changes which affect European markets differently to non-European
markets being accepted (p=0.18).

5. Conclusions

The primary aims of this paper were to introduce a theoretic method to compare
the small sample behavior of different high dimensional tests by asymptotic
methods. The new concept of high dimensional efficiency allows a comparison of
the magnitude of changes that can be detected asymptotically as the number of
dimensions increases. Both, the simulations as well as the data example confirm
the assertions obtained from that theoretic concept indicating it is in fact a
useful tool to analyse high dimensional tests.

As a benchmark, projection tests were investigated, including as an upper
benchmark an oracle projection as well as as a lower benchmark a random
projection.

In summary, the following assertions were obtained: The panel statistic (Bai,
2010; Horváth and Hušková, 2012) test works well in situations where the panels
are independent across components, in particular if there is little to no infor-
mation about the direction or properties of the change such as whether it is
sparse or balanced. However, as soon as dependency is present, the size prop-
erties of these statistics become difficult and their high dimensional efficiencies
mimic those of random projections. Unfortunately, this problem cannot even be
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solved if the covariance structure is completely known unless under normality
assumptions. Misspecification of the covariance structure can be problematic
for all tests even projection tests with the correct change structure. Neverthe-
less, misscaled oracle tests (if accessible) are preferable to the misscaled panel
statistic.

An investigation of Cho (2015) based on a preprint version of the present
paper indicates that change point tests constructed for sparse alternatives will
achieve approximately oracle power if the sparseness assumption is correct. How-
ever, they will achieve only tolerable power if the change is balanced (i.e. not
sparse), so that both benchmarks are in fact important to understand the power
behavior of recent change point tests in high dimensional settings.

The results in this paper raise many questions for future work. It would be
of considerable interest to determine whether projections can be derived using
data driven techniques, such as sparse PCA, for example, and whether such
projections would be better than random projections. Preliminary work suggests
that this may be so in some situations but not others, and a nice procedure by
Wang and Samworth (2016) investigates a related technique.

While it is very unlikely that data-driven methods will be able to improve
upon the behavior of the panel statistic without additional structural assump-
tions on the change, the question remains whether one can get close to the
universal panel statistic’s power properties while at the same time being more
robust with respect to size. However, the framework here allows this question
to be rigorously posed, and different approaches to be compared.

Appendix A: Comparing the power of two univariate CUSUM tests

We will illustrate how the concept of ’high dimensional’ efficiency can be used
even if very different asymptotics are involved. To this end we consider the
following univariate change point setup

Xt = μ+ δT 1{t>k∗
T } + et,

with {et} i.i.d. with E e1 = 0, var e1 = 1 (merely for simplicity) and E |e1|ν < ∞
for some ν > 0. For k∗T = �θT  we have the (univariate) AMOC situation from
the present paper, but here we allow for arbitrary changes k∗T . The goal is now
to compare the power behavior of the following two CUSUM statistics

M1 = max
1�k�T

1√
T

∣∣∣∣∣∣
k∑

j=1

(Xj − X̄n)

∣∣∣∣∣∣ , M2 = max
1�k�T

√
T

k(T − k)

∣∣∣∣∣∣
k∑

j=1

(Xj − X̄n)

∣∣∣∣∣∣ .
Both statistics are well known in the change point community and very often
accompagnied by statements such as ’statistic T2 detects early and late changes
better while the statistic T1 detects changes in the middle of the observation
period better’.

We will now demonstrate that the use of efficiency as defined in the present
paper helps to make this statement precise. To this end, we adapt Definition 2.1
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slightly by considering E(k∗T , δT ), which will now depend on T , k∗T and δT (and
obviously drop the assumption d → ∞ as we consider the univariate case d = 1).
Furthermore, we identify the efficiency of M2 with the one of M̃2 (as they yield
the same test) defined by

M̃2 =
√
2 log log T M2 − 2 log log T − 1

2
log log log T +

1

2
log π

L−→ G2

under H0, where G2 has a Gumble extreme value distribution, i.e. P (G2 �
x) = exp(−2 exp(−x)) (see e.g. the book by Csörgő and Horváth (1997)). The
statistic M1 on the other hand has the following standard null asymptotics (that
follow immediately from the functional central limit theorem)

M1
L−→ sup

0�t�1
|B(t)| (under H0).

Consequently, (i) of Definition 2.1 is fulfilled but with very different limit dis-
tributions (and in fact a very different limit behavior).

We will now show that the following efficiencies hold:

EM1(k
∗, δ) =

min(k∗, T − k∗)

T
|δ|,

EM2 = EM̃2
(k∗, δ) =

√
min(k∗, T − k∗)

T log log T
|δ|. (A.1)

To see this note that

k∑
j=1

(Xj − X̄n) =

k∑
j=1

(ej − ēn) + δ

(
(k − k∗)+ − k

(T − k∗)

T

)
.

Assumption (ii) of Definition 2.1 with EM1 and EM̃2
as in (A.1) follows from this

decomposition by using the partial sum process at k = k∗ as lower bound for the
statistics. On the other hand Assumption (iii) follows from this decomposition
because uniformly in k

(k − k∗)+ − k
(T − k∗)

T
= O

(
min(k∗, T − k∗)

T

)
,√

T 2

k(T − k)

(
(k − k∗)+ − k

(T − k∗)

T

)
= O

(√
min(k∗, T − k∗)

T

)
.

From (A.1) we can see, that the efficiency of M1 is an order
√
log log T better

than the efficiency of M2 if k∗ = �λT  but a lot worse for early and late changes
such as k∗ = �log T  or k∗ = T − �log T .
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Appendix B: Central limit theorem for universal panel statistics

The following theorem gives a central limit theorem for the partial sum process
Vd,T (·) (under the null) from which null asymptotics of the corresponding statis-
tics can be derived. It was proven by Horváth and Hušková (2012, Theorem
1), under somewhat more general assumptions allowing in particular for time
series errors (in the form of linear processes). While this makes estimation of
the covariances more difficult and less precise as long-run covariances need to
be estimated, it has no effect on the high dimensional efficiency. Therefore, we
will concentrate on the i.i.d. (across time) situation in this work to keep things
simpler purely in terms of the calculations.

Theorem B.1. Let Model (1.1) hold with {ei,t : i, t} independent (where the im-
portant assumption is the independence across components) such that var ei,t �
c > 0 for all i and lim supd→∞

1
d

∑d
i=1 E |ei,t|ν < ∞ for some ν > 4. Further-

more, let d
T 2 → 0. Then, it holds under the null hypothesis of no change

Vd,T (x)
D[0,1]−→

√
2(1− x)2W

(
x2

(1− x)2

)
,

where W (·) is a standard Wiener process.

Appendix C: Projections

C.1. Change point statistics

Standard statistics such as the CUSUM statistic are based on partial sum pro-
cesses, so in order to quantify the possible power gain by the use of projections
we will consider the partial sum process of the projections as given in (2.3).

Different test statistics can be defined for a range of g in (1.1), however,
assuming that g �≡ 0, the hypothesis of interest is

H0 : Δd = 0

versus the alternative

H1 : Δd �= 0.

Test statistics are now defined in order to give good power characteristics for
a particular g function. For example, the classic AMOC statistic for univariate
and multivariate change point detection is based on Ud,T (x)/τ(pd), with

τ2(pd) = p′
d var (e1(d))pd. (C.1)

Typically, either the following max or sum type statistics are used:

max
1�k�T

w(k/T )

∣∣∣∣Ud,T (k/T )

τ(pd)

∣∣∣∣ , 1

T

T∑
k=1

w(k/T )

∣∣∣∣Ud,T (k/T )

τ(pd)

∣∣∣∣ ,
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where w � 0 is continuous (which can be relaxed) and fulfills (C.7) (confer e.g.
the book by Csörgő and Horváth (1997)). The choice of weight function w(·)
can increase power for certain locations of the change points (Kirch et al., 2015).

For the epidemic change, typical test statistics are given by

max
1�k1<k2�T

1

τ(pd)
|Ud,T (k2/T )− Ud,T (k1/T ) |,

or
1

T 2

∑
1�k1<k2�T

1

τ(pd)
|Ud,T (k2/T )− Ud,T (k1/T ) |.

In the next section we first derive a functional central limit theorem for
the process Ud,T (x), which implies the asymptotic null behavior for the above
tests. Then, we derive the asymptotic behavior of the partial sum process under
contiguous alternatives to obtain the high dimensional efficiency for projection
statistics.

Similarly, a multivariate change point statistic (using the full multivariate
information and no additional knowledge about the change) for the at most one
mean change is given as a weighted maximum or sum of the following quadratic
form

V M
d (x) = ZT (x)

′AZT (x) (C.2)

where ZT (x) = (ZT,1(x), . . . , ZT,d(x))
′ is defined as in (2.3). The usual choice

is A = Σ−1, where Σ is the covariance matrix of the multivariate observations.
The weighting with Σ−1 has the advantages that it (a) leads to a pivotal limit
and (b) the statistic can detect all changes no matter what the direction. The
second remains true for any positive definite matrix A, the first also remains
true for lower rank matrices with a decorrelation property of the errors, where
this latter approach is essentially a projection (into a lower-dimensional space)
as discussed in the previous sections. For an extensive discussion of this issue
for the example of changes in the autoregressive structure of time series we refer
to Kirch et al. (2015). The choice A = Σ−1 corresponds to the correctly scaled
case, while the misscaled case corresponds to the choice A = M−1.

However, this multivariate setup is not very suitable for the theoretic power
comparison we are interested in because the limit distribution (a sum of d
squared Brownian bridges with covariance matrix Σ1/2AΣ1/2) still depends on
d as well as the possible misspecification. Therefore, a comparison needs to take
both the rates, the additive term and the noise level (which depends also on the
misspecification of the covariance) present in the limit distribution into account.
The panel data settings on the other hand, allows for an analysis by means of the
high-dimensional efficiency as introduced in this paper. Furthermore, the panel
statistic is strongly related to the multivariate statistic so that the same qual-
itative statements can be expected, which is confirmed by simulations (results
not shown).
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C.2. Null asymptotics

In this section, we give some additional insights for projection statistics under
the null hypothesis.

Theorem C.1. Let model (1.1) hold. Let pd be a possibly random projection
independent of {ei,t : 1 � t � T, 1 � i � d}. Furthermore, let p′

d cov(e1(d))pd �=
0 (almost surely), which means that the projected data is not degenerate with
probability one.
For i.i.d. error sequences {et(d) : t = 1, . . . , d}, et(d) = (e1,t(d), . . . , ed,t(d))

′

with an arbitrary dependency structure across components, and if E |e1,t(d)|ν �
C < ∞ for all t and d as well as

‖pd‖21
p′
d cov(et)p

′
d

= o(T 1−2/ν) a.s., (C.3)

where ‖a‖1 =
∑d

j=1 |aj |, then (3.2) holds. The assertions remains true if τ2(pd)

is replaced by τ̂2d,T such that for all ε > 0

P

(∣∣∣∣∣ τ̂2d,T
τ2(pd)

− 1

∣∣∣∣∣ > ε

)
→ 0 a.s. (C.4)

Assumption (C.3) is always fulfilled for the multivariate situation with d
fixed or if d is growing sufficiently slowly with respect to T as the left hand side
of (C.3) is always bounded by

√
d if p′

d cov(e)pd/‖pd‖2 is bounded away from
zero. Otherwise, the assumption may hold for certain projections but not others.
However, in this case, it is possible to put stronger assumptions on the error
sequence such as in a), which are still much weaker than the usual assumption
for panel data, that components are independent.

The following lemma shows that the following two different stimators for
τ(pd) under the null hypothesis are both consistent. The second one is typically
still consistent in the presence of one mean change which usually leads to a
power improvement in the test for small samples. An analogous version can be
defined for the epidemic change situation. However, it is much harder to get an
equivalent correction in the multivariate setting because the covariance matrix
determines how different components are weighted, which in turn has an effect
on the location of the maximum. This problem does not arise in the univariate
situation, because the location of the maximum does not depend on the variance
estimate.

Lemma C.2. Consider

τ̂21,d,T (pd) =
1

T

T∑
j=1

(
p′
det(d)−

1

T

T∑
i=1

p′
det(d)

)2

(C.5)
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as well as

τ̂22,d,T (pd) =
1

T

⎛⎜⎝k̂d,T∑
j=1

⎛⎝p′
dej(d)−

1

T

k̂d,T∑
i=1

p′
dei(d)

⎞⎠2

(C.6)

+

T∑
j=k̂d,T+1

⎛⎝p′
det(d)−

1

T

T∑
i=k̂d,T+1

p′
dei(d)

⎞⎠2
⎞⎟⎠ ,

where k̂d,T = arg max
t=1,...,T

Ud,T (t/T ).

a) Under the assumptions of Theorem 3.1 a) both estimators (C.5) as well as
(C.6) fulfill (3.3).

b) Under the assumptions of Theorem 3.1 b), then estimator (C.5) fulfills (3.3)
under the assumption

‖pd‖21
p′
d cov(et)p

′
d

= o(T 1−2/min(ν,4)) a.s.,

while estimator (C.6) fulfills it under the assumption

‖pd‖21
p′
d cov(et)p

′
d

= o(T 1−2/min(ν,4)(log T )−1) a.s.,

The following theorem gives the null asymptotic for the simple CUSUM
statistic for the at most one change, other statistics as given in Section C.1
can be dealt with along the same lines.

Corollary C.3. Let the assumptions of Theorem 3.1 be fulfilled and τ̂(pd)
fulfill (3.3) under the null hypothesis, then for all x ∈ R it holds under the null
hypothesis

P

(
max

1�k�T
w2(k/T )

U2
d,T (k/T )

τ̂2(pd)
� x
∣∣∣pd

)
→ P

(
max
0�t�1

w2(t)B2(t) � x

)
a.s.

P

⎛⎝ 1

T

∑
1�k�T

w2(k/T )
U2
d,T (k/T )

τ̂2(pd)
� x
∣∣∣pd

⎞⎠→ P

(∫ 1

0

w2(t)B2(t) dt � x

)
a.s.

for any continuous weight function w(·) with

lim
t→0

tαw(t) < ∞, lim
t→1

(1− t)αw(t) for some 0 � α < 1/2,

sup
η�t�1−η

w(t) < ∞ for all 0 < η � 1

2
. (C.7)
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C.3. Consistency of the AMOC change point estimator

The following theorem shows that the point of maximum is a consistent estima-
tor for the change point in rescaled time in the at-most-one-change situation.

Corollary C.4. Let the assumptions of Theorem 3.2 hold and additionally√
TE3(Δd,pd) → ∞ a.s. Under the alternative of one abrupt change, i.e. g(x) =

1{x>ϑ} for some 0 < ϑ < 1, the estimator

ϑ̂T =

⌊
arg maxkU

2
d,T (k/T )

T

⌋

is consistent for the change point in rescaled time, i.e.

P
(∣∣∣ϑ̂T − ϑ

∣∣∣ � ε |pd

)
→ 0 a.s.

An analogous statement holds, if the argmax of w2(k/T )U2
d,T (k/T ) is used in-

stead and w2(x) ((x− ϑ)+ − x(1− ϑ))
2
has a unique maximum at ϑ, which is

the case for many standard weight functions such as w(t) = (t(1 − t))−β for
some 0 � β < 1/2.

C.4. The oracle in the case of non-invertibility

Let us now have a look at the situation if Σ is not invertible hence the above
oracle does not exist. To this end, let us consider Case C.2 above – other non-
invertible dependent situations can essentially be viewed in a very similar fash-
ion, but become a combination of the two scenarios below.

Case C.2 (Fully dependent Components). In this case Σ = ΦdΦ
′
d is a rank 1

matrix and not invertible. Consequently, the oracle as in Definition 3.1 does not
exist. To understand the situation better, we have to distinguish two scenarios:

(i) If Φd is not a multiple of Δd we can transform the data into a noise-free
sequence that only contains the signal by projecting onto a vector that
is orthogonal to Φd (cancelling the noise term) but not to Δd. All such
projections are in principle equivalent as they yield the same signal except
for a different scaling which is not important if there is no noise present.
Consequently, all such transformations could be called oracle projections.

(ii) On the other hand if Δd is a multiple of Φd, then any projection cancelling
the noise will also cancel the signal. Projections that are orthogonal to
Φd hence by definition also to Δd will lead to a constant deterministic
sequence hence to a degenerate situation. All other projections lead to
the same (non-degenerate) time series except for multiplicative constants
and different means (under which the proposed change point statistics are
invariant by definition) so all of them could be called oracles.
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The following interpretation also explains the above mathematical findings: In
this situation, all components are obtained from one common factor {ηt} with
different weights according to Φd i.e. they move in sync with those weights. If
a change is proportional to Φd it could either be attributed to the noise coming
from {ηt} or from a change, so it will be difficult to detect as we are essentially
back in a duplicated rank one situation and no additional information about
the change can be obtained from the multivariate situation. However, if it is
not proportional to Φ, then it is immediately clear (with probability one) that
a change in mean must have occurred (as the underlying time series no longer
moves in sync). This can be seen to some extent in Figure 3.3, where the different
panels in the figure mimic the different scenarios as outlined above (with a large
value of φ being close to the non-invertible situation).

C.5. Misscaled projections for the mixed case

In this section we derive some mathematical theory for the mixed case C.3 under
misspecification explaining the intuition and simulation results already given in
Section 3.3.2.

It holds τ2( po) =
∑d

j=1 s
2
jδ

2
j +
(∑d

j=1 δjΦj

)2
. If additionally Δd = kΦd, for

some k > 0, we get the following high dimensional efficiency for the pre-oracle
by (3.4)

E3(Δd, po) =
‖Δd‖√∑d

i=1 s
2
i

(
δi

‖Δd‖

)2
+ ‖Φd‖2

.

The high dimensional efficiency for the unscaled random projection is given by
(confer Theorem 3.5 and (3.6))

‖Δd‖√∑d
j=1 s

2
j + ‖Φd‖2

.

As soon as sj ,Φj are of the same order, i.e. 0 < c � sj ,Φj � C < ∞ for all j,
the pre-oracle behaves as badly as the unscaled random projection. The same
holds for the quasi-oracle under the same assumptions. Interestingly, however,
in this particular situation, even the oracle is of the same order as the random
projection if the sj are of the same order, i.e. 0 < c � sj < C < ∞. More
precisely we get (for a proof we refer to the Section D)

E3(Δd,o) =
‖Δd‖√

1 +
∑d

j=1

Φ2
j

s2j

√√√√√∑d
j=1

δ2j
s2j∑d

j=1 δ
2
j

. (C.8)

Figure 3.3 shows simulations which confirm the underlying theory in finite sam-
ples.
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On the other hand, if Δd is orthogonal to Φd, then the noise from Φd cancels
for the pre-oracle projection and we get the rate

E3(Δd, po) =
‖Δd‖√∑d

i=1 s
2
i

(
δi

‖Δd‖

)2 ,
which is of the order ‖Δd‖2 if the sj are all of the same order. Anything between
those two cases is possible and depends on the angle between Δ and Φd (again
see Figures 3.3 and 3.4 for finite sample simulations).

Appendix D: Proofs

Proof of Theorem 3.1 and Theorem C.1. We need to prove the following func-
tional central limit theorem for the triangular array of projected random vari-
ables Yt,d =

∑d
j=1 pj(d)ej,t(d) given the (possibly random) projection pd =

(p1(d), . . . , pd(d))
′:⎧⎨⎩ 1√

Tτ2(pd)

�Tx�∑
t=1

Yt,d : 0 � x � 1 |pd

⎫⎬⎭ D[0,1]−→ {W (x) : 0 � x � 1} a.s.,

(D.1)

where {W (·)} denotes a standard Wiener process.
The proof for tightness is analogous to the one given in Theorem 16.1 of

Billingsley (1968) as it only depends on the independence across time (which
also holds conditionally given pd due to the independence of pd and {et(d)}).
Similarly, the proof for the convergence of the finite dimensional distributions
follows the proof of Theorem 10.1 in Billingsley (1968), where we need to use
the Lindeberg-Levy-version of the univariate central limit theorem for triangular
arrays. More precisely, we need to prove the Lindeberg condition given by

E

(
Y 2
1,d

τ2(pd)
1{Y1,d/τ(pd)�ε

√
T} |pd

)
→ 0 a.s.

for any ε > 0. The following Lyapunov-type condition implies the above Linde-
berg condition:

E

(∣∣∣∣ Y1,d

τ(pd)

∣∣∣∣ν |pd

)
= E

(∣∣∣∣p′
de1(d)

τ(pd)

∣∣∣∣ν |pd

)
= o(T ν/2−1) a.s., (D.2)

where ν > 2 as given in the theorem. Let

p̃d =
pd√

p′
d cov e1(d)pd

,

then the above Lyapunov condition is equal to

E
(
|p̃′

de1(d)|
ν |pd

)
= o(T ν/2−1) a.s.
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In the situation of a) cov e1(d) =
∑

j�1 aj(d)a
′
j(d) and we get by the Rosenthal

inequality (confer e.g. Lin and Bai (23233010, 9.7c))

E

⎛⎝∣∣∣∣∣∣
n∑

j=m

p̃′
daj(d)ηj,1(d)

∣∣∣∣∣∣
ν

|pd

⎞⎠
� O(1)

n∑
j=m

|p̃′
daj(d)|

ν
E |ηj,1(d)|ν +O(1)

⎛⎝ n∑
j=m

(p̃′
daj(d))

2
var ηj,1(d)

⎞⎠ν/2

,

where the right-hand side is bounded for any m,n with a bound that does
not depend on T or d and converges to zero for m,n → ∞ as E |ηj(d)|ν � C
hence var ηj(d) � 1 + C and by definition of p̃d it holds

∑n
j=m |p̃′

daj(d)|2 �
p̃′
d cov e1(d) p̃d � 1, hence also |p̃′

daj(d)|ν � |p̃′
daj(d)|2 and

∑n
j=m |p̃′

daj(d)|ν �
1.

Consequently, the infinite series exists in an Lν-sense with the following uni-
form (in T and d) moment bound

E
(
|p̃′

de1(d)|
ν |pd

)
= O(1) = o(T ν/2−1) a.s. (D.3)

To prove the Lyapunov-condition under the assumptions of b) we use the
Jenssen-inequality which yields

E
(
|p̃′

de1(d)|
ν |pd

)
= ‖p̃d‖ν1 E

((
d∑

i=1

|p̃i,d|
‖p̃d‖1

|ei,1(d)|
)ν

|pd

)

� ‖p̃d‖ν1
d∑

i=1

|p̃i,d|
‖p̃d‖1

E |ei,1(d)|ν � C

(
‖pd‖1√

p′
d cov(e1(d))p

′
d

)ν

= o(T ν/2−1) a.s. (D.4)

Proof of Lemma C.2. With the notation of the proof of Theorem 3.1 both esti-
mators (as functions of pd) fulfill (j = 1, 2)

τ̂2j,d,T (pd)

τ2(pd)
= τ̂2j,d,T (p̃d).

First by the independence across time we get by the van Bahr-Esseen inequality
(confer e.g. Lin and Bai (23233010, 9.3 and 9.4)) for some constant C > 0, which
may differ from line to line,

Epd

∣∣∣∣∣∣
b∑

j=a+1

(
(p̃′

dej(d))
2 − 1

)∣∣∣∣∣∣
ν/2

� C(b− a)max(1,ν/4) Epd

∣∣∣(p̃′
de1(d))

2 − 1
∣∣∣ν/2

� C (b− a)max(1,ν/4) max
(
1,Epd

|p̃′
de1(d)|

ν)
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�

⎧⎨⎩C(b− a)max(1,ν/4) a.s., in a),

C(b− a)max(1,ν/4) max

(
1,

(
‖pd‖1√

p′
d cov e1(d)pd

)ν)
, in b),

(D.5)

by (D.3) resp. (D.4), where Epd
denotes the conditional expectation given pd.

An application of the Markov-inequality now yields for any ε > 0

P

⎛⎝ 1

T

∣∣∣∣∣∣
T∑

j=1

(
(p̃′

dej(d))
2 − 1

)∣∣∣∣∣∣ � ε
∣∣∣pd

⎞⎠
�
{

C
εν/2T

−ν/2+max(1,ν/4) a.s., in a),
C

εν/2T
−ν/2+max(1,ν/4)o(T ν/2−ν/min(ν,4)) a.s., in b),

→ 0 a.s.

Similar arguments yield

P

⎛⎝ 1

T

∣∣∣∣∣∣
T∑

j=1

p̃′
dej(d)

∣∣∣∣∣∣ � ε
∣∣∣pd

⎞⎠→ 0 a.s.

proving a) and b) for τ̂21,d,T (pd).
From (D.5) it follows by Theorem B.1 resp. B.4 in Kirch (2006)

Epd
max

1�k�T

∣∣∣∣∣∣
k∑

j=1

(
(p̃′

dej(d))
2 − 1

)∣∣∣∣∣∣
ν/2

�

⎧⎪⎨⎪⎩
CTmax(1,ν/4)(log T )

(4−ν)+ν

2(4−ν) a.s., in a),

CTmax(1,ν/4)(log T )
(4−ν)+ν

2(4−ν) max

(
1,

(
‖pd‖1√

p′
d cov e1(d)pd

)ν)
, in b),

→ 0 a.s.

An application of the Markov inequality now yields for any ε > 0

P

⎛⎝ max
1�k�T

1

T

∣∣∣∣∣∣
k∑

j=1

(
((p̃′

dej(d))
2 − 1

)∣∣∣∣∣∣ � ε
∣∣∣pd

⎞⎠→ 0 a.s.

By the independence across time it holds⎧⎨⎩
T∑

j=k+1

(
(p̃′

dej(d))
2 − 1

)
: 1 � k � T

⎫⎬⎭ L
=

⎧⎨⎩
T−k∑
j=1

(
(p̃′

dej(d))
2 − 1

)
: 1 � k � T

⎫⎬⎭,

which implies

P

⎛⎝ max
1�k�T

1

T

∣∣∣∣∣∣
T∑

j=k+1

(
(p̃′

dej(d))
2 − 1

)∣∣∣∣∣∣ � ε
∣∣∣pd

⎞⎠→ 0 a.s.
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Similar assertions can be obtained along the same lines for

max1�k�T
1
T

∣∣∣∑k
j=1 p̃

′
dej(d)

∣∣∣ as well as max1�k�T
1
T

∣∣∣∑T
j=k+1 p̃

′
dej(d)

∣∣∣, which
imply the assertion for τ̂22,d,T (pd).

Proof of Corollary C.3. By an application of the continuous mapping theorem
and Theorem 3.1 we get the assertions for the truncated maxima resp. the sums
over [τT, (1 − τ)T ] for any τ > 0 towards equivalently truncated limit distri-
butions. Because we assume independence across time (with existing second
moments) the Hájek-Rényi inequality yields for all ε > 0

P

(
max

1�k�τT
w(k/T )

∣∣∣∣∣
k∑

t=1

p̃′
det(d)

∣∣∣∣∣ � ε
∣∣∣pd

)
→ 0 a.s.

P

(
max

(1−τ)T�k�
w(k/T )

∣∣∣∣∣
T∑

t=k+1

p̃′
det(d)

∣∣∣∣∣ � ε
∣∣∣pd

)
→ 0 a.s.

as τ → 0 uniformly in T , where the notation of the proof of Theorem 3.1 has
been used. This in addition to an equivalent argument for the limit process shows
that the truncation is asymptotically negligible proving the desired results.

Proof of Theorem 3.2. We consider the situation where
√
T E3(Δd,pd)

converges a.s. Under alternatives it holds

Ud,T (x)

τ(pd)
=

Ud,T (x; e)

τ(pd)

+ sgn(Δ′
dpd)

√
T E3(Δd,pd)

⎛⎝ 1

T

�Tx�∑
i=1

g(i/T )− �Tx
T 2

T∑
j=1

g(j/T )

⎞⎠ ,

where Ud,T (x; e) is the corresponding functional of the error process. By Theo-
rem 3.1 it holds{

Ud,T (x; e)

τ(pd)
: 0 � x � 1 |pd

}
D[0,1]−→ {B(x) : 0 � x � 1} a.s.

Furthermore, by the Riemann-integrability of g(·) it follows

sup
0�x�1

∣∣∣∣∣∣ 1T
�Tx�∑
i=1

g(i/T )− �Tx
T 2

T∑
j=1

g(j/T )−
(∫ x

0

g(t) dt− x

∫ 1

0

g(t) dt

)∣∣∣∣∣∣→ 0.

For any τ > 0

max
τ�k/T�1−τ

w2(k/T )
U2
d,T (k/T )

τ2(pd)

= T E2
3 (Δd,pd)

(
sup

τ�x�1−τ
w2(x)

(∫ x

0

g(t) dt− x

∫ 1

0

g(t) dt

)2

+ oPpd
(1)

)
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almost surely, where Ppd
denotes the conditional probability given pd. Because

by assumption supτ�x�1−τ w
2(x)

(∫ x
0
g(t) dt− x

∫ 1
0
g(t) dt

)2
> 0 for some τ >

0, so that the above term becomes unbounded asymptotically. This gives the
assertion for the max statistics, similar arguments give the assertion for the sum
statistic.

Proof of Corollary C.4. Similarly to the proof of Theorem 3.2 it follows (where
the uniformity at 0 and 1 follows by the assumptions on the rate of divergence
for w(·) at 0 or 1)

sup
0<x<1

w2(x)

∣∣∣∣∣ U2
d,T (x)

τ2(pd)T E2
3 (Δd,pd)

− ((x− ϑ)+ − x(1− ϑ))
2

∣∣∣∣∣ = oPpd
(1) a.s.,

which implies the assertion by standard arguments on noting that

ϑ̂T = arg max
0�x�1

w2(x)
U2
d,T (x)

τ2(pd)T E2
3 (Δd,pd)

,

ϑ = arg max
0�x�1

w2(x) ((x− ϑ)+ − x(1− ϑ))
2
.

Proof of Proposition 3.3. The assertion follows from

τ2(pd) = p′
dΣpd = ‖Σ1/2pd‖2,

|〈Δd,pd〉| = (Σ−1/2Δd)
′(Σ1/2pd) = ‖Σ−1/2Δd‖‖Σ1/2pd‖ cos(αΣ−1/2Δd,Σ1/2pd

).

Proof of Theorem 3.4. Let Xd = (X1, . . . , Xd)
′ be N(0,Id), then by Marsaglia

(1972) it holds rd
L
= (X1, . . . , Xd)

′/‖(X1, . . . , Xd)
′‖ and it follows by (3.4)

E2
3 (Δd,Σ

−1/2rd)
d

‖Σ−1/2Δd‖2
L
=

∣∣∣X′
dΣ

−1/2 Δd

‖Σ−1/2Δd‖

∣∣∣2
X′

dXd

EX′
dXd

Since the numerator has a χ2
1 distribution (not depending on d), there exist for

any ε > 0 constants 0 < c1 < C1 < ∞ such that

sup
d�1

P

(
c1 �

∣∣∣∣X ′
dΣ

−1/2 Δd

‖Σ−1/2Δd‖

∣∣∣∣2 � C1

)
� 1− ε.

Furthermore, the denominator has a χ2
d-distribution divided by its expectation,

consequently an application of the Markov-inequality yields for any ε > 0 the
existence of 0 < C2 < ∞ such that

sup
d�1

P

(
X ′

dXd

EX ′
dXd

� C2

)
� ε.
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By integration by parts we get E
(
X ′

dXd

)−1 � 2/d for d � 3 so that another
application of the Markov-inequality yields that for any ε > 0 there exists c2 > 0
such that

lim sup
d→∞

P

(
X ′

dXd

EX ′
dXd

� c2

)
� ε,

completing the proof of the theorem by standard arguments.

Proof of Theorem 3.5. Let Xd = (X1, . . . , Xd)
′ be N(0,Id), then as in the proof

of Theorem 3.4 it holds

E2
3 (Δ,M−1/2rd)

tr(M−1/2ΣM−1/2)

‖M−1/2Δd‖2
L
=

∣∣∣X′
dM

−1/2 Δd

‖M−1/2Δd‖

∣∣∣2
X′

dM
−1/2ΣM−1/2Xd

tr(M−1/2ΣM−1/2)

.

The proof of the lower bound is analogous to the proof of Theorem 3.4 by noting
that (A = M−1/2ΣM−1/2)

EX′AX = E

d∑
i,j=1

ai,jXiXj =

d∑
i,j=1

ai,jδi,j =

d∑
i=1

ai,i = tr(A).

For the proof of the upper bound, first note that by a spectral decomposition it
holds

X′M−1/2ΣM−1/2X

tr(M−1/2ΣM−1/2)

L
=

d∑
j=1

αjX
2
j , for some 0 < αd � . . . � α1,

d∑
j=1

αj = 1.

From this we get on the one hand by the Markov inequality

P

⎛⎝ d∑
j=1

αjX
2
j � c

⎞⎠ � P (α1X
2
1 � c) �

(
c

α1

)1/4

E(|X2
1 |−1/4),

where E(|X2
1 |−1/4) = Γ(1/4)/(21/4

√
π) exists (as can be seen using the density

for a χ2
1-distribution). On the other hand it holds for any c � 1/2 by another

application of the Markov inequality

P

⎛⎝ d∑
j=1

αjX
2
j � c

⎞⎠ � P

⎛⎝∣∣∣∣∣∣
d∑

j=1

αjX
2
j − 1

∣∣∣∣∣∣ � 1/2

⎞⎠ � 8

d∑
i=1

α2
i � 8α1.

By chosing c = min(1/2, (E(|X2
1 |−1/4))−4/8 ε5) we finally get

sup
0<αd�...�α1,

∑d
i=1 αi=1

P

⎛⎝ d∑
j=1

αjX
2
j � c

⎞⎠
� sup

0<αd�...�α1,
∑d

i=1 αi=1

min

(
ε

(
ε

8α1

)1/4

, 8α1

)
� ε,

completing the proof.
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Proof of Theorem 3.6. By the Cauchy-Schwarz inequality

τ2(M−1Δd) = Δ′
dM

−1
∑
j�1

aja
′
jM

−1Δd =
∑
j�1

(a′jM
−1Δd)

2

�
∑
j�1

a′jM
−1aj Δ

′
dM

−1Δd = tr

⎛⎝M−1/2
∑
j�1

aja
′
jM

−1/2

⎞⎠ Δ′
dM

−1Δd,

which implies the assertion by (3.4).

Proof of Proposition 3.7. Assertion a) follows from

|〈Δd, po〉|2 =

(
d∑

i=1

δ2i,T
σ2
i

σ2
i

)2

� c2

(
d∑

i=1

δ2i,T
σ2
i

)2

= c2 |〈Δd, qo〉|2 ,

τ2( po) =
′

poΣ po =

d∑
i=1

δ2i,T
σ2
i

σ4
i � C2 |〈Δd, qo〉| .

Concerning b) first note that by the Cauchy-Schwarz inequality with Λ =
diag(σ2

1 , . . . , σ
2
d)

τ2( qo) =
∑
j�1

(Δ′
dΛ

−1aj)
2 � Δ′

dΛ
−2Δd

∑
j�1

a′jaj �
Δ′

dΔd

c2
tr(Σ).

This implies assertion b) by (3.4) on noting that

|Δ′
dΛ

−1Δd|2 � |Δ′
dΔd|2
C2

.

Proof of Equation (C.8). By Proposition 3.3 it holds for Δd = kΦd

E2
3 (Δd,o) = ‖Σ−1/2Δd‖2 = Δ′

d(D +ΦdΦ
′
d)

−1Δd,

where D = diag(s21, . . . , s
2
d)

′. Hence

Δ′
d(D +ΦdΦ

′
d)

−1Δd

= (D−1/2Δd)
′
(
Id + (D−1/2Φd)(D

−1/2Φd)
′
)−1

D−1/2Δd

=
(D−1/2Δd)

′D−1/2Δd

1 +D−1/2Φ′
dD

−1/2Φd

,

where the last line follows from the fact that D−1/2Δd = kD−1/2Φd is an eigen-
vector of Id +(D−1/2Φd)(D

−1/2Φd)
′ with eigenvalue 1+ (D−1/2Φd)

′D−1/2Φd

hence also for the inverse of the matrix with inverse eigenvalue.
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Proof of Theorem 2.1. Similarly as in the proof of Theorem 3.2 it holds

ZT,i(x) = ZT,i(x; e) + δi,T
√
T

⎛⎝ 1

T

�Tx�∑
j=1

g(j/T ) +
�Tx
T 2

T∑
j=1

g(j/T )

⎞⎠ ,

where ZT,i(x; e) is the corresponding functional for the error sequence (rather
than the actual observations). From this it follows

Vd,T (x) = Vd,T (x; e) + T E2
1 (Δd)

(∫ x

0

g(t) dt− x

∫ 1

0

g(t) dt+ o(1)

)
+RT (x),

where RT (x) is the mixed term given by

RT (x) =
2
√
T√
d

d∑
i=1

δi,T
σ2
i

ZT,i(x; e)

(∫ x

0

g(t) dt− x

∫ 1

0

g(t) dt+ o(1)

)
which by an application of the Hájek -Rényi inequality (across time) yields

P

(
sup

0�x�1
|RT (x)| � c

)
= O (1)

1

c2
T
1

d

d∑
i=1

δ2i
σ2
i

= OP (1)
1

c2
√
d
T E1(Δd).

From this the assertion follows by an application of Theorem B.1.

Proof of Lemma 2.2. The proof follows closely the proof of (28)–(30) in Horváth
and Hušková (2012) but where we scale diagonally with the true variances. We
will give a short sketch for the sake of completeness. The key is the following
decomposition

Vd,T (x)

=
1√
d

d∑
i=1

⎛⎜⎝ s2i
s2i +Φ2

i

1

T

⎛⎝�Tx�∑
t=1

ηi,t(d)−
�Tx
T

T∑
t=1

ηi,T (d)

⎞⎠2

− �Tx(T − �Tx)
T 2

⎞⎟⎠
+

2√
d

⎛⎝ d∑
i=1

Φisi
s2i +Φ2

i

1√
T

⎛⎝�Tx�∑
t=1

ηi,t(d)−
�Tx
T

T∑
t=1

ηi,T (d)

⎞⎠⎞⎠
· 1√

T

⎛⎝�Tx�∑
t=1

ηd+1,t(d)−
�Tx
T

T∑
t=1

ηd+1,t(d)

⎞⎠
+

1

T

⎛⎝�Tx�∑
t=1

ηd+1,t(d)−
�Tx
T

T∑
t=1

ηd+1,t(d)

⎞⎠2

1√
d
Ad.

The first term converges to the limit given in a). To see this, note that the proof
of the Lyapunov condition in Horváth and Hušková (2012) following equation
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(39) still holds because s2i /(s
2
i + Φ2

i ) is uniformly bounded from above by as-
sumption (showing that the numerator is bounded) while again by assumption

1

d

d∑
i=1

s4i
(s2i + φ2

i )
2
� D > 0,

showing that the denominator is bounded. Similarly, the proof of tightness in
Horváth and Hušková (2012) (equations (43) and following) remains valid. The
asymptotic variance remains the same under a) and b) because by assumption∣∣∣∣∣1d

d∑
i=1

s4i
(s2i +Φ2

i )
2
− 1

∣∣∣∣∣ � 3

d
Ad → 0.

The middle term in the above decomposition is bounded by an application of
the Hájek -Rényi inequality

P

⎛⎝ sup
0<x<1

1√
d

∣∣∣∣∣∣
d∑

i=1

Φisi
s2i +Φ2

i

1√
T

⎛⎝�Tx�∑
t=1

ηi,t(d)−
�Tx
T

T∑
t=1

ηi,T (d)

⎞⎠∣∣∣∣∣∣ � D

⎞⎠
= O(1)

1

d

d∑
j=1

φ2
i s

2
i

(s2i + φ2
i )

2
= O(1)

1

d
Ad,

which converges to 0 for a) and b) – for c) we multiply the original statistic by√
d/Ad, which means this term is multiplied with d/A2

d leaving us with 1/Ad

which converges to 0 if Ad/
√
d → ∞.

Similarly, we can bound 1√
T

(∑�Tx�
t=1 ηd+1,t(d)− �Tx�

T

∑T
t=1 ηd+1,t(d)

)
, showing

that the middle term is asymptotically negligible. The assertions now follow by
an application of the functional central limit theorem for

1
T

(∑�Tx�
t=1 ηd+1,t(d)− �Tx�

T

∑T
t=1 ηd+1,t(d)

)2
.

Proof of Theorem 2.3. The proof is analogous to the one of Theorem 2.1 on not-

ing that E2
2 (Δd) =

√
d

Ad
E2
1 (Δd) and σ2

i = s2i +Φ2
i by using Lemma 2.2 c) above.

Concerning the remainder term R̃T (x) note that ei,t = siηi,t +Φiηd+1,t, so that
the remainder term can be split into two terms. The first term can be dealt with

analogously to the proof of Theorem 2.1 and is of order OP

(√
1
Ad

TE2(Δd)
)
,

while for the second summand we get by an application of the Cauchy-Schwarz-
inequality

sup
0�x�1

∣∣∣∣∣∣ 1Ad

d∑
i=1

δiφi

σ2
i

⎛⎝�Tx�∑
t=1

ηd+1,t −
�Tx
T

T∑
t=1

ηd+1,t

⎞⎠∣∣∣∣∣∣ = OP (
√
T )

√√√√∑d
i=1

δ2i
σ2
i

Ad

= O

(√
T E2

2 (Δd)

)
.
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Proof of Corollary 3.8. By an application of the Cauchy-Schwarz inequality it
holds

Δ′
dΛ

−1
d ΣΛ−1

d Δd =

d∑
i=1

δ2i,T
s2i

(s2i +Φ2
i )

2
+

(
d∑

i=1

δi,TΦi

s2i +Φ2
i

)2

�
d∑

i=1

δ2i,T
σ2
i

(
1 +

d∑
i=1

Φ2
i

σ2
i

)
= Δ′

dΛ
−1
d Δd (1 +Ad),

which implies assertion a) on noting that

E2
3 (Δd, qo) =

(Δ′
dΛ

−1
d Δd)

2

Δ′
dΛ

−1
d ΣΛ−1

d Δd

.

b) This follows immediately from Theorem 3.5 since by 0 < c � s2j � C < ∞ as

well as as Φ2
i � C, it follows that

‖Δd‖2 ∼ Δ′
d diag

(
1

s21 +Φ2
1

, . . . ,
1

s2d +Φ2
d

)
Δd.
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like to thank Alexandra Carpentier for pointing out the connections to minimax
optimality to us. Finally, the authors would like to thank the Isaac Newton Insti-
tute for Mathematical Sciences, Cambridge, for support and hospitality during
the programme ’Inference for Change-Point and Related Processes’, where part
of the work on this paper was undertaken.

References

J. A. D. Aston and C. Kirch. Detecting and estimating changes in depen-
dent functional data. Journal of Multivariate Analysis, 109:204–220, 2012a.
MR2922864

J. A. D. Aston and C. Kirch. Evaluating stationarity via change-point alterna-
tives with applications to fMRI data. Annals of Applied Statistics, 6:1906–
1948, 2012b. MR3058688

A. Aue and L. Horváth. Structural breaks in time series. Journal of Time Series
Analysis, 34:1–16, 2013. MR3008012

http://www.ams.org/mathscinet-getitem?mr=2922864
http://www.ams.org/mathscinet-getitem?mr=3058688
http://www.ams.org/mathscinet-getitem?mr=3008012


High dimensional efficiency 1945
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S. Hörmann and P. Kokoszka. Weakly dependent functional data. Annals of
Statistics, 38:1845–1884, 2010. MR2662361
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