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Abstract: Community detection in network analysis aims at partitioning
nodes into disjoint communities. Real networks often contain outlier nodes
that do not belong to any communities and often do not have a known
number of communities. However, most current algorithms assume that
the number of communities is known and even fewer algorithm can handle
networks with outliers. In this paper, we propose detecting communities
by maximizing a novel model free tightness criterion. We show that this
tightness criterion is closely related with the L0-penalized graph Laplacian
and develop an efficient algorithm to extract communities based on the cri-
terion. Unlike many other community detection methods, this method does
not assume the number of communities is known and can properly detect
communities in networks with outliers. Under the degree corrected stochas-
tic block model, we show that even for networks with outliers, maximizing
the tightness criterion can extract communities with small misclassification
rates when the number of communities grows to infinity as the network
size grows. Simulation and real data analysis also show that the proposed
method performs significantly better than existing methods.
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1. Introduction

Community detection has attracted tremendous research attention, initially in
the physics and computer science community [22, 25, 24] and more recently
in the statistics community [3, 4, 34, 13]. Considering an undirected network
G = (V,E), where V is the set of nodes and E is the set of edges. Community
detection is to find an “optimal” partition of the nodes V = G1

⋃
· · ·

⋃
GK

such that nodes within the communities Gk (k = 1, · · · ,K) are more closely
connected than nodes between the communities.

One class of community detection algorithms detects community by opti-
mizing a heuristic global criterion over all possible partitions of the nodes. For
example, modularity [25] has been very popular in community detection and
fast algorithms for maximizing modularity [23] have been developed and widely
used. The well-known spectral clustering algorithms [13, 2, 6, 27, 14] can be
traced back as continuous approximation methods of global criterion such as
ratio cut [10] or normalized cut [28]. Spectral clustering methods are fast in
computation and easy to implement since they usually only require calculation
of a few eigenvectors of the Laplacian matrix.

Probabilistic model-based methods are another class of community detection
algorithms. They detect communities by fitting a probabilistic model [4, 26, 21,
8] or by optimizing a criterion derived from a probabilistic model [3, 15]. One
of the most commonly used models is the stochastic block model (SBM) [12].
Given the adjacency matrix A = (Aij)1≤i,j≤n of a network G with n nodes, the
SBM assumes that true node labels ci are independently sampled from a multi-
nomial distribution with parameters π = (π1, ..., πK)

T
, i.e. πk = P (ci = k), k =

1, · · · ,K. Conditional on the community labels, the edges Aij (i < j) are in-
dependent Bernoulli random variables with P (Aij = 1|ci, cj) = pcicj . The SBM
assumes that the expected degrees are the same for all nodes in the same com-
munity and thus cannot allow hubs in the network. To remove this constraint,
the degree corrected stochastic block model (DCSBM) [15] introduces a degree
correction variable θi to each node such that P (Aij = 1|ci, cj , θi, θj) = θiθjpcicj ,
where θi > 0 and E(θi) = 1.

Consistency results were developed for a number of community detection
algorithms, mostly based on the SBM or DCSBM. Under the assumption that
the community number is fixed, Bickel and Chen [3] laid out a general theory
under the SBM for checking consistency of community detection criteria when



1844 C. Chen et al.

the network size grows to infinity, and similar theories were also developed for
DCSBM [34, 13]. With a fixed community number, the community size would
linearly grow as the number of nodes grows. However, this is not a realistic
assumption, because real networks often have tight communities at small scales,
even when networks contain millions of nodes [20]. Recent researches [27, 7, 5]
generalized these consistency results by allowing the number of communities
grows to infinity. However, as far as we know, similar results for the DCSBM
are not available yet.

Despite all these progresses, current algorithms implicitly assume that all
nodes of the network belong to a community. However, many real networks con-
tain outlier nodes. These outlier nodes do not belong to any community and
they just loosely connect to other nodes in the network. Ignoring these out-
lier nodes can significantly influence the accuracy of community detection. In
addition, real networks often do not have a known number of communities. Al-
though several methods have recently been proposed to estimate the number of
communities [18, 29], but these methods are also based on the assumption that
all nodes belong to a community. A few available algorithms [17, 33] can de-
tect communities for networks with ourliers and unknown community numbers.
However, there is no theoretical result to guarantee the consistency of these
methods when there are outliers in the network.

In this paper, we propose a novel model-free tightness criterion for commu-
nity detection. Community detection based on this criterion iteratively extracts
single communities and no prior knowledge about the community number is
needed. Maximizing this criterion is closely related with the L0-penalized graph
Laplacian. An efficient algorithm is developed based on the alternating direc-
tion method of multiplier (ADMM) to maximize this penalized Laplacian. A
permutation-based test is performed to filter the extracted communities that are
likely to be outliers or false communities. Under the DCSBM and the DCSBM
with outliers, we establish asymptotic consistency allowing the community num-
ber K increases as the number of nodes grows. Simulation and real data analysis
show that the proposed method can computationally efficiently recover the com-
munity structure with high resolution and accuracy. This paper is organized as
follows. The model-free criterion and the ADMM algorithm are described in
Section 2. Theoretical results are given in Section 3. Section 4 presents simula-
tion comparison with existing methods and Section 5 is the real data analysis.
Proofs of the theorems are given in the Appendix.

2. Method and algorithm

Assume that nodes of a graph G = (V,E) are indexed by {1, 2, ..., n} and each
node i belongs to exactly one of K non-overlapping communities denoted by
a latent label ci ∈ {1, ...,K}. Given a set S ⊂ V , the complementary set of
S is denoted by S̄ and the number of elements in S is denoted as |S|. Define
W (S) =

∑
i,j∈S Aij , B(S) =

∑
i∈S,j∈S̄ Aij and V (S) = W (S) + B(S). Then,

W (S) is twice the number of edges between nodes in S, B(S) is the total number
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of edges between S and S̄ and V (S) is the total degrees in S. Given a vector
u, we denote ‖u‖0 as the number of nonzero elements in u and ‖u‖2 as the
L2-norm of the vector u.

2.1. A tightness criterion

Given a set S ⊂ V , if it is a true community, we expect that most of its con-
nections are within S itself and thus W (S)/V (S) should be large. However,
directly maximizing W (S)/V (S) has a trivial solution S = V . We instead intro-
duce a penalty to the size of the community and consider the following tightness
criterion,

ψ(S) =
W (S)

V (S)
− η |S| , (2.1)

where η is a tuning parameter. In Section 3, we will show that with a proper
choice of η, maximizing this tightness criterion can render consistency in com-
munity detection.

The quantity B(S) is known as the cut between S and S̄ [10]. True communi-
ties should have a small cut value. However, the entire network V or single nodes
with no connections all have zero cut values. To avoid these trivial solutions, the
ratio cut minimizes B(S)/(|S||S̄|) for community detection [10]. The denomi-
nator |S||S̄| can be viewed as a penalty to guard against too large or too small
communities. Similarly, the normalized cut minimizes B(S)/V (S)+B(S)/V (S̄)
for community detection [28]. The denominators V (S) and V (S̄) are penalties
for the community size. The criterion proposed in Zhao et al. 2011 [33] also
has a penalty for both S and S̄. Since these criteria penalize both |S| and |S̄|,
they perform best when the community sizes are similar. In comparison, the
tightness criterion (2.1) only penalizes |S|. This endows the tightness criterion
with a high detection power for both large and small communities. However,
only penalizing |S| can also lead to small spurious communities and we use a
resampling procedure to remove these potential false communities in section 2.3.

The tightness criterion 2.1 is closely related to a penalized graph Laplacian.
More specifically, let Q = D−1/2AD−1/2 be the graph Laplacian, where A is the
adjacency matrix and D = diag{d1, · · · , dn} is the nodal degree matrix with di
being the degree of the ith node. Then, we have the following proposition.

Proposition 2.1. Given a set S ⊂ V , define its membership vector by

uS(i) =

⎧⎨
⎩

√
di√

W (S)+B(S)
, if i ∈ S,

0, if i ∈ S̄.
(2.2)

Then we have ψ(S) = ut
SQuS − η‖uS‖0 and ‖uS‖2 = 1.

Therefore, maximizing the tightness criterion (2.1) is equivalent to the fol-
lowing optimization problem

max
S⊂V,u=uS

utQu− η‖u‖0. (2.3)
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Finding the global solution to (2.3) is difficult in general, because we have to
search over all possible subsets of V . In the next section, we will develop an
efficient algorithm based on the ADMM to find a local optimal.

2.2. Algorithm

Before introducing the algorithm, we first give some notations. For any u with
‖u‖2 = 1, we denote its nonzero element index set S(u) = {i : u(i) �= 0} ⊂ V .
On the other hand, given S(u), we can define a new membership vector ud =
uS(u) using (2.2). The vector ud is obtained just by reassigning values of the
nonzero elements of u according to the degrees of S(u). Note that ud satisfies
‖ud‖2 = 1. Given λ1 ≥ 0, we consider the following optimization problem

max
‖u‖2=1

utQu− η‖u‖0 − 2λ1‖u− ud‖22, (2.4)

which can be viewed as the augmented Lagrangian of (2.3). When λ1 is suf-
ficient large, u will be forced to be ud. It is easy to see that u can only take
discrete values in the optimization (2.3). So it is much easier to solve (2.4) than
solving (2.3) since u can be any vector with norm 1 in (2.4). By introducing an
intermediate variable v with v = u, the augmented Lagrangian of (2.4) is

max
‖u‖2=1,‖v‖2=1

utQv−λ‖u−v‖22−
η

2
(‖u‖0+‖v‖0)−λ1‖u−ud‖22−λ1‖v−vd‖22,

(2.5)
which is equivalent to

max
‖u‖2=1,‖v‖2=1

ut(Q+ 2λI)v − η

2
(‖u‖0 + ‖v‖0) + 2λ1u

tud + 2λ1v
tvd. (2.6)

We alternatively update u, ud, v and vd to solve (2.6). Given u or v, we could
easily get ud and vd using the d-operator defined above. Given other variables,
updating u or v reduces to a simple linear programming problem which has an
explicit solution given by the following proposition.

Proposition 2.2. For a given vector z = (z1, ..., zn)
t ∈ R

n, we denote its rth
largest absolute value as |z|r, and let zhr be the vector with the ith element as
zhr (i) = ziI(|zi| > |z|r+1). Then for a constant ρ > 0, the solution to

max
‖u‖2=1

utz− ρ‖u‖0 (2.7)

is u = L(z, ρ) = zhr/‖zhr‖2, where r is the smallest integer that satisfies

|z|r+1 ≤
√
ρ2 + 2ρ‖zhr‖2. (2.8)

The proof of Proposition (2.7) is given in [16] and we omit it here. We sum-
marize the algorithm for the optimization problem (2.6) in the following L0Lap
algorithm.
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Algorithm 1 L0-Penalized Laplacian Algorithm(L0Lap)
Require: Q, λ, λ1, η and ε

Initialize v0, u0. For each k = 1, 2, · · · ,
repeat

zk1 = (Q+ 2λI)vk−1 + 2λ1u
k−1
d , uk = L(zk1 , η/2);

zk2 = (Q+ 2λI)tuk + 2λ1v
k−1
d , vk = L(zk2 , η/2);

until ‖uk − vk‖ < ε.
return Sη = {i,uk(i) �= 0 and vk(i) �= 0}

In all simulation and real data analysis, we set the convergence tolerance
parameter ε as 10−4. The parameters λ and λ1 are the penalty parameters in
the augmented Lagrangian and they can be chosen as fixed [35]. Throughput
the paper, we set λ = 1/

√
n. For λ1, we first set λ1 = 0 and run Algorithm 1

with the initial value v0 = (1/
√
n, ..., 1/

√
n) to get v̂0. Then, we set λ1 = 1 and

run Algorithm 1 with the initial value v̂0 to get the final solution. Although
Algorithm 1 cannot guarantee a global maximum for (2.4), we find that this
process achieves robust results and good performance in the numerical analyses.

The parameter η is the most important tuning parameter and we introduce
a criterion to tune the parameter η. Given a subset S ⊂ V , define p̄W (S) =
W (S)/(|S|(|S| − 1)) and p̄B(S) = B(S)/(|S||S̄|). Thus, p̄W (S) is the average
connection within S and p̄B(S) is the average connection between S and S̄. A
true community S should has relative large p̄W (S) and small p̄B(S). Define

φ(S) =
p̄W (S)

p̄W (S) + p̄B(S)
. (2.9)

A large φ(S) implies that S has more connections within itself and thus would
be more likely to be a community. From the theoretical results in section 3, we
know that the best η is at the order of O(1/n). Therefore, we run Algorithm 1
for η = 0, 1/10n, 2/10n, · · · , 10/10n and choose the η such that the resulted Sη

achieves the largest φ(Sη).

2.3. The permutation test

After a community is extracted by Algorithm 1, we remove it from the network
and iteratively apply Algorithm 1 to the remaining network until there is no
edge left. However, it may lead to some small spurious communities during this
process, because even Erdös-Rényi (ER) networks can have small community-
like structures. To filter these spurious communities, we introduce the following
permutation test.

Suppose that S1, · · · , Sc are all the identified communities with less than
M nodes and G0 is the sub-network of G composed of nodes in

⋃c
i=1 Si. Let

p̄ =
∑

i,j Aij/(n
2 − n). Given a subset S of G0, if S is an ER-graph with a

connecting probability p̄, given any m nodes, the probability of observing no



1848 C. Chen et al.

more than E edges between these m nodes is

p(m,E) =

E∑
i=0

(
m(m− 1)/2

i

)
p̄i(1− p̄)m(m−1)/2−i. (2.10)

Let ni and Ei be the number of nodes and number of edges in Si (i = 1, · · · , c),
respectively. Each detected community Si has an associated probability p(ni, Ei)
using (2.10). We permute N times the edges in G0 to generate N ER-graphs and
run Algorithm 1 to each of the N ER-graphs. The first extracted community of
the jth ER-graph also has a probability pER

j using (2.10). Note that p(ni, Ei)

should be less than most pER
j if Si is a true tight community. We assign the

permutation p-value for Si as pi = |{j : pER
j ≥ p(ni, Ei), j = 1, · · · , N}|/N .

The detected community Si is filtered out if pi ≥ α. In our simulation and real
data, we set M = 20, N = 100 and α = 0.05.

3. Theoretical properties

In this section, we discuss theoretical results about the estimator S that max-
imizes the tightness criterion (2.1) under the DCSBM and the DCSBM with
outliers. We first give the exact definition of the DCSBM.

Definition 3.1. A network G = (V,E) is said to follow a DCSBM, if it satisfies
the following assumptions.

(A1) Each node is independently assigned a pair of latent variables (ci, θi),
where ci is the community label taking values in {1, 2, ...,K}, and θi is
a “degree variable” taking discrete values in {h1, · · · , hM} (0 < h1 < ... <
hM ).

(A2) The marginal distribution of ci is a multinomial distribution with param-

eters π = (π1, ..., πK)
T
, and the random variable θi satisfies E[θi] = 1 for

identifiability.
(A3) Given c = (c1, ..., cn) and θ = (θ1, ..., θn), the edges Aij (i < j) are

independent Bernoulli random variables with P (Aij = 1|c,θ) = θiθjpcicj .
(A4) Denote π− = min1≤k≤K πk, p− = min1≤k≤K{pkk} and q+ =

maxk �=m{pkm}. Then, p− > q+.

Throughout this paper, we assume that α, τ, γ, δ are fixed constants such
that 0 ≤ 2δ < α < 1/2 and 0 < τ < γ < α − 2δ. The constant α is to
control the lower bound for the within-community connection probabilities and
the constant δ is to control the smallest community size. The constant τ is
to separate different communities by a feature depending on the community
size (πk) and the within-community connection probabilities (pkk). Given any
two sets S1 and S2, we denote S1ΔS2 = S1

⋃
S2 − S1

⋂
S2 as their symmetric

difference. For two nonnegative sequences an and bn, we write an � bn if there
exists a constant C0 > 0 such that an ≥ C0bn. Define Γδ = {S ⊂ V, |S|2/K �
n2−2δ}. Similar to [34], we assume Π is the K×M matrix representing the joint
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distribution of (ci, θi) with P(ci = k, θi = hl) = Πkl. Denote πd
k =

∑
l hlΠkl.

Note that since E[θi] = 1, we have
∑

k π
d
k = 1. Let ρdk = pkk/

∑K
l=1 π

d
l pkl.

Given the community label c and a set of nodes S ∈ Γδ, denote Gk = {i|ci =
k, i = 1, · · · , n}, Sk = {i|i ∈ S, ci = k}, π̂k = |Gk|/n and rk(S) = |Sk|/n for

1 ≤ k ≤ K. We define π̂d
k = πd

kπ̂k/πk, r
d
k(S) = πd

krk(S)/πk, r
d(S) =

∑K
k=1 r

d
k(S)

and ρ̂dk = pkk/
∑K

l=1 π̂
d
l pkl. For S = G1, we have r1(G1) = π̂1, r

d
1(G1) = π̂d

1 ,
rk(G1) = 0, rdk(G1) = 0 (k = 2, · · · ,K) and rd(G1) = π̂d

1 . Let xk = pkk, yk =∑K
l=1 π̂

d
l pkl for 1 ≤ k ≤ K. For any tk ≥ 0 (k = 1, · · · ,K) and

∑K
k=1 tk = 1,

define

f(t1, ..., tK) =

∑K
k=1 tk(tkxk +

∑K
l �=k tlpkl)∑K

k=1 tkyk
.

Theorem 3.1. Under the assumptions of DCSMB, assume ρd1−max2≤k≤K ρdk �
n−τ and πd

1/π1 ≥ max2≤k≤K πd
k/πk. If p

− � logn/n1−2α and π− � n−δ/2, there
is a constant C such that, with probability at least 1 − 2Kn−2, we can choose
η > 0 such that

f(1, 0, ..., 0)
πd
1

π1
− C

nγ
> nη > max

t1≤1−1/nγ−τ
f(t1, t2, ..., tK)

πd
1

π1
+

C

nγ
. (3.1)

With such a choice of η, suppose that S ⊂ V is such that the tightness criterion
(2.1) is maximized in Γδ, then with probability at least 1− (2K)n−2 − 2n+2/nn,

|SΔG1|
|S

⋃
G1|

≤ 2hMh−1
1 /nγ−τ + log n/nα−2δ−γ . (3.2)

This theorem says that under a number of regularity conditions, if the tuning
parameter is chosen properly, the detected community S is very close to the
underlying true community G1 which has the largest ρdk.

Remark 3.1. In Theorem 3.1, the maximum is taken over S ∈ Γδ. This con-
straint is needed because small spurious communities could generate a smaller
tightness criterion (2.1) than the true communities. However, we find it difficult
to develop an efficient algorithm with this constraint and hence this constraint
is not added in Algorithm 1. Instead, we filter the potential small spurious com-
munities by a resampling procedure.

Remark 3.2. The condition πd
1/π1 ≥ max2≤k≤K πd

k/πk is not as restrictive
as it looks. For example, if c and θ are independent, then πd

k = πk for all
1 ≤ k ≤ K and this condition is naturally satisfied. The SBM clearly also
satisfies this condition, since in this case M = 1 and h1 = 1.

Remark 3.3. The condition ρd1 −max2≤k≤K ρdk � n−τ is to make sure that the
first community is separable from the other communities. Consider a simple case
of SBM when pkl = p0 for all k �= l, we have ρdk = 1/ ((1− p0/pkk)πk + p0/pkk).
The ratio βk = p0/pkk can be viewed as the “out-in-ratio” defined in [8]. If all
πi’s are the same, the first extracted community G1 is the community with the
smallest out-in-ratio. If all out-in-ratios βk are the same, the first extracted
community G1 is the community with the smallest size.
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Since p− � log n/n1−2α and π− � n−δ/2, we have p−n1−2α+δ/2 � K logn.
Consider a special case when K is finite and the community sizes are all O(n).
In this case, the lower bound of the connecting probability within communities
should satisfies p− � logn/n1−2α+δ/2 and thus np−/ logn � n2α−δ/2. This
condition is similar to the condition np−/ logn → ∞ in [34], especially when
α is close to 0. If p− = O(1) and δ = 1/4 − 2ε for some ε > 0 very close
to 0, then nmin = O(n7/8+ε) and K = O(n1/8−ε). Thus, the upper bound of
K is O(n1/8). Consider the simplest case when K = 2. Let τ = 0 and γ =
α/2 − δ, the misclassification rate is about Op(log n/n

α/2−δ) by the inequality
(3.2). This improves the results in [27] and [19] where the misclassification rate
was Op(1/ logn).

When there are outliers in networks, we also have a consistency result similar
to Theorem 3.1. We first give the definition of the DCSBM with outliers.

Definition 3.2. A network G = (V,E) is said to follow a DCSBM with outliers,
if it satisfies all assumptions (A1)-(A3) and the following assumption.

(A4′) Denote π− = min1≤k≤K−1 πk, p− = min1≤k≤K−1{pkk} and q+ =
maxk �=m{pkm}. Then, p− > q+ ≥ pKK . The Kth community is called
the outlier community.

For a DCSBM with outliers, all communities are well-defined communities
except the Kth outlier community. We also assume p− � logn/n1−2α and π− �
n−δ/2 for the DCSBM with outliers. We have the following theorem.

Theorem 3.2. Suppose that G is a DCSBM with outliers. Assumes that all
conditions in Theorem 3.1 hold. In addition, assume that the outlier community
GK satisfies |GK |2/K = o(n2−2δ). Then, the conclusions in Theorem 3.1 hold.

This theorem says that as long as the outlier community is not too large, the
first extracted community will be very close to the community with the largest
ρdk.

4. Simulation study

In this section, we perform simulation to compare the proposed method with
state-of-the-art algorithms including SCORE [13], nPCA [28], OSLOM [17],
Zhao [33], and PLH [29]. Since SCORE and nPCA require a known commu-
nity number, we provide the true community number to these algorithms in
the simulation. For the algorithm developed in this paper, we consider two ver-
sions of the algorithm, with or without the permutation test. This helps us
to see the effect of the permutation test on removing false communities. We
call these algorithms L0Lap (without the permutation test), L0LapT (with the
permutation test). We evaluate the performance of the algorithms by the nor-
malized mutual information (NMI) [31] between the detected community and
true community. For methods that can automatically determine the commu-
nity number, we also compare their estimated community numbers. In addition,
we also consider another two algorithms, NB and BH [18], when comparing
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the accuracy for the community number estimation. Since NB and BH can
only estimate the community number, we do not evaluate their performance
in terms of NMI. For OSLOM, we use the C++ implementation available at
http://www.oslom.org/software.htm. The computer codes of the algorithms
Zhao, NB, BH and PLH were provided by the original authors. For the other
methods, we implement the algorithms using Matlab according to their respec-
tive descriptions. L0Lap and L0LapT were implemented by Matlab which are
available at https://github.com/ChongC1990/L0Lap.

Computationally, we find that SCORE and nPCA are computationally most
efficient methods. For a network with 1000 nodes, they can finish computation in
less than 0.1 second. The proposed method can finish computation in 3 seconds
for a 1000-node network. The Zhao method and OSLOM need 50 seconds and
282 seconds to process a 1000-node network, respectively. For a larger network
with 10,000 nodes, SCORE and nPCA can finish computation in a few seconds.
The proposed method can finish in 70 seconds. In comparison, the Zhao method
requires more than 3500 seconds and OSLOM is unable to give any result.

4.1. Simulation without Outliers

We perform the simulation under both SBM and DCSBM. All simulated net-
works have n = 1, 000 nodes and K = 21 communities of different sizes. Among
the 21 communities, 5 of them have 100 nodes, 6 have 50 nodes and 10 have 20
nodes. For the DCSBM, Θ = (θij) are drawn independently from U [0.5, 1]. For
SBM, all elements of Θ are set as 1. Similar to [1], the connecting matrix P is
constructed depending on an “out-in-ratio” parameter β [8]. Given a β, we set
the diagonal elements of matrix P(0) as β−1 and set all off-diagonal elements
as 1. Then, given an overall expected network degree Λ, we rescale P(0) to give
the final P:

P =
Λ

(n− 1)(πTP(0)π)(EΘ)2
P(0),

where π = (π1, π2, ..., π21) is the proportion of nodes in each community. Con-
ditional on the labels and P, the edges between nodes are generated as indepen-
dent Bernoulli variables with parameter θiθjPij . The methods NB, BH and PLH
require a candidate set of K, we provide the candidate set by all possible values
from 1 to 25. For L0LapT, OSLOM and Zhao, since there will be unclassified
nodes, we only consider nodes that are assigned with a community label when
calculating the NMI.

We first fix Λ = 50 and vary the out-in-ratio parameter β from 0.02 to 0.2.
For each β, the mean NMI of each algorithm is summarized by 100 repetitions
(Figure 1). For all algorithms, the NMIs tend to decrease as β increases. We
clearly see that our algorithm achieves the highest NMI compared with other
methods. As expected, after the permutation test, the NMI can be significantly
improved. This is because the permutation test successfully removes small false
communities. Especially, when β is large, the test is more effective in terms of
improving the NMI. For example, under the SBM, when β = 0.2, the NMI of

http://www.oslom.org/software.htm
https://github.com/ChongC1990/L0Lap
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L0Lap is similar to that of nPCA, but after applying the permutation test, the
NMI of L0Lap becomes close to 1. Furthermore, since nodes in the DCSBM
are heterogeneous, as expected, all methods perform better in the SBM than
in the DCSBM. In terms of the community number, L0LapT and PLH give
comparable estimates and are usually better than other algorithms (Figure 1, the
bottom panel). When the out-in-ratio β is large, other than the Zhao method,
all other methods tend to underestimate the community number. The Zhao
method prefers to find a big community and many small communities, so it
often overestimates the number of communities.

Fig 1. Under the SBM and DCSBM, the mean NMI (top panel) and the mean detected
community number (bottom panel) over 100 simulated networks with varying out-in-ratio
parameter β. The degree parameter Λ is fixed as 50.

We then fix β = 0.1 and vary Λ from 2 to 100 to compare different algorithms.
The mean NMI of each algorithm is shown in Figure 2. Again, we see that our
algorithm generally performs better than other algorithms. When Λ is very
small, since OSLOM and Zhao often divide networks to many small connected
subsets, they tend to have much larger NMIs than other methods and also tend
to significantly overestimate the community number.
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Fig 2. Under the SBM and DCSBM, the mean NMI (top panel) and the mean detected
community number (bottom panel) over 100 simulated networks with varying network degree
Λ. The out-in-ratio β is fixed as 0.1.

4.2. Simulation with outliers

In this section, we compare the performance of each method under the DCSBM
with outliers. The simulated networks are similar to the simulated networks in
Section 4.1 except that the 5 communities with 20 nodes are treated as out-
liers. The connecting probability between outliers is the same as the between-
community connection probability. For SCORE and nPCA, we set the commu-
nity number as 17 in this simulation (16 communities and 1 outlier community).
To compute the reasonable NMIs, the outlier nodes are viewed as in the 17th
true community. Figure 3 shows the NMIs and the number of detected com-
munities of these algorithms. Because there are outliers, even when β is very
small, there is still an nonignorable gap between the NMIs and its upper bound
1. However, after applying the permutation test, the NMI of L0Lap is signif-
icantly improved. Furthermore, the community number found by L0LapT is
significantly better than all other methods.
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Fig 3. Under the SBM and DCSBM with outliers, the mean NMI (top panel) and the mean
detected community number (bottom panel) over 100 simulated networks with varying out-in-
ratio parameter β. The degree parameter Λ is fixed as 50.

5. Real data analysis

We consider two real data sets in this section, the college football network data
[30] and the protein-protein network data in yeast [32].

5.1. College football data

The college football network data is the 2006 National Collegiate Athletic As-
sociation (NCAA) Football Bowl Subdivision (FBS) schedule [30]. The data
set consists of 115 schools belonging to 11 conferences in FBS, 4 independent
schools and 61 lower division schools. Schools within conferences play more often
against each other, so the 11 conferences are 11 communities. The four indepen-
dent schools are hubs. They play against many schools in different conferences
but do not belong to any conferences. The 61 lower division schools connect
loosely with other nodes and are outliers of the network. We apply all meth-
ods considered in the simulation study to this data set. The algorithms L0Lap,
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L0LapT, OSLOM, Zhao and PLH can automatically estimate the community
number. For SCORE and nPCA, we provide them with the true community
number 12, including 11 communities and one outlier community. The outlier
community includes both the hub nodes and the outlier nodes. Table 1 shows
the NMI and the detected community number (CN) of each algorithm. This
clearly show that L0LapT have the largest NMI compared with other methods.
PLH also works well. Its NMI is 0.929 and ranks the second best among all
algorithms. In terms of outlier identification, although OSLOM and Zhao are
designed to be able to identify outliers, OSLOM fails to report any outlier and
the Zhao method assigns most outlier nodes to its largest detected community.
In comparison, L0LapT identifies 80 nodes as outliers and 62 of them are true
outliers.

Table 1

Performance comparison on the college football network data. CN is the detected or the
provided community number. We set the community number as 12 for SCORE and nPCA.

L0Lap L0LapT SCORE nPCA OSLOM Zhao PLH
NMI 0.856 0.985 0.674 0.640 0.681 0.651 0.929
CN 22 10 12 12 11 25 9

To look into more details of the detected communities of each algorithm, we
examine the pairwise overlaps between detected communities with true com-
munities. Specifically, given a detected community CD

i and a true commu-
nity CT

j , we calculate an overlapping score between these two communities by

oij = |CD
i

⋂
CT

j |
/
|CD

i

⋃
CT

j |. Thus, we get a matrix O = (oij)CN×12 for each
algorithm, where CN is the detected community number. Figure 4 shows heat
maps of these matrices for L0LapT, PLH, OSLOM and Zhao. Since Zhao ex-
tracted too many communities, we only consider the top 12 biggest communities.
All communities identified by L0LapT are highly similar to or exactly the same
as the true communities, which is shown in Figure 4. This demonstrates that
L0LapT can give high quality communities. However, L0LapT fails to detect the
community 11 and nodes in this community are filtered as outliers. For OSLOM,
most of the diagonal overlapping scores are less than 0.71 and the largest over-
lapping score is only 0.86, showing that many detected communities by OSLOM
contain substantial amount of nodes not belonging to these communities. PLH
performs well for most communities, but members from true communities 4, 7
and 11 are mixed up. Zhao performs poorly in this data. Most of its detected
communities are far away from true communities.

5.2. Protein-protein interaction data in yeast

In this section, we consider a protein-protein interaction (PPI) network data in
yeast [32]. After removing isolated nodes, we get a network with 1,540 nodes
and 7,123 edges. Different proteins often interact with each other to achieve one
biological function. The communities of the PPI network should then represent
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Fig 4. Heatmap of the overlapping scores oij between the detected communities with the true
communities for the college football network data. The true community 12 consists of outliers.
The numbers in the figure are the overlapping scores oij with oij > 0.1.

different cellular functions. We apply all methods in the simulation study to
this PPI network. L0LapT finds 22 communities with their sizes ranging from
8 to 138. The Zhao method finds 15 communities ranging from 2 to 632 nodes.
OSLOM finds 114 communities ranging from 3 to 103. For SCORE and nPCA,
since the number of communities is unknown, we set the community number as
50, which roughly is the average number of communities detected by L0LapT,
Zhao and OSLOM. The candidate community number set for PLH is set as all
integers between 20 and 50. Finally, PLH find 29 communities ranging from 14
to 181. We further filter out communities with less than 5 nodes, since these are
unlikely to be true communities.

There is no true community structure to evaluate the quality of detected
communities. We instead use gene oncology (GO) enrichment analysis to com-
pare different methods. We download yeast gene GO annotation database from
http://www.yeastgenome.org/ and only focus only on GO terms with at least
10 annotated genes. For each community, we calculate a list of p-values with
every GO term by Fisher’s exact test. If the detected communities are bio-
logical meaningful, the communities should be highly significant with a num-
ber of GO terms. After log10 transformation of these p-values, define ratiot =
| − log10 p-value > t|

/
| − log10 p-value > 0| for a threshold t. This ratio could

be viewed as an indicator of biological relatedness of the detected communities.
At the same cutoff t, larger ratio value should correspond to more biologically
meaningful communities. The ratio curves of these methods are shown in Figure
5, left panel. We see that the curve of L0LapT is largely above other curves.

http://www.yeastgenome.org/
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However, when t is large, it is hard to see the difference. Therefore, we further
consider only p-values less than 0.1 and define ratiort = |{− log10 p-value > t}|

/
|{− log10 p-value > 1}| for any threshold t ≥ 1. The new ratio curves are shown
in Figure 5, right panel. We can now clearly see that L0LapT is always above
other methods.

Fig 5. GO enrichment analysis.

6. Conclusion and discussion

In this paper, we propose a community detection method by maximizing a
tightness criterion. This method does not require a known community number
and it can detect communities in networks with outliers. We prove a consis-
tency result for DCSBM with or without outliers. Simulation studies and real
data applications show that the proposed method generally performs better
than other available algorithms. One problem we found is that although the
proposed method generally gives more accurate estimation of the community
number, when networks contain more noise or when the network is too sparse,
it still cannot give a very accurate estimate of community number. In addition,
the statistical test used in this paper is based on permutation. Although simu-
lation shows that this permutation works well in general in terms filtering false
communities, we were not able to develop theoretical guarantees for this test.

The ADMM Algorithm 1 cannot guarantee a global maximum. Recently, a
few paper showed that global optimizer could be identified by local adjustments
[36]. These methods could be generalized to our optimization problem (2.4) and
deserve future research. If the community number K is known, the tightness
criterion (2.1) can be generalized to a partition of V . Assume V = G1

⋃
...

⋃
GK

is a partition of V , define

ψ(G1, ..., GK) =

K∑
i=1

W (Gi)

V (Gi)
.

True communities should have a large ψ(G1, ..., GK) and we may detect com-
munities by maximizing ψ(G1, ..., GK) over all partitions of V . Similarly, this
optimization problem can be approximated by the Graph Laplician problem
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maxu1,...,uK

∑k
i=1 u

T
i Qui subject to ‖ui‖2 = 1,ui � 0, 1 ≤ i ≤ K and uT

i uj =
0, 1 ≤ i �= j ≤ K. Simulation analyses show that this formulation results in
accurate communities. However, we have not found an efficient algorithm and
future research is needed in this direction.

7. Appendix

In this section, we give proofs of our theoretical results. Before proving the main
theorem, we first give some lemmas.

Lemma 7.1. Under the assumptions of DCSBM, we have

E (W (S)|c) =
K∑

k=1

nrdk(S)

(
K∑
l=1

nrdl (S)pkl

)
and

E(V (S)|c) =
K∑

k=1

nrdk(S)

(
K∑
l=1

nπ̂d
l pkl

)

Proof. Under the assumptions of DCSBM, we have

E(Aij |ci = k, cj = l) = E(θi|ci = k)E(θj |cj = l)pkl =
πd
k

πk

πd
l

πl
pkl.

So we have

E(W (S)|c) =
K∑

k=1

K∑
l=1

∑
i∈Sk,j∈Sl

E(Aij |c)

=
K∑

k=1

K∑
l=1

∑
i∈Sk,j∈Sl

πd
k

πk

πd
l

πl
pkl =

K∑
k=1

nrdk(S)(
K∑
l=1

nrdl (S)pkl),

and

E(V (S)|c) =
K∑

k=1

K∑
l=1

∑
i∈Sk,j∈Gl

E(Aij |c)

=
K∑

k=1

K∑
l=1

∑
i∈Sk,j∈Gl

πd
k

πk

πd
l

πl
pkl =

K∑
k=1

nrdk(S)(
K∑
l=1

nπ̂d
l pkl).

We need Chernoff’s inequality [9] and Hoeffding’s inequality [11] to prove
Theorem 3.1.

Lemma 7.2. (Chernoff’s inequality) Let X1, ..., Xn be independent random
variables with

P(Xi = 1) = pi, P(Xi = 0) = 1− pi.
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Then the sum X =
∑n

i=1 Xi has expectation E(X) =
∑n

i=1 pi, and we have

P (X < E (X)− λ) < exp
{
− 2−1λ2/E(X)

}
,

P (X > E (X) + λ) < exp
{
− 2−1λ2/(E(X) + λ/3)

}
.

Lemma 7.3. (Hoeffding’s inequality) Let X1, ..., Xn be independent random
variables and Xi’s are strictly bounded by the intervals [ai, bi]. We define the
empirical mean of these variables by X̄ = n−1

∑n
i=1 Xi, then we have

P
(∣∣X̄ − E(X̄)

∣∣ > t
)
≤ 2 exp

{
− 2n2t2∑n

i=1(bi − ai)2

}
.

Lemma 7.4. Define ψ̂(S) = E(W (S)|c)/E(V (S)|c)− η|S|. Under the assump-
tions of DCSBM, we have

max
S∈Γδ

∣∣∣ψ(S)− ψ̂(S)
∣∣∣ � nδ−α

with probability at least 1− 2n+2/nn when n is sufficiently large.

Proof. By Lemma 7.1 and the condition p− � logn/n1−2α, we have

E(W (S)|c) =
K∑

k=1

nrdk(S)(

K∑
l=1

nrdl (S)pkl)

≥ p−
K∑

k=1

n2(rdk(S))
2 � n1+2α logn

K∑
k=1

(rdk(S))
2. (7.1)

Since
∑K

k=1 r
d
k(S) =

∑K
k=1 rk(S)π

d
k/πk and 0 < h1 ≤ πd

k/πk ≤ hM , we have∑K
k=1(r

d
k(S))

2 ≥ (
∑K

k=1 r
d
k(S))

2/K ≥ h2
1|S|2/(Kn2) by the Cauchy-Schwarz

inequality. Then we have E(W (S)|c) � n1+2(α−δ) log n if S ∈ Γδ. Let λ =
2
√
n log nE(W (S)|c) and by Chernoff’s inequality, we have

P (W (S)− E(W (S)|c) < −λ) < n−n.

Since E(W (S)|c) � n1+2(α−δ) logn, we have λ/3 < E(W (S)|c) with sufficiently
large n and thus

P (W (S)− E(W (S)|c) > λ) < n−n.

So we have
P (|W (S)− E(W (S)|c)| > λ) < 2n−n.

For V (S), we have

E(V (S)|c) ≥ E(W (S)|c) � n1+2(α−δ) logn

Similarly, let λ̃ = 2
√
n log nE(V (S)|c), and we have

P

(
|V (S)− E(V (S)|c)| > λ̃

)
< 2n−n.
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In addition, we have

λ

E(W (S)|c) � 1

nα−δ
and

λ̃

E(V (S)|c) � 1

nα−δ
.

Thus, with probability at least 1− 4/nn, we have∣∣∣∣W (S)

V (S)
− E(W (S)|c)

E(V (S)|c)

∣∣∣∣
≤ max

{∣∣∣∣E(W (S)|c)− λ

E(V (S)|c) + λ̃
− E(W (S)|c)

E(V (S)|c)

∣∣∣∣ ,
∣∣∣∣E(W (S)|c) + λ

E(V (S)|c)− λ̃
− E(W (S)|c)

E(V (S)|c)

∣∣∣∣
}

= max

{∣∣∣∣∣E(W (S)|c)λ̃+ E(V (S)|c)λ
E(V (S)|c)(E(V (S)|c) + λ̃)

∣∣∣∣∣ ,
∣∣∣∣∣E(W (S)|c)λ̃+ E(V (S)|c)λ
E(V (S)|c)(E(V (S)|c)− λ̃)

∣∣∣∣∣
}

≤
∣∣∣∣ λ

E(V (S)|c)− λ̃

∣∣∣∣+
∣∣∣∣∣ λ̃

E(V (S)|c)− λ̃

∣∣∣∣∣ � 1

nα−δ
.

Therefore, with probability at least 1− 2n+2/nn we have

max
S∈Γδ

∣∣∣ψ(S)− ψ̂(S)
∣∣∣ � 1

nα−δ
,

when n is sufficiently large.

Lemma 7.5. For DCSBM, with probability at least 1− 2Kn−2, we have

|ρ̂dk − ρdk| �
1

nα−δ
,

for all 1 ≤ k ≤ K.

Proof. By definition, we have

π̂k =
1

n

n∑
i=1

I{ci = k}.

Since E(π̂k) = πk and I{ci = k} are strictly bounded by the intervals [0, 1], we
have

P

(
|π̂k − πk| >

√
logn

n

)
≤ 2

n2
,

by Hoeffding’s inequality.

Since π̂d
k = πd

kπ̂k/πk and πd
k/πk ≤ hM , we have

P

(∣∣π̂d
k − πd

k

∣∣ > hM

√
log n

n

)
≤ 2

n2
,
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by the inequality above. Therefore, with probability at least 1−2Kn−2 we have

|ρ̂dk − ρdk| =
∣∣∣∣∣ pkk∑K

l=1 π
d
l pkl

− pkk∑K
l=1 π̂

d
l pkl

∣∣∣∣∣ = pkk

∣∣∣∣∣
∑K

l=1(π̂
d
l − πd

l )pkl

(
∑K

l=1 π
d
l pkl)(

∑K
l=1 π̂

d
l pkl)

∣∣∣∣∣
�

√
log n

n

1

(π−)2
�

√
logn

n1/2−δ
� 1

nα−δ
.

Lemma 7.6. Assume real numbers 0 < xk, yk, zkl ≤ 1 satisfy 0 < C1 ≤ xk/yk ≤
C2 for all 1 ≤ k �= l ≤ K. Define

f(t1, ..., tK) =

∑K
k=1 tk(tkxk +

∑
l �=k tlzkl)∑K

k=1 tkyk
, (7.2)

where tk ≥ 0 and
∑K

k=1 tk = 1. If x1/y1 > max2≤k≤K xk/yk and min1≤k≤K xk >
maxk �=lzkl, we have

(1) f(t1, ..., tK) ≤ f(1, 0, ..., 0) = x1

y1
,

(2) For any 0 < t < 1,

f(1, 0, ..., 0)− max
t1≤1−t

f(t1, ..., tK) ≥ 1

2

(
x1

y1
− max

2≤k≤K

xk

yk

)
t.

Proof. (1) Since x1/y1 > max2≤k≤K xk/yk and min1≤k≤K xk > maxk �=lzkl,

f(t1, ..., tK) ≤
∑K

k=1 tkxk∑K
k=1 tkyk

≤ x1

y1
= f(1, 0, ..., 0).

(2) Since f(t1, ..., tK) is continuous and {(t1, ..., tK)|t1 ≤ 1 − t} is a close set,
f(t1, ..., tK) can achieve its upper bound on {(t1, ..., tK)|t1 ≤ 1−t}. Suppose
that f(t1, ..., tK) achieves its upper bound at (t∗1, ..., t

∗
K) and define x̄, ȳ

such that (1− t∗1)x̄ =
∑K

k=2 t
∗
k(t

∗
kxk +

∑
l �=k t

∗
l zkl), (1− t∗1)ȳ =

∑K
k=2 t

∗
kyk.

We have x̄/ȳ ≤ max2≤k≤K xk/yk since min1≤k≤K xk > maxk �=lzkl . Let
z+ = maxk �=lzkl, then we have

f(1, 0, ..., 0)− max
t1≤1−t

f(t1, ..., tK)

≥ x1

y1
− t∗1(t

∗
1x1 + (1− t∗1)z

+) + (1− t∗1)x̄

t∗1y1 + (1− t∗1)ȳ

=
(1− t∗1)t

∗
1y1(x1 − z+)

y1(t∗1y1 + (1− t∗1)ȳ)
+

(1− t∗1)(x1ȳ − x̄y1)

y1(t∗1y1 + (1− t∗1)ȳ)
.

Case I: y1 = min1≤k≤K yk.
We have ȳ/ [t∗1y1 + (1− t∗1)ȳ] ≥ 1, and thus

(1− t∗1)(x1ȳ − x̄y1)

y1(t∗1y1 + (1− t∗1)ȳ)
= (1− t∗1)(

x1

y1
− x̄

ȳ
)

ȳ

t∗1y1 + (1− t∗1)ȳ
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≥ t(
x1

y1
− max

2≤k≤K

xk

yk
).

Case II: y1 > min1≤k≤K yk.
There exists i �= 1 such that yi < y1, then we have z+/y1 < xi/yi.
If ȳ(1− t∗1) ≥ y1t

∗
1, we have

ȳ

t∗1y1 + (1− t∗1)ȳ
≥ 1

2(1− t∗1)
,

and

(1− t∗1)(x1ȳ − x̄y1)

y1(t∗1y1 + (1− t∗1)ȳ)
= (1− t∗1)(

x1

y1
− x̄

ȳ
)

ȳ

t∗1y1 + (1− t∗1)ȳ

≥ 1

2
(
x1

y1
− max

2≤k≤K

xk

yk
).

If ȳ(1− t∗1) ≤ y1t
∗
1, we have

t∗1y1
t∗1y1 + (1− t∗1)ȳ

≥ 1

2

and z+/y1 ≤ max2≤k≤K xk/yk, then we have

(1− t∗1)t
∗
1y1(x1 − z+)

y1(t∗1y1 + (1− t∗1)ȳ)
= (1− t∗1)(

x1

y1
− z+

y1
)

t∗1y1
t∗1y1 + (1− t∗1)ȳ

≥ 1

2
t(
x1

y1
− max

2≤k≤K

xk

yk
).

So we have

f(1, 0, ..., 0)− max
t1≤1−t

f(t1, ..., tK) ≥ 1

2
t

(
x1

y1
− max

2≤k≤K

xk

yk

)
.

Based on the lemmas given previously, we give the proof of Theorem 3.1.

Proof of Theorem 3.1. Based on Lemma 7.4, with probability at least 1−2n+2/
nn, we have

max
S∈Γδ

∣∣∣ψ(S)− ψ̂(S)
∣∣∣ � 1

nα−δ
.

Let tk(S) = rdk(S)/r
d(S) for 1 ≤ k ≤ K,

ψ̂(S) =

∑K
k=1 nr

d
k(S)(

∑K
l=1 nr

d
l (S)pkl)∑K

k=1 nr
d
k(S)(

∑K
l=1 nπ̂

d
l pkl)

− nη

K∑
k=1

πk

πd
k

rdk(S)

= rd(S)

(∑K
k=1 tk(S)(tk(S)pkk +

∑
l �=k tl(S)pkl)∑K

k=1 tk(S)(
∑K

l=1 π̂
d
l pkl)

− nη

K∑
k=1

πk

πd
k

tk(S)

)

= rd(S)

(
f(t1(S), ..., tK(S))− nη

K∑
k=1

πk

πd
k

tk(S)

)
.
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Note that if S = G1, t1(G1) = 1, tk(G1) = 0 (k = 2, · · · ,K) and

ψ̂(G1) = π̂d
1

(
f(1, 0, · · · , 0)− nη

π1

πd
1

)
.

Based on Lemma 7.5, with probability at least 1− 2Kn−2 we have

ρ̂d1 − max
2≤k≤K

ρ̂dk � 1

nτ
.

Then, with probability at least 1− 2Kn−2 we have

f(1, 0, ..., 0)− max
t1≤1−1/nγ−τ

f(t1, t2, ..., tK)

� 1

nγ−τ
(ρ̂d1 − max

2≤k≤K
ρ̂dk) �

1

nγ−τ

1

nτ
� 1

nγ
, (7.3)

and f(t1, ..., tK) ≤ f(1, 0, ..., 0) = ρ̂d1 by Lemma 7.6. From (7.3), it is easy to
see that for a constant C, we can choose η satisfying the inequality (3.1) with
probability at least 1− 2Kn−2.

Since max2≤k≤K πd
k/πk ≤ πd

1/π1 ≤ hM , Using the inequality in the condition,
we have with sufficiently large n,

f(t1(S), ..., tK(S))− nη

K∑
k=1

πk

πd
k

tk(S)

{
> C/(hMnγ), if t1(S) = 1;

< −C/(hMnγ), if t1(S) ≤ 1− 1/nγ−τ .

So we have

ψ̂(S)

{
> rd(S)C/(hMnγ), if t1 = 1;

< −rd(S)C/(hMnγ), if t1 ≤ 1− 1/nγ−τ .

with sufficiently large n. To maximize ψ̂(S), t1 must be bigger than 1−1/nγ−τ . If
rd(S) > π̂d

1+ π̂d
1/(n

γ−τ − 1), then t1 ≤ π̂d
1/r

d(S) < 1−1/nγ−τ . So we must have
rd(S) ≤ π̂d

1 + π̂d
1/(n

γ−τ − 1). If rd(S) ≤ π̂d
1 − π̂d

1 log n/n
α−2δ−γ and π̂d

1 � n−δ,
by Lemma 7.6 we have

ψ̂(G1)− ψ̂(S) ≥ (π̂d
1 − rd(S))

(
f(1, 0, ..., 0)− nη

π1

πd
1

)

≥ π̂d
1

logn

nα−2δ−γ

(
f(1, 0, ..., 0)− nη

π1

πd
1

)
� logn

nα−δ
.

Since rd(S) =
∑K

k=1 rk(S)π
d
k/πk � 1/nδ and πd

1 � 1/nδ, then with probability
at least 1− 2Kn−2 we have

ψ̂(G1)− ψ̂(S)

{
� logn

nα−δ , if rd(S) ≤ π̂d
1 − π̂d

1 logn
nα−2δ−γ

� C
nγ+δ , if t1(S) ≤ 1− 1/nγ−τ
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So with probability at least 1 − 2Kn−2 − 2n+2/nn, ψ(S) < ψ(G1) for all S
satisfying rd(S) ≤ π̂d

1 − π̂d
1 logn/n

α−2δ−γ or t1(S) ≤ 1− 1/nγ−τ , which implies
that ψ(S) maximizes when t1(S) ≥ 1− 1/nγ−τ and π̂d

1 − π̂d
1 logn/n

α−2δ−γ ≤
rd(S) ≤ π̂d

1+π̂d
1/(n

γ−τ − 1) with probability at least 1−2Kn−2−2n+2/nn. Since
t1(S) = rd1(S)/r

d(S), we therefore have π̂d
1 − π̂d

1 log n/n
α−2δ−γ ≤ rd1(S)/t1(S) ≤

π̂d
1 + π̂d

1/(n
γ−τ − 1), and hence (1− 1/nγ−τ )π̂1

(
1− logn/nα−2δ−γ

)
≤ r1(S) ≤

π̂1t1(S)n
γ−τ/(nγ−τ − 1). From t1(S) ≤ 1−1/nγ−τ , we get h1h

−1
M (r(S)−r1(S))/

r(S) ≤ (rd(S) − rd1(S))/r
d(S) ≤ 1/nγ−τ and r1(S)/r(S) ≥ 1 − hMh−1

1 /nγ−τ .
Note that r1(S)/π̂1 = |S

⋂
G1|/|G1| and r1(S)/r(S) = |S

⋂
G1|/|S|. Therefore,

with probability at least 1− 2Kn−2 − 2n+2/nn, we have

|SΔG1|
|S

⋃
G1|

≤ 2hMh−1
1 /nγ−τ + logn/nα−2δ−γ . (7.4)

The proof of Theorem 3.2 is very similar to the proof of Theorem 3.1 and we
omit it. The only difference is that we have to pay attention to the ourlier com-
munity. For example, in the proof of Lemma 7.4, the inequality (7.1) becomes

E(W (S)|c) � n1+2α logn
∑K−1

k=1 (rdk(S))
2. Then, using the condition |GK |2/K =

o(n2−2δ), we can also get E(W (S)|c) � n1+2(α−δ) logn and hence the conclusion
of Lemma 7.4 also holds for DCSBM with outliers.
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