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Abstract: This paper deals with a natural stochastic optimization pro-
cedure derived from the so-called Heavy-ball method differential equation,
which was introduced by Polyak in the 1960s with his seminal contribu-
tion [Pol64]. The Heavy-ball method is a second-order dynamics that was
investigated to minimize convex functions f . The family of second-order
methods recently received a large amount of attention, until the famous
contribution of Nesterov [Nes83], leading to the explosion of large-scale
optimization problems. This work provides an in-depth description of the
stochastic heavy-ball method, which is an adaptation of the deterministic
one when only unbiased evalutions of the gradient are available and used
throughout the iterations of the algorithm. We first describe some almost
sure convergence results in the case of general non-convex coercive functions
f . We then examine the situation of convex and strongly convex potentials
and derive some non-asymptotic results about the stochastic heavy-ball
method. We end our study with limit theorems on several rescaled algo-
rithms.
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1. Introduction

Minimization problems with deterministic methods. Finding the min-
imum of a function f over a set Ω with an iterative procedure is very popular
among numerous scientific communities and has many applications in optimiza-
tion, image processing, economics and statistics, to name a few. We refer to
[NY83] for a general survey on optimization algorithms and discussions related
to complexity theory, and to [Nes04, BV04] for a more focused presentation on
convex optimization problems and solutions. The most widespread approaches
rely on some first-order strategies, with a sequence pXkqkě0 that evolves over
Ω with a first-order recursive formula Xk`1 “ ΨrXk, fpXkq,∇fpXkqs that uses
a local approximation of f at point Xk, where this approximation is built with
the knowledge of fpXkq and ∇fpXkq alone. Among them, we refer to the steep-
est descent strategy in the convex unconstrained case, and to the Frank-Wolfe
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[FW56] algorithm in the compact convex constrained case. A lot is known about
first-order methods concerning their rates of convergence and their complex-
ity. In comparison to second-order methods, first-order methods are generally
slower and are significantly degraded on ill-conditioned optimization problems.
However, the complexity of each update involved in first-order methods is rela-
tively limited and therefore useful when dealing with a large-scale optimization
problem, which is generally expensive in the case of Interior Point and Newton-
like methods. A second-order “optimal” method was proposed in [Nes83] in the
1980s’ (also see [BT09] for an extension of this method with proximal operators).
The so-called Nesterov Accelerated Gradient Descent (NAGD) has particularly
raised considerable interest due to its numerical simplicity, to its low complexity
and to its mysterious behavior, making this method very attractive for large-
scale machine learning problems. Among the available interpretations of NAGD,
some recent advances have been proposed concerning the second-order dynam-
ical system by [WSC16], being a particular case of the generalized Heavy Ball
with Friction method (referred to as HBF in the text), as previously pointed out
in [CEG09a, CEG09b]. In particular, as highlighted in [CEG09a], NAGD may
be seen as a specific case of HBF after a time rescaling t “

?
s, thus making

the acceleration explicit through this change of variable, as well as being closely
linked to the modified Bessel functions when f is quadratic.

Stochastic optimization methods. In problems where the effective compu-
tation of the gradient is too costly, an idea initiated by the seminal contributions
of [RM51] and [KW52] is to randomize the gradient and to consider a so-called
stochastic gradient descent (S.G.D. for short). This situation typically appears
when the function to minimize is an integral, an expectation of a given ran-
dom variable or in discrete minimization problems with a very large number
of points. Even if this field of investigation has been initiated in the fifties,
the study of S.G.D. algorithms has met a great regain of interest in the large
scale machine learning community (see, e.g., [GY07, Bot10]), owing in particular
to its ability of being parallelized. In this setting, stochastic versions of deter-
ministic accelerated algorithms recently received a growth of interest (see e.g.
[JKK`17, Nit15]) and led to many open questions (as mentioned in the com-
munication http://praneethnetrapalli.org/ASGD-long.pdf). In the sequel,
we are going to focus on some of them for the HBF model.

Objectives and motivations. The HBF ordinary differential equation,
whose equation is given by (2.1) is a second order system which can be viewed
as a gradient descent with memory (see (2.2)). The aim of this paper, which
is mainly theoretical, is then to study stochastic optimization algorithms de-
rived from these deterministic dynamical systems. Before going further in the
presentation of this procedure, let us go deeper in the general objectives and
motivations of the paper.

From a theoretical point of view, we could formulate the general motivation
as follows: what are the consequences of the memory on the convergence of the
HBF-optimization procedure ? To this (too) general question, our first general

http://praneethnetrapalli.org/ASGD-long.pdf
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objective is to exhibit some conditions on the memory which guarantee the
a.s.-convergence towards local of global minima. This part of our work can be
viewed at the middle of two topics: the study of the long-time behavior of HBF
ordinary differential equations (see [CEG09a, CEG09b]) and, on the other hand
of, HBF stochastic differential equations (on this topic, see [GP14], [MS17]). In
particular, the hazard involved in stochastic algorithms is located between the
fully deterministic dynamics of an O.D.E. and the purely randomized dynamics
involved in stochastic differential equations and it could be interesting to fill the
gap between these two settings.

At a second level, we aim at studying the rate of convergence of the HBF-
procedure. In particular, compared to the standard stochastic gradient descent,
what are the effects of the memory on the (asymptotic of non-asymptotic) error?
We will tackle this question from a theoretical and numerical point of view.

From a dynamical point of view, our original motivation was to take ad-
vantage of the exploration abilities of the HBF. Actually, as a second order
method, the deterministic HBF ordinary differential equation already possesses
the ability to escape some local traps/minimizers of the function (which is not
the case for the standard gradient descent). As a complement of the above the-
oretical questions, it may be of interest to wonder about the relevance of this
optimization procedure in a multi-wells setting. This question seems to be very
difficult to tackle in full generality but may be of primary importance for nowa-
days machine learning problems where non-convex multi-modal are commonly
encountered, for example in the matrix completion problem (see, e.g., [BM05]).
Starting from this multi-modal motivation, some old works investigated the abil-
ity of the S.G.D. to escape local traps (see, e.g., [BD96, Pem90] for pioneering
almost sure convergence results towards local minimizers). Recently, [LSJR16]
establishes the convergence towards a local minimizer with probability 1 when
the initialization point is randomly sampled, whereas [JKN16] studies the partic-
ular case of the matrix completion problem with the S.G.D. Beyond the natural
exploration of the state space ability of the HBF, the recent work [JNJ17] has
also investigated the escape properties of another second order stochastic algo-
rithms with inertia and has shown the ease of stochastic accelerated gradient
descent to escape from local minimizers faster than the standard S.G.D.

State of art. As a stochastic version of the HBF strategy, our work falls into
the field of second order stochastic gradient algorithms with a memory that
produces an acceleration of the drift. We detail below some important references
relevant with these themes of research.

Standard S.G.D. and Averaging. As mentioned before, the development of
efficient methods to minimize functions when only noisy gradients are available
is an important problem in view of applications.

To this end, let us recall the existing results for the standard S.G.D., generally
called Robbins-Monro algorithm. In this setting, it can be shown in a strongly
convex setting that the algorithm can attain the rate Op1{nq (see e.g. [Duf97]),
but is really sensitive to the step sizes used. This remark led [PJ92] to develop an
averaging method that makes it possible to use longer step sizes of the Robbins-
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Monro algorithm, and to then average these iterates with a Cesaro procedure so
that this method produces optimal results in the minimax sense (see [NY83]) for
convex and strongly convex minimization problems, as pointed out in [BM11].

HBF-algorithm as a pertubed second order O.D.E. Numerous studies have
addressed a dynamical system point of view and studied the close links between
stochastic algorithms and their deterministic counterparts for some general func-
tion f (i.e., even non convex). These links originate in the famous Kushner-Clark
Theorem (see [KY03]) and successful improvements have been obtained using
differential geometry by [BH96, Ben06] on the long-time behavior of stochastic
algorithms. In particular, a growing field of interest concerns the behavior of
self-interacting stochastic algorithms (see, among others, [BLR02] and [GP14])
because these non-Markovian processes produce interesting features from the
modeling point of view (an illustration may be found in [GMP15]). Our work is
also linked with random dynamical systems pXn, Ynqně1 where the two coordi-
nates do not evolve at the same speed: this will be the case when we handle a
specific polynomial form of memory function (see below). This field of research
has been investigated by the pioneering work [FW84] where homogeneization
methods are developed for stochastic differential equations. For optimization
procedures, this two-scales setting appears in [Bor97] (see also [Bor08]) where
under an appropriate control of the noise and some uniqueness conditions, the
a.s. -convergence is obtained through a pseudo-trajectory approach (on this
topic, see [BH96]). We will come back on this connexion in the beginning of
Subsection 3.2.1 (see (3.2)).

Accelerated stochastic methods Several theoretical contributions to the study
of specific second-order stochastic optimization algorithms exist. [Lan12] ex-
plores some adaptations of the NAGD in the stochastic case for composite
(strongly or not) convex functions. Other authors [GL13, GL16] obtained con-
vergence results for the stochastic version of a variant of NAGD for non-convex
optimization for gradient Lipschitz functions but these methods cannot be used
for the analysis of the Heavy-ball algorithm. Finally, a recent work [YLL16]
proposes a unified study of some stochastic momentum algorithms while assum-
ing restrictive conditions on the noise of each gradient evaluation and on the
constant step size used. It should be noted that [YLL16] provides a preliminary
result on the behavior of the stochastic momentum algorithms in the non-convex
case with possible multi-well situations. Our work aims to study the properties
of a stochastic optimization algorithm naturally derived from the generalized
heavy ball with friction method.

Organisation

Our paper is organized as follows: Section 2 introduces the stochastic algorithm
as well as the main assumptions needed to obtain some results on this optimiza-
tion algorithm. For the sake of readability, these results are then provided in
Section 2.4 without too many technicalities. Sections 3, 4 and 5 are devoted to
the proof of these results (some technical details are postponed in the appendix
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sections). More precisely, Section 3 is dedicated to the almost sure convergence
result we can obtain in the case of a non-convex function f with several local
minima. Section 4 establishes the convergence rates of the stochastic heavy ball
in the strongly convex case. Section 5 provides a central limit theorem in a
particular case of the algorithm. Finally, in Section 6, we focus on a series of
numerical experiments.

2. Stochastic heavy ball

We begin with a brief description of what is known about the underlying ordi-
nary differential equation (referred to as a dynamical system below).

2.1. Deterministic heavy ball

This method introduced by Polyak in [Pol64] is inspired from the physical idea
of producing some inertia on the trajectory to speed up the evolution of the
underlying dynamical system: a ball evolves over the graph of a function f
and is submitted to both damping (due to a friction on the graph of f) and
acceleration. More precisely, this method is a second-order dynamical system
described by the following O.D.E.:

:xt ` γt 9xt ` ∇fpxtq “ 0, (2.1)

where pγtqtě0 corresponds to the damping coefficient, which is a key parameter of
the method. In particular, it is shown in [CEG09a] that the trajectory converges
only under some restrictive conditions on the function pγtqtě0, namely:

• if
`8
ş

0

γsds “ 8, then pfpxtqqtě0 converges,

• if
8
ş

0

e
´

t
ş

0

γsds
dt ă 8, then pxtqtě0 converges towards one of the minima of

any convex function f .

Intuitively, these conditions translate the oscillating nature of the solutions of
(2.1) into a quantitative setting for the convergence of the trajectories: if the
convergence γt Ñ 0 is sufficiently fast, then the trajectory cannot converge (the
limiting case being :x ` ∇fpxq “ 0). These properties lead us to consider two
natural families of functions pγtqtě0: γt “ r{t with r ą 1 and γt “ γ ą 0.
To convert (2.1) into a tractable iterative algorithm, it is necessary to rewrite
this O.D.E. using some coupled equations on position/speed, such equations are
commonly referred to as momentum equations (see, e.g. [Nes83] for an example).
Consistent with [CEG09b], (2.1) is equivalent to the following integro-differential
equation:

9xt “ ´
1

kptq

ż t

0

hpsq∇fpxsqds, (2.2)
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where h and k are two increasing functions related to γ. This equivalent feature
of the integro-differential formulation given by Equation (2.2) should be under-
stood as a differential equation that produces the same integral curve, up to a
suitable change of time, than the one produced by Equation (2.1).

Even though any couple of increasing functions may be chosen for h and k,
it is natural to consider only the situation where h “ 9k to produce an integral
over r0, ts that corresponds to a weighted average of p∇fpxsqqsPr0,ts. In such a
case, h then represents the amount of weight on the past we consider in (2.2).

Through the introduction of the auxiliary function yt “ kptq´1
şt

0
hpsq∇fpxsqds,

it can be checked that Equation (2.2) can be rewritten as a first order o.d.e. In

the special case h “ 9k, this leads to the system
#

9xt “ ´yt

9yt “ rptqp∇fpxtq ´ ytq
with rptq “

hptq

kptq
“

9kptq

kptq
. (2.3)

In the spirit of [GP14] (in a stochastic setting), we will mainly consider this
weighted averaged setting for two typical situations that correspond to a stable
convergent dynamical system in the deterministic case (see [CEG09a] for further
details):

• The exponentially memoried HBF : kptq “ eλt and hptq “ 9kptq “ λeλt

(and to a constant damping function γs “
?
λ). In this case, rptq “ λ so

that (2.3) is an homogeneous o.d.e.
• The polynomially memoried HBF : kptq “ tα`1 and hptq “ pα ` 1qtα so

that rptq “
α`1
t . Here, the damping parameter satisfies γs “

2α`1
s ). In

this case, we retrieve the o.d.e. of the NAGD when α “ 1 (see [WSC16]
and their “magic” constant 3 “ 2α ` 1 in that case).

2.2. Stochastic HBF

We now define the stochastic Heavy Ball algorithm as a noisy gradient dis-
cretized system related to (2.3). More precisely, we set pX0, Y0q “ px, yq P R

2d

and for all n ě 0:
#

Xn`1 “ Xn ´ γn`1Yn

Yn`1 “ Yn ` γn`1rnp∇fpXnq ´ Ynq ` γn`1rnΔMn`1,
(2.4)

where the natural filtration of the sequence pXn, Ynqně0 is denoted pFnqně1

and:

• pΔMnq is a sequence of pFnq-martingale increments. For applications,
ΔMn`1 usually represents the difference between the “true” value of
∇fpXnq and the one observed at iteration n denoted BxF pXn, ξnq, where
pξnqn is a sequence of i.i.d. random variables and F is an R

d-valued mea-
surable function such that:

@u P R
d

E rBxF pu, ξqs “ ∇fpuq



468 S. Gadat et al.

In this case,
ΔMn`1 “ ∇fpXnq ´ BxF pXn, ξnq. (2.5)

The randomness appears in the second component of the algorithm (2.4),
whereas it was handled in the first component in [GP14]. We will introduce
some assumptions on f and on the martingale sequence later.

• pγnqně1 corresponds to the step size used in the stochastic algorithm,
associated with the “time” of the algorithm represented by:

Γn “

n
ÿ

k“1

γk such that lim
nÝÑ`8

Γn “ `8.

For the sake of convenience, we also define:

Γp2q
n “

n
ÿ

k“1

γ2
k,

which may converge or not according to the choice of the sequence pγkqkě1.
• prnqně1 is a deterministic sequence that mimics the function t ÞÝÑ rptq

defined as:

rn “
hpΓnq

kpΓnq
. (2.6)

In particular, when an exponentially weighted HBF with kptq “ ert is
chosen, we have rn “ r ą 0, regardless of the value of n. In the other
situation where kptq “ tr, we obtain rn “ rΓ´1

n .

2.3. Baseline assumptions

We introduce some of the general assumptions we will work with below. Some of
these conditions are very general, whereas others are more specifically dedicated
to the analysis of the strongly convex situation. We will use the notation }.}
(resp. }.}F ) below to refer to the Euclidean norm on R

d (resp. the Frobenius
norm on Md,dpRq). Finally, when A P Md,dpRq, }A}8 will refer to the maximal
size of the modulus of the coefficients of A: }A}8 :“ supi,j |Ai,j |. Our theoretical
results will obviously not involve all of these hypotheses simultaneously.

Function f . We begin with a brief enumeration of assumptions on the func-
tion f .

‚ Assumption pHsq : f is a function in C2pRd,Rq such that:

lim
|x|ÝÑ`8

fpxq “ `8 and }D2f}8 :“ sup
xPRd

}D2fpxq}F ă `8 and }∇f}
2

ď cff.

The assumption pHsq is weak: it essentially requires that f be smooth, coer-
cive and have, at the most, a quadratic growth on 8. In particular, no convexity
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hypothesis is made when f satisfies pHsq. It would be possible to extend most
of our results to the situation where f is L-smooth (with a L-Lipschitz gradi-
ent), but we preferred to work with a slightly more stringent condition to avoid
additional technicalities.

‚ Assumption pHSCpαqq : f is a convex function such that D2f is Lipschitz and

α “ inf
xPRd

Sp
`

D2fpxq
˘

ą 0.

In particular, pHSCpαqq implies that f is α-strongly convex, meaning that:

@px, yq P R
d

ˆ R
d fpxq ě fpyq ` x∇fpyq, x ´ yy `

α

2
}x ´ y}

2.

Of course, pHSCpαqq is still standard and is the most favorable case when dealing
with convex optimization problems, leading to the best possible achievable rates.
pHSCpαqq translates the fact that the spectrum of the Hessian matrix at point
x, denoted by Sp

`

D2fpxq
˘

, is lower bounded by α ą 0, uniformly over Rd. The
fact that D2f is assumed to be Lipschitz will be useful to achieve convergence
rates in Section 4.2.

Noise sequence pΔMn`1qně1. We will essentially use three types of assump-
tions alternatively on the noise of the stochastic algorithm (2.4). The first and
second assumptions are concerned with a concentration-like hypothesis. The
first one is very weak and asserts that the noise has a bounded L

2 norm.

‚ Assumption pHσ,pq : (p ě 1) For any integer n, we have:

Ep}ΔMn`1}
p
|Fnq ď σ2

p1 ` fpXnqq
p
2 .

The assumption pHσ,2q is a standard convergence assumption for general
stochastic algorithms. For some non-asymptotic rates of convergence results, we
will rely on pHσ,pq for any p ě 1. In this case, we will denote the assumption
by pHσ,8q. Finally, let us note that the condition could be slightly alleviated by
replacing the right-hand member by σ2p1`fpXnq`|Yn|2qp. However, in view of
the standard case (2.5), this improvement has little interest in practice, which
explains our choice.

‚ Assumption pHGauss,σq : For any integer n, the Laplace transform of the
noise satisfies:

@t ě 0 E rexpptΔMn`1q|Fns ď e
σ2t2

2 .

This hypothesis is much stronger than pHσ,pq and translates a sub-Gaussian
behavior of pΔMn`1qně1. In particular, it can be easily shown that pHGauss,σq

implies pHσ,pq. Hence, pHGauss,σq is somewhat restrictive and will be used only
to obtain one important result in the non-convex situation for the almost sure
limit of the stochastic heavy ball with multiple wells.
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‚ Assumption pHEq : For any iteration n, the noise of the stochastic algorithm
satisfies:

@v P Sd´1
E p|xΔMn, vy| |Xn, Ynq ě cv ą 0,

where Sd´1 stands for the unit Euclidean sphere of Rd.

This assumption will be essential to derive an almost sure convergence result
towards minimizers of f . Roughly speaking, this assumption states that the
noise is uniformly elliptic given any current position of the algorithm at step n:
the projection of the noise has a non-vanishing component over all directions v.
We will use this assumption to guarantee the ability of (2.4) to get out of any
unstable point.

Step sizes. One important step in the use of stochastic minimization algo-
rithms relies on an efficient choice of the step sizes involved in the recursive for-
mula (e.g. in Equation 2.4). We will deal with the following sequences pγnqně0

below.

‚ Assumption pHγ
βq : The sequence pγnqně0 satisfies:

@n P N γn “
γ

nβ
with β P p0, 1s,

leading to:

@β P p0, 1q Γn „
γ

1 ´ β
n1´β whereas Γn „ γ logn when β “ 1.

Memory size. We consider the exponentially and polynomially-weighted HBF
as a unique stochastic algorithm parameterized by the memory function prnqně1.
From the definition of rn given in (2.6), we note that in the exponential case,
rn “ r remains constant while the inertia brought by the memory term in the
polynomial case prnqnPN is defined by rn “

r
Γn

. Under Assumption pHγ
βq, we

can show that regardless of the memory, we have:
ÿ

nPN

γnrn “ `8.

This is true when rn “ r because γn “ γn´β with β ď 1. It is also true when
we deal with a polynomial memory since in that case:

• if β ă 1, then γnrn „ γn´β ˆ rp1 ´ βqγ´1n´1`β „ rp1 ´ βqn´1

• if β “ 1, then γnrn „
r

n log n
and

ř

kďn γkrk „ logplog nq.

Similarly, we also have that in the polynomial case, regardless of β:
ÿ

n

γ2
nrn ă `8,

although this bound holds in the exponential situation when β ą 1{2. Below,
we will use these properties on the sequences pγnqně0 and prnqně0 and define
the next set of assumptions:
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‚ Assumption pHrq: The sequence prnqně0 is a non-increasing sequence such
that:

ÿ

ně1

γn`1rn “ `8 and
ÿ

ně1

γ2
n`1rn ă `8

and

lim sup
nÑ`8

1

2γn`1

ˆ

1

rn
´

1

rn´1

˙

“: cr ă 1.

In the exponential case, cr “ 0, whereas if rn “ r{Γn, it can be shown that
cr “

1
2r and the last point is true when r ą 1{2. In any case, r8 will refer to

the limiting value of rn when n ÝÑ `8, which is either 0 or r ą 0.

2.4. Main results

Section 3 is dedicated to the situation of a general coercive function f . We obtain
the almost sure convergence of the stochastic HBF towards a critical point of f .

Theorem 2.1. Assume that f satisfies pHsq, that pHσ,2q holds and that the
sequences pγnqně1 and prnqně1 are chosen such that pHγ

βq and pHrq are fulfilled.
If for any z, tx, fpxq “ zu X tx,∇fpxq “ 0u is locally finite, then pXnq a.s.
converges towards a critical point of f .

This result obviously implies the convergence when f has a unique critical
point. In the next theorem, we focus on the case where this uniqueness assump-
tion fails, under the additional elliptic assumption pHEq.

Theorem 2.2. Assume that f satisfies pHsq, that the noise is elliptic, i.e.,
pHEq holds, and the sequence pγnqně1 is chosen such that pHγ

βq and pHrq are
fulfilled. If for any z, tx, fpxq “ zu X tx,∇fpxq “ 0u is locally finite, we have:

paq If rn “ r (exponential memory) and pHσ,2q holds, then pXnq a.s. converges
towards a local minimum of f .

pbq If rn “ rΓ´1
n and the noise is sub-Gaussian, i.e., pHGauss,σq holds, then

pXnq a.s. converges towards a local minimum of f when β ă 1{3.

Remark 2.1. � The previous result provides some guarantees when f is a
multiwell potential. In paq, we consider the exponentially weighted HBF and
show that the convergence towards a local minimum of f always holds under the
additional assumption pHEq. To derive this result, we will essentially use the
former results of [BD96] on “homogeneous” stochastic algorithms.
� Point pbq is concerned by polynomially-weighted HBF and deserves more com-
ment:

• First, the result is rather difficult because of the time inhomogeneity of the
stochastic algorithm, which can be written as Zn`1 “ Zn ` γn`1FnpZnq `

γn`1ΔMn`1: the drift term Fn depends on Zn and on the integer n, which
will induce technical difficulties in the proof of the result. In particular, the
assumption β ă 1{3 will be necessary to obtain a good lower bound of the
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drift term in the unstable manifold direction with the help of the Poincaré
Lemma near hyperbolic equilibrium of a differential equation.

• Second, the sub-Gaussian assumption pHGauss,σq is less general than
pHσ,2q even though it is still a reasonable assumption within the framework
of a stochastic algorithm. To prove pbq, we will need to control the fluctua-
tions of the stochastic algorithm around its deterministic drift, which will
be quantified by the expectation of the random variable supkěn γ

2
k}ΔMk}2.

The sub-Gaussian assumption will be mainly used to obtain an upper bound
of such an expectation, with the help of a coupling argument. Our proof
will follow a strategy used in [Pem90] and [Ben06] where this kind of ex-
pectation has to be upper bounded. Nevertheless, the novelty of our work
is also to generalize the approach to unbounded martingale increments:
the arguments of [Pem90, Ben06] are only valid for a bounded martingale
increment, which is a somewhat restrictive framework.

In Section 4, we focus on the consistency rate under stronger assumptions
on the convexity of f . In the exponential memory case, we are able to control
the quadratic error and to establish a CLT for the stochastic algorithm un-
der the general assumption pHSCpαqq. In the polynomial case, the problem is
more involved and we propose a result for the quadratic error only when f is
a quadratic function (see Remark 2.2 for further comments on this restriction).
More precisely, using the notation À to refer to an inequality, up to a universal
multiplicative constant, we establish the following results.

Theorem 2.3. Denote by x‹ the unique minimizer of f and assume that pHγ
βq,

pHsq, pHSCpαqq and pHσ,2q hold, we have:

paq When rn “ r (exponential memory) and β ă 1, we have:

E
“

}Xn ´ x‹
}
2

` }Yn}
2
‰

À γn

If pHσ,8q holds and β “ 1, set αr “ r

ˆ

1 ´

b

1 ´
p4λq^r

r

˙

where λ denotes

the smallest eigenvalue of D2fpx‹q. We have, for any ε ą 0:

E
“

}Xn ´ x‹
}
2

` }Yn}
2
‰

À

#

n´1 if γαr ą 1

n´αr`ε if γαr ď 1.

pbq Let f : Rd Ñ R be a quadratic function. Assume that rn “ rΓ´1
n (polyno-

mial memory) with β ă 1. Then, if r ą
1`β

2p1´βq
, we have:

E
“

}Xn ´ x‹
}
2

` Γn}Yn}
2
‰

À γn

When rn “ rΓ´1
n (polynomial memory) and β “ 1, we have:

E
“

}Xn ´ x‹
}
2

` logn}Yn}
2
‰

À
1

logn
.
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For paq, the case β ă 1 is a consequence of Proposition 4.3 (or Proposition
4.1 in the quadratic case), whereas the (more involved) case β “ 1 is dealt
with Propositions 4.1 and 4.4 for the quadratic and the non-quadratic cases,
respectively. We first stress that that when β ă 1, the noise only needs to satisfy
pHσ,pq to obtain our upper bound. When we deal with β “ 1, we could prove a
positive result in the quadratic case when we only assume pHσ,pq. Nevertheless,
the stronger assumption pHσ,8q is necessary to produce a result in the general
strongly convex situation. Finally, pbq is a consequence of Proposition 4.2.

Remark 2.2. � It is worth noting that in paq (β “ 1), the dependency of the
parameter αr in D2f only appears through the smallest eigenvalue of D2fpx‹q.
In particular, it does not depend on inf

xPRd
λD2fpxq as it could be expected in this

type of result. In other words, we are almost able to retrieve the conditions that
appear when f is quadratic. This optimization of the constraint is achieved with
a “power increase” argument, but this involves a stronger assumption pHσ,8q

on the noise.
� The restriction to quadratic functions in the polynomial case may appear
surprising. In fact, the “power increase” argument does not work in this non-
homogeneous case. However, when β ă 1, it would be possible to extend to
non-quadratic functions through a Lyapunov argument (on this topic, see Re-
mark 4.3), but under some quite involved conditions on r, β and the Hessian
of f . Hence, we chose to only focus on the quadratic case and to try to obtain
some potentially optimal conditions on r and β only (in particular, there is no
dependence to the spectrum of D2f). The interesting point is that it is possi-
ble to preserve the standard rate order when β ă 1 but under the constraint
r ą

1`β
2p1´βq

, which increases with β. In particular, the rate Opn´1q cannot be

attained in this case (see Remark 4.2 for more details).

Finally, we conclude by a central limit theorem related to the stochastic
algorithm the exponential memory case.

Theorem 2.4. Assume pHsq and pHSCpαqq are true. Suppose that rn “ r and
that pHγ

βq holds with β P p0, 1q or, β “ 1 and γαr ą 1. Assume that pHσ,pq

holds with p ą 2 when β ă 1 and p “ 8 when β “ 1. Finally, suppose that the
following condition is fulfilled:

E
“

pΔMn`1qpΔMn`1q
t
|Fn´1

‰ nÑ`8
ÝÝÝÝÝÑ V in probability (2.7)

where V is a symmetric positive dˆ d-matrix. Let σ be a dˆ d-matrix such that
σσt “ V . Then,

piq The normalized algorithm
´

Xn?
γn

, Yn?
γn

¯

n
converges in law to a centered

Gaussian distribution μ
pβq
8 , which is the invariant distribution of the (lin-

ear) diffusion with infinitesimal generator L defined on C2-functions by:

Lgpzq “

B

∇gpzq,

ˆ

1

2γ
1tβ“1uI2d ` H

˙

z

F

`
1

2
TrpΣTD2gpzqΣq
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with

H “

ˆ

0 ´Id
rD2fpx‹q ´rId

˙

and Σ “

ˆ

0 0
0 σ

˙

.

piiq In the simple situation where V “ σ2
0Id (σ0 ą 0) and β ă 1. In this case,

the covariance of μ
pβq
8 is given by

σ2
0

2

ˆ

tD2fpx‹qu´1 0dˆd

0dˆd rId

˙

In particular,
Xn

?
γn

ùñ N
ˆ

0,
σ2
0

2
tD2fpx‹

qu
´1

˙

. (2.8)

Remark 2.3. � As a first comment of the above theorem, let us note that in
the fundamental example where:

ΔMn`1 “ ∇fpXnq ´ BxF pXn, ξnq, n ě 1,

the additional assumption (2.7) is a continuity assumption. Actually, in this
case:

ErΔMnΔM t
n|Fn´1s “ V̄pXnq, with V̄pxq “ CovpF px, ξ1qq.

Thus, since Xn Ñ x‹ a.s., Assumption (2.7) is equivalent to the continuity of
V̄ in x‹ so that:

V “ V̄px‹
q.

� Point piiq of Theorem 2.4 reveals the behavior of the asymptotic variance of Y
increases with r. This translates the fact that the instantaneous speed coordinate
Y is proportional to r in Equation (2.4), which then implies a large variance of
the Y coordinate when we use an important value of r.
� When β “ 1, it is also possible (but rather technical) to make the limit
variance explicit. The expression obtained with the classical stochastic gradient
descent with step-size γn´1 and Hessian λ, the asymptotic variance is γ{p2λγ ´

1q, whose optimal value is attained when γ “ λ´1 (it attains the Cramer-Rao
lower bound). Concerning now the stochastic HBF, for example, when d “ 1
and r ě 4λ (the result is still valid in higher dimensions, see Section 5), we can
show that:

lim
nÝÑ`8

γ´1
n ErX2

ns “ σ2
0

2λrγ3

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
,

where α̌` “ 1 `

b

1 ´
4λ
r and α̌´ “ 1 ´

b

1 ´
4λ
r . Similar expressions may be

obtained when r ă 4λ. Note also that we assumed that γαr ą 1, and it is easy
to check that this condition implies that γr ą 1 because αr ď r, regardless of r.
In the meantime, this condition also implies that 2λγ ą α̌` ě α̌´.

Finally, this explicit value could be used to find the optimal calibration of the
parameters to obtain the best asymptotic variance. Unfortunately, the expres-
sions are rather technical and we can see that such calibrations are far from
being independent of λ, the a priori unknown Hessian of f on x‹.
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3. Almost sure convergence of the stochastic heavy ball

In this section, the baseline assumption on the function f is pHsq, and we
are thus interested in the almost sure convergence of the stochastic HBF. In
particular, we do not make any convexity assumption on f .

Below, we will sometimes use standard and sometimes more intricate nor-
malizations for the coupled process Zn “ pXn, Ynq. These normalizations will
be of a different nature and, to be as clear as possible, we will always use the
same notation qZn and Z̆n to refer to a rotation of the initial vector Zn, whereas
rZn will introduce a scaling in the Yn component of Zn by a factor

?
rn.

3.1. Preliminary result

We first state a useful upper bound that makes it possible to derive a Lyapunov-
type control for the mean evolution of the stochastic algorithm pXn, Ynqně1

described by (2.4). This result is based on the important function px, yq ÞÝÑ

Vnpx, yq that depends on two parameters pa, bq P R
2
` defined by:

Vnpx, yq “ pa ` brn´1qfpxq `
a

2rn´1
}y}

2
´ bx∇fpxq, yy. (3.1)

We will show that Vn plays the role of a (potentially time-dependent) Lyapunov
function for the sequence pXn, Ynqně1. The construction of Vn shares a lot of
similarity with other Lyapunov functions built to control second-order systems.
If the two first terms are classical and generate a ´}y}2 term, the last one is
more specific to hypo-coercive dynamics and was already used in [Har91]. Recent
works fruitfully exploit this kind of Lyapunov function (see, among others, the
kinetic Fokker-Planck equations in [Vil09] and the memory gradient diffusion
in [GP14]). This function is obtained by the introduction of some Lie brackets
of differential operators, leading to the presence of x∇fpxq, yy that generates a
mean reverting effect on the variable x.

With the help of Vn, we derive the first important result on pXn, Ynqně1. The
proof is deferred to the appendix paragraph in Section A.1.

Proposition 3.1. If pHσ,2q and pHsq hold and prnqně1 satisfies pHrq, then we
have:

(i)

sup
ně1

ˆ

ErfpXnqs `
1

rn
Er}Yn}

2
s

˙

ă `8

(ii) pVnpXn, Ynqqně1 is a.s.-convergent to V8 P R`. In particular, pXnqně1

and pYn{
?
rnqně1 are a.s.-bounded.

(iii)
ÿ

ně1

γn`1rn

ˆ

}Yn}2

rn
` }∇fpXnq}

2

˙

ă `8 a.s.
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(iv) pYn{
?
rnqně0 tends to 0 since n Ñ `8 and every limit point of pXnqně0

belong to tx,∇fpxq “ 0u. Furthermore, if for any z, tx, fpxq “ zu X

tx,∇fpxq “ 0u is locally finite, pXnqně0 converges towards a critical point
of f a.s.

Note that if pHrq holds, then piiiq provides a strong repelling effect on the
system px, yq because in that case,

ř

γn`1rn “ `8. This makes it possible to
obtain a more precise a.s. convergence result, which is stated in pivq.

3.2. Convergence to a local minimum

3.2.1. Nature of the result and theoretical difficulties

To motivate the next theoretical study, we address the result of Proposition 3.1.
We have shown in this corollary the almost sure convergence of (2.4) towards a
point of the form px8, 0q in both exponential and polynomial cases where x8 is
a critical point of f . This result is obtained under very weak assumptions on f
and on the noise pΔMn`1qně1 and is rather close to Theorems 3-4 of [YLL16]
(obtained within a different framework). Unfortunately, it only provides a very
partial answer to the problem of minimizing f because nothing is said about the
stability of the limit of the sequence pXnqně0 by Proposition 3.1: the attained
critical point may be a local maximum, a saddle point or a local minimum. This
result is made more precise below and we establish some sufficient guarantees
for the a.s. convergence of pXnq towards a minimum of f , even if f possesses
some local traps. To derive this important and stronger key result, we need to
introduce the additional assumption pHEq, which translates an elliptic behavior
of the martingale noise pΔMn`1qně1 and we have to overcome several difficulties.

• The proof follows the approach described in [BD96] and [Ben06] but re-
quires some careful adaptations because of the hypo-elliptic noise of the al-
gorithm (there is no noise on the x-component) for both the exponentially
and polynomially-weighted memory. Therefore, even though the global
probabilistic argument relies on the approach of [Ben06], the estimations
of the exit times of the neighborhoods of unstable equilibria (local maxima
or saddle points) deserve a particular study because of the hypo-ellipticity.

• Moreover, the linearization of the inhomogeneous drift around a critical
point of f in the polynomial memory case is a supplementary difficulty
we need to bypass because in this situation, the algorithm pXn, Ynqně1

does not evolve at the same time-scale on the two coordinates. We should
emphasize that one should think of the use of the recent contributions
of [Bor97, Bor08] on dynamical systems with two different time scales.
Let us briefly discuss on the approach developed in these works: [Bor08]
investigates the behaviour of

pxn`1, yn`1q “ pxn, ynq (3.2)

`
`

anrhpxn, ynq ` ΔM1
n`1s, bnrgpxn, ynq ` ΔM2

n`1s
˘

,
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where bn “ opanq. This is exactly our setting in the polynomial memory
case since γnrn “ opγnq. Unfortunately, [Bor08] assumes that the differen-
tial equation 9x “ hpx, yq has a globally asymptotically stable equilibrium
for any given and fixed y P R

d, which is false in our case since 9x “ ´y is
solved by xt “ x0 ´ ty and has no stable equilibrium except when y “ 0.
Therefore, it is not possible to use the former works of [Bor97, Bor08] in
our polynomial memory case.

Note that some recent works on stochastic algorithms (see, e.g., [LSJR16])
deal with the convergence to minimizers of f of deterministic gradient descent
with a randomized initialization. In our case, we will obtain a rather different
result because of the randomization of the algorithm at each iteration. Note,
however that the main ingredient of the proofs below will be the stable manifold
theorem (the Poincaré Lemma on stable/unstable hyperbolic points of [Poi86])
and its consequence around hyperbolic points. This geometrical result is also
used in [LSJR16].

3.2.2. Exponential memory rn “ r ą 0

The exponential memory case may be (almost) seen as an application of Theo-
rem 1 of [BD96]. More precisely, if Zn “ pXn, Ynq and hpx, yq “ p´y, r∇fpxq ´

ryq, then the underlying stochastic algorithm may be written as:

Zn`1 “ Zn ` γnhpZnq ` γnΔMn,

When rn “ r ą 0 (exponential memory), Proposition 3.1 applies and Zn
a.s.
ÝÝÑ

Z8 “ pX8, 0q where X8 is a critical point of f . For the analysis of the dynamics
around a critical point of the drift, the critical poinf of f is denoted x0 and we
can linearize the drift around px0, 0q P R

d ˆ R
d as:

hpx, yq “

ˆ

0 ´Id
rD2pfqpx0q ´rId

˙ˆ

x ´ x0

y

˙

` Op}x ´ x0}
2
q,

where Id is the d ˆ d identity-squared matrix and D2pfqpx0q is the Hessian
matrix of f at point x0. When x0 is not a local minimum of f , the spectral
decomposition of D2pfqpx0q leads to the spectral decomposition:

DP P OdpRq D2
pfqpx0q “ P´1ΛP,

where Λ is a diagonal matrix with at least one negative eigenvalue λ ă 0.
Considering now qZn “ p qXn, qYnq where qXn “ PXn and qYn “ PYn, we have:

qZn`1 “ qZn ` γnh̃p qZnq ` γnPΔMn,

where qh may be linearized as:

qhpqx, qyq “

ˆ

0 ´Id
rΛ ´rId

˙ˆ

qx ´ qx0

qy

˙

` Op}qx ´ qx0}
2
q where qx0 “ Px0.
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In particular, if eλ is an eigenvector associated with the eigenvalue λ ă 0
of D2fpx0q, we can see that the linearization of h̃ on the space Spanpeλq b

p1, 0, . . . , 0q acts as:

Aλ,r “

ˆ

0 ´1
rλ ´r

˙

.

Its spectrum is SppAλ,rq “ ´
r
2 ˘

b

r2

4 ´ rλ. The important fact is that when

λ ă 0, the eigenvalue ´
r
2 `

b

r2

4 ´ rλ is positive and whose corresponding

eigenspace is E`
λ “

´

1, 1
2 ´

b

1
4 ´ λ{r

¯

. In the initial space R
d ˆ R

d (without

applying the change of basis through P b P ), the corresponding eigenvector is:

e`
λ “ eλ b

˜

1

2
´

c

1

4
´ λ{r

¸

eλ

Consequently, when x0 is not a local minimum of f , it generates a hyperbolic
equilibrium of h and we can apply the “general” local trap Theorem 1 of [BD96].
If ΠE`

λ
denotes the projection on the eigenspace Spanpe`

λ q, then the noise in

the direction E`
λ is:

ξ`
n “ ΠE`

λ
p0,ΔMnq “

xΔMn, eλy

}eλ}2
eλ.

Now, Assumption pHEq implies that:

lim inf
nÝÑ`8

E

›

›

›
ΠE`

λ
p0,ΔMnq

›

›

›
ě ceλ ą 0.

We can then apply Theorem 1 of [BD96] and conclude the following result.

Theorem 3.1. If pHσ,2q, pHsq and pHEq hold and rn “ r, then Xn a.s. con-
verges towards a local minimum of f .

3.2.3. Polynomial memory rn “ rΓ´1
n ÝÑ 0

We introduce a key normalization of the speed coordinate and define the rescaled
process:

rXn “ Xn and rYn “
a

ΓnYn.

We can note that rYn “
?
rYnr

´1{2
n and the important conclusion brought by

pivq of Proposition 3.1 is that p rXn, rYnq
a.s.

ÝÝÑ pX8, 0q still holds (under the
assumptions of Proposition 3.1) We can write the recursive upgrade of the couple

p rXn, rYnq. The evolution of p rXnqně0 is easy to write: rXn`1 “ rXn ´
γn`1?

Γn

rYn. The

recursive formula satisfied by prYnqně0 is:
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rYn`1 “
a

Γn`1 rYn ` γn`1rn`1 p∇fpXnq ´ Yn ` ΔMn`1qs

“

a

Γn`1
?
Γn

rYn ` r
γn`1
?
Γn

ˆ

a

Γn`1
?
Γn

∇fp rXnq ´ r
γn`1
?
Γn

ˆ

a

Γn`1

Γn

rYn

`r
γn`1
?
Γn

ˆ

a

Γn`1
?
Γn

ΔMn`1

Hence, the couple p rXn, rYnq evolves as an almost standard stochastic algorithm,

whose step size is rγn`1 “ γn`1Γ
´1{2
n :

#

rXn`1 “ rXn ´ rγn`1
rYn

rYn`1 “ rYn ` rrγn`1∇fp rXnq ` rγn`1qn`1ΔMn`1 ` rγn`1Un`1,
(3.3)

where qn`1 “
a

Γn`1{Γn “ 1 ` opn´1q as n ÝÑ `8 and pUn`1qně1 is defined
by:

Un`1 “
1{2 ´ rqn`1 ` opn´1q

?
Γn

rYn ` rpqn`1 ´ 1q∇fp rXnq.

This dynamical system is related to the deterministic one

#

9xt “ ´yt

9yt “ r∇fpxtq
or

equivalently:

9zt “ F pztq with F pzq “ F px, yq “ p´y, r∇fpxqq. (3.4)

It is easy to see that when x8 is a local maximum of f , then the above drift
is unstable near z8 “ px8, 0q. Unfortunately, Theorem 1 of [BD96] cannot be
applied because of the size of the remainder terms involved in (3.3) and the
a.s. convergence of pXn, Ynqně0 requires further investigation. From [Ben06], we
borrow a tractable construction of a “Lyapunov” function η in the neighborhood
of each hyperbolic point, which translates a mean repelling effect of the unstable
points. This construction still relies on the Poincaré Lemma (see [Poi86] and
[Har82] for a recent reference). Again, in the neighborhood of any hyperbolic
point, we will treat the projection Π` as a projection on the unstable manifold.

Proposition 3.2 ([Ben06]). For any local maximum point x8 of f , a compact
neighborhood N of z8 “ px8, 0q and a positive function η P C2pRd ˆ R

d,R‹
`q

exist such that:

piq @z “ px, yq P N , Dηpzq : Rd ˆ R
d ÝÑ R

d ˆ R
d is Lipschitz, convex and

positively homogeneous.
piiq Two constants k ą 0 and c1 ą 0 and a neighborhood U of p0, 0q exist such

that:

@z P N @u P U ηpz ` uq ě ηpzq ` xDηpzq, uy ´ k}u}
2,

and if t u` denotes the positive part:

@z P N @u P U tDηpzqpuqu` ě c1}Π`puq}.
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piiiq A positive constant κ exists such that:

@z P N xDηpzq, F pzqy ě κηpzq

When d “ 1, it is possible to check that if λ is a negative eigenvalue of the
Hessian of f around a local maximum x8, then the drift may be linearized
in p´y, λpx ´ x8qq and a reasonable approximation of η is given by ηpx, yq “
1
2}y´

?
´λx}2. Nevertheless, the situation is more involved in higher dimensions

and the construction of the function η relies on the Poincare stable manifold
theorem. We are now able to state the next important result.

Theorem 3.2. Assume that the noise satisfies pHGauss,σq and pHEq, that the
function satisfies pHsq, and that γn “ γn´β with β ă 1{3, then pXnqně0 a.s.
converges towards a local minimum of f .

The proof relies on an argument of [Pem90, Ben06] even though it requires
major modifications to deal with the time inhomogeneity of the process and the
unbounded noise, which are assumed in these previous works. We denote N as
any neighborhood of z8 and consider any integer n0 P N. We then introduce
rZn “ p rXn, rYnq and the stopping time:

T :“ inf
!

n ě n0 : rZn R N
)

.

We will show that PpT ă `8q “ 1, which implies the conclusion. We introduce
two sequences pΩnqněn0 and pSnqněn0 :

Ωn`1 “ rηp rZn`1q ´ ηp rZnqs1năT ` γ̃n`11něT and Sn “ ηpZ̃n0q `

n
ÿ

k“n0`1

Ωk.

(3.5)
Note that the construction of η implies that z ÞÝÑ Dηpzq is Lipschitz, so that
the following inequality holds:

ηpz ` uq ´ ηpzq ě xDηpzq, uy ´
}Dη}Lip}u}2

2
.

This inequality provides some information when u is small. In the meantime, η
is positive so that:

@α P p0, 1s Dkα ą 0 @pz, uq P N ˆ R
d

ηpz ` uq ´ ηpzq ě xDηpzq, uy ´ kα}u}
1`α

(3.6)

The family of inequalities described in (3.6) will be used with an appropriate
value of α in the next result.

Proposition 3.3. The random variables pΩnqně0 satisfy the following condi-
tions:

piq A constant c exists such that:

ErΩ2
n`1|Fns ď cγ̃2

n`1



Stochastic heavy ball 481

piiq A sequence pεnqně0 exists such that:

1SněεnErΩn`1|Fns ě 0,

with εn „ cn´p1´αq{2 for a large enough c and α “ p1 ´ βq{p1 ` βq.
piiiq Assume that β ă

1
3 , then pS2

nqně0 has a submartingale increment:

ErS2
n`1 ´ S2

n|Fns ě aγ̃2
n`1

for a small enough constant a.

The proof of this technical proposition is deferred to the appendix paragraph
A.2 We use now the key estimations derived from Proposition 3.3 to obtain the
proof of Theorem 3.2.
Proof of Theorem 3.2: The proof is split into three parts. We consider:

Sn “ S0 `

n
ÿ

k“1

Ωk and define δn “
ÿ

iěn

γ̃2
i .

In our case, we have chosen β P p0, 1{3q and we can check that:

γ̃n „ n´p1`βq{2 so that δn „ n´β . (3.7)

We consider the sequence εn defined in Proposition 3.3:

εn „ Γ´1{2
n „ γ̃α

n`1 with α “
1 ´ β

1 ` β
ą 1{2.

In this case, we have:

εn “ n´p1´βq{2
“ opn´β{2

q “ op
a

δnq because β ă 1{3 ă 1{2.

The proof now proceeds by considering the sequential crossings Sn ď c
?
δn and

Sn ě c
?
δn for a suitable value of c.

Step 1: Sn becomes greater than
?
bδn with a positive probability.

For a given constant b and a positive n P N, we introduce the stopping time:

T “ inf
!

i ě n : Si ě
a

bδi

)

,

and we show that an ε ą 0 exists such that P pT ă 8q ě 1 ´ ε. For a given by
piiiq of Proposition 3.3, we consider:

Mk “ S2
k ´ a

k
ÿ

i“0

γ̃2
i .

pMkqkěn is a submartingale, so that pMk^T qkěn is also a stopped submartin-
gale. This yields:

E
“

S2
m^T ´ S2

n|Fn

‰

ě aE

«

m^T
ÿ

n`1

γ̃2
i |Fn

ff

ě a

˜

m
ÿ

n`1

γ̃2
i

¸

P pT ą m|Fnq . (3.8)
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In the meantime, we can decompose S2
m^T ´ S2

n into:

S2
m^T ´ S2

n “ S2
m^T ´ S2

m^T ´1 ` S2
m^T ´1 ´ S2

n

ď 2Sm^T ´1Ωm^T ` Ω2
m^T ` S2

m^T ´1

ď 2S2
m^T ´1 ` 2Ω2

m^T
ď 2bδm^T ´1 ` 2Ω2

m^T .

Since pδkqkěn is decreasing, we then have δm^T ´1 ď δn. We then study the
remaining term. We can use Equation (3.3) and the Lipschitz continuity of η
over the neighborhood N (before time T ) to obtain a large enough C such that:

Ω2
m^T “ Ω2

m^T r1m^T ´1ăT ` 1m^T ´1ěT s

“

”

ηpZ̃m^T q ´ ηpZ̃m^T ´1q

ı2

1m^T ´1ăT ` γ̃2
m^T 1m^T ´1ěT

ď Crγ̃2
m^T ` γ̃2

m^T }ΔMm^T }
2
s.

However, nothing more is known about the stopped process }ΔMm^T }2 and we
are forced to use:

E
“

S2
m^T ´ S2

n|Fn

‰

ď 2bδn ` 2C

„

γ̃2
n ` E

„

sup
kěn

γ̃2
k}ΔMk}

2

jj

.

Given that all ΔMk are independent sub-Gaussian random variables that satisfy
Inequality (A.6), we can use Theorem A.1 and obtain that a constant C large
enough exists such that for any ε ą 0:

E
“

S2
m^T ´ S2

n|Fn

‰

ď 2bδn ` 2Cγ̃2
n logpγ̃´2

n q. (3.9)

We can plug the estimate (3.9) into Inequality (3.8) to obtain:

P pT ą m|Fnq ď
2bδn ` 2Cγ̃2

n logpγ̃´2
n q

a
řm

i“n`1 γ̃
2
i

.

Letting m ÝÑ `8, we deduce that:

P pT “ 8|Fnq ď
2b

a
`

2Cγ̃2
n logpγ̃´2

n q

aδn
.

According to the calibration (3.7), we have γ̃2
n logpγ̃´2

n q “ opδnq. Consequently,
we can choose n large enough such that:

P pT ă 8|Fnq ě 1´
3b

a
. ˛

Step 2: The sequence pSkqkěn may remain larger than
a

b{2δn with a positive
probability.

We introduce the stopping time S and the event En P Fn:

S “ infti ě n : Si ă

?
b

2

a

δnu and En “

!

Sn ě
?
b
a

δn

)

.
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Since the sequence pδiqiěn is non-increasing, piiq of Proposition 3.3 yields:

E
“

Spi`1q^S ´ Si^S |Fi

‰

“ 1SąiE rSi`1 ´ Si|Fis

“ 1Sąi1Siě
?

b{2δn
E rSi`1 ´ Si|Fis

ě 1Sěi1Siě
?

b{2δi
E rXi`1|Fis

ě 1Sěi1SiěεiE rXi`1|Fis ě 0.

Hence, pSi^Sqiěn is a submartingale and the Doob decomposition reads Si^S “

Mi`Ii where pMiqiěn is a Martingale and pIiq is a predictable increasing process
such that In “ 0. Hence,

PpS “ 8|Fnq “ P|Fn

ˆ

@i ě n : Si ě

?
b

2

?
δn

˙

ě P|Fn

ˆ

@i ě n : Mi ě

?
b

2

?
δn

˙

On the event En, Sn “ Mn ě
?
b
?
δn so thatMi´Mn ď Mi´

?
b
?
δn. Therefore:

P

ˆ

@i ě n : Mi ě

?
b

2

?
δn |Fn

˙

1En ě P

ˆ

@i ě n : Mi ´ Mn ě ´

?
b

2

?
δn |Fn

˙

1En .

The rest of the proof follows a standard martingale argument:

E
`

pMi ´ Mnq
2
|Fn

˘

“

i´1
ÿ

j“n

E
`

pMj`1 ´ Mjq
2
|Fn

˘

“

i´1
ÿ

j“n

E
`

E
`

pMj`1 ´ Mjq
2
|Fj

˘

|Fn

˘

“

i´1
ÿ

j“n

E
`

E
`

pSj`1 ´ Sjq
2
|Fj

˘

´ pIj`1 ´ Ijq
2
|Fn

˘

ď

i´1
ÿ

j“n

E
`

pSj`1 ´ Sjq
2
|Fn

˘

ď

i´1
ÿ

j“n

E
`

Ω2
j`1|Fn

˘

ď c
i
ÿ

j“n

γ̃2
j`1 ď cδn.

where we used the upper bound given by piq of Proposition 3.3 in the last line.
Now, the Doob inequality implies that:

Pp inf
nďiďm

pMi ´ Mnq ď ´s|Fnq “ Pp inf
nďiďm

pMi ´ Mn ´ tq ď ´s ´ t|Fnq

ď Pp sup
nďiďm

|Mi ´ Mn ´ t| ď s ` t|Fnq

ď
E
`

pMm ´ Mn ´ tq2|Fn

˘

ps ` tq2

“
E
`

pMm ´ Mnq2|Fn

˘

` t2

ps ` tq2
“

cδn ` t2

ps ` tq2
.
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We apply this inequality with s “

?
b
2

?
δn and use ps`tq2 ď p1`ϑqs2`p1`ϑ´1qt2

for any ϑ ą 0. It leads to:

P

˜

inf
nďiďm

pMi ´ Mnq ď ´

?
b

2

a

δn|Fn

¸

ď
cδn ` t2

p1 ` ϑqbδn{4 ` p1 ` ϑ´1qt2
.

We now choose ϑ “ 4c{b, t “
?
δn and deduce that:

P

˜

inf
nďiďm

pMi ´ Mnq ď ´

?
b

2

a

δn|Fn

¸

ď
c ` 1

c ` 1 ` b{4c
.

Consequently, we deduce that:

PpS “ 8|Fnq1En ě P|Fn

˜

@i ě n : Mi ě

?
b

2

a

δn

¸

1En

ě

ˆ

1 ´
c ` 1

c ` 1 ` b{4c

˙

1En “
b

b ` 4c ` 4c2
1En ˛

Step 3: pSnqně0 does not converge to 0 with probability 1.
We denote G as the event that pSnqně0 does not converge to 0. For any integer

n, we have the inclusion:

tS “ `8u “

!

@i ě n : Si ě
a

b{4
a

δn

)

Ă G,

which implies:

Er1G |Fis1T “i “ Er1G |Fis1T “i1Ei ě
b

b ` 4c ` 4c2
1T “i1Ei “

b

b ` 4c ` 4c2
1T “i

Hence,

Er1G |Fns “
ÿ

iěn

Er1G1T “i|Fns “ E rEr1G |Fis1T “i |Fns

ě
b

b ` 4c ` 4c2

ÿ

iěn

E r1T “i |Fns

ě
b

b ` 4c ` 4c2
P pT ă `8|Fnq ě

b

b ` 4c ` 4c2

ˆ

1 ´
3b

a

˙

ą 0.

Since 1G P F8, we have limnÝÑ`8 Er1G |Fns “ 1G . The previous lower bound
implies that G almost surely holds. ˛

Conclusion of the proof: The stochastic algorithm does not converge to a local
trap.

Consider N a neighborhood of a local maximum of f , and its associated func-
tion η given by Proposition 3.2. We then consider the random variables pΩnqně0
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and pSnqně0. We have seen that Sn does not converge to 0 with probability 1.
We define:

TN :“ inf
!

n ě 0 : rZn R N
)

.

and assume that TN “ `8. In that case, we always have:

Ωn`1 “ ηp rZn`1q ´ ηp rZnq and Sn “ ηp rZnq.

The limit set of p rZnqně0 is a non empty compact subset of N , which is left
invariant by the flow pΦtqtě0 of the O.D.E. whose drift is F . Now, consider z in

p rZnqně0 and apply piiiq of Proposition 3.2. We then have ηpΦtpzqq ě eκtηpyq.
Since ηpΦtpzqq ď supN η, we therefore deduce that ηpzq “ 0. Hence, the unique
limiting value for pSnqně0 is zero, meaning that Sn ÝÑ 0 as n ÝÑ `8. However,
we have seen in Step 3 that Sn does not converge to 0 with probability 1.
Therefore, PpTN “ `8q “ 0 and the process does not converge towards a local
maximum of f with probability 1. ˝

4. Convergence rates for strongly convex functions

This section focuses on the convergence rates of algorithm (2.4) according to
the step-size γn “ γn´β for λ-strongly convex function f with a L-Lipschitz
gradient, corresponding to the assumptions pHSCpλqq and pHsq.

4.1. Quadratic case

We first study the benchmark case of a purely quadratic function f , meaning
that ∇f is linear. In this case, fpxq “

1
2}Ax}2 and ∇fpxq “ Sx, leading to the

following form of the algorithm:
#

Xn`1 “ Xn ´ γn`1Yn

Yn`1 “ Yn ` γn`1rnpSXn ´ Ynq ` γn`1rnΔMn`1,
(4.1)

where S is a dˆd squared matrix defined by S “ A1A. The matrix S is assumed
to be positive definite with lower bounded eigenvalues, e.g., SppSq Ă rλ,`8r

when f is pHSCpλqq with λ ą 0.

4.1.1. Reduction to a two dimensional system

Equation (4.1) may be parameterized in a simpler form using the spectral de-
composition of S “ P´1ΛP , where P is orthogonal, and Λ is a diagonal matrix:

@pi, jq P t1 . . . du
2 Λi,j “ λiδi,j ě λ ą 0.

Keeping the notation p qXn, qYnqně1 for the change of basis induced by P , we

define qXn “ PXn and qYn “ PYn and obtain:
#

qXn`1 “ qXn ´ γn`1
rYn

qYn`1 “ qYn ` γn`1rnpΛ qXn ´ qYnq ` γn`1rnPΔMn`1,
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Since Λ is diagonal, we are now led to study the evolution of d couples of
stochastic algorithms:

@i P t1 . . . du

#

qx
piq
n`1 “ qxpiq

n ´ γn`1qy
piq
n

qy
piq
n`1 “ qypiq

n ` γn`1rnpλiqx
piq
n ´ qypiq

n q ` γn`1rnΔ|M
piq
n`1,

where we used the notations qXn “ pqx
piq
n q1ďiďd and qYn “ pqy

piq
n q1ďiďd. Conse-

quently, in the quadratic case, the stochastic HBF may be reduced to d couples
of 2-dimensional random dynamical systems:

@i P t1, . . . , du
2

qZ
piq
n`1 “ pI2 ` γn`1C

piq
n q qZpiq

n ` γn`1rnΣ2ΔN
piq
n`1, (4.2)

where

qZpiq
n :“ pqxpiq

n , qypiq
n q and Cpiq

n “

ˆ

0 ´1

λpiqrn ´rn

˙

and Σ2 “

ˆ

0 0
0 1

˙

,

λpiq “ Λi,i ě λ ą 0 and pΔN
piq
n qně1 is a sequence of martingale increments.

It is worth noting that due to the multiplication by the matrix P , the martin-

gale increment ΔN
piq
n`1 potentially depends on the whole coordinate p qZ

pjq
n q1ďjďd.

In a completely general case, this involves technicalities mainly due to the fact
that the system (4.2) is not completely autonomous (in general, the components
qZ

piq
n and qZ

pjq
n do not evolve independently). To overcome this difficulty, the idea

is to obtain some general controls for a system solution to (4.2) and to then
bring the controls of each coordinate together. For the sake of simplicity, we
propose in the sequel to state the results in the general case but to only make
the proof for (4.2) with the assumption that:

Er|ΔN
pjq

n`1|
2
|Fns ď Cp1 ` } qXpjq

n }
2
q. (4.3)

From now on, we will omit the indexation by j to alleviate the notations. An
easy computation shows that the characteristic polynomial of Cn is given by:

χ
Cn

ptq “

´

t `
rn
2

¯2

`
rnp4λ ´ rnq

4
.

We now consider the two different cases:

• For all n ě 1, Cn has two real or complex eigenvalues whose values do not
change from n to n, which corresponds to rn “ r. This case necessarily
corresponds to an exponentially-weighted memory and rn is thus kept
fixed constant: rn “ r ě 4λ or rn “ r ă 4λ.

• For a large enough n, Cn has two complex conjugate and vanishing eigen-
values. This situation may occur if we use a polynomially-weighted mem-
ory because, in that case, rn ÝÑ 0 as n ÝÑ `8.
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4.1.2. Exponential memory rn “ r

We first study the situation when rn “ r, which is easier to deal with from a
technical point of view.

Proposition 4.1. Let σ ą 0. Assume that a.s. @n ě 1, Ep}ΔMn`1}2|Fnq ď

σ2p1 ` fpXnqq. Let pZnqně0 be defined by (4.1) with SppSq Ă rλ,`8r and
rn “ r. Set:

αr “

#

r
´

1 ´

b

1 ´
4λ
r

¯

, if r ě 4λ

r if r ă 4λ,
.

Assume that γn “ γn´β, we then have:

piq If β ă 1, then a constant cr,λ,γ exists such that:

@n ě 1 E
“

}Xn}
2

` }Yn}
2
‰

ď cr,λ,γγn.

piiq If β “ 1, then a constant cr,λ,γ exists such that:

@n ě 1 E
“

}Xn}
2

` }Yn}
2
‰

ď cr,λ,γn
´p1^γαrq logpnq

1tγαr“1u .

Proof of Proposition 4.1: According to Subsection 4.1.1, we only make the proof
for a system solution to (4.2) with the assumption that (4.3) holds. We begin
with the simplest case where r ě 4λ. The above computations show that:

SppCnq “

#

μ` “
´r `

a

pr ´ 4λqr

2
;μ´ “

´r ´
a

pr ´ 4λqr

2

+

, (4.4)

while the associated eigenvectors are given by e` “

ˆ

1
´μ`

˙

and e´ “

ˆ

1
´μ´

˙

and are kept fixed throughout the iterations of the algorithm. Consequently,
(4.2) may be rewritten in an even simpler way:

qZn`1 “

ˆ

1 ` γn`1μ` 0
0 1 ` γn`1μ´

˙

qZn ` rγn`1
qξn`1, (4.5)

where qZn “ QZn (pZnq being defined by (4.2) ) where Q is an invertible ma-

trix such that Cn “ Q´1

ˆ

μ` 0
0 μ´

˙

Q and qξn`1 “ QΣ2ΔNn`1. The squared

norm of p qZnqně1 is now controlled using a standard martingale argument and
Assumption pHσ,2q:

E

”

} qZn`1}
2
|Fn

ı

ď rp1 ` μ`γn`1q
2

` Cγ2
n`1s} qZn}

2
` Cγ2

n`1,

so that by setting un “ Er} qZn}2s, this yields:

un`1 ď p1 ` 2μ`γn`1 ` C1γ
2
n`1q ` C2γ

2
n`1. (4.6)
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The result then follows from Propositions B.1 piiiq and B.2 piiiq (see Appendix
B).

We now study the situation r ă 4λ. In this case, Cn possesses two conjugate
complex eigenvalues:

SppCnq “

#

μ` “
´r ` i

a

rp4λ ´ rq

2
;μ´ “

´r ´ i
a

rp4λ ´ rq

2
.

+

, (4.7)

Once again, we use the notation p qZnqně1 defined as qZn “ QZn with Q an

invertible (complex) matrix such that Sn “ Q´1

ˆ

μ` 0
0 μ´

˙

Q and qξn`1 “

QΣ2ΔNn`1. The squared norm of p qZnqně1 may be controlled while paying
attention to the modulus of complex numbers, and we obtain an inequality
similar to (4.6).

E

”

} qZn`1}
2
|Fn

ı

ď max
´

|1 ` μ`γn`1|
2
; |1 ` μ´γn`1|

2
¯

} qZn}
2

` C2γ
2
n`1,

ď

ˆ

´

1 ´
γn`1r

2

¯2

` C1γ
2
n`1

˙

} qZn}
2

` C2γ
2
n`1,

ď
`

1 ´ γn`1r ` C1γ
2
n`1

˘

} qZn}
2

` C2γ
2
n`1.

Once again, we can apply piiiq of Propositions B.1piiiq and B.2piiiq to obtain
the desired conclusion. ˝

Remark 4.1. In the above proposition, the constants cr,λ,γ are not made ex-
plicit. However, it is possible to obtain an estimation if we assume that

Er}ΔMn`1}
2
s ď σ2 and r ě 4λ.

In this particular case, with the notations of (4.6), we have:

un`1 ď p1 ´ αrγnqun ` r2σ2
}Qr}

2γ2
n`1,

where un “ E} qZn}2. The Propositions B.1 piiiq and B.2 piiiq now imply that:

E

”

} qZn}
2
ı

ď E

”

} qZ0}
2
ı

e´αrΓn ` Cγ
2r2}Qr}2

αr
σ2γn,

which, in the end, provide an explicit upper bound of E}Zn}2 since Zn “ Q´1
r

qZn.
A more important issue concerns the rate obtained when β “ 1 and we can

remark in the statement of Proposition 4.1 that this rate depends on the size of γ
and of αr. In particular, the best rate (of order Opn´1q) is obtained when γαr ą

1, meaning that αr must be as large as possible to optimize the performance of
the algorithm and we therefore obtain a non-adaptive rate. It is easy to see
that r ÞÝÑ αr increases on r0, 4λs and decreases on r4λ,`8q. It attains its
maximal value (maxr αr “ 4λ) when r “ 4λ. This maximal value is twice
the size of the eigenvalue of the (standard) stochastic gradient descent (SGD).
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Finally, limrÝÑ`8 αr “ 2λ. This limiting value 2λ corresponds to the size of
the eigenvalue of the SGD. In other words, the limit r “ `8 in HBF may be
seen as an almost identical situation to SGD.

If we compare the rate of convergence of HBF to the one of SGD using the
same step size γn “ γn´1, we see that choosing a reasonably large r makes it
possible to obtain a less stringent condition on γ to recover the (optimal) rate
Opn´1q. In particular, the rate of the HBF is better when r ě 2λ than the one
attained by the SGD. Unfortunately, it seems impossible to obtain an adaptive
procedure on the choice of pγ, rq that guarantees the rate Opn´1q, unlike the
Polyak-Ruppert averaging procedure.

4.1.3. Polynomial memory rn “ rΓ´1
n ÝÑ 0

This case is more intricate because of the variations with n of the eigenvectors
of the matrix Cn defined in (4.2).

Proposition 4.2. Let σ ą 0. Assume that a.s. @n ě 1, Ep}ΔMn`1}2|Fnq ď

σ2p1 ` fpXnqq. Let pZnqně0 be defined by (4.1) with SppSq Ă rλ,`8r and
rn “

r
Γn

.

piq If β ă 1 and r ą
1`β

2p1´βq
, a constant cβ,λ,r exists such that:

@n ě 1 E}Xn}
2

ď cβ,λ,rγn,

and

@n ě 1 E}Yn}
2

ď cβ,λγnrn.

piiq If β “ 1, a constant C exists such that:

@n ě 1 E}Xn}
2

ď
C

logn

and

@n ě 1 E}Yn}
2

ď
C

n log n

Remark 4.2. We can observe that when β ă 1, the rates of the exponential
case are preserved under a constraint on r which becomes harder and harder
when β is close to 1: r needs to be greater than 1`β

2p1´βq
. Carefully following the

proof of this result, we could in fact show that when 1{2 ă r ă
1`β

2p1´βq
, then

E}Xn}2 ď Cn´pr´ 1
2 qp1´βq. Since pr ´

1
2 qp1 ´ βq ÝÑ 0 as β ÝÑ 1, our upper

bound in plognq´1 related to the case β “ 1 becomes reasonable. Another possible
interpretation of the poor convergence rate in that case is that the size of the
negative real part of the eigenvalues of Cn is on the order 1

n logn , which leads to a

contraction of the bias equivalent to O
´

e´c
řn

1
1

k log k

¯

. Regardless of c, we cannot

obtain a polynomial rate of convergence in that case since
řn

1
1

k log k „ log logn.
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Proof of Proposition 4.2:

Proof of piq: We study the case β ă 1 here. According to the arguments used
in the proof of Proposition 4.1 and Subsection 4.1.1, the dynamical system

may be reduced to d couples of systems in the form px
piq
n , y

piq
n qně1 so that we

only make the proof for a system solution to (4.2) under assumption (4.3).
Another key feature of the polynomial case has been observed in the proof of
the a.s. convergence of the algorithm (Theorem 3.2): the study of the rate in the
polynomial case involves a normalization of the algorithm with a

?
rn-scaling

of the Y coordinate. Therefore, we set Z̃n “ pX̃n, Ỹnq with X̃n “ Xn and
Ỹn “ Yn{

?
rn. With these notations, we obtain (similar to Lemma A.2):

Z̃n`1 “ pI2 ` γ̃n`1C̃nqZ̃n ` γ̃n`1

c

rn
rn`1

Σ2ΔNn`1, (4.8)

with γ̃n`1 “ γn`1
?
rn and:

C̃n “

˜

0 ´1

λ
b

rn
rn`1

ρn

¸

with

ρn :“
1

γ̃n`1

ˆ
c

rn
rn`1

´ 1

˙

´
rn

?
rn`1

.

Since rn “ rΓ´1
n , the following expansion holds:

ρn “
1

?
Γn

ˆ

1

2
?
r

´
?
r

˙

` O

˜

γn

Γ
3
2
n

¸

. (4.9)

In particular, for a large enough n, ρn ă 0 if and only if r ą 1{2. Furthermore,
an integer n0 P N exists such that for any n ě n0, C̃n has complex eigenvalues
given by:

μ
pnq

˘ “
1

2

˜

ρn ˘ i

d

4λ

c

rn
rn`1

´ ρ2n

¸

nÑ`8
ÝÝÝÝÝÑ ˘i

?
λ.

We define the diagonal matrix:

Λn :“

˜

μ
pnq

` 0

0 μ
pnq

´

¸

and let Qn be the matrix that satisfies Q´1
n ΛnQn “ C̃n. We have:

Q´1
n “

ˆ

1 1

´μ
pnq

` ´μ
pnq

´

˙

and Qn “
1

μ
pnq

` ´ μ
pnq

´

˜

´μ
pnq

´ ´1

μ
pnq

` 1

¸

.
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We can now introduce the change of basis brought by Qn and the new coor-
dinates qZn :“ Qn

rZn. We have:

qZn`1 “ Qn`1pI2 ` γ̃n`1C̃nqQ´1
n

qZn ` γ̃n`1

c

rn
rn`1

Qn`1Σ2ΔNn`1

“ Qn`1Q
´1
n pI2 ` γ̃n`1Λnq qZn ` γ̃n`1

c

rn
rn`1

Qn`1Σ2ΔNn`1. (4.10)

We now observe that:

Qn`1Q
´1
n “ I2 ` Υn with Υn “ pQn`1 ´ QnqQ´1

n

and that for n large enough:

}Υn}8 ďC}Qn`1 ´Qn}8 “Op|μ
pn`1q

` ´μ
pnq

` |q “O
`

|ρn`1 ´ ρn| ` |Impμ
pn`1q

` ´μ
pnq

` q|
˘

.

Expansion (4.9), the fact that
b

rn
rn`1

“ 1`
1
2
γn`1

Γn
`O

´

γ2
n`1

Γ2
n

¯

and the Lipschitz

continuity of x ÞÑ
?
1 ` x on r´1{2,`8q yield:

}Υn}8 “ O

˜

γn

Γ
3
2
n

`
γn ´ γn´1

Γn

¸

“ O

˜

γn

Γ
3
2
n

¸

“ O
´

n´
β`3
2

¯

.

From the above, we obtain, for any z P R
2,

}Qn`1Q
´1
n pI2 ` γ̃n`1Λnqz}

2
ď

˜

1 ` γ̃n`1
ρn
2

` O

˜

γn

Γ
3
2
n

¸¸2

}z}
2

`

˜

γ̃n`1Impμ
pnq

` q ` O

˜

γn

Γ
3
2
n

¸¸2

}z}
2

which after several computations yields:

}Qn`1Q
´1
n pI2 ` γ̃n`1Λnqz}

2
ď

ˆ

1 `
γn`1

Γn

ˆ

1

2
´ r ` op1q

˙˙

}z}
2.

Note that a universal constant C (independent of n) exists such that }Qn`1}8 ď

C and the upper bounds above can be used into (4.10) to deduce that:

} qZn`1}
2

ď

˜

1 `
γn`1

Γn

ˆ

1

2
´ r

˙

` b

ˆ

γn`1

Γn

˙2
¸

} qZn}
2

` γ̃n`1Δ|Mn ` C
γ2
n`1

Γn
}ΔNn`1}

2, (4.11)

where pΔ|Mnqně1 is a sequence of martingale increments and b a large enough
constant.
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When γn “ γn´β with β ă 1, the fact that Γn “
n1´β

1´β `Op1q combined with

the upper bound of the variance of the martingale (4.3) imply that:

Er} qZn`1}
2
s ď

ˆ

1 ´
α

n
`

b

n2

˙

Er} qZn}
2
s ` Cn´1´β (4.12)

where α :“ pr ´
1
2 qp1 ´ βq. Under the condition r ą

1`β
2p1´βq

, we observe that:

α ą β.

An induction based on Inequality (4.12) yields:

Er} qZn`1}
2
s ď Er} qZnε}

2
s

n
ź

�“nε

ˆ

1 ´
α

�
`

b

�2

˙

` C
n
ÿ

k“nε`1

k´1´β
n
ź

�“k`1

ˆ

1 ´
α

�
`

b

�2

˙

ď Cn´β

where in the second line, we repeated an argument used in the proof of Proposi-
tions B.2 and made use of the property α ą β. To conclude the proof, it remains
to observe that }Q´1

n`1}8 ď C regardless of n. ˛

piiq When β “ 1, Inequality 4.11 leads to:

Er} qZn`1}
2
s ď

ˆ

1 ´
α

n logn
`

b

n2 logn

˙

Er} qZn}
2
s `

C

n2 logn

and a procedure similar to the one used above (given that
řn

k“1pk log kq´1 „

logplognq) leads to the desired result. ˛˝

4.2. The non-quadratic case under exponential memory

The objective of this subsection is to extend the results of the quadratic case to
strongly convex functions satisfying pHSCpαqq for a given positive α. As pointed
out in Remark 2.2, we are not able to obtain neat and somewhat intrinsic results
in the polynomial memory case, so we therefore preferred to only consider the
exponential memory one.

With the help of Subsection 4.1.1, we can restrain the study to the situation
where d “ 1 and f has a unique minimum in x‹ and we denote λ “ f2px‹q,
which is assumed to be positive. We also assume that f2 “ infxPR f2pxq ą 0. It
is worth noting that in this setting, we are able to obtain some non-asymptotic
bounds with some assumptions on λ only. This means that our results do not
involve the quantity f2. To only involve the value of the second derivative in
x‹, the main argument is a power increase stated in the next lemma.



Stochastic heavy ball 493

Lemma 4.1. Let pu
pkq
n qně0,kě1 be a sequence of non-negative numbers satisfying

for every integers n ě 0 and k ě 1,

u
pkq

n`1 ď p1 ´ akγn`1 ` bkγ
2
n`1qupkq

n ` Ckpγ2
n`1 ` γn`1u

pk`1q
n q (4.13)

where pakqkě1 and pbkqkě1 are sequences of positive numbers. Furthermore, as-
sume that K ě 2 exists and a constant C ą 0 exists such that:

@n ě 1, upKq
n ď Cγn. (4.14)

Then, suppose that γn “ γn´β pγ ą 0, β P p0, 1sq and that a :“ minkďK ak ą 0
and b̄ :“ maxkďK bk ă `8.

(i) If β P p0, 1q, a constant C ą 0 exists such that for every k P t1, . . . ,Ku,

@n ě 1, upkq
n ď Cγn.

(ii) If β “ 1 and aγ ą 1, a constant C ą 0 exists such that for every k P

t1, . . . ,Ku,
@n ě 2, upkq

n ď Cn´1. (4.15)

Proof of Lemma 4.1:
Let K ě 2. We proceed by a decreasing induction on k P t1, . . . ,Ku. The
initialization is given by (4.14). Then, let k P t1, . . . ,K ´ 1u and assume that

u
pk`1q
n ď Ck`1γn (where Ck is a positive constant that does not depend on n).

We can use this upper bound in the second term of the right hand side of (4.13)
and obtain:

u
pkq

n`1 ď p1 ´ aγn`1 ` b̄γ2
n`1qupkq

n ` Cγ2
n`1

where C is a constant that does not depend on n.
When β ă 1, it follows from Proposition B.1piiiq that:

@n ě 1, upkq
n À γn. ˛

If β “ 1 and aγ ą 1 now, the above control is a consequence of Proposition
B.2piiiq. This concludes the proof. ˛˝

We will apply this lemma to u
pkq
n “ Er| qZn|2ks where qZn is an appropriate

linear transformation of Zn. Therefore, we will mainly have to check that Con-
ditions (4.13) and (4.14) hold.

Proposition 4.3. Assume pHsq, pHSCpαqq and pHσ,8q with p ě 1. Let a and
b be some positive numbers such that (A.1) holds. Then, an integer K ě 1 exists
such that for any p ě K:

ErV p
n pXn, Ynqs ď Cpγn. (4.16)

Furthermore, if rn “ r and γn “ γn´β with β P p0, 1q, then (4.16) holds for
p “ K “ 1 under pHσ,2q instead of pHσ,8q. As a consequence,

Er}Xn ´ x‹
}
2K

` }Yn}
2K

s ď Cγn. (4.17)
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Remark 4.3. Note that the second assertion (4.17) easily follows from Equa-
tions (A.2) and (4.16) and from the fact that under pHSCpαqq, a constant c
exists such that for all x, fpxq ě c}x}2.

Moreover, note that this proposition is not restricted to the exponential mem-
ory case. In particular, as suggested in Remark 2.2, this Lyapunov approach
could lead to some (rough) controls of the quadratic error in the polynomial case
when the function is not quadratic.

Proof of Proposition 4.3:
We begin by the first assertion under Assumption pHσ,8q. Going back to the
proof of Lemma A.1 (and to the associated notations), we obtain the existence
of some positive a and b such that

Vn`1pXn`1, Yn`1q ď VnpXn, Ynq ` γn`1Δn`1 with

Δn`1 “ ´ca,b}Yn}
2

´ rnb}∇fpXnq}
2

´ brnx∇fpXnq,ΔMn`1y ` ΔRn`1 pca,b ą 0q.

Denoting the smallest (positive) eigenvalue of D2fpx‹q by λ, we have:

}∇fpxq}
2

ě λ}x}
2

ě C λfpxq.

Following the arguments of the proof of Lemma A.1 once again, we can easily
deduce the existence of some positive ε and C such that:

ErΔn`1|Fns ď p´ε ` Cγn`1qrnVnpXn, Ynq ` Cγn`1rn.

Using pHσ,8q, we also obtain for every r ě 1:

Er}Δn`1}
r
|Fns ď Crp1 ` V r

n pXn, Ynqq.

As a consequence, a binomial expansion of pVnpXn, Ynq ` γn`1Δn`1qK yields:

ErV K
n`1pXn`1, Yn`1q|Fns ď p1´Kεγn`1rn `Cγ2

n`1rnqV K
n pXn, Ynq `Cγ2

n`1rn.

Setting un “ ErV K
n`1pXn`1, Yn`1qs, we obtain:

un`1 ď p1 ´ Kεγn`1rn ` Cγ2
n`1rnqun ` Cγ2

n`1rn.

Now, assume that γn “ γn´β with β P p0, 1s and successively consider expo-
nential and polynomial cases:

• If rn “ r and β ă 1, the result holds with K “ 1 by Proposition B.1piiiq.
˛

• If rn “ r and β “ 1, we have to choose K large enough in order that
Kεγ ą 1. In this case, Proposition B.2piiiq yields the result. ˛

• If rn “ r{Γn and β ă 1 now, then the above inequality yields the existence
of a ρ ą β and a n0 ě 1 for K large enough such that:

@n ě n0, un`1 ď

´

1 ´
ρ

n

¯

un ` Cn´β´1.
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We have:

un ď un0

n
ź

k“n0

´

1 ´
ρ

k

¯

` C
n
ÿ

k“n0`1

k´β´1
n
ź

�“k`1

´

1 ´
ρ

k

¯

.

Given that 1 ´ x ď expp´xq and that
řn

k“1
1
k “ logn ` Op1q, we obtain:

un ď Cn´ρ
p1 `

n
ÿ

k“n0`1

k´β´1`ρ
q ď Cn´β

where in the last inequality, we deduced that ´β´1`ρ ą ´1 since ρ ă β.
˛˝

Proposition 4.4. Assume pHsq, pHSCpαqqand pHσ,8q and rn “ r for all
n ě 1. Set λ “ f2px‹q. Then, assume that γn “ γn´β with β P p0, 1s.

• If β ă 1, then:
Er}Xn ´ x‹

}
2
s ` Er}Yn}

2
s ď Cγn.

• If β “ 1, then for every ε ą 0, a constant Cε exists such that

Er}Xn ´ x‹
}
2
s ď Cεn

´ppr`ε´
?
r2´4λr1rě4λqγq^1.

Proof of Proposition 4.4:
The starting point is to linearize the gradient:

f 1
pXnq “ λpXn ´ x‹

q ` φn where φn “ pf2
pξnq ´ f2

px‹
qqpXn ´ x‹

q.

Since f2 is Lipschitz continuous, then:

|φn| ď CpXn ´ x‹
q
2. (4.18)

Let us begin with the case where the matrix Cn defined in (4.2) has real eigen-
values μ` and μ´ (given by (4.4)). With the notations introduced in (4.5),

qZn`1 “

ˆ

1 ` γn`1μ` 0
0 1 ` γn`1μ´

˙

qZn ` rγn`1Q

ˆ

0
φn

˙

` rγn`1
qξn`1. (4.19)

As a consequence,

} qZn`1}
2

ď p1 ` μ`γn`1q
2
} qZn}

2
` Cγn`1} qZn}

3
` γ2

n`1p} qZn}
4

` }ΔNn`1}
2
q ` ΔMn`1

where pΔMnq is a sequence of martingale increments. Using the elementary
inequality |x| ď ε ` Cε|x|2, x P R (available for any ε ą 0),

} qZn`1}
2

ď rp1 ` p2μ` ` εqγn`1 ` Cγ2
n`1qs} qZn}

2

` Cεγn`1} qZn}
4

` Cγ2
n`1}ΔNn`1}

2
` ΔNn`1.

Then, by Assumption pHσ,8q and the fact supn Er| qZn|rs ă `8 for any r ą 1
(by Proposition 4.3 for example), we obtain, for any k ě 1,
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E

”

} qZn`1}
2k
ı

ď p1 ` kp2μ` ` εqγn`1 ` Ckγ
2
n`1qEr} qZn}

2k
s

` Ck,εpγn`1Er} qZn}
2k`2

s ` γ2
n`1q.

At this stage, we observe that Assumption (4.13) is satisfied with u
pkq
n “

Er} qZn}2ks and ak “ kp2μ` ` εq. Using Proposition 4.3 and Lemma A.1piq,
we check that the second assumption of Lemma 4.1 also holds. Thus, the result
follows in this case from this lemma. ˝

5. Limit of the rescaled algorithm

In this paragraph, we establish a (functional) Central Limit Theorem when
the memory is exponential, i.e., when rn “ r and when pHSCpαqq holds. In
particular, f admits a unique minimum x‹. Without loss of generality, we assume
that x‹ “ 0.

5.1. Rescaling stochastic HBF

We start with an appropriate rescaling by a factor
?
γn. More precisely, we

define a sequence pZ̄nqně1:

Z̄n “
Zn

?
γn

“

ˆ

Xn
?
γn

,
Yn

?
γn

˙

.

Given that f is C2 (and that x‹ “ 0), we “linearize” ∇f around 0 with a Taylor
formula and obtain that ξn P r0, Xns exists such that:

∇fpXnq “ D2fpξnqXn.

Therefore, we can compute that:

Z̄n`1 “ Z̄n ` γn`1bnpZ̄nq `
?
γn`1

ˆ

0
ΔMn`1

˙

where bn is defined by:

bnpzq “
1

γn`1

ˆ
c

γn
γn`1

´ 1

˙

z ` C̄nz, z P R
2d, (5.1)

where:

C̄n :“

c

γn
γn`1

ˆ

0 ´Id
rD2fpξnq ´rId

˙

. (5.2)

It is important to observe that:

1

γn`1

ˆ
c

γn
γn`1

´ 1

˙

“ γ´1
pn ` 1q

β

„

1 `
β

2n
` opn´1

q ´ 1

j

“

"

opnβ´1
q ifβ ă 1

1
2γ

` op1q ifβ “ 1

(5.3)
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We associate to the sequence pZ̄nqně1 a sequence pZ̄pnqqně1 of continuous-
time processes defined by:

Z̄
pnq

t “ Z̄n ` B
pnq

t ` M
pnq

t , t ě 0, (5.4)

where:

B
pnq

t “

Ñpn,tq
ÿ

k“n`1

γkbk´1pZ̄k´1q ` pt ´ tnqbÑpn,tqpZ̄Ñpn,tqq,

M
pnq

t “

Ñpn,tq
ÿ

k“n`1

?
γk

ˆ

0
ΔMk

˙

`
a

t ´ tn

ˆ

0
ΔMÑpn,tq`1

˙

.

We used the standard notations tn “ ΓÑpn,tq ´ Γn above where Npn, tq “

min

"

m ě n,
m
ř

k“n`1

γk ą t

*

.

To obtain a CLT, we show that pZ̄pnqqně1 converges in distribution to a sta-
tionary diffusion, following a classical roadmap based on a tightness result and
on an identification of the limit as a solution to a martingale problem.

5.2. Tightness

The next lemma holds for any sequence of processes that satisfy (5.4).

Lemma 5.1. Assume that D2f is bounded, that supkě1 Er}Z̄k}2s ă `8 and

that a p ą 2 exists such that supkě1 Er}ΔMk}ps ă `8, then pZ̄pnqqně1 is tight
for the weak topology induced by the weak convergence on compact intervals.

Proof of Lemme 5.1:

First, note that Z̄
pnq

0 “ Z̄n, the assumption supkě1 Er}Z̄k}2s ă `8 implies

the tightness of pZ̄
pnq

0 qně1 (on R
2d). Then, by a classical criterion (see, e.g.,

[Bil95, Theorem 8.3]), we deduce that a sufficient condition for the tightness
of pZ̄pnqqně1 (for the weak topology induced by the uniform convergence on
compacts intervals) is the following property: for any T ą 0, for any positive ε
and η, a δ ą 0 exist and an integer n0 such that for any t P r0, T s and n ě n0,

Pp sup
sPrt,t`δs

}Z̄pnq
s ´ Z̄

pnq

t } ě εq ď ηδ.

We consider Bpnq and M pnq separately and begin by the drift term Bpnq. On
the one hand,

P

˜

sup
sPrt,t`δs

}Bpnq
s ´ B

pnq

t } ě ε

¸

ď P

¨

˝

Npn,t`δq`1
ÿ

k“Npn,tq

γk}bk´1pZ̄k´1q} ě ε

˛

‚.
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The Chebyschev inequality and the fact that }bkpzq} ď Cp1 ` }z}q (where C
does not depend on k) yield:

P

˜

sup
sPrt,t`δs

}Bpnq
s ´ B

pnq

t } ě ε

¸

ď ε´2
E

»

—

–

¨

˝

Npn,t`δq`1
ÿ

k“Npn,tq

γkp1 ` }pZ̄k´1q}q

˛

‚

2
fi

ffi

fl

The Jensen inequality and the fact that
řNpn,t`δq`1

k“Npn,tq γk ď 2δ when n is large

enough imply that a constant C exists such that for large enough n and for a
small enough δ:

P

˜

sup
sPrt,t`δs

}Bpnq
s ´ B

pnq

t } ě ε

¸

ď ε´2
ˆ Cδ2p1 ` sup

kě1
Er}Z̄k}

2
sq ď ηδ ˛

We now consider the martingale componentM pnq: if we denote α“

b

t´tn
γNpn,tq`1

,

we have for any t ě 0,

M pnq
s “ p1 ´ αqM

pnq

Npn,sq
` αM

pnq

Npn,sq`1

so that }M
pnq
s ´ M

pnq

t } ď maxt}M
pnq

Npn,sq
´ M

pnq

t }, }M
pnq

Npn,sq`1 ´ M
pnq

t }u. As a
consequence,

P

˜

sup
sPrt,t`δs

}M pnq
s ´ M

pnq
t } ě ε

¸

ď P

˜

sup
Npn,tq`1ďkďNpn,t`δq`1

}M
pnq

Γk
´ M

pnq
t } ě ε

¸

Let p ą 2 and applying the Doob inequality, the assumption of the lemma leads
to:

P

˜

sup
sPrt,t`δs

}M pnq
s ´ M

pnq

t } ě ε

¸

ď ε´p
E

”

}M
pnq

Ñpn,t`δq`1
´ M

pnq

t }
p
ı

and the Minkowski inequality yields:

P

˜

sup
sPrt,t`δs

}M pnq
s ´ M

pnq

t } ě ε

¸

ď ε´p
Npn,t`δq`1

ÿ

k“Npn,tq`1

γ
p
2

k E r}ΔMk}
p
s .

Under the assumptions of the lemma, Err}ΔMk}ps ď C. Furthermore, we can
use the rough upper bound:

Npn,t`δq`1
ÿ

k“Npn,tq`1

γ
p
2

k ď γ
p
2 ´1
n

Npn,t`δq`1
ÿ

k“Npn,tq`1

γk ď ηδ

for large enough n. This concludes the proof. ˛˝

Corollary 5.1. Let the assumptions of Theorem 2.4 hold, then pZ̄pnqqně1 is
tight.
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Proof of Corollary 5.1:

To prove this result, it is enough to check that the assumptions of Lemma 5.1
are satisfied. First, one remarks that the assumptions of Theorem 2.4 imply the
ones of Theorem 2.3paq so that Er}Zn´z‹}2s ď Cγn (this also holds when β “ 1
since we assume that γαr ą 1). As a consequence, supkě1 Er}Z̄k}2s ă `8.

On the other hand, since pHσ,pq holds for a given p ą 2, we can derive by
following the lines of the proof of Proposition 4.3 that supně1 ErV ppXn, Ynqs ă

`8. As a consequence, supn ErfppXnqs ă `8 and pHσ,pq leads to:

sup
ně1

Er}ΔMn}
p
s À sup

n
Erfp

pXnqs ă `8. ˝

5.3. Identification of the limit

Starting from our compactness result above, we now characterize the potential
weak limits of pZ̄pnqqně1. This step is strongly based on the following lemma.

Lemma 5.2. Suppose that the assumptions of Lemma 5.1 hold and that:

ErΔMnpΔMnq
t
|Fn´1s

nÑ`8
ÝÝÝÝÝÑ V in probability,

where σ2 is a positive symmetric d ˆ d-matrix. Then, for every C2-function
g : R2d Ñ R, compactly supported with Lipschitz continuous second derivatives,
we have:

EpgpZ̄n`1q ´ gpZ̄nq|Fnq “ γn`1LgpZ̄nq ` Rg
n

where γ´1
n`1R

g
n Ñ 0 in L1 and L is the infinitesimal generator defined in Theorem

2.4.

Remark 5.1. We recall that L is the infinitesimal generator of the following
stochastic differential equation:

dZ̄t “ H̄Z̄tdt ` ΣdBt

where: H̄ “
1
2γ 1tβ“1uI2d ` H and Σ is defined in Theorem 2.4. pZ̄tqtě0 lies

in the family of Ornstein-Uhlenbeck processes: on the one hand, the drift and
diffusion coefficients being respectively linear and constant, pZ̄tqtě0 is a Gaus-
sian diffusion; on the other hand, since H̄ has negative eigenvalues, pZ̄tqtě0 is
ergodic.

Proof of Lemma 5.2:

C will denote an absolute constant whose value may change from line to line,
for the sake of convenience. We use a Taylor expansion between Z̄n and Z̄n`1

and obtain that θn exists in r0, 1s such that:



500 S. Gadat et al.

gpZ̄n`1q ´ gpZ̄nq “ x∇gpZ̄nq, pZ̄n`1 ´ Z̄nqy

`
1

2
pZ̄n`1 ´ Z̄nq

TD2gpZ̄nqpZ̄n`1 ´ Z̄nq (5.5)

`
1

2
pZ̄n`1 ´ Z̄nq

T
pD2gpθZ̄n ` p1´ θqZ̄n`1q ´D2gpZ̄nqqpZ̄n`1 ´ Z̄nq

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

R
p1q
n`1

.

We first deal with the remainder term R
p1q

n`1 and observe that pC̄nq introduced in
(5.2) is uniformly bounded so that a constant C exists such that }bnpzq} ď C}z}.
We thus conclude that:

}Z̄n`1 ´ Z̄n} ď C
`

γn`1}Z̄n} `
?
γn`1}ΔMn`1}

˘

.

Using pHσ,pq, we deduce that for any p̄ ď p,

E
“

}Z̄n`1 ´ Z̄n}
p̄
‰

ď Cγ
p̄
2
n`1. (5.6)

SinceD2g is Lipschitz continuous and compactly supported,D2g is also ε-Hölder
for all ε P p0, 1s. We choose ε such that 2 ` ε ď p and obtain:

E r|Rn`1|s ď CE
“

}Z̄n`1 ´ Z̄n}
2`ε

‰

ď Cγ
1` ε

2
n`1 .

We deduce that γ´1
n`1R

p1q

n`1 Ñ 0 in L1. ˛

Second, we can express (5.3) when γn “ γn´β with β P p0, 1s in the following
form:

εn :“
1

γn`1

ˆ
c

γn
γn`1

´ 1

˙

´
1

2γ
1tβ“1u “ op1q.

Then, given that D2f is Lipschitz (and that x‹ “ 0), it follows that:

@z P R
d

ˆ R
d

›

›

›

›

bnpzq ´

ˆ

1

2γ
1tβ“1uI2d ` H

˙

z

›

›

›

›

ď pεn ` }X̄n}q}z}

where pεnqně1 is a deterministic sequence such that limnÑ`8 εn “ 0.
Under the conditions of Theorem 2.4, we may apply the convergence rates

obtained in Theorem 2.3 and observe that supn Er}Xn}2s À γn, meaning that
supn Er}Z̄n}2s ă `8. Since }X̄n} ď }Z̄n}, we deduce that:

Erx∇gpZ̄nq, pZ̄n`1 ´ Z̄nqy|Fns “ γn`1x∇gpZ̄nq, p
1

4γ
?
r
1tβ“1uI2d `HqZ̄ny `Rp2q

n

where γ´1
n`1R

p2q
n Ñ 0 in L1 as n Ñ `8. Let us now consider the second term of

the right-hand side of (5.5). We have:

ErpZ̄n`1 ´ Z̄nq
TD2gpZ̄nqpZ̄n`1 ´ Z̄nq|Fns

“ γn`1

ÿ

i,j

D2
yiyjgpZ̄nqErΔM i

n`1ΔM j
n`1|Fns ` Rp3q

n
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where

|γ´1
n`1R

p3q
n | ď Cγn`1}Z̄n}

2 nÑ`8
ÝÝÝÝÝÑ 0 in L1

under the assumptions of the lemma. To conclude the proof, it remains to note
that under the assumptions of the lemma for any i and j,
pErΔM i

n`1ΔM j
n`1|Fnsqně1 is a uniformly integrable sequence that satisfies:

ErΔM i
n`1ΔM j

n`1|Fns “ Vi,j in probability.

Thus, the convergence also holds in L1. The conclusion of the lemma easily
follows from the boundedness of D2g. ˛˝

We are now able to prove Theorem 2.4:

Proof of Theorem 2.4, piq: Note that under the assumptions of Theorem 2.4, we
can apply Lemma 5.1 and Lemma 5.2 and obtain that the sequence of processes
pZ̄pnqqně1 is tight. The rest of the proof is then divided into two steps. In the
first one, we prove that every weak limit of pZ̄pnqqně1 is a solution of the mar-
tingale problem pL, Cq where C denotes the class of C2-functions with compact
support and Lipschitz-continuous second derivatives. Before going further, let
us recall that, owing to the Lipschitz continuity of the coefficients, this mar-
tingale problem is well-posed, i.e., tha,t existence and uniqueness hold for the
weak solution starting from a given initial distribution μ (see, e.g., [EK86] or
[SV06]).

In a second step, we prove the uniqueness of the invariant distribution related
to the operator L and the convergence in distribution to this invariant measure.
We end this proof by showing that pZ̄pnqq converges to this invariant distribu-
tion, so that the sequence pZ̄pnqqně1 converges to a stationary solution of the
previously introduced martingale problem. We will characterize this invariant
(Gaussian) distribution in the next paragraph.

Step 1: Let g belong to C and let pF pnq

t qtě0 be the natural filtration of Z̄pnq. To
prove that any weak limit of pZ̄pnqqně1 solves the martingale problem pL, Cq, it
is enough to show that:

@t ě 0, gpZ̄
pnq

t q ´ gpZ̄
pnq

0 q ´

ż t

0

LgpZ̄pnq
s qds “ Mpn,gq

t ` Rpn,gq

t

where pMpn,gq

t qtě0 is an pF pnq

t q-adapted martingale and Rpn,gq

t Ñ 0 in probabil-
ity for any t ě 0. We set:

Mpn,gq

t “

Npn,tq
ÿ

k“n`1

gpZ̄k`1q ´ gpZ̄kq ´ ErgpZ̄k`1q ´ gpZ̄kq|Fk´1s.

By construction, pMpn,gq

t qtě0 is an pF pnq

t q-adapted martingale (given that F pnq
s “

F pnq
sn ) and:
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Rpn,gq

t “ gpZ̄
pnq

t q ´ gpZ̄
pnq

tn
q ´

ż t

tn

LgpZ̄pnq
s qds `

ż tn

0

´

LgpZ̄pnq
sn

q ´ LgpZ̄pnq
s q

¯

ds

`

Npn,tq´1
ÿ

k“n

Rg
k

where pRg
kqkě1 has been defined in Lemma 5.2. Using an argument similar to

(5.6), we can check that for any t ě 0:

sup
sďt

Er}Z̄pnq
s ´ Z̄pnq

sn
}
2
s ď C

?
γn.

This inequality combined with the Lipschitz continuity of g and its derivatives
implies that the first three terms tend to 0 when n Ñ `8. Now, concerning the
last one, the previous lemma yields:

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Npn,tq´1
ÿ

k“n

Rg
k

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

fi

fl ď Ct sup
kěn

E
“ˇ

ˇγ´1
k Rg

k

ˇ

ˇ

‰ nÑ`8
ÝÝÝÝÝÑ 0. ˛

Step 2: First, let us prove that uniqueness holds for the invariant distribution

related to L. We denote it by μ
pβq
8 below. In this simple setting where the co-

efficients are linear, we could use the fact that the process, which is solution
to the martingale problem, is Gaussian so that any invariant distribution is so.
Uniqueness could then be deduced through the characterization of the mean

and the variance through the relationship
ş

Lfpxqμ
pβq
8 pdxq “ 0 (see next sub-

section for such an approach). However, at this stage, we prefer to use a more
general strategy related to the hypoellipticity of L (see, e.g., [GP14] for a sim-
ilar approach). More precisely, set LD :“ ´xy, Bxy ` rxD2fpx‹qx ´ ys, Byy and

σi :“
řd

j“1 σ
j
i Byj , where σ satisfies σσt “ V (where V is defined by (2.7)). We

have assumed that σ is invertible, so that:

spanpσ1, . . . , σdq “ spanpBy1 , . . . , Byd
q.

Therefore,

Lie pLD, σ1, . . . , σdq “ Lie pLD, By1 , . . . , Byd
q

Now, it is straightforward to check that:

@i P t1, . . . , du rLD, Byis pfq “ ´Bxipfq,

and we deduce that Lie pLD, σ1, . . . , σdq “ Lie pBx1 , . . . , Bxd
, By1 , . . . , Byd

q. This
means that the Hormandër bracket condition holds at any point z of R2d, which
implies that the process admits a density pptpz, .qqtě0 such that for any t ą 0,
pz, z1q ÞÑ ptpz, z

1q, which is smooth on R
2d ˆR

2d. It is moreover possible to show
that these densities are positive, for any t ą 0, given that the linear vector field
is approximately controllable: for any time T ą 0, any η ą 0 and any couple
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of initial points px0, y0q and ending points pxT , yT q, we can build a function ϕ
such that 9ϕ P L

2 and such that the controlled trajectory:

"

9xptq “ ´yptq
9yptq “ rptqp∇Upxptqq ´ yptqq ` σ 9ϕ,

(5.7)

satisfies: z0 “ px0, y0q and }zT ´ pxT , yT q} ď η. This implies the irreducibility
of the diffusion and, therefore, the uniqueness of the invariant distribution. We
refer to [GP14] for more details on this controllability problem.

Then, checking that L}x}2 ď β ´ α}x}2 for positive α and β, it can be
classically deduced from the Meyn-Tweedie-type arguments (see [MT93]) that
the process converges locally uniformly, exponentially fast in total variation to

μ
pβq
8 . For more details, we refer to [MSH02, Theorem 4.4]. Below, we will only

use the following corollary: for any bounded Lipschitz-continuous function f ,
for any compact set K of R2d,

sup
zPK

|Ptfpzq ´ μ
pβq
8 pfq|

tÑ`8
ÝÝÝÝÑ 0 (5.8)

where pPtqtě0 denotes the semi-group related to the (well-posed) martingale
problem pL, Cq. ˛

Step 3: Let pZ̄nk
qkě1 be a (weakly) convergent subsequence of pZ̄nqně1 to a

probability ν. We have to prove that ν “ μ
pβq
8 . To do this, we take advantage of

the “shifted” construction of the sequence pZ̄pnqqnPN. More precisely, as a result
of construction, for any positive T , a sequence pψpnk, T qqkě1 exists such that:

NpT, ψpnk, T qq “ nk.

In other words,

Z̄
pψpnk,T qq

Tψpnk,T q
“ Z̄nk

.

At the price of a potential extraction, pZ̄pψpnk,T qqqkě1 is convergent to a contin-

uous process, which is denoted by Z8,T below. Given that Z̄
pnq

T ´ Z̄
pnq

Tn
tends to

0 as n Ñ `8 in probability, it follows that Z8,T
T has distribution ν. However,

according to Step 1, Z8,T is also a solution to the martingale problem pL, Cq so
that for any Lipschitz continuous function f ,

ErfpZ8,T
T qs ´ μ

pβq
8 pfq “

ż

R2d

´

PT fpzq ´ μ
pβq
8 pfq

¯

PZ8,T
0

pdzq.

Denote by P , the set of weak limits of pZ̄nqně1. P is tight and as a result of

construction, Z8,T
0 belongs to P . Thus, for any ε ą 0, a compact set Kε exists

such that for any T ą 0,

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Kc
ε

´

PT fpzq ´ μ
pβq
8 pfq

¯

PZ8,T
0

pdzq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2}f}8 sup
μPP

μpKc
εq ď 2}f}8ε.
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On the other hand,
ˇ

ˇ

ˇ

ˇ

ż

Kε

´

PT fpzq ´ μ
pβq
8 pfq

¯

PZ8,T
0

pdzq

ˇ

ˇ

ˇ

ˇ

ď sup
zPKε

|PT fpzq ´ μ
pβq
8 pfq|

and it follows from Step 2 that the right-hand member tends to 0 as T Ñ `8.
From this, we can therefore conclude that for any bounded Lipschitz-continuous
function f , a large enough T exists such that:

ˇ

ˇ

ˇ
ErfpZ8,T

T qs ´ μ
pβq
8 pfq

ˇ

ˇ

ˇ
ď Cfε.

Since ErfpZ8,T
T qs “ νpfq, it follows that νpfq “ μ

pβq
8 pfq. Finally, the set P

is reduced to a single element P “ tμ
pβq
8 u, and the whole sequence pZ̄nqně1

converges to μ
pβq
8 .

Before ending this section, let us note that μpβq
8 is a Gaussian centered distri-

bution is a simple consequence of Remark 5.1. We therefore leave this point to
the reader. ˛˝

5.4. Limit variance

We end this section on the analysis of the rescaled algorithm with some consider-
ations on the invariant measure μpβq

8 involved in Theorem 2.4 for the exponential
memoried stochastic HBF, i.e. when rn “ r. As shown in the above paragraph,
this invariant measure describes the exact asymptotic variance of the initial al-
gorithm. We now focus on its characterization i.e., on the proof of Theorem
2.4piiq. In particular, to ease the presentation, we assume that the covariance
matrix V related to pΔMn`1qně1 is proportional to the identity matrix:

lim
nÝÑ`8

E

”

ΔMn`1 pΔMn`1q
t

|Fn

ı

“ σ2
0Id in probability. (5.9)

We also assume that γn “ γn´β with β ă 1. Then, piq of Theorem 2.4 states
that pZ̄nqně1 weakly converges toward a diffusion process, whose generator L is
the one of an Ornstein-Uhlenbeck process. Assumption (5.9) leads to a simpler
expression:

Lpφqpx, yq “ ´xy,∇xφy ` rxD2
pfqpx‹

qx ´ y,∇yφy ` r2
σ0

2

2
Δyφ. (5.10)

A particular feature of Equation (5.10) when γn “ γn´β is that L does not
depend on β nor γ. The invariant measure μpβq

8 is a multivariate Gaussian dis-
tribution that may be well described in the basis given by the eigenvectors of
the Hessian D2pfqpx‹q. The reduction to d couples of two-dimensional system
used in Section 4.1.1 makes it possible to use the spectral decomposition of
D2pfqpx‹q “ P´1ΛP where P is an orthonormal matrix and Λ a diagonal ma-

trix with positive eigenvalues. The process p qXn, qYnq “ pPX̄n, P Ȳnq is therefore
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centered and Gaussianly distributed asymptotically. This process is associated
with d 2 ˆ 2 blockwise independent Ornstein-Uhlenbeck processes, whose gen-
erator is now

Ľpφqpx̌, y̌q “ ´xy̌,∇x̌φy ` rxΛx̌ ´ y̌,∇y̌φy ` r2
σ0

2

2
Δy̌φ,

where we used Tr
`

P tD2
y̌P

˘

“ Tr
`

D2
y̌PP t

˘

“ Tr
`

D2
y̌

˘

in the last line because

P tP “ Id. If we denote μ̌pβq
8 the associated invariant gaussian measure, the

tensor structure of Ľ leads to

@i ‰ j Epx̌,y̌q„γ̌β
8

rx̌piqx̌pjq
s “ Epx̌,y̌q„γ̌β

8
rx̌piqy̌pjq

s “ Epx̌,y̌q„γ̌β
8

ry̌piqy̌pjq
s “ 0.

(5.11)

Now, using the relationship

ż

Ľpφqdμ̌pβq

8 “ 0 for some well chosen functions φ, we

can identify the rest of the covariance matrix. Denote i any integer in t1, . . . , du.

We chose φpx̌, y̌q “
tx̌piqu

2

2 and obtain that Ľ
ˆ

tx̌piqu
2

2

˙

px̌, y̌q “ ´x̌piqy̌piq. It

then implies that
E

px̌,y̌q„μ̌
pβq
8

rx̌piqy̌piq
s “ 0. (5.12)

Picking now φpx̌, y̌q “
ty̌piqu

2

2 , we obtain Ľ
ˆ

ty̌piqu
2

2

˙

px̌, y̌q “ rλix̌
piqy̌piq ´

r
	

y̌piq
(2

`
r2σ0

2

2 so that

E
px̌,y̌q„μ̌

pβq
8

rty̌piq
u
2
s “

rσ0
2

2
. (5.13)

Finally, we chose φpx̌, y̌q “ x̌piqy̌piq and obtain Ľ
`

x̌piqy̌piq
˘

px̌, y̌q “ ´
	

y̌piq
(2

`

rλitx̌
piqu2 ´ rx̌piqy̌piq. Therefore, we deduce that:

E
px̌,y̌q„μ̌

pβq
8

rtx̌piq
u
2
s “

σ0
2

2λi
. (5.14)

We can sum-up formulae (5.11)-(5.14) in μ̌pβq
8 “ N p0, Dr,σ0q with Dr,σ0 “

σ0
2

2

ˆ

Λ´1 0dˆd

0dˆd rId

˙

. Since pX̄n, Ȳnq “ pP´1
qXn, P

´1
qYnq, we deduce that:

μpβq

8 “ N
ˆ

0,
σ0

2

2

ˆ

tD2fpx‹qu´1 0dˆd

0dˆd rId

˙˙

. ˛

Proof of Theorem 2.4- Step size γn “ γn´1

This situation is more involved since we can observe that the drift of the limit
diffusion is modified according to the size of γ. In particular, the generator L in
that case is shifted from the one above by 1

2γ I so that:

Lpφqpx, yq “
1

2γ
rx∇xφ, xy ` x∇yφ, yys´xy,∇xφy`rxD2fpx‹

qx´y,∇yφy`r2
σ0

2

2
Δyφ.
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Again, we can use the decomposition D2fpx‹q “ P´1ΛP where P is an or-

thonormal matrix, and the generator of the rotated process p qXn, qYnq “ pPX̄n,
P Ȳnq is:

Ǎpφqpx, yq “

B

x̌

2γ
´ y̌,∇x̌φ

F

`

B

rΛx̌ `

ˆ

1

2γ
´ r

˙

y̌,∇y̌φ

F

` r2
σ0

2

2
Δy̌φ.

The associated Ornstein-Uhlenbeck process has a unique Gaussian invariant
measure μ̌p1q

8 if and only if γαr ą 1 where αr is the constant defined in the
statement of Proposition 4.1. The following equations still hold:

@i ‰ j E
px̌,y̌q„μ̌

p1q
8

rx̌piqx̌pjq
s “ E

px̌,y̌q„μ̌
p1q
8

rx̌piqy̌pjq
s “ E

px̌,y̌q„μ̌
p1q
8

ry̌piqy̌pjq
s “ 0.

(5.15)
To determine the rest of the covariance matrix, we follow the same strategy
and only address the case d “ 1 for the sake of convenience. We define: σ2

x :“
E

px̌,y̌q„μ̌
p1q
8

“

x̌2
‰

, σ2
y :“ E

px̌,y̌q„μ̌
p1q
8

“

y̌2
‰

and σx,y :“ E
px̌,y̌q„μ̌

p1q
8

rx̌y̌s.

We start by chosing φpx̌, y̌q “
x̌2

2 and obtain Ǎpφqpx, yq “
x̌2

2γ ´ x̌y̌. Therefore,
we deduce that:

2γ σx,y “ σ2
x (5.16)

Now we pick φpx̌, y̌q “
y̌2

2 and obtain Ǎpφqpx, yq “ rλx̌y̌ `

´

1
2γ ´ r

¯

y̌2 `
r2σ0

2

2

so that:
ˆ

r ´
1

2γ

˙

σ2
y “ rλσx,y `

r2σ0
2

2
. (5.17)

Finally, the function φpx̌, y̌q “ x̌y̌ yields Ǎpφqpx, yq “ x̌y̌
´

1
γ ´ r

¯

´ y̌2 ` rλx̌2,

which implies:

σ2
y “ rλσ2

x `

ˆ

1

γ
´ r

˙

σx,y (5.18)

We are led to the introduction of:

α̌´ “ 1 ´

c

1 ´
4λ

r
and α̌` “ 1 `

c

1 ´
4λ

r
,

which leads to:

σ2
x “ σ0

2 2λrγ3

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
, σ2

y “ σ0
2 λrγp2λrγ2

´ rγ ` 1q

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
,

and

σx,y “ σ0
2 λrγ2

pγr ´ 1qp2λγ ´ α̌´qp2λγ ´ α̌`q
. ˛ ˝
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6. Numerical experiments

In this paragraph, the aim is to provide numerical tests related to the HBF-
algorithm. In a first part, we mainly provide illustrations of some of the theo-
retical results established previously. Then, we focus on some numerical compar-
isons with other algorithms widely used in the stochastic approximation field. In
particular, we are interested in the convergence rates of each algorithm, as well
as their behavior in the setting of non-convex potential f with multiple wells,
which is covered by Theorems 2.1 and 2.2.

6.1. About L2-convergence rates

In Theorem 2.3, we proved that under appropriate conditions, the Mean-Squared
Error (MSE) related to the algorithm is Opγnq when γn “ γn´β with β ă 1 and,
in the exponential case, the optimal order Op1{nq can be attained when β “ 1
but under conditions on r, γ and the Hessian matrix at the minimum. Note
that such types of conditions also appear when β “ 1 in the classical stochastic
gradient descent (and can be classically overcame by a Ruppert-Polyak aver-
aging). Figure 1 illustrates some of these properties in the exponential and

polynomial cases with the toy-example fpxq “
x2

2 in the one-dimensional case.
In Figure 1, we focus on the behavior of the (Monte-Carlo estimated) MSE
for different values of r by computing M “ 100 paths until n “ 105 starting
from pX0, Y0q “ p10, 0q with σ “ 1 and ΔMn “ Zn where pZnqně1 is a se-
quence of i.i.d. N p0, 1q-distributed random variables. In order to get a more
readable illustration of the rate of convergence, we represent the behavior in
a logarithmic scale, i.e., we draw the graph of the Monte-Carlo estimation of
log p ÞÑ logpEr|Xp ´x‹|2sq (here, |Xk ´x‹|2 “ 2fpXkq) and look at the influence
of r. Note that in order to avoid some numerical instability of the algorithm at
the beginning of the iterations for large values of r (especially when r “ 50),
we introduced an additional truncation trick for the step-size sequence, i.e, we

computed the algorithm with the sequence pγ
prq
n qně1 instead of pγnqně1, defined

by

γprq
n “ min

ˆ

γn,
1

r

˙

. (6.1)

Such modification is classical in numerical investigations related to discretiza-
tions of continuous dynamics (see e.g [Lem07] for instance in a diffusion set-
ting).

In the exponential case (on the left of Figure 1), the algorithm is computed
with γk “ k´1. For r “ 2, 5, 10, 50, the behavior seems to be robust and mainly
reproduces the theoretical decrease in 1

n obtained in Theorem 2.3 (a) as indi-
cated by the estimated slope of the evolution on the log-log scale, which holds
as soon as γαr ą 1. For our considered function, it is straigthforward to check
that
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Fig 1. Evolution of logpEr|Xk ´ x˚|2sq with respect to logpkq. Left: Exponential memory.
Right: Polynomial memory.

γαr “ r

˜

1 ´

c

4 ^ r

r

¸

,

and the condition γαr ą 1 holds only when r “ 2, 5, 10, 50. Oppositely, when
r “ 1, we then obtain γαr “ 1, which is illustrated by the worse performances
obtained in this case. The algorithm also possesses a lengthy oscillating behavior
which is coherent with the complex eigenvalues of the second-order underlying
linear differential system (see e.g. (4.7)). In the polynomial case (on the right
of Figure 1), we focus our attention on the dependency in r for two choices of
steps: γk “ k´β for β “

2
3 and β “ 1. Once again, we observe in the two cases

some oscillations for small values of r (which follow from the same arguments).
When β “ 2{3, Theorem 2.3 (b) states that the MSE is Opγnq if r ą 5{2, which
explains the bad performances when r “ 2. When β “ 1, our theoretical bound
is Op

1
log n q. However, from a numerical point of view, it seems that, when r is

large enough, the behavior is rather close to Op1{nq, as it is the case for the
exponential case.

6.2. About the central limit theorem

In Theorem 2.4, we stated a CLT for exponential memory under conditions on
the parameters of the algorithm that are similar to those of Theorem 2.3. In
the context of the previous paragraph, we illustrate Theorem 2.4 in Figure 2.
More precisely, on the left side, we compare the estimated density of Xn{

?
γn

(built by convolution with a Gaussian kernel) with the theoretical one given in
Equation (2.8). Then, on the right side, we consider the polynomial case for
which no theoretical result has been proved. In fact, by drawing the evolution
of n ÞÑ γ´1

n Er|Xn ´x‹|2s, we remark that the second moment has an oscillating
behavior, which suggests that the convergence in distribution of pXn ´x‹q{

?
γn

does not hold in this case, otherwise we should observe a convergence when n
increases.
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Fig 2. Left (Exponential) Estimation of the density of Xn?
γn

. Right (Polynomial): Behavior

of n ÞÑ γ´1
n Er|Xn ´ x‹|2s.

6.3. Comparisons with other algorithms

Figure 3 compares the HBF-algorithm with several stochastic optimization algo-
rithms: the standard Robbins-Monro stochastic gradient descent (SGD) intro-
duced in [RM51] and several second order algorithms: the “optimal” Ruppert-
Polyak averaging algorithm (see [PJ92, Rup88]), the Nesterov accelerated gra-
dient descent [Nes83] adapted in the stochastic framework in a straightforward
way using an unbiased evaluation of the gradient in each iteration, and the
recent SAGE method introduced in [HPK09]. Note that the Ruppert-Polyak
averaging algorithm is used according to the recommendation of [Bac14] with
γk “ k´1{2. As in the previous parts, σ “ 1 and pΔMnq is a sequence of i.i.d.
N p0, 1q random variables. Finally, the function to optimize is fpxq “ |x|p{p with
two values of p: p “ 2 (strongly convex situation) and p “ 4 (convex situation,
the Hessian being degenerated at 0).

The first elementary remark is that the rate is of course deteriorated by the
loss of strong convexity (left side, Figure 3). In this case, the Ruppert-Polyak
averaging outperforms other methods and attains the Op1{

?
nq minimax rate

(see [NY83]). When f is strongly convex, the second-order algorithms then all
share an equivalent efficiency with, apparently a Op1{nq convergence rate. This
corresponds to piiq of Theorem 2.3 when the Hessian at the critical point is
sufficiently large to make this minimax optimal rate possible. Nevertheless, the
ability of the stochastic heavy ball in a more general situation may deserve
further numerical investigation, which is beyond the scope of this paper. The
SGD seems to be a little bit less effective in the strongly convex case. Finally,
the Nesterov adaptation to the stochastic case does not lead to an efficient
algorithm (in comparison to the other methods tested). However, this remark
should be balanced by the fact that we did not use the Lan adaptation of the
Nesterov accelerated gradient descent introduced in [Lan12]. It appears that this
modification that consists in an addition of an intermediary point in the NAGD
seems important to optimize the behavior of the algorithm in the stochastic
case.
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Fig 3. Evolution of logpErfpXkqsq with respect to logpkq with fpxq “ |x|p{p. Left: Convex
case p “ 4. Right: Strongly convex case p “ 2.

6.4. Non-convex case

In this paragraph, we investigate the ability of the stochastic algorithm to avoid
local traps and, in particular, we focus on the behavior of second order algo-
rithms that may be an intermediary step towards global optimization methods
such as simulated annealing. For this purpose, we defined f as:

@x P R fpxq “ ax4
` bpx ´ 1q

2.

with a “ 1{40 and b “ ´1{5. These values have been fixed to guarantee the
numerical stability of the stochastic procedures, but the results we obtained may
be replicated for other values. The values of a and b above yield a double-well
potential with a global minimizer of f of around x‹ » ´4.9, although f has a
local trap on the positive part at around x` » 4. The function f is represented
on the top left of Figure 4.

We used γk “ k´1 for all of the methods and we varied the initialization point
of each algorithm from ´10 to 10 with 100 Monte-Carlo replications. For each
simulation, we arbitrarily stopped the evolution of the algorithm after T “ 104

iterations, and considered that optimization was successful when |xT ´ x‹| ď 1.
This criterion may be replaced by a more stringent inequality, at the price of
an increase of T , without really changing the main conclusions below.

Performances are reported in Figure 4. We observe that both SGD and
Ruppert-Polyak algorithms have the same behavior. This fact is absolutely clear
because Polyak averaging is built with a Cesaro average of SGD. The target con-
vergence point of SGD and of Polyak averaging are thus the same. We can also
note that in the almost no noise setting, the basin of attraction of x‹ for SGD
may be roughly approximated by s ´ 8, 1s. Nevertheless, both SAGE and HBF
seem to behave better behaviour with a somewhat larger basin of attraction:
in particular, it is possible to start from an initialization point x1 “ 8 and still
obtain convergence of SAGE or HBF towards x‹. This last point is clearly impos-
sible with SGD. The same conclusions hold for different values of σ (see Figure



Stochastic heavy ball 511

Fig 4. Top left: function f to be minimized. Top right: probability of success of the stochastic
algorithms with respect to the initialization point with small variance: σ “ 0.1. Bottom left:
σ “ 1. Bottom right: σ “ 2.

4, bottom left and right). Finally, we observe that NAGD does not present very
good behavior: the probability of failure when the algorithm is initialized at ´4
is lower than 1 for σ “ 1 or σ “ 2.

We can calculate a more quantitative indicator of this behavior with the com-
putation of the average rate of success of each algorithm when the initialization
point is sampled uniformly over r´10; 10s. Table 1 seems to indicate that the
stochastic heavy ball leads to a better exploration of the state space, in par-
ticular, with reasonable values of r (see Table 2). These conclusions should be
understood as numerical observations of experimental results on this particu-
lar type of synthetic case, but we do not have any theoretical arguments to
strengthen these final observations at this time.

σ SGD AV SGD SAGE NAGD HBF Poly r=5 HBF Expo r=5
0.1 0.47 0.47 0.49 0.29 0.58 0.52
1 0.47 0.47 0.49 0.27 0.58 0.55
2 0.47 0.47 0.49 0.20 0.58 0.54

Table 1

Average rate of success of each stochastic algorithm with a uniformly sampled initialization
over r´10; 10s when σ varies.
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Exp 1 Exp 2 Exp 5 Exp 10 Poly 1 Poly 2 Poly 5 Poly 10
0.51 0.53 0.55 0.58 0.26 0.43 0.58 0.50

Table 2

Average rate of success of heavy ball stochastic algorithm for several values of r, when σ “ 1
and the initialization point is sampled uniformly over r´10; 10s.

Appendix A: Almost sure convergence towards a local minimizer

A.1. Preliminary estimations for convergence towards a critical
point

We first establish a preliminary lemma that translates a mean-reverting effect
on ErVnpXn, Ynqs from n to n ` 1.

Lemma A.1. Assume that pHσ,2q and pHsq hold and suppose that cr ă 1.
Then, for any pa, bq P R

2
` such that:

a

b
ą

ˆ

1

2
_

}D2f}8

1 ´ cr
_ r8pcf ´ 1q

˙

, (A.1)

we have:

piq A constant C1 ą 0 and an integer n0 P N exist such that for any n ě n0,

@x, y P R
d, Vnpx, yq ě C1

ˆ

fpxq `
}y}2

rn´1

˙

. (A.2)

piiq Some positive constants C2, C3 and ca,b exist such that:

ErVn`1pXn`1, Yn`1q|Fns

ď VnpXn, Ynqp1 ` C2γ
2
n`1rnq ´ ca,bγn`1}Yn}

2
´ bγn`1rn}∇fpXnq}

2

` C3γ
2
n`1rn. (A.3)

Proof:

Point piq: For any non-negative u, v, the elementary inequality uv ď
ρ
2u

2 `
1
2ρv

2

holds for any ρ ą 0. We apply this inequality with u “ }∇fpxq}, v “ }y} and
ρ “ 2rn and obtain:

|x∇fpxq, yy| ď rn´1}∇fpxq}
2

`
a

4rn´1
}y}

2.

It follows from Assumption pHsq that }∇f}2 ď cff . Using the above inequality,
we obtain that for any x, y P R

d:

Vnpx, yq ě pa ` brn´1p1 ´ cf qqfpxq `
1

2rn´1

„

a ´
b

2

j

}y}
2.

Choosing now a and b such that a ą b{2 and a ą br8pcf ´ 1q, we obtain the
first assertion follows from (A.1). ˛
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Point piiq: The Taylor formula ensures the existence of ξn`1,1 and ξn`1,2 in

rXn, Xn`1s such that:

Vn`1pXn`1, Yn`1q

“ pa ` brnq

ˆ

fpXnq ´ γn`1x∇fpXnq, Yny `
γ2
n`1

2
Y t
nD

2fpξn`1,1qYn

˙

`
a

2rn

`

}Yn}
2

` 2γn`1rn
`

xYn,∇fpXnqy ´ }Yn}
2

` xYn ` γn`1rnp∇fpXnqy ´ Ynq,ΔMn`1yqq

`
a

2rn
γ2
n`1r

2
n}ΔMn`1}

2

´ b
@

∇fpXnq ´ γn`1D
2fpξn`1,2qYn, Yn ` γn`1rn p∇fpXnq ´ Yn ` ΔMn`1q

D

.

Combining the similar terms leads to:

Vn`1pXn`1, Yn`1q “ VnpXn, Ynq ´ bprn ´ rn´1qfpXnq

` γn`1x∇fpXnq, Yny

¨

˝´a ´ brn ` a ` brn
looooooooooomooooooooooon

“0

˛

‚

´ γn`1Y
t
nDn`1Yn ´ γn`1rnb}∇fpXnq}

2

` γn`1rnΔNn`1 ` γn`1ΔRn`1,

where pΔNnqně1 is a sequence of martingale increments, Dn is a d ˆ d-matrix
defined by:

Dn`1 “ a

ˆ

1 ´
1

2γn`1

ˆ

1

rn
´

1

rn´1

˙˙

Id ´ bD2fpξn`1,2q,

and ΔRn`1 is a remainder term. Using pHsq, we know that D2f is bounded,
and we have the following bound for ΔRn`1:

}ΔRn`1} ď C2γn`1rn
`

}Yn}
2

` }ΔMn`1}
2

` }∇fpXnq}.}Yn}
˘

,

where C2 is a deterministic positive constant independent of n. The fact that
prnqně1 is a bounded sequence combined with Assumptions pHσ,2q and pHsq

yields Er}ΔRn`1}|Fns ď C2γn`1rn
`

1 ` }Yn}2 ` fpXnq
˘

. It follows that:

@n ě n0 Er}ΔRn`1}|Fns ď C2γn`1rnVnpXn, Ynq.

Second, the condition given by (A.1) shows that an integer n1 ě n0 and a
constant ca,b ą 0 exist such that:

Dn`1Y
b2
n ě ca,b}Yn}

2.

Using the previous bounds in Vn`1pXn`1, Yn`1q and the fact that prnqnPN is
non-increasing shows that:
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Dn2 ě n1 @n ě n2 : ErVn`1pXn`1, Yn`1q|Fns ď VnpXn, Ynqp1 ` Cγ2
n`1rnq

´ ca,bγn`1}Yn}
2

´ bγn`1rn}∇fpXnq}
2. ˛ ˝

Proof of Proposition 3.1 We use Lemma A.1 to prove the results.
Proof of piq ´ piiq ´ piiiq: Under the conditions on prnq, we can check that some
positive a and b exist such that the conclusions of the previous lemma hold true.
We then deduce that:

ErVn`1pXn`1, Yn`1q|Fns

ď VnpXn, Ynqp1 ` Cαn`1q ´ Un`1,

with αn “ γ2
nrn and Un`1 “ ca,bγn`1}Yn}2 ` bγn`1rn}∇fpXnq}2. Subsequently,

using the Robbins-Siegmund Theorem (see, e.g., Theorem B.1 in Section B, bor-
rowed from [Duf97]), we deduce, on the one hand, that supně1 ErVnpXn, Ynqs ă

`8 and that pVnpXn, Ynqqně1 almost surely (and in L1) converge towards a
random variable V8 P R`. In particular, the coercivity of f implies the a.s.-
boundedness of pXnqně0. On the other hand, the Robbins-Siegmund Theorem
also implies that:

ÿ

ně1

γn`1rn

ˆ

}Yn}2

rn
` }∇fpXnq}

2

˙

ă `8 a.s.

Hence, the three first statements follow. ˛

Proof of pivq: The proof relies on the so-called ODE method (see, e.g., [Ben06]).
Set r8 “ limnÑ`8 rn. We deal with cases r8 ą 0 and r8 “ 0 separately.

Case r8 ą 0 (exponential memory): Set Γn “
řn

k“0 γk with the convention
γ0 “ 0. Denote by pz̄ptqqtě0 the interpolated process defined by z̄pΓnq “ Zn “

pXn, Ynq1, n ě 0, with linear interpolations between times Γn and Γn`1 and let
z̄pnq be the associated shifted-sequence defined by:

z̄pnq
ptq “ z̄pt ` Γnq t ě 0.

Setting εn “ p0, prn´1 ´ r8qp∇fpXnq ´ Ynq ` ΔMnq1 and hpx, yq “

p´y, r8p∇fpxq ´ yqq1, we have:

Zn`1 “ Zn ` γn`1phpZnq ` εn`1q.

Set Npn, tq “ inftk ě n, γn`1 ` . . . ` γk ě tu (with the convention inf H “

n). Then, since pZnqně0 is a.s.-bounded, it is a classical result on stochastic
algorithm theory (see, e.g., [Duf97], Theorem 9.2.8 and the remark below) that
if for any T ą 0,

lim sup
nÑ`8

sup
tPr0,T s

›

›

›

›

›

›

Npn,tq`1
ÿ

k“n`1

γkεk

›

›

›

›

›

›

“ 0 a.s., (A.4)
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then pz̄pnqqně0 is relatively compact (for the topology of uniform convergence
on compact sets) and its limit points are solutions to the ODE 9z “ hpzq. Let
us prove (A.4). Let T ą 0. Using the Cauchy-Schwarz inequality, we have, for
every t P r0, T s:

Npn,tq`1
ÿ

k“n`1

γkp}∇fpXk´1q} ` }Yk}q

ď
?
2

¨

˝

Npn,tq`1
ÿ

k“n`1

γk

˛

‚

1
2
¨

˝

Npn,tq`1
ÿ

k“n`1

γk
`

}∇fpXk´1q}
2

` }Yk´1}
2
˘

˛

‚

1
2

ď
a

2pT ` γ1q

˜

`8
ÿ

k“n`1

γk
`

}∇fpXk´1q}
2

` }Yk´1}
2
˘

¸
1
2

nÑ`8
ÝÝÝÝÝÑ 0,

(A.5)

where the last convergence follows from piiiq. On the basis of Assumption pHσ,2q

and piiiq, we also note that px
řn

k“1 γkΔMkyqně1 is a.s.-convergent so that
ř

γnΔMn. It easily follows that:

lim sup
nÑ`8

sup
tPr0,T s

›

›

›

›

›

›

Npn,tq`1
ÿ

k“n`1

γkΔMk

›

›

›

›

›

›

“ 0 a.s.

and that (A.4) is satisfied. Now, we again deduce from (A.5) that for any T ą 0,

sup
tďT

}z̄pnq
ptq ´ z̄pnq

p0q} “ sup
tďT

}z̄pnq
ptq ´ Zn}

nÑ`8
ÝÝÝÝÝÑ 0

so that each limit point is stationary. At this stage, we have thus proven that
every limit point of pz̄nqně0 is a stationary solution to 9z “ hpzq. This im-
plies that any limit point Z8 of pZnqně0 satisfies hpZ8q “ 0 (and thus Y8 “

∇fpX8q “ 0). Actually, let pZnk
qkě1 be a convergent subsequence of the (a.s.

bounded) sequence pZnqně0 and denote its limit by Z8. Up to a second ex-
traction, pz̄pnkqq converges to a stationary solution z̄8 of 9z “ hpzq. As a conse-
quence, hpz̄8ptqq “ 0 for any t ě 0. In particular, hpz̄8p0qq “ hpZ8q “ 0. By
piiq and the fact that pYnqně0 converges to 0, we also deduce that pfpXnqqně0

is a.s.-convergent. To conclude the proof, it remains to observe that the set
of possible limits of subsequences of pXnqně1 is connected. This is true since
Xn ´ Xn´1 “ ´γnYn´1 Ñ 0 as n Ñ `8. ˛

Case r8 “ 0 (polynomial memory): In this case, the proof is somewhat
similar but the identification of the asymptotic dynamics requires an appropriate
normalization of Yn

1. Let us set:

rγn “ γn
?
rn, rΓn “

n
ÿ

k“0

γ̃k, rXn “ Xn, rYn “
Yn

?
rn

.

1In fact, due to the asymptotic stationarity, the limiting dynamics is not intrinsic.
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Also set by rZn “ p rXn, rYnq1. The dynamic of rZn is described by Lemma A.2

below. We denote as przptqqtě0 the interpolated process, i.e. defined by z̃prΓnq “

rZn, n ě 0, with linear interpolations between times rΓn and rΓn`1 and let z̃pnq

be the associated shifted-sequence defined by

z̃pnq
ptq “ z̃pt ` rΓnq t ě 0.

With this setting, the idea is to show that the sequence pz̃pnqptqqtě0 is tight with
limits being stationary solutions of a homogeneous O.D.E. 9z “ h̃pzq (h̃ being the

drift to be determined). The sequence p rZnqně0 satisfies Lemma A.2 that shows

that rZn`1 “ rZn ` rγn`1

´

h̃p rZnq ` ε̃n`1

¯

with h̃px̃, ỹq :“ p´ỹ,∇fpx̃qq1 and:

ε̃n`1 “

˜

0

υ
p1q
n ∇fp rXnq ` υ

p2q
n

rYn `

b

rn
rn`1

ΔMn`1

¸

,

where υ
p1q
n and υ

p2q
n are given in the statement of Lemma A.2.

On the basis of Assumption pHrq, we know that:

lim sup
nÑ`8

1

2γn`1

ˆ

1

rn`1
´

1

rn

˙

ă 1,

so that:

υp1q
n “ O

ˆ

rn ´ rn`1

rn`1

˙

“ Oprγn`1
?
rnq and υp2q

n “ O p
?
rnq .

Thus, pυ
p1q
n qně1 and pυ

p2q
n qně1 converge to 0 as n Ñ `8. We can now repeat

the arguments used in the situation r8 ą 0 and we obtain:

lim sup
nÑ`8

sup
tPr0,T s

›

›

›

›

›

›

ĂNpn,tq`1
ÿ

k“n`1

γ̃kε̃k

›

›

›

›

›

›

“ 0 a.s.,

where rNpn, tq “ inftk ě n, rγn`1 ` . . .`rγk ě tu. We can still combine (A.5) and

piiiq to obtain suptďT |z̃pnqptq ´ z̃pnqp0q|
nÑ`8

ÝÝÝÝÝÑ 0 for any T ą 0. We conclude

that pz̃pnqqně0 is relatively compact and that its limits are stationary solutions
of 9z “ h̃pzq. The end of the proof is exactly the same as in the case r8 ą 0. ˛˝

Lemma A.2. If the sequence p rZnqně1 is defined by rZn “ p rXn, rYnq :“ pXn,
Yn?
rn

q,

then
rZn`1 “ rZn ` rγn`1

´

h̃p rZnq ` ε̃n`1

¯

where h̃px̃, ỹq “ p´ỹ,∇fpx̃q ´
?
r8ỹq1 and

ε̃n`1 “

˜

0

υ
p1q
n ∇fp rXnq ` υ

p2q
n

rYn `

b

rn
rn`1

ΔMn`1

¸

,
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with rγn :“ γn
?
rn and

υp1q
n “

c

rn
rn`1

´ 1 and υp2q
n “

1

γ̃n`1
υp1q
n `

ˆ

?
r8 ´

rn
?
rn`1

˙

.

Proof: First, the fact that rXn`1 “ rXn ´ γ̃n`1
rYn is obvious. Second,

rYn`1 “ rYn

c

rn
rn`1

`γ̃n`1

ˆ
c

rn
rn`1

∇fp rXnq ´
rn

?
rn`1

rYn `

c

rn
rn`1

ΔMn`1

˙

.

The lemma follows. ˝

A.2. Convergence towards a local minimizer

This paragraph gathers the proof of the technical results used in Section 3.2.
Proof of Proposition 3.3
Proof of piq. When n ě T , we have Ωn`1 “ γ̃n`1 by definition and the conclusion
follows. In the other situation when n ď T , we use the Lipschitz continuity of
η: if m “ supzPN }Dηpzq}, then Equation (3.3) yields:

}ηp rZn`1q ´ ηp rZnq}
2

ď 4m2γ̃2
n`1

”

}rYn}
2

` r2}∇fp rXnq}
2

` q2n`1}ΔMn`1}
2

` }Un`1}
2
ı

.

The neighborhood N being compact, we deduce from the previous inequality
that a constant C ą 0 exists such that:

E
“

}Ωn`1}
21năT |Fn

‰

ď E
”

}ηp rZn`1q ´ ηp rZnq}
21năT |Fn

ı

ď Cγ̃2
n`1,

where we used a uniform upper bound on Er}ΔMn`1}21năT |Fns, leading to the
proof of piq. ˛

Proof of piiq. Note that 1năT and 1něT are Fn measurable and we have:

1něTE rΩn`1|Fns “ 1něT γ̃n`1 ě 0.

On the complementary set, we also have:

1năTE rΩn`1|Fns ě 1năTE

”

rηp rZn`1q ´ ηp rZnqs|Fn

ı

“ 1năTE

”

ηp rZn`1q ´ ηp rZnq|Fn

ı

Hence, we can use the lower bound given by (3.6): for any value of α P p0, 1s:

1năTE rΩn`1|Fns

ě 1năT

”

γ̃n`1xDηp rZnq, F p rZnqy ` γ̃n`1xDηp rZnq,ErΔMn`1|Fns ` Un`1y

ı

´ 1năT kαγ̃
1`α
n`1

”

}rYn} ` r}∇fp rXnq} ` qn`1}ΔMn`1} ` }Un`1}

ı1`α

where we used the triangle inequality in the last line to derive an upper bound of
} rZn`1´ rZn}. When n ă T , rZn is bounded and we have Er}ΔMn`1}2|Fns ď σ2M
for a large enough M . Hence, the Hölder inequality implies that:

Er}ΔMn`1}
1`α

|Fns ď σ1`αM
1`α
2 .
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Therefore, we can find a large enough constant C1 ą 0 such that:

1năTE rΩn`1|Fns ě 1năT

”

γ̃n`1xDηp rZnq, F p rZnqy ´ mγ̃n`1}Un`1} ´ C1γ̃
1`α
n`1

ı

.

The lower bound piiiq of Proposition 3.2 and the definition of Un`1 implies that
a constant C2 exists such that:

1năTE rΩn`1|Fns ě 1năT γ̃n`1

„

κηp rZnq ´ C1γ̃
α
n`1 ´

C2
?
Γn

j

We now choose α so that γ̃α
n`1 » Γ

´1{2
n , which corresponds to the choice:

α “
1 ´ β

1 ` β
.

Defining εn “ κ´1
”

C1γ̃n`1 ` C2Γ
´1{2
n

ı

, we then deduce that if n ă T , then

Sn “ ηp rZnq so that:
1SněεnE rΩn`1|Fns ě 0,

which concludes the proof. In particular, εn must be chosen on the order γ̃α
n`1

(or on the order Γ
´1{2
n „ n´p1´βq{2). ˛

Proof of piiiq. Observe that S2
n`1 ´ S2

n “ Ω2
n`1 ` 2SnΩn`1. Now, if Sn ě εn,

then we have seen in the proof of piiq that:

1SněεnErS2
n`1 ´ S2

n|Fns “ 1SněεnErΩ2
n`1|Fns ` 2Sn1SněεnErΩn`1|Fns

ě 1SněεnErΩ2
n`1|Fns.

In the other situation, we have Sn ď εn, meaning that n ă T and we have
seen in the proof of piiq that:

1năTErΩn`1|Fns ě 1năT

”

γ̃n`1κηp rZnq ` γ̃n`1xDηp rZnq, Un`1y

ı

´ k2γ̃
2
n`1

”

}rYn} ` r}∇fp rXnq} ` qn`1}ΔMn`1} ` }Un`1}

ı2

Consequently, because of the positivity of η, we deduce that:

1năTErΩn`1|Fns ě ´}Dηp rZnq} ˆ Opγ̃n`1Γ
´1{2
n q ´ Opγ̃2

n`1q.

We know that Dη is locally bounded on N , we then obtain:

1SnďεnErΩn`1|Fns “ 1Snďεn1năTErΩn`1|Fns

“ 1ηp rZnqďεn
1năTErΩn`1|Fns

ě ´1ηp rZnqďεn
1năT

”

}Dηp rZnq}Opγ̃n`1Γ
´1{2
n q ` Opγ̃2

n`1q

ı

.

ě ´Cγ̃n`1

”

Γ´1{2
n ` γ̃n`1

ı

,
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for a large enough constant C. In the two situations, we then have:

ErS2
n`1 ´ S2

n|Fns ě ErΩ2
n`1|Fns ´ 2Cεnγ̃

2
n`1 ´ 2Cεnγ̃n`1Γ

´1{2
n .

Finally, Lemma 9.7 of [Ben06] and our hypoelliptic assumption pHEq implies
that for small enough c:

ErΩ2
n`1|Fns ě cγ̃2

n`1

The conclusion follows if εnγ̃n`1Γ
´1{2
n “ o

`

γ̃2
n`1

˘

. Since εn is chosen on the

order Γ
´1{2
n „ γ̃α

n`1 with α “ p1 ´ βq{p1 ` βq, this condition is equivalent to:

γ̃1`2α
n`1 “ o

`

γ̃2
n`1

˘

.

meaning that α ą 1{2. It then implies that β should be less than 1{3. ˛˝

A.3. Supremum of the square of sub-Gaussian random variables

We consider a sequence of independent random variables pξiqiěn of Rd such that
each coordinate satisfies a sub-Gaussian assumption pHGauss,σq:

@λ P R @j P t1, . . . , du @i ě n logE
”

eλξ
j
i

ı

ď λ2σ
2

2
, (A.6)

where σ2 is a variance factor. If pγkqkěn is a decreasing sequence in �2pNq, we
are looking for an upper bound of:

m‹
n “ E

„

sup
kěn

	

γ2
k}ξk}

2
(

j

. (A.7)

For any ν ą 0 and any decreasing sequence γn „ γn´ν , we establish the follow-
ing result (useful for Theorem 3.2).

Theorem A.1. If each coordinate ξji is absolutely continuous w.r.t. the Lebesgue
measure and satisfies pHGauss,σq, then:

m‹
n À σ2d γ2

n logpγ´2
n q,

where À refers to an inequality up to a universal constant.

We begin with a preliminary lemma.

Lemma A.3. Assume that X is a real random variable that satisfies pHGauss,σq

with median 0:

P pX ą 0q “ P pX ă 0q “
1

2
.

Then, we can find Y „ N p0, σ2q on the same probability space and c large
enough s.t.

|X| ď c|Y | a.s.
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Proof of Lemma A.3: We use a coupling argument. We denote FX as the cumu-
lative distribution function:

FXptq “

ż t

´8

fXpuqdu “ PrX ď ts.

Similarly, we also denote Ψσ2 as the cumulative distribution function of a Gaus-
sian random variable N p0, σ2q:

Ψσ2ptq “

ż t

´8

e´x2
{2σ2

?
2πσ

dx “ PrN p0, σ2
q ď ts.

Our assumption on the distribution on X shows that the generalized inverse
of FX (denoted F´1

X ) exists and if U is a uniform random variable between on
r0, 1s, then X „ F´1

X pUq. We now consider the random variable Y „ F´1
σ2 pUq

built with the same realization of U . Of course, Y is distributed according to a
Gaussian random variable N p0, σ2q.

We need to show that a sufficiently large c ą 0 exists such that |X| ď c|Y |,
that is:

ˇ

ˇF´1
X puq

ˇ

ˇ ď c
ˇ

ˇΨ´1
σ2 puq

ˇ

ˇ . (A.8)

Using the fact that FX is an increasing function, and letting u “ Ψσ2pyq, it is
then equivalent to show that:

@y P R FXp´c|y|q ď Ψσ2p|y|q ď FXpc|y|q (A.9)

We now study two different situations for y. If y “ 0, then Inequality (A.9)
holds since the median of X is 0. If |y| ď η is close to 0, the same inequality is
satisfied with a first-order Taylor expansion. For example, the right hand side
reads:

FXpc|y|q „
1

2
`

ż c|y|

0

fXpuqdu ě
1

2
` cfXp0q|y| ` op|y|q,

which is greater than Ψσ2p|y|q for c large enough. Hence, we deduce that In-
equality (A.9) holds around 0.

Now, we assume that |y| ą η ą 0, the desired upper bound (A.9) is equivalent
to:

1 ´ FXpc|y|q ď 1 ´ Ψσ2p|y|q.

The Chernoff bound associated with the sub-Gaussian assumption pHGauss,σq

on the distribution of X implies that:

PpX ą c|y|q ď einfλą0tλ2σ2
{2´λc|y|u “ e´

c2|y|2

2σ2 .

At the same time, the lower bound of the Gaussian tail is given by:

1 ´ Ψσ2pc|y|q ě
e´|y|

2
{2σ2

?
2πσ

“

|y|
´1

´ |y|
´3

‰

ě κpδqe´|y|
2

{2σ2

,
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with κpδq a constant independent of |y| ě δ. Hence, the right hand side of (A.9)
holds for a large enough c (independent on σ2). A symmetry argument permits
to conclude for the left hand side of (A.9).

Inequality (A.9) being equivalent to (A.8), the conclusion of the proof follows.
˝

We are now looking at to the proof of Theorem A.1.
Proof of Theorem A.1:
We will shift all of the coordinates of the random variables pξiqiěn by their
corresponding medians. Assuming pHGauss,σq, the coordinates pξji q1ďjďd are
centered and have a second-order moment upper bounded by σ2 (see [Str94],
for example):

@i ě n @j P t1, . . . , du Ertξiju
2
s ď σ2.

The Tchebychev inequality implies that each medianmj
i of the random variables

ξji are bounded by:

@i ě n @j P t1, . . . , du |mj
i | ď

?
2σ. (A.10)

We then consider the centered (w.r.t. their medians) random variables:

ξ̃ji “ ξji ´ mj
i ,

and use the inequality pa`bq2 ď 2a2`2b2 together with the upper bound (A.10)
to deduce that:

m‹
n “ E sup

kěn
γ2
k}ξk}

2
“ E sup

kěn
γ2
k

d
ÿ

j“1

tξjku
2

ď E sup
kěn

γ2
k

«

2
d
ÿ

j“1

tξjk ´ mk
j u

2
` 2dσ2

ff

ď 2dσ2γ2
n ` 2E sup

kěn
γ2
k}ε̃k}

2.

We can use Lemma A.3 and deduce that up to a multiplicative universal con-
stant:

m‹
n À 2dσ2γ2

n ` 2σ2
E sup

kěn
γ2
k}Zk}

2,

where each pZkqkěn are i.i.d. realizations of Gaussian random variables
N p0, σ2Idq.

We now aim to apply a chaining argument to control the supremum of the
empirical process above. To apply Lemma A.4, we define Tn :“ �n;`8� and
compute the Laplace transform of the chi-square-like random variables:

logEeλrγ2
k}Zk}

2
´γ2

j }Zj}
2

s
“

d

2
log

˜

1 ´ 2λγ2
j

1 ´ 2λγ2
k

¸
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We can check that up to a universal multiplicative constant, we have:

@λ P R` @pa, bq P R` ˆ R` : log
1 ´ aλ

1 ´ bλ
À λ|a ´ b| `

|a ´ b|2λ2

1 ´ λ|a ´ b|
.

We are naturally driven to define the pseudo-metric on Tn by:

@pi, jq P T 2
n dpi, jq “

ˇ

ˇγ2
i ´ γ2

j

ˇ

ˇ .

It remains to upper bound the covering number of Tn according to d for any
radius ε ą 0. Indeed, when 2γ2

n ď ε, we have Npε, Tnq “ 1 although when
ε ď 2γ2

n, we use the rough bound:

Npε, Tnq ď inf
	

j ě n : 2γ2
j ď ε

(

.

In particular, if γj “ γj´ν , we then obtain

Npε, Tnq „ ε´1{2ν .

We apply Lemma A.4 and obtain an upper bound for the right hand side of
(A.11). The first term is proportionnal to γ2

n. The other terms lead to the com-
putation of the two integrals (up to some universal multiplicative constants):

ż γ2
n

0

a

logpε´1qdε and

ż γ2
n

0

logpε´1
qdε

The change of variable ε “ e´x and an integration by parts leads to an upper
bound whose size is logpγ´2

n qγ2
n. ˝

The next Lemma, borrowed from [BLM13] (see Lemma 13.1, Chapter 13),
provides a key estimate for the expectation of the suppremum of an empirical
process indexed by a pseudo metric space pT , dq. This estimate involves the
covering numbers Npδ, T q associated with the set T and the pseudo-metric d.

Lemma A.4. Let T be a separable metric space and pXtqtPT be a collection of
random variables such that for some constants a, v, c ą 0,

logEeλrXi´Xjs
ď aλdpi, jq `

vλ2d2pi, jq

2p1 ´ cλdpi, jq

for all pi, jq P T 2 and all 0 ă λ ă tcdpi, jqu´1. Then, for any i0 P T :

E sup
iPT

rXt ´Xi0s ď 3aδ ` 12
?
v

ż δ{2

0

a

Hpu, T qdu` 12c

ż δ{2

0

Hpu, T qdu. (A.11)

Appendix B: Standard tools of stochastic algorithms

We recall below a standard version of the so-called Robbins-Siegmund Theorem
(see e.g. [Duf97]):
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Theorem B.1. Given a filtration Fn and four positive, integrable and Fn-
adapted sequences pαnqn,pβnqn, pUnqn and pVnqn satisfying:

• (i) pαnqn,pβnqn, pUnqn are predictible sequences.
• (ii) supω

ś

n
p1 ` αnpωqq ă 8,

ř

n
Epβnq ă 8.

• (iii) @n P N,

EpVn`1|Fnq ď Vnp1 ` αn`1q ` βn`1 ´ Un`1

Then:

(i) Vn converges to V8 in L1 and supn ErVns ă 8.
(ii)

ř

n
EpUnq ă 8,

ř

n
Un ă 8 a.s.

B.1. Step sizes γn “ γ n´β with β ă 1

Proposition B.1. For any positive values a ą 0 and b ą 0, for any β P p0, 1q

and any sequence pγnqně1 defined by γn “ γn´β, one has:

piq ´ a If β ă 1{2, then
n
ř

k“1

aγk ´ bγ2
k ě

aγ
1´βn

1´β ´
bγ2

1´2βn
1´2β

piq ´ b If β ą 1{2, then
n
ř

k“1

aγk ´ bγ2
k ě

aγ
1´βn

1´β ´
bγ2

2β´1

piq ´ c If β “ 1{2, then
n
ř

k“1

aγk ´ bγ2
k ě

aγ
1´βn

1´β ´ bγ2 logn

piiq An integer n0 exists such that

@n ě n0

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγlq
2

ď
2

a
γn`1.

piiiq An integer n0 exists such that

@n ě n0

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγl ` bγ2
l q ď

2

a
γn`1.

Proof: The upper bounds involved in piq ´ a, b, c are straightforward. ˛

Proof of piiq: Using Γn introduced in the beginning of Section 2, we write:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγlq
2

ď

n
ÿ

k“1

γ2
ke

´a
řn

k`1 γl

“

n
ÿ

k“1

γ2
ke

´aΓn`aΓk ď γ2e´aΓn

n
ÿ

k“1

k´2βe
aγ
1´β k1´β

The function x ÞÝÑ x´2βe
aγ
1´β x1´β

being increasing for x ě ca,γ,β , we then
obtain, considering an integer t ą ca,γ,β :

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγlq
2

ď γ2e´aΓn

ˆ

Ct `

ż n

t

x´2βe
aγ
1´β x1´β

dx

˙

.
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We can write x´2βeKx1´β

“

´

eKx1´β
¯1

x´βK´1p1 ´ βq´1 and integrating by

parts, we obtain for a large enough n:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´aγlq
2

ď γ2e´aΓn

ˆ

Ct `
eaΓn

aγ
n´β

˙

ď
2

a
γn. ˛

Proof of piiiq: We only deal with β ă 1{2, which is the most involved situation.

Using Γn and Γ
p2q
n introduced in the beginning of Section 2, we write:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγl ` bγ2
l q ď

n
ÿ

k“1

γ2
ke

´aΓn`aΓk`bΓp2q
n ´bΓ

p2q
k

ď e´aΓn`bΓp2q
n

n
ÿ

k“1

γ2
ke

aΓk´bΓ
p2q
k

ď γ2e´aΓn`bΓp2q
n

n
ÿ

k“1

k´2βe
aγ
1´β k1´β

´
bγ2

1´2β k1´2β

.

The function x ÞÝÑ x´2βe
aγ
1´β x1´β

´
bγ2

1´2β x1´2β

being increasing for x ě ca,b,γ,β ,
we then obtain considering an integer t ą ca,b,γ,β :

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγl ` bγ2
l q

ď γ2e´aΓn`bΓ
p2q
n

˜

t
ÿ

k“1

k´2βe
aγ
1´β

k1´β´
bγ2

1´2β
k1´2β

`

ż n

t

x´2βe
aγ
1´β

x1´β´
bγ2

1´2β
x1´2β

dx

¸

ď γ2e´aΓn`bΓ
p2q
n

ˆ

Ct `

ż n

t

x´2βe
aγ
1´β

x1´β´
bγ2

1´2β
x1´2β

dx

˙

ď γ2e´aΓn`bΓ
p2q
n pCt

`

ż n

t

x´β

„

3

2

aγx´β
´ bγ2x´2β

aγ
`

3bγx´2β
´ aγx´β

2

j

e
aγ
1´β

x1´β´
bγ2

1´2β
x1´2β

dx

˙

Now choosing t ě p3b{aqβ
´1

yields 3bγx´2β ď aγx´β for any x ě t. Integrating
by parts, we obtain:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγl ` bγ2
l q ď γ2e´aΓn`bΓp2q

n

ˆ

Ct `
n´β

aγ
e´aΓn`nΓp2q

n

˙

ď
γn´β

a
` γ2Cte

´aΓn`bΓp2q
n .

Then, choosing n0 large enough (that depends on a, b, γ and β), we deduce that:

@n ě n0

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγl ` bγ2
l q ď

2

a
γn. ˛

˝
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B.2. Step sizes γn “ γ n´1

Proposition B.2. For any positive values a ą 0 and b ą 0 and any sequence
pγnqně1 defined by γn “ γn´1, we have:

piq
n
ř

k“1

aγk ´ bγ2
k ě a logn ´ bπ2{6

piiq
n
ř

k“1

γ2
k

n
ś

l“k`1

p1 ´ aγlq
2 ď Cγ

$

’

&

’

%

1
aγ´1n

´1 if aγ ą 1

lognn´1 if aγ “ 1
1

1´aγn
´aγ if aγ ă 1

piiiq
n
ř

k“1

γ2
k

n
ś

l“k`1

p1 ´ aγl ` bγ2
l q ď Cγ,b

$

’

&

’

%

1
aγ´1n

´1 if aγ ą 1

log nn´1 if aγ “ 1
1

1´aγn
´aγ if aγ ă 1

pivq For any ε ą 0, a ą 0 and b ą 0:
n
ř

k“1

γk`1

n
ś

l“k`1

p1´aγl`bγ1`ε
l q ď

2ebΓ
p1`εq
8
a .

Proof: The upper bounds involved in piq and piiq are straightforward. ˛

Proof of piiiq: The situation is easier than the one involved in point piiq of
Proposition B.1 because in that case, we have:

@n ě 1 Γp2q
n ď γ2π2

{6.

Therefore, we can repeat the computations above and get:
n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1 ´ aγl ` bγ2
l q ď

n
ÿ

k“1

γ2
ke

´aΓn`aΓk`bΓp2q
n ´bΓ

p2q
k

ď e´aΓn`bγ2π2
{6

n
ÿ

k“1

γ2
ke

aΓk

ď γ2ebγ
2π2

{6n´aγ
n
ÿ

k“1

k´2`aγ .

We then deduce that:

n
ÿ

k“1

γ2
k

n
ź

l“k`1

p1´aγl`bγ2
l q “ γ2ebγ

2π2
{6

$

’

&

’

%

1
aγ´1n

´1 if aγ ą 1

lognn´1 if aγ “ 1
1

1´aγn
´aγ if aγ ă 1

˛

Proof of piiiq: We follow the same guideline: remark that pΓ
p1`εq
n qně1 is a bound-

ed sequence and write
n
ÿ

k“1

γk`1

n
ź

l“k`1

p1 ´ aγl ` bγ1`ε
l q ď

n
ÿ

k“1

γ

k ` 1
e´aγ log n`aγ log k`bΓp1`εq

n

ď γebΓ
p1`εq
8 n´aγ

ż n

1

xaγ´1dx

ď
ebΓ

p1`εq
8

a
. ˝
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50:564–601, 2014. MR3189085

[GP18] S. Gadat and F. Panloup. Optimal non-asymptotic bound of the
Ruppert-Polyak averaging without strong convexity Preprint, 2018.

[GY07] S. Gadat and L. Younes. A stochastic algorithm for feature selection
in pattern recognition. Journal of Machine Learning Research, 8:509–
547, 2007.

[Har82] P. Hartman. Ordinary Differential Equations. Classic in Applied
Mathematics. Wiley, 1982.
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