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Abstract: Consider a distribution F with regularly varying tails of index
−α. An estimation strategy for α, exploiting the relation between the be-
havior of the tail at infinity and of the characteristic function at the origin, is
proposed. A semi-parametric regression model does the job: a nonparamet-
ric component controls the bias and a parametric one produces the actual
estimate. Implementation of the estimation strategy is quite simple as it
can rely on standard software packages for generalized additive models. A
generalized cross validation procedure is suggested in order to handle the
bias-variance trade-off. Theoretical properties of the proposed method are
derived and simulations show the performance of this estimator in a wide
range of cases. An application to data sets on city sizes, facing the debated
issue of distinguishing Pareto-type tails from Log-normal tails, illustrates
how the proposed method works in practice.
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1. Introduction

Consider a random sample X1, X2, . . . , Xn with a distribution function F sat-
isfying

F̄ (x) = x−αL(x), x → ∞, (1)

where F̄ = 1−F and L(x) is a slowly varying function, satisfying L(tx)/L(x) →
1 as x → ∞, for any t > 0. We will also say that F̄ = 1−F is regularly varying
(RV) at infinity with index −α, denoted as F̄ ∈ RV−α. The parameter α > 0
is usually referred to as the tail index; alternatively, in the extreme value (EV)
literature it is typical to refer to the EV index γ > 0 with α = 1/γ.

The paper discusses an estimator of the tail index α which relies on the
relationship between the tail of a distribution and the slope of the real part
of the characteristic function (RCF) at the origin. This idea places itself out
of the mainstream approaches for tail estimation, usually based on functions
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of upper order statistics; moreover, the proposed method exploits all sample
information in analyzing the slope of the empirical RCF (ERCF) at the origin,
which, typically, has lower variability with respect to the largest order statistics.
The estimation procedure proposed can be implemented exploiting standard
regression analysis packages such as lm or gam in R software and their tools
in order to automatically select estimation parameters. Also, a full regression
analysis of the ERCF can be exploited to better understand the phenomenon
under scrutiny. All these issues will be discussed in turn; before doing so, a
connection with previous relevant literature is given.

Probably the most well-known estimator of the tail index is the Hill [26]
estimator, which exploits the k upper order statistics through the formula

H(k) := Hk,n = k−1
k∑

i=1

logXn−i+1:n − logXn−k:n, (2)

where Xi:n is the i-th order statistics from a sample of size n and k = k(n) → ∞
in an appropriate way. The Hill estimator may suffer from high bias and is
heavily dependent on the choice of k. It has been thoroughly studied [e.g.,
32, 23, 22, 27, 40, 10].

Several generalizations of the Hill estimator and new approaches have ap-
peared in the literature: for example Csorgo et al [8] present a general class of
kernel estimators where the Hill estimator can be obtained by taking a uniform
kernel; the family of j-moment ratio estimators [9], the smoothing Hill estima-
tor [41], and the location invariant estimator [14]. Beirlant et al [2] propose the
generalized Hill estimator; Brilhante et al [5] define a moment of order p esti-
mator which reduces to the Hill estimator for p = 0; Beran et al [4] defines a
harmonic moment tail index estimator. Recently Paulauskas and Vaičiulis [35]
and Paulauskas and Vaičiulis [36] have connected in an interesting way some of
the above approaches by defining parametric families of functions of the order
statistics.

Other notable contributions are those of Pickands III [37], which proposed a
simple estimator based on a linear combination of log-spacing order statistics,
or the moment estimator of Dekkers et al [11]; estimators based on the growth
rate of diverging statistics have been proposed by Meerschaert and Scheffler [34],
Politis [39], McElroy and Politis [33]. Kratz and Resnick [29] exploit properties
of the QQ-plot while a recent approach based on the asymptotic properties of
the partition function, a moment statistic generally employed in the analysis of
multifractality, has been introduced by Grahovac et al [21].

Reduced bias (RB) and optimized (for the choice of k) approaches are dis-
cussed in Caeiro et al [6], Gomes et al [18] and Gomes et al [20]; these approaches
are particularly relevant for this paper where a RB and optimized estimator will
be discussed. For further discussion and references one can consult Beirlant et al
[3] and Gomes and Guillou [19].

Another reference relevant to our work is Welsh [43], which defines an esti-
mator based on the ERCF evaluated at two points. This paper improves that
approach in several ways: by defining a full regression analysis of the ERCF, by
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providing a bias reduction component and an optimized choice of the points at
which to evaluate the ERCF at the origin.

The paper is organized as follows: Section 2 presents the basic estimation
strategy and analyzes its properties. Section 3 discusses an optimized and RB
estimator and in Section 4 numerical comparisons with alternative RB and op-
timized estimators are presented. Section 5 gives some examples of applications
to simulated and real data; an appendix contains the proofs of the results.

2. A simple regression estimator

2.1. Estimation strategy

The analysis of the tails of F will be based on the tail sum

H(x) = F (−x) + F̄ (x), x > 0; (3)

if F (−x) ∈ RV−α and F̄ (x) ∈ RV−α, for example as in symmetric α-stable or
t distributions, then H(x) ∈ RV−α. The same behavior of H(x) will hold if F
has a lighter left or right tail, e.g. F (−x) ∈ RV−β with β > α, or exponentially
decreasing or truncated. In all these cases, the estimator proposed will target
α; the approach discussed will also allow to treat each tail separately.

Let φ denote the CF of X, i.e., for all real t, φ(t) = E[eitX ]. Furthermore, let

φ(t) = U(t) + iV (t), (4)

where U(t) = E[cos(tX)] and V (t) = E[sin(tX)] are the real and imaginary
parts of the CF, respectively. Integrating (4) by parts, one has

1− U(t) = t

∫ ∞

0

sin(tx)H(x) dx, (5)

that is, the RCF U(t) depends only on the tail sum H(x). Moreover if H(x) ∈
RV−α, α > 0, from Pitman [38], it holds that, as t → 0,

1− U(t) ∼

⎧⎪⎨
⎪⎩
s(α)tαL(1/t), for 0 < α < 2

t2L1(1/t), for α = 2
1
2μ2t

2, for α > 2

(6)

where μ2 = E(X2) and L1(1/t) =
∫ 1/t

0
xH(x)dx and s(α) = π/2[Γ(α)×

sin(απ/2)]−1 if α > 0 and s(α) = 1 if α = 0; s(α) is finite for any α which
is not an even positive integer [38].

Remark 2.1. We exploit relationship (6) to develop an estimator for 0 < α ≤
2. Note however that this restriction can be removed: if X has a distribution
satisfying (1) with 0 < α ≤ 4, then P (X2 > x) = P (|X| > √

x) = L(
√
x)x−α/2

as x → ∞ and relationship (6) can still be used to estimate the tail index for
0 < α ≤ 4. In principle (6) can be used to estimate any α > 0 although in
practice the case 0 < α ≤ 4 covers most situations of interest. Examples for
these cases will be discussed below.
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Using an empirical version of U(t), i.e. Un(t) = n−1
∑n

j=1 cos(tXj) and eval-
uating Un(t) at points t1, t2, . . . , tm (to be defined later), we use the regression
equation

log[(1− Un(tj)] ∼ log[g(α, tj)] + α log tj + εj 0 < α ≤ 2, (7)

where

εj = log
1− Un(tj)

1− U(tj)
(8)

and, from (6), g(α, t) = s(α)L(1/t) if 0 < α < 2 and g(α, t) = L1(1/t) if α = 2.
By ordinary least squares (OLS), a simple estimator for α is

α̂ =

∑m
j=1 (zj − z̄)yj

Szz
, (9)

where yj = log[(1 − Un(tj)], zj − z̄ = log tj − 1
m

∑m
k=1 log tk, and Szz =∑m

k=1 (zk − z̄)2. Note that, given (6), one should discard values of α̂ greater
than 2. However we will retain the estimator unrestricted in order to discuss
its properties. Application caveats will be discussed in Section 3 and Section 5.
Also, α̂ implies that g(α, t) is treated as a constant even if it depends on t; this
may actually be a source of non-negligible bias. A bias reduced version of α̂ will
be developed in Section 3.

The estimator (9) for m = 2 corresponds to the ratio estimator discussed by
Welsh (1986); as noted in the introduction, the approach discussed in this paper
can be seen as an extension of that work. It will be seen that by adding more
observations and taking care of the bias introduced by the fictitious intercept
g(α, t) will lead to several advantages.

Remark 2.2. Our method, in the context of i.i.d. data, is analogous to that
used by Geweke and Porter-Hudak [16] in the estimation of long-memory time
series models. In that paper, the relation between the spectral density function
at the origin and the covariance function at infinity is exploited to estimate the
long-memory parameter of the series. See also Robinson [42] and Hassler et al
[25].

2.2. Properties of α̂

In order to understand the behavior of α̂ we need to analyze in more detail the

error εj = log [1 +
U(tj)−Un(tj)

1−U(tj)
]. Consider first the term

ε′j =
U(tj)− Un(tj)

1− U(tj)
; (10)

noting that Cov(Un(ti), Un(tj)) = (2n)−1{U(ti+ tj)+U(ti− tj)−2U(ti)U(tj)}
and using (6), as tj ↓ 0, we have (see also Welsh [43]),

V ar(ε′j) =

{
1

ntjαL(1/tj)
(2−2α−1)

s(α) (1 + o(1)) +O( 1n ), for 0 < α < 2

O( 1n ) for α ≥ 2.
(11)
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To make sure V ar(ε′j) < ∞ ∀j and 0 < α ≤ 2, ntαj needs to diverge as n → ∞
for all tj ’s. A way to evaluate the ERCF at the origin is to choose tj = j/nη

with j = 1, 2, ...,m, m =
⌊
nδ

⌋
for some 0 < δ < η < 1. To make ntαj → ∞

hold as n → ∞ for all 0 < α < 2, the condition 0 < δ < η ≤ 1/2 is necessary.
Moreover, to have as many points as possible in the regression, tj = j/

√
n with

j = 1, 2, ...,m, m =
⌊
nδ

⌋
and 0 < δ < 1/2 seems a sensible choice. Thus, a

Taylor expansion for εj = log[1 + ε′j ] = ε′j −
(ε′j)

2

2 + . . . , for 0 < α < 2 and
ntαj → ∞, leads to the expression (see also Welsh [43])

εj = ε′j + op((nt
α
j )

− 1
2 ). (12)

Similarly, let λij = tj/ti ti > tj , then for ti → 0,

Cov(ε′i, ε
′
j) ={

1
ntjαL(1/tj)

(2+2λα
ij−(1−λij)

α−(1+λij)
α)

2s(α) (1 + o(1)) +O( 1n ), for 0 < α < 2

O( 1n ) for α ≥ 2.

(13)

The above results can be exploited in order to calculate bias and variance of α̂,
which are summarized in the following theorem.

Theorem 2.3. If H(x) ∈ RV−α then, for tj = j/
√
n, j = 1, . . . ,m, m = �nδ�,

0 < δ < 1/2, as n → ∞,

E(α̂− α) = o(n
α−2−2αδ

4 ) +O(g1(α, n)) for 0 < α ≤ 2, (14)

V ar(α̂) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
s(1)

n−1/2

mL(
√
n/m)

{1 + o(1)}, if α = 1,

2(Aα−AαCα)
s(α)

nα/2−1

mαL(
√
n/m)

{1 + o(1)}, if 0 < α < 2 & α 
= 1,

O(1/n) +O((nm2)−1log2m), for α ≥ 2,

(15)

where Aα and Cα are finite constants (details in the appendix) and

g1(α, n) =

⎧⎪⎨
⎪⎩
s(α) 1

Szz

∑m
j=1(zj − z̄)L(1/tj), for 0 < α < 2,

s(α) 1
Szz

∑m
j=1(zj − z̄)L1(1/tj), for α = 2,

0, for α > 2.

(16)

Note that from Lemma 7.3 in the Appendix, Szz = m + O(log2m); since
L(x) ∈ RV0, then for some 0 < c < δ, limn→∞ L(

√
n/j)/nc = 0 ∀j ∈ {1, 2,

. . . , �nδ�}. Hence, a rough evaluation of bias and variance from Theorem 2.3
allows to see that α̂ provides a consistent estimator of α ∈ (0, 2] for any choice
of m = �nδ� and any slowly varying function L.

A more precise statement can be made by placing further conditions on L(x).
A standard assumption in the context of tail index estimation is that (see Hall
[23], Hall and Welsh [24])

L(x) = C[1 +Dx−β + o(x−β)], as x → ∞, (A1)
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where C > 0, β > 0 and D is a non-zero real number. With this, and restriction
to the case 0 < α < 2, it is possible to obtain exact rates of convergence of α̂
and its asymptotic normality. Define θ = min(α + β, 2), Theorems 2.4 to 2.6
give results on α̂ under (A1).

Theorem 2.4. Suppose H(x) ∈ RV−α, 0 < α < 2, (A1) holds, and α̂ is defined
in (9) with tj = j/

√
n for j = 1, 2, ...,m, m = �nδ� with 0 < δ < 1/2. Then as

n → ∞,

E(α̂)− α = O
(
n(δ−1/2)(θ−α)

)
+ o

(
n

α−2−2αδ
4

)
.

Since θ > α and 0 < α < 2, the bias goes to zero as n → ∞ regardless the
value of δ. The small o term may dominate the bias for small δ values.

Theorem 2.5. Suppose H(x) ∈ RV−α, 0 < α < 2, (A1) holds, and α̂ is defined
in (9) with tj = j/

√
n for j = 1, 2, ...,m, m = �nδ� with 0 < δ < 1/2. Then as

n → ∞,

V ar(α̂) = O
(
n

α
2 −1−δα

)
.

The exponent of n, α
2 − 1− δα, is always less than 0, therefore the variance

of α̂ converges regardless of the value of δ in (0, 1/2). Combining Theorems 2.4
and 2.5, the mean squared error (MSE) is

MSE(α̂) = O
(
n2(δ−1/2)(θ−α)

)
+O

(
n

α
2 −1−δα

)
, (17)

as n → ∞, under (A1) with 0 < α < 2. Similarly, the MSE goes to zero as
n → ∞ for all 0 < δ < 1/2. Note that in this case the small o term of the bias
is always dominated by the variance term. With regard to the explicit size of
the MSE, it is determined by the term that dominates on the right-hand side
of (17). The difference between these two orders is 2δθ− θ− δα+ α

2 +1. If this
value is less than zero, i.e., δ < 1

2 − 1
2θ−α , the second term dominates in the

MSE. More precisely, if θ = 2, 2θ−α is always between 2 and 4 for all 0 < α < 2
and the solution of δ < 1

2 − 1
2θ−α exists under the condition 0 < δ < 1/2. If

θ = α + β, a combination of small α and β makes 1
2 − 1

2θ−α negative, which
conflicts with δ > 0, then the first term dominates.

A general conclusion about the asymptotic normality of n
1
2−α

4 + δα
2 (α̂−E(α̂))

is stated in the following theorem.

Theorem 2.6. Suppose H(x) ∈ RV−α, 0 < α < 2, (A1) holds, and α̂ is defined
in (9) with tj = j/

√
n for j = 1, 2, ...,m = �nδ� with 0 < δ < 1/2. Then as

n → ∞,

n
1
2−

α
4 + δα

2 (α̂− E(α̂))
d−→ N (0, σ2), (18)

where σ2 < ∞ is a real constant (given in the proof).

From this theorem and Theorem 2.4 we deduce that, as n → ∞,

n
1
2−

α
4 + δα

2 (α̂− α)
d−→ N (0, σ2) +

D1(θ − α)

Cs(α)(θ − α+ 1)2
nδθ− θ

2−
δα
2 +α

4 + 1
2 {1 + o(1)},
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where, using notation of (A1), D1 = CD(α + β) if α + β < 2, otherwise D1 is
not specified unless the form of the remainder in (A1) is known.

If the second term on the right-hand side of the above equation is finite, i.e.,
δθ − θ

2 − δα
2 + α

4 + 1
2 ≤ 0, the distribution of α̂ − α is normal. That is, if the

condition 0 < δ < 1
2 − 1

2θ−α holds, as n → ∞,

n
1
2−α

4 + δα
2 (α̂− α)

d−→ N (0, σ2).

At point δ = 1
2 − 1

2θ−α if it exists, as n → ∞,

n
1
2−α

4 + δα
2 (α̂− α)

d−→ N (0, σ2) +
D1(θ − α)

Cs(α)(θ − α+ 1)2
.

As we can see, the bias term can be quite relevant in the case of α̂. Typically
bias reduction tools are based on external estimation of parameter of L(x) of
assumption A1, see, e.g. Gomes et al [18]. Given the regression context of α̂,
we will instead resort to a bias reduction approach based on a semi-parametric
component in the regression equation. This will allow consideration of a general
L(x), going beyond the case considered by A1.

3. Bias reduction and choice of m

Trying to contemplate a bias reducing approach, consider again equation (7):
a non-parametric component will be introduced in order to approximate the
unknown slowly varying function in g(α, t) (recall from section 2.1 that g(α, t) =
s(α)L(1/t) if 0 < α < 2 and g(α, t) = L1(1/t) if α = 2). The new regression
equation is

yj ∼ α0 + f(tj) + α log tj + εj 0 < α ≤ 2, (19)

where f(t) = logL(1/t) (or logL1(1/t)). The semi-parametric regression equa-
tion (19) can be solved by approximating f(t) using a smooth spline h(t), which
minimizes, for a given λ ≥ 0,

m∑
j=1

(yj − α0 − α log(tj)− h(tj))
2 + λ

∫
[h′′(u)]2du (20)

see, e.g. Wood [45]. Practical estimation of (19) can be carried out using stan-
dard software for generalized additive models. Below, an estimation procedure
which uses R is described. The gam() function of the mgcv package, which
can handle smooth terms and parametric ones as required in (19), is used. Es-
timation of (20) will be handled using the default approach defined for gam(),
which is based on a thin plate regression spline as discussed in Wood [44].

Practical selection of λ is typically carried out using generalized cross-
validation (GCV) or restricted maximum likelihood (REML), see, e.g. Marra
and Wood [31]. Although errors of model (19) are not i.i.d. we found both
criteria to work very well, in particular REML.
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To complete the estimation procedure we would require to set the value of m,
i.e. set the number of points at which the ERCF is evaluated at the origin. With
this, we define a procedure to obtain a RB estimator of α optimized, according
to GCV or REML, with respect to the choice of m (i.e. δ).

Algorithm 1

1. Define tj = j/
√
n, j = 1, 2, . . . ,m =

⌊
nδ

⌋
with a large value of δ ∈ (0, 1/2).

In our simulations we have chosen δ = 0.45.
2. For m = 6, 7, . . .

⌊
n0.45

⌋
.

a. Estimate model (19) with h(t) defined as in (20). In our simulations
gam() was used.

b. Select λ that minimizes a GCV or REML criterion.

3. Among the models selected in Step 2, select that with lower GCV or
REML.

Set the estimate obtained from Algorithm 1 as α̂∗, then the proposed
estimate of α for 0 < α ≤ 2 is

α̂ = min(α̂∗, 2). (21)

As noted, the range of α for which we can apply our procedure can be ex-
tended by transformation of the data. If α̂ provides a value equal to 2 it may
indicate that the true value of α is above that level. It is possible to run again
the estimation procedure with the squared data in order to see if a higher value
of α is appropriate. Examples of this situation will be presented in Section 4
and Section 5.

4. Numerical comparisons

The estimation strategy proposed here can be cast in the class of optimized RB
estimators; in our case optimization refers to the choice of m, i.e an appropriate
value for 0 < δ < 1/2.

Numerical comparisons will then be carried out with respect to some RB
competitors (Caeiro et al [6], Gomes et al [17]) based on Hill [26], generalized
Hill [2], moment [11] and moment of order p [20] estimators; optimized with
respect to the choice of k as discussed in Gomes et al [20].

For the above mentioned estimators, second order conditions are typically
imposed in order to have a non-degenerate behavior under a semi-parametric
model. Furthermore, when dealing with bias reduction, a more restrictive class
(the so-called third order condition) is imposed; more specifically, the tail quan-
tile function U(x) := F−1(1− 1/x), x ≥ 1, is RV1/α with a slowly varying func-
tion L(x) as defined by (A1) re-parametrized as L(x) = C(1+βxρ/(αρ)+o(xρ))
as x → ∞. (Note that in this re-parametrization β of A1 is set to −ρ.)

This implies that, for example, Log-gamma, Log-Pareto and Pareto distribu-
tions are excluded while EV and t-distributions are included. RB estimation of
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α is based on external estimation of (ρ, β); for further details see Gomes et al
[18] and Gomes et al [20]. In our comparisons the following RB-versions are
used:

1) RB-Hill estimator, outperforming H(k) for all k

H̄(k) = H(k)
(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
. (22)

where H(k) is the Hill estimator given in (2).
2) RB-Moment estimator [11], denoted by MM in the tables,

M̄(K) = M(k)
(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
− β̂ρ̂(n/k)ρ̂/(1− ρ̂)2, (23)

with

M(k) = M
(1)
k +

1

2

[
1− (M

(2)
k /(M

(1)
k )2 − 1)−1

]
(24)

and M
(j)
k =

∑k
i=1(lnX(n−i+1) − lnX(n−k))

j , j ≥ 1.
3) RB-Generalized Hill estimator, ḠH(k), denoted GH in the tables, with

the same bias correction as in (23) applied to

GH(k) =
k∑

i=1

(lnUHj,n − lnUHk,n) (25)

with UHj,n = Xn−j,nHj,n 1 ≤ j ≤ k.
4) RB-MOP (moment of order p) estimator, for 0 < p < α (the case p = 0

reduces to the Hill estimator) defined by

H̄p(k) = Hp(k)

(
1− β̂(1− pHp(k))

1− ρ̂− pHp(k)

(n
k

)ρ̂
)

(26)

withHp(k) = (1−A−p
p (k))/p, Ap(k) =

(∑k
i=1 U

p
ik/k

)1/p

, Uik = Xn−i+1:n/

Xn−k:n, 1 ≤ i ≤ k < n. Denoted by MOP(p) in the tables. In this case p is
a tuning parameter which will be set, in our simulations, equal to 0.5 and
1. For an estimated optimal value of p based on a preliminary estimator
of α see Gomes et al [20].

Computations of the above estimators have been performed using the package
evt0 in R. More precisely, GH(k) and M(k) are obtained using the function
other.EVI respectively with the options GH and MO. Estimation of the pa-
rameters (ρ, β) for the bias correction terms can be obtained from the function
mop. RB-Hill and RB-MOP estimates are directly obtained by the function mop

by appropriately specifying a value of p and the option RB-MOP. In order to
optimize the choice of k we used the formula [20]

k̂ = min
(
n− 1, �((1− ϕ(ρ̂)− ρ̂)2n−2ρ̂/(−2ρ̂β̂2(1− 2ϕ(ρ̂))))1/(1−2ρ̂)�+ 1

)
,

(27)

where �x� is the integer part of x and ϕ(ρ) = 1− (ρ+
√

ρ2 − 4ρ+ 2)/2.
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n 100 200 500 1000 2000
Hill 0.58 (2.41) 0.60 (2.81) 0.17 (1.41) 0.25 (1.95) 0.03 (0.78)
MOP(.5) 0.54 (1.02) 0.60 (1.02) 0.19 (0.99) 0.26 (1.00) 0.03 (0.99)
MOP(1) 0.88 (1.07) 0.75 (1.12) 0.34 (0.81) 0.60 (0.56) 0.10 (0.45)
GH 0.71 (1.00) 0.66 (1.00) 0.19 (1.01) 0.27 (1.00) 0.04 (1.00)
MM 0.59 (0.72) 0.67 (1.00) 0.21 (0.99) 0.27 (1.00) 0.04 (0.99)
GCV -0.07 (3.72) -0.05 (4.96) -0.06 (3.06) -0.06 (4.71) -0.04 (2.17)
REML -0.06 (4.22) -0.01 (5.76) 0.00 (3.44) -0.01 (5.36) -0.02 (2.48)

Table 1

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. Pareto(3, 1) distribution. Results based on 1000

replications.

n 100 200 500 1000 2000
Hill 0.58 (2.95) 0.60 (3.44) 0.17 (1.73) 0.25 (2.39) 0.03 (0.95)
MOP(.5) 0.58 (1.02) 0.60 (1.01) 0.17 (1.00) 0.26 (1.00) 0.03 (1.00)
MOP(1) 0.53 (0.98) 0.54 (1.02) 0.19 (0.99) 0.27 (1.01) 0.04 (0.96)
GH -1.66 (0.29) 0.71 (1.00) 0.21 (0.99) 0.28 (1.00) 0.04 (0.99)
MM 0.75 (0.98) 0.80 (0.99) 1.20 (0.18) 0.30 (1.00) 0.04 (0.99)
GCV 0.04 (3.98) 0.03 (4.60) -0.01 (2.53) -0.03 (3.76) -0.02 (1.64)
REML 0.02 (4.37) 0.04 (5.11) 0.02 (2.81) -0.01 (4.23) 0.00 (1.83)

Table 2

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. Pareto(1, 1.5) distribution. Results based on 1000

replications.

For the comparisons, the following distributions are used:

1) Pareto distributions, with F (x) = 1 −
(
xm

x

)α
, x ≥ xm, denoted by

Pareto(xm, α). Random numbers from this distribution are simply gen-
erated in R using the function runif() and inversion of F . The cases
Pareto(3,1) and Pareto(1.5,1) are analyzed.

2) Symmetric stable distributions with index of stability α, 0 < α < 2,
indicated with Stable(α):= Stable(α, β = 0, μ = 0, σ = 1); where β, μ and
σ indicate, respectively, asymmetry, location and scale. This distribution is
simulated inR using the function rstable() from the library stabledist.
The cases Stable (1.3), Stable(1.9) are considered.

3) Extreme value distributions with F (x) = exp(−(1+x/α)−α), 1+x/α > 0
denoted by EV (α). This distribution is simulated in R using the function
rgev() from the library fExtremes with shape parameter xi set equal
to α. The cases EV(3) and EV(4) are analyzed; i.e. α > 2 is considered.
Following remark 2.1, the squared data have been used in estimation.

4) Fréchet with F (x) = exp(−x−α), x ≥ 0, denote by Fréchet(α). This distri-
bution is simulated in R using the function rfrechet() from the library
evd with shape parameter set equal to α. Examples with Fréchet(1) and
Fréchet(1.5) are presented.

Tables 1 to 8 contain results of simulations. For each sample size n = 100, 200,
500, 1000, 2000, M = 1000 Monte-Carlo replicates were generated. Computa-
tions have been carried out with R version 3.3.1 and each experiment, i.e. given
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n 100 200 500 1000 2000
Hill 0.37 (0.86) 0.31 (0.76) 0.26 (0.66) 0.21 (0.59) 0.17 (0.53)
MOP(.5) 0.37 (1.00) 0.30 (1.00) 0.24 (1.01) 0.19 (1.01) 0.15 (1.02)
MOP(1) 0.43 (0.98) 0.35 (0.98) 0.28 (0.97) 0.22 (0.96) 0.18 (0.95)
GH -1.96 (0.08) 0.44 (0.58) 0.28 (0.78) 0.19 (0.88) 0.14 (0.91)
MM -0.37 (0.19) -0.06 (0.11) 9.44 (0.03) -1.05 (0.13) -1.54 (0.11)
GCV 0.19 (0.92) 0.15 (0.84) 0.12 (0.77) 0.04 (0.69) 0.04 (0.75)
REML 0.20 (1.03) 0.17 (0.96) 0.16 (0.87) 0.10 (0.82) 0.08 (0.80)

Table 3

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. Stable(1.3) distribution. Results based on 1000

replications.

n 100 200 500 1000 2000
Hill 0.77 (1.32) 0.88 (1.37) 1.07 (1.46) 1.13 (1.49) 1.14 (1.49)
MOP(.5) 0.80 (0.99) 0.90 (0.99) 1.07 (1.00) 1.10 (1.01) 1.09 (1.02)
MOP(1) 0.84 (0.97) 0.93 (0.98) 1.06 (0.99) 1.06 (1.02) 1.03 (1.04)
GH 23.64 (0.04) -3.30 (0.10) 1.30 (0.19) 0.19 (0.17) 0.59 (0.34)
MM -0.26 (0.96) -0.44 (0.36) -0.19 (2.40) -0.20 (2.42) -0.20 (2.39)
GCV 0.06 (2.42) 0.03 (1.80) 0.03 (2.35) 0.04 (3.11) 0.04 (2.64)
REML 0.05 (2.90) 0.04 (2.65) 0.03 (2.76) 0.03 (3.06) 0.02 (3.07)

Table 4

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. Stable(1.9) distribution. Results based on 1000

replications.

a chosen distribution and a chosen n, has been initialized using set.seed(1).
The acronyms for the alternative estimators have been defined at the beginning
of the section. GCV and REML indicate the estimators defined in Algorithm

1. The tables report:

a) values not in parentheses, all rows: the empirical relative bias, calculated
as (with Ê(α̂) indicating the mean of the 1000 Monte-Carlo Estimates):

Ê(α̂)− α

α
. (28)

b) Values in parentheses, first row: the empirical RMSE (Root-MSE) for the

RB-Hill estimator, i.e.

√
Ê(α̂− α)2.

c) Values in parentheses, all other rows: the relative RMSE of all other esti-
mators with respect to that of the RB-Hill estimator calculated as

RMSEH

RMSEE
(29)

where the suffix E stands for the estimator considered in turn and H
stands for RB-Hill. A value of the ratio greater than one indicates smaller
efficiency of the RB-Hill with respect to estimator E.

In the simulations, for a better comparison of the results with the other
estimators, we have used the value of α̂ provided by the estimation procedure
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n 100 200 500 1000 2000
Hill -0.31 (1.04) -0.28 (0.97) -0.26 (0.92) -0.24 (0.87) -0.22 (0.84)
MOP(.5) -0.29 (1.03) -0.27 (1.03) -0.24 (1.03) -0.23 (1.03) -0.21 (1.02)
MOP(1) -0.26 (1.08) -0.24 (1.08) -0.22 (1.07) -0.20 (1.07) -0.19 (1.06)
GH 0.19 (0.25) 0.42 (0.13) 0.05 (0.39) 0.05 (0.49) 0.01 (0.74)
MM -0.36 (0.18) -0.64 (0.56) -0.60 (0.63) -0.56 (0.67) -0.55 (0.65)
GCV 0.28 (0.91) 0.30 (0.91) 0.30 (0.89) 0.30 (0.87) 0.29 (0.84)
REML 0.27 (0.95) 0.30 (0.91) 0.31 (0.89) 0.26 (0.92) 0.26 (0.92)

Table 5

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. EV(3) distribution. Results based on 1000
replications. Squared data are used in this example for REML and GCV estimators.

n 100 200 500 1000 2000
Hill -0.43 (1.35) -0.40 (1.29) -0.38 (1.24) -0.35 (1.20) -0.33 (1.17)
MOP(.5) -0.42 (1.02) -0.39 (1.02) -0.36 (1.02) -0.34 (1.02) -0.32 (1.02)
MOP(1) -0.39 (1.05) -0.37 (1.05) -0.34 (1.05) -0.32 (1.04) -0.31 (1.04)
GH 0.47 (0.11) 0.22 (0.27) -0.05 (0.25) -0.02 (0.40) -0.08 (0.23)
MM -0.06 (0.16) -0.70 (0.69) -0.66 (0.77) -0.65 (0.75) -0.65 (0.73)
GCV 0.01 (1.66) 0.00 (1.63) 0.00 (2.15) 0.00 (2.46) 0.00 (2.75)
REML 0.01 (1.68) 0.01 (1.91) -0.01 (2.15) -0.04 (2.27) -0.03 (2.56)

Table 6

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. EV(4) distribution. Results based on 1000
replications. Squared data are used in this example for REML and GCV estimators.

without truncating it at 2. Looking at the results in the Tables, we can try to
summarize as follows:

a) REML has generally better efficiency with respect to GCV.
b) REML and GCV are much better with respect to all other estimators for

Pareto, Stable (1.9) and EV(4) cases; is comparable for Stable(1.3) and
EV(3) while is worse with respect to Hill and MOP estimators in the case
of Fréchet distributions.

c) In the case of EV distributions, with α > 2, REML and GCV show a good
performance.

d) The relative bias of REML and GCV is nearly always quite low with
respect to the other estimators.

Overall, considering a larger pool of simulations results we have that GCV
and REML estimators compare well in general with other estimators. They
are clearly well suited for cases of α quite close to 2 where it can be much
more efficient with respect to other estimation strategies. The extremely low
bias of REML and GCV shows that probably an overall gain could be achieved
by acting on the bias-variance trade-off. This is difficult to tackle in automatic
simulations, however, as it will be shown in the next Section, a careful regression
analysis of the ERCF at the origin can greatly help in determining the optimal
value of m to use.
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n 100 200 500 1000 2000
Hill 0.08 (0.51) 0.04 (0.44) 0.01 (0.35) 0.00 (0.30) 0.00 (0.26)
MOP(.5) 0.11 (0.97) 0.07 (0.96) 0.04 (0.94) 0.02 (0.93) 0.01 (0.91)
MOP(1) 0.28 (0.86) 0.24 (0.82) 0.20 (0.74) 0.17 (0.70) 0.15 (0.64)
GH 0.16 (0.70) 0.10 (0.79) 0.05 (0.82) 0.03 (0.87) 0.02 (0.88)
MM -0.90 (0.14) 0.74 (0.09) -0.43 (0.11) 0.02 (0.19) -0.12 (0.23)
GCV -0.02 (0.71) -0.02 (0.65) -0.04 (0.59) -0.03 (0.59) -0.04 (0.61)
REML -0.04 (0.81) -0.04 (0.81) -0.04 (0.72) -0.02 (0.70) -0.02 (0.70)

Table 7

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. Frechet(1) distribution. Results based on 1000

replications.

n 100 200 500 1000 2000
Hill 0.08 (0.63) 0.04 (0.54) 0.01 (0.43) 0.00 (0.37) 0.00 (0.32)
MOP(0.5) 0.09 (0.99) 0.06 (0.98) 0.02 (0.97) 0.01 (0.97) 0.00 (0.97)
MOP(1) 0.15 (0.96) 0.11 (0.94) 0.07 (0.9) 0.04 (0.88) 0.03 (0.85)
GH 0.08 (0.29) 0.16 (0.52) 0.08 (0.70) 0.04 (0.77) 0.03 (0.79)
MM -3.77 (0.05) 0.34 (0.08) -0.49 (0.10) -1.04 (0.14) -0.84 (0.22)
GCV 0.01 (0.74) 0.00 (0.70) -0.02 (0.60) -0.03 (0.63) -0.03 (0.54)
REML -0.01 (0.87) 0.00 (0.79) 0.02 (0.68) -0.01 (0.65) -0.01 (0.61)

Table 8

Hill estimator (first row): relative bias and (RMSE); other estimators: relative bias and
(relative RMSE) wrt to the Hill estimator. Frechet(1.5) distribution. Results based on 1000

replications.

5. Examples of application

5.1. Simulated Pareto, Fréchet and Normal distributions

This example considers simulated data from the Pareto(1,0.1), the Fréchet(1)
and N(0, 1) distributions. In all cases 1000 pseudo-random values were gener-
ated. To estimate α we choose δ = 0.45 which gives m = 22 and apply the
estimation procedure described in Algorithm 1 using either REML or GCV
criterion in order to select the optimal m and smoothing.

Considering the Pareto and Fréchet cases first, a plot of log(tj) and log(1 −
Un(tj)) for selected values of tj is in Figure 1. The circle points (red in color)
are those used in estimation, i.e. tj = j/

√
n, j = 1, . . . ,m while the cross ones

(blue in color) are additional points used to depict a fuller range of the behavior
of log(1− Un(t)).

For the the Pareto(1,0.1) distribution, when REML is used as selection cri-
terion, one has an estimate α̂ = 0.104, indicating m = 22 as an optimal choice.
The estimates for different choices of m range from a minimum of 0.02, when
m = 6, to a maximum of 0.106, when m = 20. If a GCV selection criterion is
considered the estimate given is 0.072 for m = 22. The estimates for different
choices of m range from a minimum of -0.09, when m = 9, to a maximum of
0.106, when m = 20 (same as in REML).

For the Fréchet(1) case, estimation with REML, gives an estimate of α̂ =
1.006, indicatingm = 22 as an optimal choice. The estimates for different choices
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Fig 1. Plot of log(t) and log(1 − Un(t)) for the simulated data from the Pareto(1,0.1) and
the Fréchet(1) distributions. Red points: points used in estimation. Blue crosses: points not
used in the estimation procedure

of m range from a minimum of 0.947, when m = 6, to a maximum of 1.012, when
m = 13. If a GCV selection criterion is considered, the estimate given is 0.970
for m = 12. The estimates for different choices of m range from a minimum of
0.940, when m = 6, to a maximum of 1.022, when m = 10.

Consider now the case of the Normal distribution. Figure 2 reports the values
of log(t) and log(1−Un(t)) where the latter has been calculated: firstly, using the
generated data (left graph) and, secondly, using the squared normal data (right
graph). In both cases one expects the estimates be close to 2 as the distributions
have finite variance.

Fig 2. Plot of log(t) and log(1− Un(t)) for the simulated data from the Normal(0,1) distri-
bution (left graph) and for the squared data from the Normal(0,1). Red points: points used in
estimation. Blue crosses: points not used in the estimation procedure.

In more detail, considering the generated (not squared) data, estimation with
REML, gives an estimate of α̂ = 1.987, indicating m = 22 as an optimal choice.
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The estimates for different choices of m range from a minimum of 1.987, when
m = 22, to a maximum of 2.001, when m = 6. If a GCV selection criterion
is considered, the estimate given is α̂ = 2.001 for m = 10. The estimates for
different choices of m range from a minimum of 1.990, when m = 17, to a
maximum of 2.002, when m = 6.

Considering the squared data, estimation with REML, gives an estimate of
α̂ = 2.006, indicating m = 22 as an optimal choice. The estimates for different
choices of m range from a minimum of 1.943, when m = 14, to a maximum of
2.008, when m = 16. If a GCV selection criterion is considered, the estimate
given is α̂ = 2.002 for m = 9. The estimates for different choices of m range
from a minimum of 1.939, when m = 22, to a maximum of 2.013, when m = 6.

5.2. City sizes

There is an ongoing debate on the specific regularity on the distribution of
city sizes: Zipf’s law (a heavy-tailed distribution with α = 1) or a log-normal
distribution. Early studies show that Zipf’s law generally holds well for data
on the largest cities in a country (see Gabaix and Ioannides [15] and references
therein). However, recent developments by Eeckhout [12] extend the analysis to
the entire range of city sizes and demonstrate that the size of all populated places
in the US follows a log-normal distribution. Levy [30] argues that significant
deviations from a log-normal distribution exist in the top range of the largest
cities by using graphical analysis. Several potential problems with Levy’s studies
are pointed out by Eeckhout [13].

The data set used by Eeckhout [12] and Levy [30] containing the entire dis-
tribution with population ranging from 1 to several millions is analyzed here.
The “US Census 2000 places” dataset is based on 25,358 units of “city, town,
borough, or village”. To estimate α we choose δ = 0.4 which gives m = 57.

Fig 3. Plot of log(t) and log(1−Un(t)) for the City sizes data. Left graph: plot with tj = j/
√
n,

j = 1, . . . , 57. Right graph: plot with tj = 7.97e − 05 + j · 0.0003, j = 0, . . . , 20. Red points:
points used in estimation. Blue crosses: points not used in the estimation procedure
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Looking at Figure 3, left graph, it appears that log(1−Un(t)), when plotted
against log(tj) for tj = j/

√
n, j = 1, . . . , 57, straightens only in very close

proximity to 0. For this situation it seems sensible to analyze further the problem
by getting closer to 0. We select manually some points by setting tj = 7.97e−
05 + j · 0.0003, j = 0, . . . , 20; the plot of log(1 − Un(t)) for these points plus
some additional ones (the blue crosses) are in the right graph of Figure 3, a
more regular behavior of the function can be observed now.

Applying the estimation procedure using the points tj = 7.97e−05+j ·0.0003,
j = 0, . . . , 20 we obtain α = 0.818 for m = 6 (note that here m = 21) if GCV
is used and α = 0.752 for m = 21 if REML is used. Estimates, using the GCV
criterion range from a minimum of 0.686 when m = 21 to a maximum of 0.839
when m = 7, while in the case of REML, estimates range from a minimum of
0.752 when m = 21 to a 0.836 when m = 7.

As we can see from this example, in practical applications, a full regression
analysis of the ERCF close to the origin may reveal more details and give more
insights on the phenomenon. In this case it appears more sensible to select a
value of m not too large given the red part of the graph on the right of Figure
3; GCV, which suggests m = 6, seems to be the method to use here. Also,
the result supports the presence of a Pareto tail, in the case of a log-normal
distribution one would expect to have an estimate of α close to the value of 2.

6. Conclusions

For any distribution the rate of decay in the tails is related to the RCF at the
origin. This fact is exploited to introduce a novel methodology for estimating the
tail index of a distribution based on semi-parametric regression on the ERCF at
the origin. The approach is conceptually similar to regression of the periodogram
on frequency ordinates, which is used in time series to estimate the long memory
parameter.

Consistency of a simple regression estimator is discussed under minimal as-
sumptions, while rates of convergence and asymptotic normality are studied
under the assumption that the slowly varying function L(x) in (1) has a fi-
nite limit as x → ∞. It turns out that a bias term may be severe for certain
parameter values.

A semi-parametric regression equation with a smooth spline component ap-
proximating L in order to account for bias is implemented; this allows to keep
at minimum assumptions on the unknown distribution underlying the data.
Alternatively, under assumption A1, one could consider external estimation of
parameters in L (e.g. Gomes et al [18]); this approach is not pursued here.

Simulated results indicate that α̂ has lower MSE than other estimators in a
large variety of cases and bias is generally quite small. Practical implementation
is supported by GCV or REML and in the examples the estimated values do not
show high variability with respect to the choice of m. In real applications, a full
regression analysis of the ERCF at the origin can help in determining the optimal
estimation strategy. An application to the debated city-sizes distribution gives
a clear answer in favor of a Pareto-type tail behavior.
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The restriction 0 < α ≤ 2 might not be too severe since, in practical appli-
cations, one is often interested to detect low values of the tail index. Moreover,
by transformations, extension of the range of values that can be estimated is
always possible.

Since the method proposed works extremely well for values of α close to 2
it could be interesting to use it as a starting point to try developing a testing
procedure for the hypothesis of finite variance in the data.

7. Proofs

For the proofs, some preliminary lemmas are needed. In the following, for lighter
notation, set zj − z̄ = aj .

Lemma 7.1. Assume that 0 < β < 1, then as m → ∞ [7],

1

m

m∑
j=1

j−β log j −
( 1

m

m∑
j=1

j−β
)( 1

m

m∑
j=1

log j
)
=

−β

(1− β)2
m−β +O(m−1 logm).

1

m

m∑
j=1

(log j)2 −
( 1

m

m∑
j=1

log j
)2

= 1 +O{m−1(logm)2}.

Lemma 7.2. For 0 < β < 2, then as m → ∞,

1

m

m∑
j=1

log j = logm− 1 +
logm

2m
+O(1/m).

1

m

m∑
j=1

jβ log j −
( 1

m

m∑
j=1

log j
)( 1

m

m∑
j=1

jβ
)

=
β

(β + 1)
2m

β +O(mβ−1 logm).

Lemma 7.3. As m → ∞,

m∑
j=1

(log j − 1

m

m∑
k=1

log k)2j−β

=

⎧⎪⎪⎨
⎪⎪⎩
( 2
(1−β)3 + 1

1−β − 2
(1−β)2 )m

1−β{1 + o(1)}, if 0 < β < 1,

1
3 log

3 m{1 + o(1)}, if β = 1,

O{log2 m}, if 1 < β < 2.
m∑
j=1

(log j − 1

m

m∑
k=1

log k)2jβ

=

{
m+O((logm)2), if β = 0,

( 2
(1+β)3 + 1

1+β − 2
(1+β)2 )m

1+β{1 + o(1)}, if β > 0.
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Also, for β > 0,

m∑
j=1

jβ log j =
1

β + 1
mβ+1 logm{1 + o(1)}.

m∑
j=1

jβ =
1

β + 1
mβ+1{1 + o(1)}.

Lemmas 7.2 and 7.3 follow from Euler-Maclaurin-type integral approximations
to series [1]; see Jia [28] for further details.

For the proof of Theorem 2.3 recall that λij = tj/ti = j/i, ti > tj . Since
|λij | < 1, one has absolute convergence of the expansion for 0 < α < 2 & α 
= 1

(1 + λij)
α + (1− λij)

α =

∞∑
r=0

(
α

r

)
(λij)

r +

∞∑
r=0

(−1)r
(
α

r

)
(λij)

r

= 2 + 2

∞∑
r=1

(
α

2r

)
(λij)

2r. (30)

For α = 1,
(1 + λij)

α + (1− λij)
α = 2. (31)

Proof of Theorem 2.3. Consider first the bias term, which is given by

E(α̂− α) =
1

Szz

m∑
j=1

ajg(α, tj) +
1

Szz

m∑
j=1

ajE(εj) (32)

As n → ∞, by Lemma 7.1,

Szz = m{1 +O{m−1(logm)2}}. (33)

and, for the second term on the right-hand side of (32), by Lemma 7.1, as
m → ∞ and n → ∞,
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α
j )

− 1
2 = mn
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4

{( 1
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α−2

4

[
− α

2
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2 ) + {O(m−1 logm)}
]
.

With (33) and setting m = nδ we obtain that∑m
j=1 ajop((nt

α
j )

− 1
2 )

Szz
= o{nα−2

4 m−α
2 } = o{nα−2−2αδ

4 }. (34)

Consider now the variance of α̂ given by

V ar(α̂) =
1

S2
zz

m∑
j=1

a2jV ar(εj) +
2

S2
zz

m∑
i=2

i−1∑
j=1

aiajCov(εi, εj). (35)
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Ignoring higher order terms we have

1

S2
zz

m∑
j=1

a2jV ar(ε′j) ∼
nα/2−1

m2L(
√
n/m)

2− 2α−1

s(α)

m∑
j=1

(log j − 1

m

m∑
k=1

log k)2j−α.

(36)
Combining Equations (13), (33) and (31) or (30), for α = 1,

2

S2
zz

m∑
i=2

i−1∑
j=1

aiajCov(ε′i, ε
′
j)

∼ 2n−1/2

m2L(
√
n/m)s(1)

m∑
i=2

i−1∑
j=1

(log i− 1

m

m∑
k=1

log k)(log j − 1

m

m∑
k=1

log k)i−1

∼ 2n−1/2

m2L(
√
n/m)s(1)

m∑
i=2

(log i− 1

m

m∑
k=1

log k)i−1
i−1∑
j=1

(log j − 1

m

m∑
k=1

log k)

∼ 2n−1/2

m2L(
√
n/m)s(1)

m∑
i=2

(log i− 1

m

m∑
k=1

log k)(i− 1)i−1(log (i− 1)

− 1

m

m∑
k=1

log k)

∼ 2n−1/2

m2L(
√
n/m)s(1)

m∑
i=1

(log i− 1

m

m∑
k=1

log k)2

∼ 2n−1/2

mL(
√
n/m)s(1)

(37)

for 0 < α < 2 & α 
= 1,

2

S2
zz

m∑
i=2

i−1∑
j=1

aiajCov(ε′i, ε
′
j)

∼ 2nα/2−1

m2L(
√
n/m)s(α)

m∑
i=2

i−1∑
j=1

(log i− 1

m

m∑
k=1

log k)(log j − 1

m

m∑
k=1

log k)

[
i−α − j−α

∞∑
r=1

(
α

2r

)
(λij)

2r

]

=
2nα/2−1

m2L(
√
n/m)s(α)

[ m∑
i=2

i−1∑
j=1

(log i− 1

m

m∑
k=1

log k)(log j − 1

m

m∑
k=1

log k)(i−α)

−
m∑
i=2

i−1∑
j=1

(log i− 1

m

m∑
k=1

log k)(log j − 1

m

m∑
k=1

log k)
∞∑
r=1

(
α

2r

)
j2r−αi−2r

]

=
2nα/2−1

m2L(
√
n/m)s(α)

[
T1 − T2

]
.
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Similar to (37),

T1 ∼
m∑
i=1

(log i− 1

m

m∑
k=1

log k)2i−α+1, (38)

and

T2 =

∞∑
r=1

(
α

2r

) m∑
i=2

(log i− 1

m

m∑
k=1

log k)i−2r
i−1∑
j=1

(log j − 1

m

m∑
k=1

log k)j2r−α

∼
∞∑
r=1

(
α

2r

) m∑
i=2

(log i− 1

m

m∑
k=1

log k)
i−2r(i− 1)2r−α+1

2r − α+ 1
(log(i− 1)

− 1

m

m∑
k=1

log k)

∼
∞∑
r=1

(
α

2r

)
1

2r − α+ 1

m∑
i=1

(log i− 1

m

m∑
k=1

log k)2i−α+1

∼
[

2

(2− α)3
+

1

2− α
− 2

(2− α)2

]
m−α+2

∞∑
r=1

(
α

2r

)
1

2r − α+ 1
. (39)

For α is not a non-negative integer, as r → ∞,(
α

r

)
=

(−1)r

Γ(−α)r(1+α)
{1 + o(1)}.

It can be proven that
∑∞

r=1

(
α
2r

)
1

2r−α+1 converges. Therefore, combing T1, T2,
and Equation (36), the variance of α̂ is

V ar(α̂) =

⎧⎨
⎩

2
s(1)

n−1/2

mL(
√
n/m)

{1 + o(1)}, if α = 1,

2(Aα−AαCα)
s(α)

nα/2−1

mαL(
√
n/m)

{1 + o(1)}, if 0 < α < 2 & α 
= 1.
(40)

where Aα = 2
(2−α)3 +

1
2−α − 2

(2−α)2 and
∑∞

r=1

(
α
2r

)
1

2r−α+1 → Cα. Therefore, the

order of the variance of α̂ is nα/2−1

mαL(
√
n/m)

for all 0 < α < 2.

In the case that α ≥ 2 evaluation of (35) yields

V ar(α̂) = O

(
1

n

)
+O

(
1

nm2
log2 m

)
(41)

The proofs of theorems 2.4 and 2.5 are similar to that of Theorem 2.3, using
Assumption A1 and can be found in Jia [28].

Proof of Theorem 2.6. From (32), α̂ − E(α̂) is equal to
∑m

j=1 ajεj

Szz
. Combined

with (12), it can be rewritten as
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α̂− E(α̂) =

m∑
j=1

aj

(
Un(tj)−U(tj)

1−U(tj)
+ op((nt

α
j )

− 1
2 )
)

Szz

=
1

n

∑m
j=1 aj

∑n
i=1

[cos(Xitj)−U(tj)]
[1−U(tj)]

Szz
+

∑m
j=1 ajop((nt

α
j )

− 1
2 )

Szz
. (42)

For the second term on the right-hand side of (42) see (34). We change the order
of the summations in the first term on the right-hand side of (42). The first

term is then rewritten as 1
n

∑n
i=1

∑m
j=1

aj(cos(Xitj)−U(tj))
Szz [1−U(tj)]

. Define the random

variable Wi,m =
∑m

j=1
aj(cos(Xitj)−U(tj))

Szz [1−U(tj)]
. Note that Wi,m’s with i = 1, 2, . . . , n

for a given m are i.i.d. random variables with null mean.

As far as V ar(Wi,m) is concerned, it can be derived by noting that, for tk > tj
and m = nδ, as n → ∞,

Cov
(cos(Xitk)− U(tk)

1− U(tk)
,
cos(Xitj)− U(tj)

1− U(tj)

)

= E
( [cos(Xitk)− U(tk)][cos(Xitj)− U(tj)]

[1− U(tk)][1− U(tj)]

)

=
U(tk + tj) + U(tk − tj)− 2U(tk)U(tj)

2[1− U(tk)][1− U(tk)]
, (43)

which is equal to limn→∞ nCov(ε′k, ε
′
j).

Similarly, V ar(
cos(Xitj)−U(tj)

1−U(tj)
) is equal to limn→∞ nV ar(ε′j).

Hence, with calculation similar to those used to derive V ar(α̂), we have

V ar(Wi,m) =

{
2

s(1)
n1/2

mL(
√
n/m)

{1 + o(1)}, if α = 1,
2(Aα−AαCα)

s(α)
nα/2

mαL(
√
n/m)

{1 + o(1)}, if 0 < α < 2 & α 
= 1.

(44)

Note that the normalization given in Theorem 2.6 is appropriate since, under
A1, L(x) → C as x → ∞.

Next, for m = nδ, define the random variable W ∗
i,nδ = 1

n
α
4

− δα
2
Wi,nδ and let

σ2 = limn→∞ V ar(W ∗
i,nδ). Then denote Sn =

∑n
i=1 W

∗
i,nδ and

σ2
n = V ar(

∑n
i=1 W

∗
i,nδ) =

∑n
i=1 V ar(W ∗

i,nδ) = nV ar(W ∗
1,nδ) = nσ2

W∗ .

The next step is to show that the Lindeberg condition holds. The sequence
of W ∗

i,nδ satisfies the Lindeberg condition if for every ε > 0,

lim
n→∞

1

σ2
n

n∑
i=1

E[W ∗2
i,nδ ; {|W ∗

i,nδ | > εσn}] = 0. (45)

Since

E[W ∗2
i,nδ ; {|W ∗

i,nδ | > εσn}] = E[W ∗2
1,nδ ; {|W ∗

1,nδ | > εσn}],
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then the term inside the limit on the left-hand side of (45) can be written as

1

σ2
n

n∑
i=1

E[W ∗2
i,nδ ; {|W ∗

i,nδ | > εσn}] =
1

nσ2
W∗

nE[W ∗2
1,nδ ; {|W ∗

1,nδ | > εσW∗
√
n}]

=
1

σ2
W∗

E[W ∗2
1,nδ ; {|W ∗

1,nδ | > εσW∗
√
n}].

Note that, by Chebyshev’s inequality, as n → ∞, for every ε > 0,

P (|W ∗
1,nδ | ≥ εσW∗

√
n) ≤

V ar(W ∗
1,nδ)

ε2σ2
W∗n

=
σ2
W∗

ε2σ2
W∗n

→ 0.

Since W ∗2
i,nδI{|W ∗

i,nδ | > εσn} ≤ W ∗2
i,nδ and E(W ∗2

i,nδ) < ∞, by the dominated con-

vergence theorem, the Lindeberg condition (45) holds. Therefore, the sequence
of W ∗

i,nδ satisfies the central limit theorem, i.e., as n → ∞,

1√
n

n∑
i=1

W ∗
i,nδ

d−→ N (0, σ2).

By Slutsky’s theorem, as n → ∞,

√
n

n
α
4 − δα

2

(α̂− E(α̂))
d−→ N (0, σ2). (46)

This completes the proof of Theorem 2.6.
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