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Abstract: For optimal decision making under variable class distributions
and misclassification costs a classifier needs to produce well-calibrated es-
timates of the posterior probability. Isotonic calibration is a powerful non-
parametric method that is however prone to overfitting on smaller datasets;
hence a parametric method based on the logistic sigmoidal curve is com-
monly used. While logistic calibration is designed for normally distributed
per-class scores, we demonstrate experimentally that many classifiers in-
cluding Naive Bayes and Adaboost suffer from a particular distortion where
these score distributions are heavily skewed. In such cases logistic calibra-
tion can easily yield probability estimates that are worse than the original
scores. Moreover, the logistic curve family does not include the identity
function, and hence logistic calibration can easily uncalibrate a perfectly
calibrated classifier.

In this paper we solve all these problems with a richer class of paramet-
ric calibration maps based on the beta distribution. We derive the method
from first principles and show that fitting it is as easy as fitting a logis-
tic curve. Extensive experiments show that beta calibration is superior to
logistic calibration for a wide range of classifiers: Naive Bayes, Adaboost,
random forest, logistic regression, support vector machine and multi-layer
perceptron. If the original classifier is already calibrated, then beta calibra-
tion learns a function close to the identity. On this we build a statistical
test to recognise if the model deviates from being well-calibrated.
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1. Introduction

A predictive model can be said to be well-calibrated if its predictions match
observed distributions in the data. In particular, a probabilistic classifier is well-
calibrated if, among the instances receiving a predicted probability vector p , the
class distribution is approximately distributed as p (Zadrozny and Elkan, 2002).
Hence the classifier approximates, in some sense, the class posterior, although
the approximation can be crude: for example, a constant classifier predicting the
overall class distribution for every instance is perfectly calibrated in this sense.
Calibration is closely related to optimal decision making and cost-sensitive clas-
sification, where we wish to determine the predicted class that minimises ex-
pected misclassification cost. The better our estimates of the class posterior are,
the closer we get to the (irreducible) Bayes risk. The scores of a sufficiently cal-
ibrated classifier can be simply thresholded at a threshold directly derived from
the misclassification cost (Zadrozny and Elkan, 2002). Thresholds can also be
derived to optimally adapt to a change in class prior, or to a combination of
both. In contrast, for a poorly calibrated classifier the optimal thresholds can-
not be obtained without optimisation; for example, by means of ROC analysis
(Provost and Fawcett, 2001).

Some learning algorithms are designed to yield well-calibrated probabilities.
These include decision trees, whose leaf probabilities are optimal on the train-
ing set; as trees suffer from high variance, using Laplace smoothing and no
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pruning is recommended (Ferri, Flach and Hernández-Orallo, 2003). Logistic
regression is another example of a learning algorithm that often produces well-
calibrated probabilities; as we show in this paper, this only holds if the spe-
cific parametric assumptions made by logistic regression are met, which cannot
be guaranteed in general. Many other learning algorithms do not take suffi-
cient account of distributional factors (e.g., support vector machines) or make
unrealistic assumptions (e.g., Naive Bayes) and need to be calibrated in post-
processing. Well-established calibration methods in binary classification include
logistic calibration, also known as ‘Platt scaling’ in reference to the author who
introduced it for support vector machines (Platt, 2000) and isotonic calibra-
tion, also known as the ROC convex hull method and pool-adjacent-violators
(Zadrozny and Elkan, 2002; Fawcett and Niculescu-Mizil, 2007).

Isotonic calibration is a non-parametric method to calibrate scoring classi-
fiers in binary classification. It uses the convex hull of the model’s ROC curve
to discretise the scores into bins; the slope of each segment of the convex hull
can be interpreted as an empirical likelihood ratio, from which a calibrated
posterior probability for the corresponding bin can be derived. Since multiple
scores can be mapped to the same bin, the resulting calibration map consists of
a set of points that look like a staircase function, which can be interpolated if
a continuous calibration map is needed (the Scikit-learn implementation we use
in our experiments interpolates linearly). Isotonic calibration always provides
monotonic calibration maps, meaning that it trusts the ranking produced by
the original classifier and for any two instances assigns a higher (or same) cali-
brated probability of the positive class to the instance with higher original score.
Figure 1 shows two examples with the isotonic calibration map in orange, where
the x-axis represents the positive class probability as output by Adaboost and
Naive Bayes on the landsat-satellite and vowel datasets and the y-axis shows
the respective calibrated probability. Details about the experimental setup are
provided in Section 4.

Logistic calibration is a parametric method with sigmoidal calibration maps
which can be derived from the assumption that the scores within each class are
normally distributed with the same variance. The logistic sigmoid is specified by
two parameters: a location parameter m specifying the midpoint of the sigmoid
at which the calibrated score is 0.5; and a shape parameter γ specifying the
slope of the sigmoid at this midpoint. Figure 1 shows logistic calibration maps
in blue. Being a parametric model, logistic calibration tends to require a smaller
amount of labelled data to fit the sigmoid; however, it can produce bad results
due to model mismatch. This mismatch can be substantial and can actually
lead to ‘calibrated’ scores that are worse than the original. Figure 1 shows a
case where the score distortions (black dots) are clearly not sigmoidal. Isotonic
calibration (orange line) captures this but logistic calibration (blue line) results
in a very poor fit.

The green line in Figure 1 shows that our proposed beta calibration method
provides a similar fit to isotonic calibration on these datasets. Note that in
the left figure the beta calibration map has an inverse-sigmoidal shape, which
is outside of the logistic family of calibration maps. This is no coincidence:
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Fig 1. Calibration maps obtained from logistic calibration, isotonic calibration and beta cal-
ibration as learned on the positive class probabilities output by (a) Adaboost on the landsat-
satellite dataset; and (b) Naive Bayes on the vowel dataset. The x-axis represents the proba-
bilities output by the classifier (Adaboost or Naive Bayes) and the y-axis shows the respective
calibrated probability. The “empirical” dots show the actual proportion of positives in the test
data, where instances have been split into 10 equal-width bins according to the probability
output by the classifier. In both datasets logistic calibration makes matters worse compared
to the original probabilities, on both log-loss and Brier score. Beta calibration and isotonic
calibration are both better than original probabilities, with beta calibration being best in all
measures except with log-loss in vowel.

the inverse sigmoid is appropriate for classifiers that tend to produce extreme
scores close to 0 or 1, such as Adaboost. The figure on the right is another case
with a non-sigmoidal pattern in the uncalibrated scores. Here the Naive Bayes
scores are quite well calibrated and beta calibration learns a map very close
to the identity function. Logistic calibration produces a poor fit as the identity
function is not a member of the logistic family.

The main contributions of this paper are (i) a demonstration that model
mismatch is a real danger for logistic calibration for a range of widely used
machine learning models and can make classifiers less calibrated; and (ii) the
derivation of a new and richer parametric family which fixes this in a principled
and flexible way. The outline of the paper is as follows. In Section 2 we discuss
the logistic calibration method and its properties. Section 3 introduces our new
beta calibration method. In Section 4 we report on a wide range of experiments
showing that beta calibration is superior to logistic calibration and the preferred
calibration method for smaller datasets. Section 5 proposes a statistical test that
can reveal if a classifier is not calibrated by comparing the beta calibration map
with the identity function. Section 6 concludes with a short discussion of the
main results.

A previous, shorter version of this paper appeared as (Kull, Silva Filho and
Flach, 2017). The most significant additions include additional experiments with
logistic regression, random forest, multi-layer perceptron and support vector ma-
chine; an empirical investigation of the effect of dataset size on the performance
of the various calibration methods; and the novel statistical test described in
Section 5.



5056 M. Kull et al.

2. Logistic calibration

The aim of calibration in binary classification is to take an uncalibrated scoring
classifier s = f(x) and apply a calibration map μ on top of it to produce cali-
brated probabilities μ(f(x)). Formally, a scoring classifier is perfectly calibrated
on a dataset if for each of its output scores s the proportion of positives within
instances with model output score s is equal to s (Cohen and Goldszmidt, 2004).
Denoting the instances in the dataset by x1, . . . ,xn and their binary labels by
y1, . . . , yn, a model f is calibrated on this dataset if for each of its possible
outputs si = f(xi) the following holds:

si = E[Y |f(X) = si]

where the random variables X,Y denote respectively the features and label of
a uniformly randomly drawn instance from the dataset, and the labels Y = 1
and Y = 0 stand for a positive and negative, respectively. This expectation can
be rewritten as follows (I[·] is the indicator function):

E[Y |f(X) = si] =

∑n
j=1 yj · I[f(xj) = si]∑n

j=1 I[f(xj) = si]

For any fixed model and dataset there exists a uniquely determined calibra-
tion map μ(si) = E[Y |f(X) = si] which produces perfectly calibrated proba-
bilities on the given dataset. However, usually we do not want to learn perfect
calibration maps on the training data, because these would overfit and would be
far from being calibrated on the test data. For example, if the model f outputs
a unique score for each training instance then the training-perfect calibration
map would produce only the 0/1-probabilities μ(si) = yi, which would gener-
alise poorly. An obvious solution would be to assume a parametric form of the
calibration map, for which the logistic family is often used.

2.1. Logistic family of calibration maps

Logistic calibration was proposed by (Platt, 2000) to reduce overfitting by in-
troducing a strong inductive bias which considers only calibration maps of the
following form:

μlogistic(s; γ, δ) =
1

1 + 1/ exp(γ · s+ δ)

where γ, δ are real-valued parameters with γ ≥ 0 to ensure that the calibration
map is monotonically non-decreasing. Monotonicity is enforced assuming that
higher model output scores suggest a higher probability to be positive. For easier
interpretability we introduce the parameter m = −δ/γ. This implies δ = −mγ,
yielding the following alternative parametrisation:

μlogistic(s; γ,−mγ) =
1

1 + 1/ exp(γ · (s−m))
(1)
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Fig 2. Examples of logistic curves with parameters γ ∈ {1, 4, 20}, m ∈ {0.25, 0.5, 0.75} and
δ = −mγ.

The parameter m determines the value of s for which the calibrated score is
1/2; the slope of the calibration map at s = m is γ/4. Figure 2 shows a variety
of shapes that the logistic calibration map can take.

We proceed to show that the parametric assumption made by logistic cali-
bration is exactly the right one if the scores output by a classifier are normally
distributed within each class around class means s+ and s− with the same
variance σ2. This gives class-specific probability density functions (PDFs)

p(s|+) = C exp[−(s− s+)2/(2σ2)]

p(s|−) = C exp[−(s− s−)2/(2σ2)]

with C = 1/
√
2πσ, hence the likelihood ratio is

LR(s) =
p(s|+)

p(s|−)
= exp[(−(s− s+)2 + (s− s−)2)/(2σ2)]

= exp[(2(s+ − s−)s− (s+2 − s−2))/(2σ2)]

= exp[(s+ − s−)/σ2(s− (s+ + s−)/2)]

= exp[γ(s−m)]

with γ = (s+ − s−)/σ2 and m = (s+ + s−)/2. For γ > 0 this is a monotonically
increasing function with LR(m) = 1.

We then derive a calibrated probability as follows:1

μlogistic(s; γ,−mγ) =
1

1 + LR(s)−1
=

1

1 + exp[−γ(s−m)]

giving the exact same form as in Eq.(1).
Conversely, it is easy to see that every function of this form corresponds to

some pair of Gaussians with equal variance. Indeed, one can choose Gaussians

1Here we assume a uniform prior over the classes, hence the likelihood ratio equals the
posterior odds. Adapting to a non-uniform prior can be done by moving the decision threshold
on the calibrated probability away from 1/2.
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with unit variance and with the means s+ = m + γ/2 and s− = m − γ/2 on
positives and negatives, respectively. However, this is only one of the infinitely
many possibilities. The same function corresponds to any pair of Gaussians
with centres symmetrically around m if the distance between the centres is γ
times the variance. This highlights that logistic regression does not model the
score distributions on positives and negatives explicitly, but only cares about
the distance between the centres of these distributions in units of variance.

Although logistic calibration uses exactly the right parametric form if the
score distributions are Gaussian, there can be other distributions where it is
exactly right as well. In other words, logistic calibration might also work well in
non-Gaussian cases, as long as the ratio of the score distributions on positives
and negatives behaves similarly to the ratio of Gaussians with equal variance.

2.2. Fitting the logistic calibration maps

In order to fit the parameters of logistic regression we need to decide how we
measure the goodness of fit. That is, we need to measure how good the probabil-
ity estimates p̂i = μlogistic(si; γ, δ) are, given the actual labels yi. A well-known
method to evaluate estimates p̂i is to use log-loss, which penalises predicting p̂i
for a positive instance with a loss of − ln p̂i and for a negative instance with
a loss of − ln(1 − p̂i). To illustrate, the fully confident predictions p̂i = 0 and
p̂i = 1 incur loss 0 if correct, and loss ∞ if wrong, whereas the least confident
prediction p̂i = 0.5 has loss ln 2 regardless of the correct label.

The overall log-loss can be expressed as follows:

LL(p̂,y) =

n∑
i=1

yi(− ln p̂i) + (1− yi)(− ln(1− p̂i))

where p̂ = (p̂1, . . . , p̂n) and y = (y1, . . . , yn). Log-loss can be rewritten as fol-
lows:

LL(p̂,y) = − ln

n∏
i=1

p̂yi

i (1− p̂i)
1−yi

= − ln

(∏
yi=1

p̂i
∏
yi=0

(1− p̂i)

)

which is the negative log-likelihood of the labels in the data. This implies that
minimising log-loss is equivalent to maximising log-likelihood, which is a com-
mon fitting method known as maximum likelihood estimation (MLE).

In practice, the logistic calibration maps can be fitted by minimising log-loss
using some gradient-based optimisation procedure, such as the “minimize” func-
tion provided by SciPy (Jones et al., 2001), which uses a quasi-Newton method
to perform the optimisation. However, as the task is simply univariate logistic
regression with feature s and label y, it can be solved using the standard logistic
regression functionality in any machine learning toolkit, including WEKA (Hall
et al., 2009) and Scikit-learn (Pedregosa et al., 2011).
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3. Beta calibration

We have shown that the parametric family in logistic calibration corresponds to
cases with normal and homoscedastic distributions of scores within the classes.
For probabilistic classifiers such as Naive Bayes such Gaussians are unreasonable
due to their infinite support, while the classifier’s scores are in the range [0, 1].
Hence it makes sense to derive an alternative parametric family of calibration
functions using distributions with finite support, which is the central concept in
this paper.

3.1. Beta calibration from first principles

A natural choice for score distributions in the range [0, 1] is the beta distribution
which has PDF

p(s;α, β) =
sα−1(1− s)β−1

B(α, β)

where α > 0 and β > 0 are shape parameters and B(α, β) is the normalising beta
function. So assume that the scores on both classes are beta-distributed with
parameters α0, β0 and α1, β1, respectively. The likelihood ratio then becomes

LR(s;α0, β0, α1, β1) =
sα1−1(1− s)β1−1

B(α1, β1)

/ sα0−1(1− s)β0−1

B(α0, β0)

=
sα1−1(1− s)β1−1

sα0−1(1− s)β0−1

/ B(α1, β1)

B(α0, β0)

=
sa

(1− s)b
/
K

where a = α1 − α0, b = β0 − β1, and K = B(α1, β1)/B(α0, β0). For later
convenience we introduce an alternative parametrisation with K = e−c:

LR(s; a, b, c) =
sa

(1− s)b
/
e−c

As before, we can easily turn this likelihood ratio into a calibrated probability
μbeta(s; a, b, c) = 1/(1 + LR(s; a, b, c)−1), which finally gives the beta calibration
map family:

μbeta(s; a, b, c) =
1

1 + 1
/(

ec sa

(1−s)b

)
We will require each calibration map to be monotonically non-decreasing, which
implies a, b ≥ 0.

Conversely, it is easy to see that every function of this form corresponds to
some beta distributions for the scores on positives and negatives. To see this,
consider any a, b > 0 and c ∈ R and fix α0 = 1, α1 = 1+ a, β0 = M + b, β1 = M
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for some value M ≥ 0. Then indeed a = α1 − α0 and b = β0 − β1, it remains
to be shown that B(α1, β1)/B(α0, β0) = e−c. For this note that the value of
B(x+ a, y)/B(x, y+ b) is 0 for x = 1, y = 0 but tends to ∞ when x → ∞ while
y = 1. Due to continuity there must exist values x, y for which this ratio equals
e−c.

Similarly to logistic calibration not strictly assuming Gaussians, beta cali-
bration does not assume score distributions to be beta-distributed either. Beta
calibration only assumes that the ratio of the score distributions on positives
and negatives behaves similarly to the ratio of two beta distributions.

Although beta calibration requires classifier outputs to be between 0 and 1 it
can still be applied to calibrate any scoring classifier. All that needs to be done
is to first map the scores onto the range [0, 1] using a fixed strictly monotonic
transformation. In the experiments we will use the standard logistic function
μlogistic(·; 1, 0) for this purpose.

3.2. Examples of beta calibration

A simple but striking case where beta calibration gives exactly the right calibra-
tion map is the following. Suppose we have k features, each being a copy of the
same feature. Suppose further that these features are perfectly calibrated in the
sense that the model f(x) = f(x, . . . , x) = x outputting the value of the first
(or equivalently any other) feature is perfectly calibrated. Naive Bayes would
consider these features independent and on an instance x = (x, . . . , x) would
output the score

s =
xk

xk + (1− x)k

This pushes the probability estimates towards the extremes and the perfect
calibration map must bring these back to their original calibrated values x.
Since

s

1− s
=

(
x

1− x

)k

the perfect calibration map is

x =
1

1 + 1/
(

s1/k

(1−s)1/k

)
which belongs to the beta calibration family with the parameters a = b = 1/k
and c = 0. This means that beta calibration can correct for certain kinds of
feature overweighting as might occur in Naive Bayes but also in boosting.

As another example, suppose that we do not know that the scores are al-
ready calibrated and we apply beta calibration. In such a case we would like
the calibration procedure to learn the identity mapping. Since the identity func-
tion does not belong to the logistic family, logistic calibration would uncalibrate
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the scores. However, the beta calibration family does contain the identity func-
tion, parametrised by a = b = 1 and c = 0, and hence would keep the scores
calibrated.

Similarly as for logistic calibration we can define a midpoint m such that
LR(m) = 1, which gives K = ma/(1 − m)b and hence another alternative
parametrisation

LR(s; a, b, c) = LR(s; a, b, b ln(1−m)− a lnm)

=
sa

(1− s)b
/ ma

(1−m)b

Figure 3 shows a variety of shapes that the beta calibration maps can take
for different values of a (horizontally), b (vertically) and m (within each figure).
The panels on the descending diagonal show cases where a = b; we refer to
this as beta[a=b] calibration. On the bottom right we see the familiar sigmoidal
shapes which are achieved with a = b > 1. The midpoint can be moved using
m, but notice the curves are not translation-invariant as logistic sigmoids are,
due to their finite support. On the top left we see pure inverse-sigmoidal curves
a = b < 1 that are able to correct for extreme probabilities. The middle panel
shows that the family includes the identity map on the diagonal, which can
be pulled away in either direction by varying m, resulting in non-sigmoidal
curves that would be appropriate if one class suffers from extreme scores while
the other tends to be scored towards the middle. It can be shown that the
beta[a=b] calibration family is closed under inversion: if p = μbeta(s; a, a, c),
then s = μbeta(p; 1/a, 1/a,−c/a). This can be derived as follows:

p

1− p
=

μbeta(s; a, a, c)

1− μbeta(s; a, a, c)
= ec

sa

(1− s)a(
e−c p

1− p

) 1
a

=
s

1− s

μbeta(p; 1/a, 1/a,−c/a)

1− μbeta(p; 1/a, 1/a,−c/a)
=

s

1− s
.

The off-diagonal panels in Figure 3 show various asymmetries that can be
introduced by allowing a �= b. These asymmetries are strongest if one parameter
is larger than 1 while the other is smaller than 1.

3.3. Fitting the parameters

One way of fitting beta calibration maps is to minimise log-loss with the same
methods as in logistic regression. This can be performed using any optimisation
tool, supplying it with the objective function and its gradient. However, in the
following we derive results which reduce these tasks to fitting logistic regression
in a different feature space, allowing to implement beta calibration by simply
calling any logistic regression implementation, which is contained in all standard
machine learning toolkits.
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Fig 3. Examples of beta curves with parameters a, b ∈ {0.2, 1, 5}, m ∈ {0.25, 0.5, 0.75} and
c = b ln(1−m)− a lnm.

Proposition 1. For any a≥ 0 and c, s∈R: μbeta(s; a, a, c)=μlogistic(ln
s

1−s ; a, c).

Proof. It is sufficient to prove that the corresponding likelihood ratios are equal.

LRlogistic(ln
s

1− s
; a, c) = exp[a ln

s

1− s
+ c]

=

(
s

1− s

)a

ec = LRbeta(s; a, a, c)

The result in Proposition 1 shows that applying the beta calibration map
with two parameters a and c where b = a gives the same result as applying the
logistic calibration map on the log-odds, i.e. on the log-ratios of scores and their
complements, with γ = a and δ = c. Therefore, the optimal parameter values in
minimising log-loss of beta-calibrated probabilities and in minimising log-loss of
the logistic-calibrated log-odds-transformed scores coincide also. Hence, we can
use logistic calibration (i.e. univariate logistic regression) to fit the beta[a=b]
calibration maps, as shown in Algorithm 1. Note that the operators in the
algorithm apply on vectors component-wise.

In a similar vein we can use bivariate logistic regression to fit the full 3-
parameter beta calibration maps. This is due to our result stated in Proposi-
tion 2 showing that applying the beta calibration map with parameters a, b, c
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Algorithm 1 Beta[a=b] calibration via logistic regression
Require: ytrain and strain are the label and model output score vectors on training instances,

stest is the model output score vector on test instances
1: s′ ← ln strain

1−strain
2: (a, c) ← fit univariate logistic regression to predict ytrain from s′

3: p̂test ← 1/(1 + 1/(ec
satest

(1−stest)a
))

4: return p̂test

Algorithm 2 Beta calibration via logistic regression
Require: ytrain and strain are the label and model output score vectors on training instances,

stest is the model output score vector on test instances
1: s′ ← ln strain
2: s′′ ← − ln(1− strain)
3: (a, b, c) ← fit bivariate logistic regression to predict ytrain from s′ and s′′

4: p̂test ← 1/(1 + 1/(ec
satest

(1−stest)b
))

5: return p̂test

gives the same result as applying the bivariate logistic regression model on the
log-scores and negative-log-complement-scores with the same parameters a, b, c.
The resulting beta calibration algorithm is shown as Algorithm 2.

Proposition 2. For any a, b ≥ 0 and c, s ∈ R:

μbeta(s; a, b, c) = μbilogistic(ln s,− ln(1− s); a, b, c),

where μbilogistic(s
′, s′′; a, b, c) = 1/(1+1/ exp[as′+bs′′+c]) is the bivariate logistic

regression model family.

Proof. It is sufficient to prove that the corresponding likelihood ratios are equal.

LRbilogistic(ln s,− ln(1− s); a, b, c)

= exp[a ln s− b ln(1− s) + c]

=
sa

(1− s)b
ec = LRbeta(s; a, b, c)

One subtle issue with Algorithms 1 and 2 is that fitting might result in either
a < 0 or b < 0 or both, yielding calibration maps that are either monotonically
decreasing or not monotonic at all. This did not ever happen in our experiments
but if it is important to avoid this then logistic regression should be fitted with
constraints a, b ≥ 0. Alternatively, one could still use non-constrained logistic
regression, but after this explicitly check if the constraints are satisfied. The
variables with negative coefficients could then be eliminated (i.e., the respective
coefficient fixed to be zero) and unconstrained logistic regression could be fitted
again.
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Fig 4. Score distributions for Naive Bayes, Ada-O, Ada-S and Logistic Regression on the
heart-statlog dataset. The blue and red histograms represent positive and negative scores,
respectively. The dotted lines are beta distributions fitted using the method of moments. The
dashed lines are class probabilities obtained from these distributions, and the solid lines show
the calibration map learned by beta calibration.

3.4. Further practical examples

We will now take a look at the distributions of the scores of seven base classifiers
(Naive Bayes, Logistic Regression, SVM, Random Forest, MLP, and two versions
of Adaboost) to get a visual idea of how well beta calibration fits them. Figures
4 and 5 present histograms of uncalibrated per-class scores (positives in blue and
negatives in red) on the heart-statlog dataset. On these scores we fit per-class
beta distributions using the method of moments, and show their densities with
dotted lines using the same colours. For visualisation purposes, the histograms
were normalized so that their maximum height is 1, and the densities were
rescaled accordingly. We also plot two calibration maps, one obtained by beta
calibration and shown with blue solid line, and the other by converting the two
fitted beta distributions to posterior probabilities, shown with blue dashed line.
For convenience we additionally plot the complements of these calibration maps
in red, with the same line style.

This analysis looks at two versions of the Adaboost algorithm. The first is
the original Adaboost with probabilities extracted in the standard way as in
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Fig 5. Score distributions for SVM, Random Forest and MLP on the heart-statlog dataset,
continued from Figure 4.

(Friedman, Hastie and Tibshirani, 2000), we refer to it as Ada-O. The second
is the one implemented in Python’s Scikit-learn, based on Adaboost method
SAMME (Zhu et al., 2009), referred to as Ada-S. These versions turn out to be
quite different. As Figures 4 and 5 show, Ada-O tends to push the probabilities
to the extremes similarly to NB, LR and MLP, whereas Ada-S and SVM tend
to pull them towards 0.5.

Some cases show bimodal beta distributions and we also see asymmetric dis-
tributions. In all cases, beta calibration and the two distributions found similar
class probabilities, with some difference around the midpoint, which was ex-
pected, since the two distributions are fitted separately, while beta calibration
tries to fit the class probabilities directly.

Figure 6 shows clear discrepancies between the class probabilities found by
beta calibration and the two fitted beta distributions. In Figure 6a the difference
lies mainly in the positions of the midpoints. In Figure 6b, according to the two
fitted beta distributions, the positive class never shows higher class probabili-
ties than the negative class. Therefore, the class probabilities are inverted on
the right side of the figure. This would lead to a non-monotonically increasing
calibration map. A similar situation can be seen on the left side of Figure 4c.
In beta calibration we avoid this by setting any negative coefficient to zero and
fitting the calibration model again.
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Fig 6. Score distribution discrepancies for Logistic Regression. For the segment dataset, the
posterior probabilities obtained from beta calibration and from the separate distributions have
different midpoints. For the glass dataset, the right side of the figure shows a posterior prob-
ability inversion when obtained from separate distributions (dashed lines).

Fig 7. Score distributions of Random Forest for two datasets. The distributions fit by the
method of moments for the negative scores do not match the respective histograms very well.
Nevertheless, beta calibration and the separate distributions still obtained similar posterior
probabilities.

One important and useful side-effect of our parametrisation for beta calibra-
tion is that the scores do not need to be modelled by beta distributions, as
long as the ratio of their distributions can be well modelled as the ratio of beta
distributions. Figure 7 demonstrates this. In both cases, the beta distributions
found by the method of moments for the negative scores do not match their
respective histograms very well, which means that these distributions were not
well fitted. Even so, beta calibration and the separate beta distributions find
similar posterior probabilities, showing that for beta calibration it is enough to
model the ratio of the distributions.

4. Experiments

We evaluated the effect of applying logistic, isotonic and beta calibration to the
scores produced by Naive Bayes, Adaboost, Logistic Regression, Support Vector
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Table 1

Description of the 41 classification datasets from UCI used for the experiments.

Name Samples Features Classes

abalone 4177 8 3
autos 159 25 6
balance-scale 625 4 3
car 1728 6 4
cleveland 297 13 5
credit-approval 653 15 2
dermatology 358 34 6
diabetes 768 8 2
ecoli 336 7 8
flare 1389 10 6
german 1000 20 2
glass 214 9 6
heart-statlog 270 13 2
hepatitis 155 19 2
horse 300 27 2
ionosphere 351 34 2
iris 150 4 3
landsat-satellite 6435 36 6
letter 35000 16 26
libras-movement 360 90 15
lung-cancer 96 7129 2
mfeat-karhunen 2000 64 10
mfeat-morphological 2000 6 10
mfeat-zernike 2000 47 10
mushroom 8124 22 2
optdigits 5620 64 10
page-blocks 5473 10 5
pendigits 10992 16 10
scene-classification 2407 294 2
segment 2310 19 7
shuttle 101500 9 7
sonar 208 60 2
spambase 4601 57 2
tic-tac 958 9 2
vehicle 846 18 4
vowel 990 10 11
waveform-5000 5000 40 3
wdbc 569 30 2
wpbc 194 33 2
yeast 1484 8 10
zoo 101 16 7

Machine, Random Forest and Multi-Layer Perceptron on 41 datasets from UCI
(Lichman, 2013), see Table 1 for details.

4.1. Experimental method

Multiclass datasets were transformed into two-class ones by taking the biggest
class as positive and the remaining classes together as negative. We compared
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the performance of beta calibration, beta[a=b] calibration, beta[m=1/2] cali-
bration, isotonic calibration, logistic calibration and uncalibrated probabilities,
in terms of Brier score (BS) and log-loss (LL), which are both proper scoring
rules (Kull and Flach, 2015) and hence well-founded measures for assessing the
quality of predicted probabilities.

The results were obtained with 10 times 5-fold cross-validation, totalling 50
executions. Within each execution we used a 3-fold internal cross-validation
with 2 folds for learning the model and 1 for fitting the calibration map. Thus,
three calibrated classifiers were generated during each execution, the outputs
of these three were averaged to provide predictions on the test fold. The same
methodology was used in the paper proposing the logistic calibration method
(Platt, 2000). All experiments were implemented in Python and the code is
publicly available2.

For Naive Bayes (NB), Logistic Regression (LR), Support Vector Machine
(SVM), Random Forest (RF) and Multi-Layer Perceptron (MLP), we used the
implementations provided by Scikit-learn (Pedregosa et al., 2011) with default
values for all parameters. Since SVM does not naturally output probabilities,
we apply the standard sigmoid function μlogistic(·; 1, 0) on its outputs to obtain
values in the [0, 1] range. For boosting we used 200 decision stumps as weak
learners, which was the same number of trees used for RF.

For statistical comparisons between the calibration methods we followed
(Demšar, 2006) and conducted the Friedman test based on the average ranks
across the data sets to verify whether the differences between algorithms were
statistically significant. In case of significance at 5% confidence level we pro-
ceeded to a post-hoc analysis based on Nemenyi statistics producing critical
difference diagrams identifying pairwise significant differences.

4.2. Beta calibration versus isotonic and logistic calibration

We first compared the full 3-parameter beta calibration with logistic and iso-
tonic calibration methods, as well as with the uncalibrated probabilities, across
all 7x2 settings (NB, Ada-S, Ada-O, LR, SVM, RF, MLP; LL, BS). The critical
difference diagrams are shown in Figure 8 for LL and in Figure 9 for BS. It can
be seen that beta calibration was significantly better than logistic calibration on
NB, Ada-O, LR and MLP both for LL and BS. Furthermore, on LL beta cali-
bration was even significantly better than isotonic calibration, while performing
comparably on BS. With Ada-S, SVM the probabilities tend to be pulled to-
wards 0.5 and the logistic fits reasonably well, here beta calibration performed
comparably to logistic calibration (beta calibration was non-significantly bet-
ter). To summarise, no other method was ever significantly better than beta
calibration, and beta calibration was significantly better than all other methods
for NB, Ada-O, LR and MLP according to LL. Full results on Ada-O for LL are
shown in Table 2.

2https://betacal.github.io

https://betacal.github.io
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Fig 8. Critical difference diagrams for log-loss with Naive Bayes, Ada-O, Ada-S, Logistic
Regression, SVM, Random Forest and MLP as base classifiers, Friedman test p-values are
6.9e−17, 1.0e−12, 4.7e−15, 2.5e−11, 5.7−17, 3.2e−14 and 1.3e−09 respectively.

4.3. Parametric calibration methods

We continued to compare the variants of beta calibration against logistic calibra-
tion. The critical difference diagrams for this analysis are shown in Figure 10
for LL and in Figure 11 for BS. Among the three variants the 3-parameter
version was either the best or tied with the best (i.e., not significantly worse
than the best) for all settings (NB, Ada-O, Ada-S, LR, SVM, RF, MLP and
LL, BS). Hence the experiments show that the full 3-parameter version of beta
calibration is a versatile parametric calibration method which is preferable to
logistic calibration, especially if the model has pushed the scores towards the
extremes.

Beta[a=b] calibration has comparable running time to logistic calibration
while the 3-parameter version can be slightly slower. However, both calibration
methods are usually orders of magnitude faster than learning the classifier it-
self. Therefore, the overall time for learning a classifier and calibrating it is not
increased considerably when moving from logistic calibration to beta calibra-
tion.
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Fig 9. Critical difference diagrams for Brier score with Naive Bayes, Ada-O, Ada-S, Logistic
Regression, SVM, Random Forest and MLP as base classifiers, Friedman test p-values are
1.0e−14, 3.7e−06, 5.8e−13, 0.0006, 1.4e−16, 1.6e−09 and 0.0167 respectively.

4.4. The influence of dataset size on calibration performance

We evaluated the impact of dataset size on the performance of calibration meth-
ods by calculating the correlation between dataset size and each method’s rank
according to the loss measure (LL or BS) for each base classifier. Here, a nega-
tive correlation means that the bigger the dataset, the lower the method’s rank,
i.e., the method performed better relative to other methods.

Tables 3 and 4 show the correlations for log-loss and Brier score, respectively.
Isotonic calibration is negatively correlated in every base classifier for log-loss
and in all but one classifier (Ada-S) for Brier score, showing that it usually
benefits more from larger datasets than other methods. This was expected,
since isotonic calibration is the only non-parametric method in this study and
literature has shown that it needs more data than logistic calibration to fit a
good calibration map (Niculescu-Mizil and Caruana, 2005).

To summarise our experimental analysis, we have seen that beta calibration
works well on the scores of a variety of classifiers with different characteristics.
In terms of log-loss and Brier score, beta calibration was never the worst calibra-
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Table 2

Log-loss results with Ada-O classifier. Best results are marked in bold and subscripts
indicate the ranks (before rounding to 3 decimal digits).

dataset uncalibrated beta isotonic logistic

abalone 0.6122 0.6121 0.6264 0.6143
autos 0.4274 0.2831 0.4163 0.2872
balance 0.0494 0.0371 0.0413 0.0382
car 0.1142 0.1091 0.1224 0.1193
clevela 0.4963 0.4171 0.5234 0.4292
credit- 0.3603 0.3412 0.4444 0.3381

dermato 0.0364 0.0191 0.0353 0.0212
diabete 0.5063 0.4841 0.5254 0.4952
ecoli 0.3264 0.1451 0.2243 0.1592
flare 0.4041 0.4042 0.4214 0.4083
german 0.5113 0.5062 0.5384 0.5061

glass 0.6964 0.4892 0.5603 0.4851

heart-s 0.5704 0.4271 0.5573 0.4432
hepatit 0.8054 0.3921 0.4313 0.4112
horse 0.6424 0.4131 0.5243 0.4182
ionosph 0.3814 0.2031 0.2963 0.2272
iris 0.1274 0.0002 0.0001 0.0003
landsat 0.0412 0.0401 0.0433 0.0534
letter 0.0373 0.0352 0.0351 0.0444
libras- 0.5894 0.1001 0.1843 0.1122
lung-ca 0.1934 0.1391 0.1893 0.1392
mfeat-k 0.0624 0.0271 0.0483 0.0322
mfeat-m 0.0404 0.0141 0.0263 0.0142
mfeat-z 0.0954 0.0321 0.0633 0.0392
mushroo 0.0004 0.0003 0.0002 0.0001

optdigi 0.0352 0.0331 0.0444 0.0403
page-bl 0.0932 0.0891 0.0983 0.1094
pendigi 0.0172 0.0171 0.0234 0.0213
scene-c 0.3844 0.3641 0.3762 0.3783
segment 0.0203 0.0101 0.0234 0.0132
shuttle 0.0002 0.0001 0.0014 0.0003
sonar 0.9414 0.4041 0.4863 0.4402
spambas 0.1622 0.1621 0.1734 0.1673
tic-tac 0.3794 0.3331 0.3403 0.3392
vehicle 0.0772 0.0681 0.1314 0.0773
vowel 0.0762 0.0711 0.0944 0.0853
wavefor 0.2532 0.2521 0.2643 0.2714
wdbc 0.2564 0.0891 0.1413 0.1072
wpbc 1.0164 0.5002 0.4961 0.5033
yeast 0.5102 0.5091 0.5434 0.5143
zoo 0.1324 0.0133 0.0131 0.0132

rank 3.20 1.27 3.12 2.41

tion method, while frequently being the best one. Additionally, beta calibration
seems able to fit good calibration maps regardless of dataset size, therefore it
is a good alternative to isotonic calibration on smaller datasets, while generally
outperforming logistic calibration.
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Fig 10. Critical difference diagrams for log-loss on parametric methods with Naive Bayes,
Ada-O, Ada-S, Logistic Regression, SVM, Random Forest and MLP classifiers, Friedman
test p-values are 1.2e−20, 1.6e−15, 2.8e−17, 1.2−07, 1.7e−20, 2.2e−12 and 1.9e−13.

5. Statistical beta calibration test

It has already been mentioned that the parametric family of beta calibration
maps includes the identity function. The benefit of this becomes apparent when
beta calibration is applied to a classifier that is already calibrated. If choosing the
identity mapping, beta calibration can leave the class probabilities unchanged.
Conversely, if the learned calibration map is significantly different from the
identity, the original classifier must have been poorly calibrated. This property
inspired us to develop a calibration test based on beta calibration. Our test takes
as input a particular labelled dataset with the class probabilities as predicted by
a learned classifier, and outputs a p-value indicating how unlikely such situation
is to occur if the classifier were calibrated.

The idea of the proposed test is to learn a beta calibration map and then mea-
sure how close the learned calibration map is to the identity. If it is sufficiently
different, then it is highly unlikely that the original classifier is well-calibrated.
However, if the learned map is very similar to the identity, then we have no
information to reject the null hypothesis of the classifier being calibrated.3

3It is possible in this case that the true calibration map is far from the identity, while in
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Fig 11. Critical difference diagrams for Brier score on parametric methods with Naive Bayes,
Ada-O, Ada-S, Logistic Regression, SVM, Random Forest and MLP classifiers, Friedman test
p-values are 2.4e−18, 1.4e−06, 1.6e−13, 0.0006, 1.1e−20, 3.6e−10 and 0.0029.

Table 3

Correlation between method rank and dataset size for log-loss.

classifier beta beta[m = 1/2] beta[a=b] isotonic logistic

NB 0.058 −0.035 0.252 −0.459 0.289
LR −0.109 0.097 0.305 −0.510 0.140
Ada-O −0.261 0.063 0.065 −0.067 0.167
Ada-S 0.033 −0.195 0.000 −0.012 0.246
RF −0.271 −0.062 0.022 −0.058 0.277
MLP 0.021 0.205 0.315 −0.557 −0.099
SVM 0.191 0.205 0.245 −0.527 0.033

Beta calibration test can become useful in various scenarios:

• for any particular existing classifier it could suggest whether there is value
in calibrating it with beta calibration;

• more generally, it could suggest whether beta calibration should be added
to a particular machine learning pipeline;

the quite restrictive beta family the optimal calibration map is near the identity.



5074 M. Kull et al.

Table 4

Correlation between method rank and dataset size for Brier score.

classifier beta beta[m = 1/2] beta[a=b] isotonic logistic

NB 0.308 −0.099 −0.099 −0.168 0.199
LR −0.101 0.110 0.196 −0.248 0.062
Ada-O 0.053 0.107 0.363 −0.131 −0.305
Ada-S −0.218 0.053 −0.180 0.165 0.051
RF 0.116 0.160 0.173 −0.262 −0.180
MLP 0.079 0.179 0.282 −0.356 −0.141
SVM 0.290 0.147 −0.003 −0.293 −0.072

• conversely, it could suggest whether calibration could be omitted from a
pipeline;

• if the context has changed or drifted since the model or its calibration map
was learned, then it could suggest whether a new calibration map should
be learned for the new context.

In the following we will first define our test statistic, and next provide an
algorithm to sample from the null distribution, enabling estimation of p-values
and significance empirically. We will then demonstrate that the null distribution
can be well approximated with a Gamma distribution, where the parameters
can be easily estimated from the number of instances in the calibration fold.
Finally, we will present the beta calibration test algorithm and discuss some
experimental results on statistical calibration testing.

5.1. Test statistic: dissimilarity from the identity map

First, we define a test statistic that quantifies how different the learned calibra-
tion map is from the identity. One option would be to quantify the difference
between the predicted probabilities before and after calibration on the instances
from the given dataset. This would put a higher weight on the regions of the
calibration map which are covered by more instances. Instead, we propose the
test statistic that measures the area between the learned calibration map and
the identity map. Formally, the test statistic A is defined as

A =

∫ 1

0

|μbeta(s; a, b, c)− s| ds

The advantage of not using actual instances in the formula is that it becomes
easier to approximate the null distribution, as seen later.

The next step is to define the null distribution, that is the distribution of the
area A assuming that the classifier is already perfectly calibrated. This would
mean that every positive class probability p̂ output by this classifier correctly
reflects the proportion of positives among all instances with this prediction p̂.
Our approach to modelling the null distribution is to fix a given or imaginary
dataset with predicted probabilities p̂1, . . . , p̂n and define the null distribution
as areas generated in the following manner:



Beyond sigmoids with beta calibration 5075

1. generate labels for each instance independently, where yi = 1 with proba-
bility p̂i and otherwise yi = 0;

2. learn a calibration map to calibrate predictions p̂1, . . . , p̂n as if y1, . . . , yn
were the corresponding true labels;

3. calculate the area between the obtained calibration map and the identity
map.

Again, this could be done on the given dataset, but we propose to do it on
the imaginary dataset with equidistant uniform probabilities p̂i = i/(n+1), for
i = 1, . . . , n. The main advantage of this choice is to make the null distribution
dependent only on the size n of the dataset, but not on the dataset itself. This
allows to precompute the null distribution empirically for a range of different
dataset sizes and use the results as lookup tables for p-values. Suppose we
generated a big number of areas corresponding to size n in the precomputation
phase. Then the estimated p-value for an area A between the identity and the
calibration map from an actual dataset is equal to q if proportion q of the
precomputed areas are larger than A and proportion 1− q are smaller.

5.2. Approximating the null distributions with gamma distributions

The above approach requires storing all the precomputed areas for a range of
different dataset sizes in order to later calculate the p-value for any given case.
This can be a significant burden and therefore we investigated possibilities to
approximate the distribution of areas with some known parametric family of
distributions. It turned out that a gamma distribution provides a very good
fit across a wide range of dataset sizes n. Figure 12 presents the histograms
of the sampled null distributions for n = 103, 104, 105 and the corresponding
gamma distributions fitted with the method of moment matching shown as the
black solid line behind the red dashed line. In order to evaluate the goodness
of fit we have plotted the corresponding quantile-quantile plots in Figure 13,
see the black points behind the red points. The plots show that the gamma
distributions fit very well but have slightly heavier tails than the empirical
distribution. As a result, in the low p-value range the p-values from the fitted
gamma distribution over-estimate the actual p-values. Due to this the gamma-
approximated test gives significance less frequently. However, near the usual
p-value significance thresholds like p = 0.050, p = 0.010 and p = 0.001 the
difference is very small, e.g. for size n = 105 the corresponding p-value estimates
from the gamma distribution are p = 0.052, p = 0.013 and p = 0.002.

With the above approximation one would need to store only the parameters
of the fitted gamma distributions for a wide range of dataset sizes. However, this
is not ideal either, as it still requires a big precomputed table. We therefore de-
rived simple formulas to approximate the parameters for the moment matching
gamma distribution given the dataset size. In particular, the shape parameter
k can be taken to be the following constant:

k = 4.84 (2)
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Fig 12. The empirical and approximated null distributions for beta calibration test with three
sizes of datasets. The empirical distribution of areas between the beta calibration map and
the identity function has been obtained from 1 million imaginary datasets and is shown as
the grey histogram. The black line represents the Gamma distribution fitted with moment
matching and the red dashed line the Gamma distribution with parameters calculated with
Eqs.(2) and (3).

Fig 13. Quantile-quantile plots comparing the empirical (x-axis) and fitted distributions (y-
axis) from Figure 12. The black large dots correspond to the Gamma distribution obtained
from mean matching and the red small dots to the Gamma distribution obtained with Eqs.(2)
and (3).

for all dataset sizes except very small ones, see Figure 14a. For the scale param-
eter θ we noticed that θ−2 is proportional to the dataset size (see Figure 14b),
and hence θ can be approximated well as follows:

θ = 1/
√
91n (3)

(see Figure 14c). Figure 12 shows very good fit between the gamma distributions
from moment matching with black line and from the approximation formulas
with the red dashed line. The quantile-quantile plots in Figure 13 show that
the p-values from the approximation formulas are very close to the p-values
estimated using mean matching, also shown with red and black, respectively.
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Fig 14. The values of parameters k and θ of the Gamma distributions fitted with mean
matching for 46 different dataset sizes n ranging from 10 up to 100000: (a) fitted value of
k and the constant regression line at 4.84; (b) the ratio θ−2/n with fitted value of θ and the
constant regression line at 91; (c) the fitted value of θ and the regression line θ = 1/

√
91n.

Algorithm 3 Beta calibration test p-values
Require: dataset with predicted probabilities p̂1, . . . , p̂n and actual labels y1, . . . , yn
1: run beta calibration to obtain the parameters a, b, c for the calibration map μbeta(s; a, b, c)
2: calculate the area A between the calibration map and the identity map
3: calculate the p-value as the quantile of A within the distribution Gamma(4.84, 1/

√
91n)

4: return p-value

5.3. Algorithm and experiments

To summarise, the algorithm to obtain p-values from the beta calibration test
is presented in Algorithm 3. Here the area A can be calculated by the standard
trapezoid approximation, evaluating the calibration map at many equidistant
uniform values between 0 and 1. The quantiles of the gamma distribution can be
calculated by many statistical software toolkits, for example, with the command
‘pgamma’ in R.

We applied the developed statistical test on all SVM, LR, NB and MLP
classifiers obtained in our experimental setting as described in Section 4. We
split the classifiers into 6 bins according to the negative logarithm of the p-
value that they received from our beta calibration test. The bin boundaries
were −1, . . . ,−5, i.e. the respective p-value boundaries were e−1 ≈ 0.368, e−2 ≈
0.135, e−3 ≈ 0.050, e−4 ≈ 0.018, e−5 ≈ 0.007. Figure 15 shows in each bin
the proportion of classifiers which improved after beta calibration. For p-values
above 0.135 (neg-log-p-value below 2) the proportion of improvement is only
slightly higher than 50%, meaning that whether beta calibration improves or not
is quite random. For lower p-values (neg-log-p-value above 2) beta calibration
improves (reduces log-loss) in increasingly higher proportion of cases.

Figure 16 presents the p-values per classifier and per dataset, with the grey-
scale colours representing the same p-value bins as in Figure 15. The results
show that MLP and LR tend to be more calibrated than SVM and NB, while
there are several datasets where all classifiers are significantly non-calibrated.
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Fig 15. The proportion of classifiers for which log-loss decreased after beta calibration, across
all SVM, LR, NB and MLP classifiers from Section 4, grouped by negative logarithm of the
p-value that they received from the beta calibration test.

Fig 16. The beta calibration test p-values of MLP, SVM, NB and LR (4 rows) per dataset
(41 columns). Each p-value has been averaged over all cross-validation folds. The greyscale
colours represent the same bins as in Figure 15, with white standing for negative logarithm
p-value below 1 and black for above 5 (very significantly not calibrated). The order of datasets
in the columns is the same as in Table 1.

6. Conclusions

We introduced a rich and flexible family of calibration maps that includes both
sigmoids and inverse sigmoids, as well as a host of other maps including the
identity map. We derived the method from first principles making one simple
parametric assumption: that the per-class scores of the classifier each follow
a beta distribution. This is particularly suitable for classifiers that score on a
bounded scale, for which the Gaussian assumption underlying logistic calibration
is incoherent. The two beta distributions can be quite different in shape, giving
the family much more flexibility than the logistic family, which has to assume
homoscedasticity to keep the calibration map monotonic. This added flexibility
is also visible in the fact that the beta calibration maps have three parameters
(one for location, two for shape) as opposed to the logistic maps which have only
two (one for location and one shape parameter fixing the slope at the midpoint).
If the full flexibility is not required we can force the two shape parameters of
the beta calibration family to be the same, which gives symmetric curves but
still includes inverse sigmoids as well as sigmoids.

Our second contribution is that we connect beta calibration back to logis-
tic calibration, by formulating it as a logistic regression problem over features
constructed from the classifier’s score s. In particular, the two-parameter ver-
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sion of beta calibration can be fitted by performing univariate logistic regression
over the feature ln(s/(1− s)), and the full three-parameter version can be fitted
by means of bivariate logistic regression with features ln s and − ln(1− s). The
two-parameter version of beta calibration with a and c where a = b has been con-
sidered before as a linear-in-log-odds (LLO) calibration method (Lichtenstein,
Fischhoff and Phillips, 1977; Turner et al., 2014) but without a justification.

We performed extensive experiments on 41 binary datasets, with Naive Bayes,
Adaboost, Logistic Regression, SVM, Random Forest and MLP as base classi-
fiers and evaluating both log-loss and Brier score. The experiments show that
all versions of beta calibration outperform logistic calibration. We have also
observed that beta calibration is a good alternative to isotonic calibration on
smaller datasets, where isotonic calibration might overfit.

If the original classifier is already calibrated, then beta calibration learns a
function close to the identity. On this we have built a statistical test to recognise
if the model deviates from being well-calibrated. We have shown that a low p-
value from this test suggests that applying beta calibration would lead to the
reduction in losses.

There are several avenues for future work. As beta calibration is directly min-
imising log-loss it is perhaps no surprise that it outperforms isotonic calibration
for log-loss, but this situation is reversed (although not significantly) for Brier
score, and we plan to obtain a better understanding of this. It would also be
interesting to formulate minimising Brier score as an alternative optimisation
task.
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