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1. Introduction

Suppose that a set of dynamic probabilistic models is selected and that it is
parameterized in terms of a finite dimensional parameter θ taking values in
a known parameter space Θ. We postulate that all these models are possible
descriptions of some reality, which is of interest to us, and that only one of
the models, say the one corresponding to θ∗ ∈ Θ, is the adequate, or true,
description of this reality.

Motivated by discrete time robust stochastic control problems subject to
model uncertainty (cf. [BCC+17]), we consider in the present paper discrete
time, time-homogeneous Markov chain models only. Accordingly, we assume
that the one-step transition kernel of a Markov chain model is parameterized by
θ. We postulate that the true parameter θ∗ is not known, and the main goal is
to derive a recursive (in time) construction of confidence regions for θ∗. Needless
to say, we are seeking a recursive construction of confidence regions for θ∗ that
satisfy desired properties; in particular, some asymptotic properties, as the time
series of observations increases.

The recursive construction of confidence regions is needed not only for the
purpose of speeding up the computation of the successive confidence regions,
but, primarily, for the ability to apply Bellman principle of optimality in the con-
text of adaptive robust stochastic control methodology introduced in [BCC+17].
The adaptive robust control method is a form of stochastic control problem sub-
ject to Knightian uncertainty that incorporates updating controller’s knowledge
about the parameter space by means of confidence regions of the true param-
eter θ∗ – a form of learning, directed towards reducing uncertainty about the
unknown true parameter using the incoming information about the underlying
signal process. In this case, the statistical properties of the confidence regions
(decreasing volumes and weak consistency) are directly related to the reduction
of model uncertainty. As with any stochastic control problem, the viability of
the method relies on establishing the Bellman principle of optimality, where
the authors used essentially the recursive construction of confidence regions dis-
cussed herein. Also in [BCC+17], the authors considered a specific stochastic
optimal control problem from portfolio selection problem, where, in particular,
one dimensional and two dimensional recursive confidence regions where explic-
itly constructed. Robust stochastic control problems provide primary motivation
for the present work, but, clearly, potential applications of the results presented
here are far reaching.

There is a vast literature devoted to recursive computation, also known as
on-line computation, of point estimators. It is fair to say though that, to the
best of our knowledge, the literature regarding recursive construction of confi-
dence regions and their asymptotic analysis is very scarce. In fact, we were able
to identify only two previous works, [Yin89] and [Yin90], touching upon this
subject. In this regard, our work is the first to fully concentrate on the recursive
construction of confidence regions and their asymptotic analysis. The geometric
idea that underlies our recursive construction is motivated by recursive rep-
resentation of confidence intervals for the mean of one dimensional Gaussian
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distribution with known variance, and by recursive representation of confidence
ellipsoids for the mean and variance of one dimensional Gaussian distribution,
where in both cases observations are generated by i.i.d. random variables. The
recursive representation is straightforward in the former case, but it is not so
any more in the latter one.

In the already mentioned works, [Yin89] and [Yin90], a closely related idea
was used for constructions of sequentially determined confidence ellipsoids based
on stopped Brownian motions. Our paper and Yin’s work compare as fol-
lows:

We take ergodic Markov chains as our underlying processes, whereas Yin
considered several other different processes such as moving average processes
and stationary φ-mixing processes. While providing a formula for the confidence
ellipsoids that is essentially a recursive formula, Yin was interested in computing
the volume of the ellipsoids. By defining a stopping time as the first time that
the volume of an ellipsoid is smaller than some threshold, in [Yin89] and [Yin90]
the author proved a series of properties for such stopping time, and developed
a stopping rule for recursive on-line algorithms. We, on the other hand, focus
on a constructive recursive derivation of the extreme points of our confidence
regions. Specifically, we provide a recursive formula for the extreme points so
that we are able to efficiently compute these points and therefore to efficiently
represent the points that lie in the confidence regions. This is an important
new development, as it allows us to apply dynamic programming principle to
the robust stochastic control problem that is studied in [BCC+17]. From the
numerical point of view, formulae for extreme points of the ellipsoids lead to
efficient solution to the optimization problems that we encounter. We prove
the weak consistency for the recursive confidence regions, for which having the
representations of the extreme points plays an important role.

As it will be seen, one of the the key ingredients in our recursive construction
of confidence regions is an appropriate recursive scheme for deriving a point
estimator of θ∗. In this regard, building upon classical results from inferential
statistics and from the area of stochastic approximation (cf. [KY03], [LeC56],
[LeC60]), in Section 3:

• We introduce the concept of quasi-asymptotic linearity of a point estimator
of θ∗, which is satisfied by the recursive point estimation scheme that we
develop in Section 3.2. This concept is related to the classic definition of
asymptotic linearity of a point estimator, but it overcomes one serious
drawback that the classic concept suffers from: asymptotic linearity fails
to be reconciled with the full recursiveness in some applications.

• Starting from what we call the base recursive point estimation scheme, we
design a quasi-asymptotically linear recursive point estimation scheme,
and we prove the weak consistency and asymptotic normality of the point
estimator generated by this scheme.

The main original contribution of this paper is provided in Section 4 and it can
be summarized as follows:
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We provide a recursive construction of confidence regions for θ∗. We prove
that these confidence regions are weakly consistent, that is, they converge
in probability (in the Hausdorff metric) to the true parameter θ∗.

The paper is organized as follows. In Section 2 we introduce the Markov chain
framework relevant for the present study.

In Section 3 we provide two recursive schemes for derivation of point esti-
mators. Section 3.1 is devoted to the recursive construction of what we call the
base (recursive) point estimator of θ∗. In our set-up, finding a point estimator
of θ∗ translates to finding a point estimator of the solution of equation (13).
One of the most widely used iterative root finding procedures for such equa-
tions is the celebrated stochastic approximation method. Our base (recursive)
point estimation scheme for θ∗ is an adaptation of the stochastic approximation
method. Also, here we prove the strong consistency of the base point estima-
tor. The key step to the desired recursive construction of confidence regions for
θ∗ is to establish the asymptotic normality of the underlying recursive point
estimator. In this regard one could impose additional assumptions, on top of
the conditions needed for proving consistency of the point estimator, to obtain
asymptotic normality for stochastic approximation estimators (see e.g. [Sac58],
[Fab68], [LR79]). This however would typically result in imposing a long list of
assumptions that would not be easily verifiable. Thus, we choose to go into a
different direction by modifying the base estimator θ̃ to the effect of producing
a recursive estimator that is asymptotically normal. Therefore, in Section 3.2
we appropriately modify our base (recursive) point estimator, so to construct a
quasi-asymptotically linear (recursive) point estimator, for which we prove weak
consistency and asymptotic normality.

The main section of this paper is Section 4, which contains the main original
contribution of the paper. This section is devoted to the recursive construction
of confidence regions for θ∗, and to studying their asymptotic properties. In
particular, we show that confidence regions derived from quasi-asymptotically
linear (recursive) point estimators preserve a desired geometric structure. Such
structure guarantees that we can represent the confidence regions in a recursive
way in the sense that the region produced at step n is fully determined by the
region produced at step n − 1 and by the newly arriving observation of the
underlying reality.

Illustrating examples are provided in Section 5. The paper is completed with
technical Appendices that also contain some of the proofs.

2. Preliminaries

Let (Ω,F ) be a measurable space. The non-empty compact hyperrectangle Θ ⊂
R

d will play the role of the parameter space throughout.1 We define C(θ), θ ∈
∂Θ, to be the infinite convex cone generated by the outer normals at θ of

1In general, the parameter space may be infinite dimensional, consisting for example of
dynamic factors, such as deterministic functions of time or hidden Markov chains. In this
study, for simplicity, we chose the parameter space to be a subset of Rd.
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the faces on which θ lies; and C(θ) = {0} if θ belongs to the interior of Θ.
On the space (Ω,F ) we consider a discrete time, real valued random process
Z = {Zn, n ≥ 0}.2 We postulate that this process is observed, and we denote
by F = (Fn, n ≥ 0) its natural filtration. The (true) law of Z is unknown,
and assumed to belong to a parameterized family of probability distributions
on (Ω,F ), say {Pθ, θ ∈ Θ}. It will be convenient to consider (Ω,F ) to be
the canonical space for Z, and to consider Z to be the canonical process (see
Appendix A for details). Consequently, the law of Z under Pθ is the same as
Pθ. The (true) law of Z will be denoted by Pθ∗ ; accordingly, θ∗ ∈ Θ is the
(unknown) true parameter. We assume that θ∗ lies in the interior of Θ.

The set of probabilistic models that we are concerned with is {(Ω,F ,F, Z,Pθ),
θ ∈ Θ}. The model uncertainty addressed in this paper occurs if Θ �= {θ∗},
which we assume to be the case. Our objective is to provide a recursive construc-
tion of confidence regions for θ∗, based on accurate observations of realizations
of process Z through time, and satisfying desirable asymptotic properties.

In what follows, all equalities and inequalities between random variables will
be understood in Pθ∗ almost surely sense. We denote by Eθ∗ the expectation
operator corresponding to Pθ∗ .

We impose the following structural standing assumption.

Assumption M:
(i) Process Z is a time homogenous Markov process under any Pθ, θ ∈ Θ.
(ii) Process Z is an ergodic Markov process under Pθ∗ .3

(iii) The transition kernel of process Z under any Pθ, θ ∈ Θ, is absolutely
continuous with respect to the Lebesgue measure on R, that is, for any Borel
set A ⊂ R,

Pθ(Z1 ∈ A|Z0 = x) =

∫
A

pθ(x, y)dy,

for some positive and measurable function pθ.
4 In other words, pθ is the condi-

tional density function of the Markov process Z under Pθ.
For any θ ∈ Θ and n ≥ 1, we define πn(θ) := log pθ(Zn−1, Zn).

Remark 1. Since the process Z is ergodic then it is also a stationary process
under Pθ∗ (see Appendix A.1). Consequently, under Pθ∗ , for each θ ∈ Θ and for
each n ≥ 0, the law of πn(θ) is the same as the law of π1(θ).

We will also need to impose several technical assumptions, beginning with

R0. For any θ ∈ Θ, π1(θ) is integrable under Pθ∗ .

Note that, assuming that M and R0 hold and using Proposition 18 as well as
the Kullback-Leibler Lemma (cf. [KL51]), we see that the following properties
are satisfied:

2The study presented in this paper extends to the case when process Z takes values in
R
m, for m > 1. We focus here on the case m = 1 for simplicity of presentation.

3See Appendix A.1 for the definition of ergodicity that we postulate here.
4This postulate is made solely in order to streamline the presentation. In general, our

methodology works for Markov processes for which the transition kernel is not absolutely
continuous with respect to the Lebesgue measure.
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For any θ ∈ Θ,

lim
n→∞

1

n

n∑
i=1

πi(θ) = Eθ∗ [π1(θ)]. (1)

Moreover, for any θ ∈ Θ,

Eθ∗ [π1(θ
∗)] ≥ Eθ∗ [π1(θ)]. (2)

In the statement of the technical assumptions R1–R8 below we adapt the
notations

ψn(θ) = ∇πn(θ), Ψn(θ) = Hπn(θ), bn(θ) = Eθ∗ [ψn(θ)|Fn−1], (3)

where ∇ denotes the gradient vector and H denotes the Hessian matrix with
respect to θ, respectively. Due to the fact that Z is a Markov process, we have

bn(θ) = Eθ∗ [ψn(θ)|Fn−1] = Eθ∗ [ψn(θ)|Zn−1], (4)

which implies that for each n ≥ 1, bn is indeed a functional of θ and Zn−1, and
we postulate that bn is continuous with respect to Zn−1.

R1. For each x, y ∈ R the function p·(x, y) : Θ → R+ is three times differen-
tiable, and

∇
∫
R

pθ(x, y)dy =

∫
R

∇pθ(x, y)dy, H

∫
R

pθ(x, y)dy =

∫
R

Hpθ(x, y)dy. (5)

R2. For any θ ∈ Θ, ψ1(θ) and Ψ1(θ) are integrable under Pθ∗ . The function
Eθ∗ [π1( · )] is twice differentiable in θ, and

∇Eθ∗ [π1(θ)] = Eθ∗ [ψ1(θ)], HEθ∗ [π1(θ)] = Eθ∗ [Ψ1(θ)].

R3. There is no stationary point5 on ∂Θ for the differential equation

dx(t)

dt
= Eθ∗ [ψ1(x(t))] + ζ(t), (6)

where ζ(t) ∈ −C(x(t)) is the minimum force needed to keep x(·) in Θ.
There exists a unique θ� ∈ Θ such that

Eθ∗ [ψ1(θ
�)] = 0.

R4. There exist some positive constants Ki, i = 1, 2, 3, such that for any θ, θ1,
θ2 ∈ Θ, and n ≥ 1,6

(θ − θ∗)T bn(θ) ≤ −K1‖θ − θ∗‖2, (7)

‖bn(θ1)− bn(θ2)‖ ≤ K2‖θ1 − θ2‖, (8)

Eθ∗ [‖Ψn(θ1)−Ψn(θ2)‖ | Fn−1] ≤ K3‖θ1 − θ2‖. (9)

5A stationary point of an ODE dx
dt

= f(x(t)) is a point x such that f(x) = 0. For detailed
discussion about projected ODE and stationary points, please refer to [KY03].

6Superscript T will denote the transpose.
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R5. There exists a positive constant K4, such that for any θ ∈ Θ, and n ≥ 1,

Eθ∗ [‖Hψn(θ)‖|Fn−1] ≤ K4. (10)

R6. For any n ≥ 1,

sup
θ∈Θ

Eθ∗‖ψn(θ)− bn(θ)‖2 < ∞. (11)

R7. For each θ ∈ Θ the Fisher information matrix

I(θ) := Eθ[ψ1(θ)ψ
T
1 (θ)]

exists and is positive definite. Moreover, I(θ) is continuous with respect to
θ.

R8.

lim
n→∞

Eθ∗

[
sup

0≤i≤n

∣∣∣∣ 1√
n
ψi(θ

∗)

∣∣∣∣
]
= 0. (12)

Remark 2. (i) Note that in view of the Remark 1 properties assumed in R2, R3,
and R8 imply that analogous properties hold with time n in place of time 1.

(ii) According to Proposition 25, we have that if R4–R6 hold, then (7)-(10)
are also satisfied for any Fn−1-measurable random vector θ ∈ Θ.

(iii) A detailed analysis of the ODE (6) is not given here due to space limi-
tation. However, it proceeds in analogy to what is done in [KY03, Section 4.3].
One concludes that this equation admits a unique solution for x(0) ∈ Θ.

As stated above, our aim is to provide a recursive construction of the confi-
dence regions for θ∗. In the sequel, we will propose a method for achieving this
goal that will be derived from a suitable recursive point estimator of θ∗. Note
that due to (2) and Assumption R3, we have that θ∗ is the unique solution of

Eθ∗ [ψ1(θ)] = 0. (13)

Therefore, constructing a point estimator of θ∗ is equivalent to constructing
a point estimator of the solution of equation (13). Since θ∗ is unknown, the
left-hand-side of the equation (13) is not really known to us. We will therefore
apply an appropriate version of the so called stochastic approximation method,
which is a recursive method used to point-estimate zeros of functions that can
not be directly observed. This can be done in our set-up since, thanks to (1),
we are provided with a sequence of observed random variables 1

n

∑n
i=1 ψi(θ)

that Pθ∗ almost surely converges to Eθ∗ [ψ1(θ)] – a property, which will enable
us to adopt the method of stochastic approximation. Accordingly, in the next
two sections, we will introduce two recursive point estimators of θ∗, and we will
derive properties of these estimators that are relevant for us.

3. Recursive point estimators

In this section two types of recursive point estimators are derived that are needed
for construction of the recursive confidence regions from Section 4.
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3.1.
√
n-consistent base point estimator

In this section we consider a recursive point estimator θ̃ = {θ̃n, n ≥ 1} of θ∗,
that will be defined in (14). Towards this end, we fix a positive constant β such
that βK1 > 1

2 , where K1 was introduced in Assumption R6. Then, we follow

the idea in [KY03] and define the process θ̃ recursively as follows,

θ̃n = θ̃n−1 +
β

n
ψn(θ̃n−1) +

β

n
Jn, n ≥ 1, (14)

with the initial guess θ̃0 being an element in Θ, where ψn was defined in (3).
The projection term Jn is chosen so that β

nJn is the vector of shortest Euclidean

length needed to take θ̃n−1+
β
nψn(θ̃n−1) back to the set Θ. It is not hard to see

that Jn ∈ −C(θ̃n).

Given the definition of ψn, we see that θ̃n is updated from θ̃n−1 based on
new observation Zn available at time n; of course, Zn−1 is used as well. We note
that the recursion (14) is a version of the constrained stochastic approximation
method, which is meant to recursively approximate roots of the unknown equa-
tions, such as equation (13) (see e.g. [RM51], [KW52], [LS87], [KC78], [KY03]).

Remark 3. In applications of stochastic approximation, there are two ways to
deal with the case of iterates becoming too large. One is to impose some stability
conditions on the problem, and the other is to make appropriate adjustments
to the basic algorithm. The latter is usually called constrained or truncated
stochastic approximation (see e.g. [KC78], [BK02], [SZ16]). In this work, we use
the second method so that assumptions R1–R8 only need to be satisfied for θ
that belongs to a compact subset of Rd instead of the whole space.

Remark 4. In practice, for Θ that is defined as a hyperrectangle, the projection
term Jn is easily computable. See (25) and (26) as an example in the two
dimensional case. It is also worth noting, as discussed in [KY03], that there are
other feasible construction of Θ.

As mentioned above, we are interested in the study of asymptotic properties of
confidence regions that we will construct recursively in Section 4. These asymp-
totic properties crucially depend on the asymptotic properties of our recursive
(point) estimators. One of such required properties is asymptotic normality. As
discussed earlier, we will modify the base estimator θ̃ to the effect of producing
a recursive estimator that is asymptotically normal. In the next section we will
construct such estimator, denoted there as θ̂, and we will study its asymptotic
properties in the spirit of the method proposed by Fisher [Fis25]. Motivated
by finding estimators that share the same asymptotic property as maximum
likelihood estimators (MLEs), Fisher proposed in [Fis25] that if an estimator is√
n-consistent (see below), then appropriate modification of the estimator has

the same asymptotic normality as the MLE. This subject was further studied
by LeCam in [LeC56] and [LeC60], where a more general class of observation
than i.i.d. observations are considered.
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Accordingly, we will show that θ̃n is strongly consistent, and, moreover it
maintains

√
n convergence rate, i.e.

Eθ∗‖θ̃n − θ∗‖2 = O(n−1). (15)

An estimator that satisfies this equality is said to be
√
n-consistent.

For convenience, throughout, we will use the notation Δn := θ̃n − θ∗, n ≥ 1.
Next two results show that θ̃ is strongly consistent and

√
n-consistent. The

proofs of these results are deferred to Appendix A.3.

Proposition 5. Assume that R1–R3, and (8) are satisfied. Then

lim
n→∞

θ̃n = θ∗, Pθ∗ − a.s. (16)

Proposition 6. Assume that (7), (8) and (11) hold. Then,

Eθ∗‖θ̃n − θ∗‖2 = O(n−1).

3.2. Quasi-asymptotically linear estimator

In this section we define a new estimator denoted as {θ̂n, n ≥ 1} and given
recursively by

θ̂n = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn,

Γn =
n− 1

n
Γn−1 +

1

n
(Id + βIn)ψn(θ̃n−1) +

β

n
InJn,

In =
n− 1

n
In−1 +

1

n
Ψn(θ̃n−1), n ≥ 1,

Γ0 = 0, I0 = 0,

(17)

where Id is the unit matrix. Since θ̃n, In, and Γn are updated from time n− 1
based on the new observation Zn available at time n, then the estimator θ̂ indeed
is recursive. This estimator will be used in Section 5 for recursive construction
of confidence regions for θ∗.

Remark 7. In the argument below we will use the following representations of
Γn and In,

Γn =
1

n

n∑
j=1

[
(Id + βIj)ψj(θ̃j−1) + βIjJj

]
, In =

1

n

n∑
i=1

Ψi(θ̃i−1).

Next, we will show that θ̂ is weakly consistent and asymptotically normal.
We will derive asymptotic normality of θ̂ from the property of quasi-asymptotic
linearity, which is related to the asymptotic linearity property (cf. [Shi84]), and
which is defined as follows:

Definition 8. An estimator {θ̄n, n ≥ 1} of θ∗ is called a quasi-asymptotically
linear estimator if there exist a Pθ∗ -convergent, adapted matrix valued process
G, and adapted, vector valued processes ϑ and ε, such that
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θ̄n − ϑn =
Gn

n

n∑
i=1

ψi(θ
∗) + εn, n ≥ 1, ϑn

Pθ∗−−−−→
n→∞

θ∗,
√
nεn

Pθ∗−−−−→
n→∞

0.

Our definition of quasi-asymptotically linear estimator is motivated by the
classic concept of asymptotically linear estimator (see e.g. [Sha10]): θ̌ is called
(locally) asymptotically linear if there exists a matrix process {Ǧn, n ≥ 1} such
that

θ̌n − θ∗ = Ǧn

n∑
i=1

ψi(θ
∗) + εn,

where Ǧ
−1/2
n εn

Pθ∗−−−−→
n→∞

0. Asymptotic linearity is frequently used in the proof of

asymptotic normality of estimators. However, in general, asymptotic linearity
can not be reconciled with the full recursiveness of the point estimator. The
recursiveness of the point estimator is the key property involved in construction
of recursive confidence regions. As it will be shown below, the fully recursive
estimator θ̂ is quasi-asymptotically linear.

In what follows, we will make use of the following representation for θ̂

θ̂n = −I−1(θ̃n)Inθ̃n +
1

n
I−1(θ̃n)

n∑
j=1

[
(Id + βIj)ψj(θ̃j−1) + βIjJj

]
. (18)

Theorem 9. Assume that R1–R8 hold. Then, the estimator θ̂ is Pθ∗–weakly

consistent, namely θ̂n
Pθ∗−−−−→

n→∞
θ∗. Moreover, θ̂ is a quasi-asymptotically linear

estimator for θ∗.

The proof is differed to the Appendix A.3.
The next result, which will be used in the analysis of asymptotic properties of

the recursive confidence region for θ∗ in Section 6, is an application of Theorem 9.

Proposition 10. Assume that R1–R9 are satisfied. Then, there exists an
adapted process ϑ such that

ϑn
Pθ∗−−−−→

n→∞
θ∗, (19)

and √
n(θ̂n − ϑn)

d−−−−→
n→∞

N (0, I−1(θ∗)). (20)

See Appendix A.3 for the proof.
We end this section with the following technical result, which will be used

in our construction of the confidence region in Section 6. Towards this end, for
any θ ∈ Θ and n ≥ 1, we define7

Un(θ) := n(θ̂n − θ)T I(θ̃n)(θ̂n − θ) (21)

= n

d∑
i=1

d∑
j=1

σij
n (θ̂in − θi)(θ̂jn − θi),

7We use superscripts here to denote components of vectors and matrices.
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where (σij
n )i,j=1,...,d = I(θ̃n), and, as usual, we denote by χ2

d a random variable
that has the chi-squared distribution with d degrees of freedom.

Corollary 11. With ϑn = −I−1(θ̃n)Inθ
∗, we have that

Un(ϑn)
d−−−−→

n→∞
χ2
d.

Proof. From Assumption R8, strong consistency of θ̃ and Proposition 10, and
employing the Slutsky’s theorem again, we get that√

nI(θ̃n)(θ̂n − ϑn)
d−−−−→

n→∞
N (0, Id).

Therefore,

Un(ϑn) = n(θ̂n − ϑn)
T I(θ̃n)(θ̂n − ϑn)

d−→ ξT ξ,

where ξ ∼ N (0, Id). The proof is thus complete since ξT ξ
d
= χ2

d.

4. Recursive construction of confidence regions

This section is devoted to the construction of the recursive confidence region
based on quasi-asymptotically linear estimator θ̂ developed in Section 3.2. We
start with introducing the definition of the approximated confidence region.

Definition 12. Let Vn : Rn+1 → 2Θ be a set valued function such that Vn(z) is
a connected set8 for any z ∈ R

n+1. The set Vn(Z
n
0 ), with Zn

0 := (Z0, . . . , Zn), is
called an approximated confidence region for θ∗, at significance level α ∈ (0, 1),
if there exists a weakly consistent estimator ϑn of θ∗, such that

lim
n→∞

Pθ∗(ϑn ∈ Vn(Z
n
0 )) = 1− α.

Such approximated confidence region can be constructed, as next result shows,
by using the asymptotic results obtained in Section 3.2. Recall the notation
Un(θ) = n(θ̂n − θ)T I(θ̃n)(θ̂n − θ), for θ ∈ Θ, n ≥ 1.

Proposition 13. Fix a confidence level α, and let κ ∈ R be such that Pθ∗(χ2
d <

κ) = 1− α. Then, the set

Tn := {θ ∈ Θ : Un(θ) < κ}
is an approximated confidence region for θ∗.

Proof. As in Section 3.2, we take ϑn = −I−1(θ̂n)Inθ
∗, which in view of Propo-

sition 10 is a weakly consistent estimator of θ∗. Note that Un( · ) is a continuous
function, and thus Tn is a connected set, for any n ≥ 1. By Corollary 11,

Un(ϑn)
d−→ χ2

d, and since Pθ∗(ϑn ∈ Tn) = Pθ∗(Un(ϑn) < κ), we immediately
have that limn→∞ Pθ∗(ϑn ∈ Tn) = 1− α. This concludes the proof.

Next, we will show that the approximated confidence region Tn can be com-
puted in a recursive way, by taking into account its geometric structure. By the

8A connected set is a set that cannot be represented as the union of two or more disjoint
nonempty open subsets.



Recursive construction of confidence regions 4685

definition, the set Tn is the interior of a d-dimensional ellipsoid, and hence Tn
is uniquely determined by its extreme 2d points. Thus, it is enough to establish
a recursive formula for computing the extreme points. Let us denote by

(θ1n,k, . . . , θ
d
n,k), k = 1, . . . , 2d,

the coordinates of these extreme points; that is θin,k, denotes the ith coordinate
of the kth extreme point of the ellipsoid Tn.

First, note that the matrix I(θ̃n) is positive definite, and hence it admits the
Cholesky decomposition:

I(θ̃n) = LnL
T
n =

⎡
⎢⎢⎢⎣
l11n 0 · · · 0
l21n l22n · · · 0
...

...
...

ld1n ld2n · · · lddn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
l11n l21n · · · ld1n
0 l22n · · · ld2n
...

... · · ·
...

0 0 · · · lddn

⎤
⎥⎥⎥⎦ ,

where lijn i, j = 1, . . . , d, are given by

liin =

√√√√σii
n −

i−1∑
k=1

(likn )2,

lijn =
1

liin

(
σij
n −

j−1∑
k=1

likn ljkn

)
.

Thus, we have that Un(θ) = n(u2
n,1(θ) + u2

n,2(θ) + · · ·+ u2
n,d(θ)), where

un,i(θ) =

d∑
j=i

ljin (θ̂jn − θj), i = 1, . . . , d,

and thus Tn = {θ :
∑d

j=1(un,j(θ))
2 < κ

n}.
By making the coordinate transformation θ �→ ρ given by ρ = LT

n (θ̂n−θ), the

set Tn in the new system of coordinates can be written as Tn = {ρ :
∑d

i=1(ρ
i)2 <

κ
n}. Hence, Tn, in the new system of coordinates, is determined by the following
2d extreme points of the ellipsoid:

(ρ11, . . . , ρ
d
1) = (

√
κ

n
, 0, . . . , 0),

(ρ12, . . . , ρ
d
2) = (−

√
κ

n
, 0, . . . , 0),

. . .

(ρ12d−1, . . . , ρ
d
2d−1) = (0, . . . , 0,

√
κ

n
),

(ρ12d, . . . , ρ
d
2d) = (0, . . . , 0,−

√
κ

n
).
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Then, in the original system of coordinates, the extreme points (written as
vectors) are given by

(θ1n,2j−1, . . . , θ
d
n,2j−1)

T = θ̂n −
√

κ

n
(LT

n )
−1ej ,

(θ1n,2j , . . . , θ
d
n,2j)

T = θ̂n +

√
κ

n
(LT

n )
−1ej ,

j = 1, . . . , d, (22)

where {ej}, j = 1, . . . , d, is the standard basis in R
d.

Finally, taking into account the recursive constructions (14), (17), and the
representation (22), we have the following recursive scheme for computing the
approximate confidence region.

Recursive construction of the confidence region

1st Step: Γ0 = 0, I0 = 0, θ̃0 ∈ Θ.

nth Step:

Input: θ̃n−1, In−1,Γn−1, Zn−1, Zn.

Output: θ̃n = θ̃n−1 +
β

n
ψn(θ̃n−1) +

β

n
Jn,

In =
n− 1

n
In−1 +

1

n
Ψn(θ̃n−1),

Γn =
n− 1

n
Γn−1 +

1

n

[
(Id + βIn)ψn(θ̃n−1) + βInJn

]
,

(θ1n,i, . . . , θ
d
n,i)

T = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn +

√
κ

n
(I−1/2

n )T e i
2
,

(θ1n,j , . . . , θ
d
n,j)

T = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn −
√

κ

n
(I−1/2

n )T e j+1
2
,

i = 2, 4, . . . , 2d, j = 1, 3, . . . , 2d− 1.

From here, we also conclude that there exists a function τ , independent of n,
such that

Tn = τ(Tn−1, Zn). (23)

The above recursive relationship goes to the heart of application of recursive
confidence regions in the robust adaptive control theory originated in [BCC+17],
since it makes it possible to take the full advantage of the dynamic programming
principle in the context of such control problems.

We conclude this section by proving that the confidence region converges to
the singleton θ∗. Equivalently, it is enough to prove that the extreme points
converge to the true parameter θ∗.

Proposition 14. For any k ∈ {1, . . . , 2d}, we have that

Pθ∗- lim
n→∞

θn,k = θ∗.
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Proof. By Assumption R8 and Theorem 5 (strong consistency of θ̃), we have

that Ln
a.s.−−−−→

n→∞
I1/2(θ∗), and consequently, we also have that

√
κ

n
eTj L

−1
n

a.s−−−−→
n→∞

0. (24)

Of course, the last convergence holds true in the weak sense too. Passing to the
limit in (22), in Pθ∗ probability sense, and using (24) and weak consistency of

θ̂ (Theorem 9), we finish the proof.

5. Examples

In this section we will present three illustrative examples of the recursive con-
struction of confidence regions developed above. We start with our main ex-
ample, Example 15, of a Markov chain with Gaussian transitional densities
where both the conditional mean and conditional standard deviation are the
parameters of interest. Example 16 is dedicated to the case of i.i.d. Gaussian
observations, which is a particular case of the first example.

Generally speaking, the simple case of i.i.d. observations for which the MLE
exists and asymptotic normality holds true, one can recursively represent the
sequence of confidence intervals constructed in the usual (off-line) way, and the
theory developed in this paper is not really needed. The idea is illustrated in
Example 17 by considering again the same experiment as in Example 16. In
fact, as mentioned above, this idea served as the starting point for the general
methodology presented in the paper.

Example 15. Let us consider a Markov process {Zn} with a Gaussian transi-
tion density function

pθ(x, y) =
1√

1− ρ2
√
2πσ

e
− (y−ρx−(1−ρ)μ)2

2σ2(1−ρ2) , n ≥ 1,

and such that Z0 ∼ N (μ, σ2).
We assume that the correlation parameter ρ ∈ (−1, 1) is known, and the

unknown parameter is θ = (μ, σ2) ∈ (−∞,∞)× (0,∞). The pair of true param-
eters (μ∗, (σ∗)2) lies in the interior of Θ = [a1, a2]× [b1, b2], and a1 ≤ a2, b1 ≤ b2
are some fixed real numbers with b1 > 0.

In the Appendix A.3 we show that the process Z satisfies Assumption M,
and conditions R0–R8.

Thus, all the results derived in the previous sections hold true. Moreover, for
a given confidence level α, we have the following explicit formulas for the nth
step of the recurrent construction of the confidence regions:

μ̃n = μ̃n−1 +
β(Zn − ρZn−1 − (1− ρ)μ̃n−1)

nσ̃2
n−1(1 + ρ)

+
β

n
J1
n,

σ̃2
n = σ̃2

n−1 −
β

nσ̃n−1
+

β(Zn − ρZn−1 − (1− ρ)μ̃n−1)
2

n(1− ρ2)σ̃3
n−1

+
β

n
J2
n,
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In =
n− 1

n
In−1+

1

n

⎡
⎣ − 1−ρ

(1+ρ)σ̃2
n−1

−2(Zn−ρZn−1−(1−ρ)μ̃n−1)
(1+ρ)σ̃3

n−1

−2(Zn−ρZn−1−(1−ρ)μ̃n−1)
(1+ρ)σ̃3

n−1

1
σ̃2
n−1

− 3(Zn−ρZn−1−(1−ρ)μ̃n−1)
2

(1−ρ2)σ̃4
n−1

⎤
⎦ ,

Γn =
n− 1

n
Γn−1 +

1

n
(Id + βIn)

×

⎡
⎣ Zn−ρZn−1−(1−ρ)μ̃n−1

σ̃2
n−1(1+ρ)

− 1
σ̃n−1

+ (Zn−ρZn−1−(1−ρ)μ̃n−1)
2

(1−ρ2)σ̃3
n−1

)

⎤
⎦+

βIn
n

[
J1
n

J2
n

]
,

and, for j ∈ {1, 2, 3, 4},
[
μn,j

σ2
n,j

]
= −

[
(1+ρ)σ̃2

n

1−ρ 0

0
σ̃2
n

2

]
In

[
μ̃n

σ̃2
n

]
+

[
(1+ρ)σ̃2

n

1−ρ 0

0
σ̃2
n

2

]
Γn

+�j
κ

n

[√
1+ρ
1−ρ σ̃n 0

0 σ̃n√
2

]
uj ,

where �1 = �3 = −1, �2 = �4 = 1, u1 = u2 = e1, u3 = u4 = e2, β is

a constant such that β >
b32
4b1

, β >
(1+ρ)b32
2(1−ρ)b1

, and Pθ∗(χ2
2 < κ) = 1 − α. The

projection terms J1
n and J2

n are defined as follows,

J1
n =

⎧⎨
⎩

n
β (a1 −

◦
μn), a1 >

◦
μn,

n
β (a2 −

◦
μn), a2 <

◦
μn,

0, otherwise,

(25)

and

J2
n =

⎧⎨
⎩

n
β (b1 −

◦
σ2
n), b1 >

◦
σ2
n,

n
β (b2 −

◦
σ2
n), b2 <

◦
σ2
n,

0, otherwise,

(26)

where

◦
μn = μ̃n−1 +

β(Zn − ρZn−1 − (1− ρ)μ̃n−1)

nσ̃2
n−1(1 + ρ)

,

◦
σ2
n = σ̃2

n−1 −
β

nσ̃n−1
+

β(Zn − ρZn−1 − (1− ρ)μ̃n−1)
2

n(1− ρ2)σ̃3
n−1

.

Example 16. Let Zn, n ≥ 0, be a sequence of i.i.d. Gaussian random variables
with an unknown mean μ and unknown standard deviation σ. Clearly, this
important case is a particular case of Example 15, with ρ = 0, and the same
recursive formulas for confidence regions by taking ρ = 0 in the above formulas.

Example 17. We take the same setup as in the previous example - i.i.d Gaus-
sian random variables with unknown mean and standard deviation. We will
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use the fact that in this case, the MLE estimators for μ and σ2 are computed
explicitly and given by

μ̂n =
1

n+ 1

n∑
i=0

Zi, σ̂2
n =

1

n+ 1

n∑
i=0

(Zi − μ̂n)
2, n ≥ 1,

It is well known that (μ̂, σ̂2) are asymptotically normal, namely

√
n(μ̂n − μ∗, σ̂2

n − (σ∗)2)
d−−−−→

n→∞
N (0, I−1),

where

I =

[
(σ∗)2 0
0 2(σ∗)4

]
.

First, note that (μ̂n, σ̂
2
n) satisfies the following recursion:

μ̂n =
n

n+ 1
μ̂n−1 +

1

n+ 1
Zn,

σ̂2
n =

n

n+ 1
σ̂2
n−1 +

n

(n+ 1)2
(μ̂n − Zn)

2, n ≥ 1.
(27)

Second, due to asymptotic normality, we also have that, Un
d−−−−→

n→∞
χ2
2, where

Un := n
σ̂2
n
(μ̂n −μ∗)2 + n

2σ̂4
n
(σ̂2

n − (σ∗)2)2. Now, for a given confidence level α, we

let κ ∈ R be such that Pθ∗(χ2
2 < κ) = 1−α, and then, the confidence region for

(μ, σ2) is given by

Tn :=

{
(μ, σ2) ∈ R

2 :
n

σ̂2
n

(μ̂n − μ)2 +
n

2σ̂4
n

(σ̂2
n − σ2)2 < κ

}
.

Similar to the previous cases, we note that Tn is the interior of an ellipse (in
R

2), that is uniquely determined by its extreme points

(μn,1, σ
2
n,1) =

(
μ̂n +

√
κ

n
σ̂n, σ̂

2
n

)
, (μn,2, σ

2
n,2) =

(
μ̂n −

√
κ

n
σ̂n, σ̂

2
n

)
,

(μn,3, σ
2
n,3) =

(
μ̂n,

(
1 +

√
2κ

n

)
σ̂2
n

)
, (μn,4, σ

2
n,4) =

(
μ̂n,

(
1−

√
2κ

n

)
σ̂2
n

)
.

Therefore, taking into account (27), we have a recursive formula for comput-
ing these extreme points, and thus the desired recursive construction of the
confidence regions Tn.

Appendix A: Appendix

A.1. Ergodic Markov Chains

In this section, we will briefly recall some facts from the ergodic theory of Markov
processes in discrete time. Let X be a time homogeneous Markov chain on a
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probability space (Ω,F ,P), which takes values in a measurable space (X ,X).
We refer to [Rev84, Chapter 4, Definition 2.6] for the definition of ergodicity
for Markov processes. If X is an ergodic process under P, then it is also a
stationary process, i.e. for any n ≥ 1, the law of (Xj , Xj+1, . . . , Xj+n) under P
is independent of j, j ≥ 0.

As usual, we denote by EP the expectation under P. In view of the classical
Birkhoff’s Ergodic Theorem, we have the following result, that will be used in
this paper.

Proposition 18. Let X be ergodic. Then, for any g such that EP[g(X0, . . . ,
Xn)] < ∞, we have

lim
N→∞

1

N

N−1∑
i=0

g(Xi, . . . , Xi+n) = EP[g(X0, . . . , Xn)] P− a.s.

Next, we provide a brief discussion regarding sufficient conditions for the
Markov chain X to be ergodic. Let Q : X × X → [0, 1] be the transition kernel
of X. A probability measure π on (X ,X) is called an invariant measure of Q if∫

Q(x,A)dπ(x) = π(A).

Let Pπ be the probability measure on (Ω,F) that is induced by π.

Proposition 19. If a transition kernel Q has a unique invariant probability
measure π, then X is ergodic under Pπ.

One powerful tool for checking the uniqueness of invariant probability mea-
sure is the notion of positive Harris chain. There are several equivalent defini-
tions of positive Harris Markov chain, and we will use the one from [HLL00].

Definition 20. The Markov chainX with transition kernelQ is called a positive
Harris chain if

(a) there exists a σ-finite measure μ on X such that for any x0 ∈ X , and B ∈ X

with μ(B) > 0

P(Xn ∈ B for some n < ∞|X0 = x0) = 1,

(b) there exists an invariant probability measure for Q.

Remark 21. It is well known (cf. e.g. [MT93]) that a positive Harris chain admits
a unique invariant measure. Thus, in view of Proposition 19, a positive Harris
chain is also ergodic.

A.2. CLT for multivariate martingales

In this section, for a matrix A with real valued entries we denote by |A| the sum
of the absolute values of its entries.

In [CP05] Proposition 3.1, the authors gave the following version of the central
limit theorem for discrete time multivariate martingales.
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Proposition 22. On a probability space (Ω,F ,P) let D = {Dn,j , 0 ≤ j ≤
kn, n ≥ 1} be a triangular array of d-dimensional real random vectors, such
that, for each n, the finite sequence {Dn,j , 1 ≤ j ≤ kn} is a martingale difference
process with respect to some filtration {Fn,j , j ≥ 0}. Set

D∗
n = sup

1≤j≤kn

|Dn,j |, Un =

kn∑
j=1

Dn,jD
T
n,j .

Also denote by U the σ-algebra generated by
⋃

j Hj , where Hj := lim infn Fn,j.

Suppose that D∗
n converges in L1 to zero and that Un converges in probability

to a U measurable d-dimensional, positive semi-definite matrix U . Then, the
random vector

∑kn

j=1 Dn,j converges U -stably to the Gaussian kernel N (0, U).

Remark 23. U -stable convergence implies convergence in distribution; it is
enough to take the entire Ω in the definition of U -stable convergence. See for
example [AE78] or [HL15].

We will apply the above proposition to the process {ψn(θ
∗), n ≥ 0} such that

Assumption M, R8 and R9 are satisfied. To this end, let us define the triangular
array {Dn,j , 1 ≤ j ≤ n, n ≥ 1} as

Dn,j =
1√
n
ψj(θ

∗),

and let us take Fn,j = Fj .
First, note that Eθ∗ [ψj(θ

∗)|Fj−1] = 0, so that for any n ≥ 1, {Dn,j , 1 ≤
j ≤ n} is a martingale difference process with respect to {Fj , 0 ≤ j ≤ n}.
Next, R9 implies that D∗

n := sup1≤j≤n
1√
n
|ψj(θ

∗)| converges in L1 to 0. Finally,

stationarity, R8 and ergodicity guarantee that

Un :=
1

n

n∑
j=1

ψj(θ
∗)ψT

j (θ
∗) → Eθ∗ [ψ1(θ

∗)ψT
1 (θ

∗)] Pθ∗ − a.s.

The limit I(θ∗) = Eθ∗ [ψ1(θ
∗)ψT

1 (θ
∗)] is positive semi-definite, and it is determin-

istic, so that it is measurable with respect to any σ-algebra. Therefore, applying
Proposition 22 and Remark 23 we obtain the next result

Proposition 24. Assume that Assumption M, R8, and R9 are satisfied. Then,

1√
n

n∑
j=1

ψj(θ
∗)

d−−−−→
n→∞

N (0, I(θ∗)).

A.3. Technical supplement

Assumptions R4–R6 are stated for any deterministic vector θ ∈ Θ. In this
section, we show that if (7)-(10) hold for θ ∈ Θ, then for any random vectors
θ,θ1,θ2 that are Fn−1 measurable and take values in Θ, analogous inequalities
are true.
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Proposition 25. Assume that R4–R6 are satisfied. Then, for any fixed n ≥ 1,
and for any random vectors θ,θ1,θ2 that are Fn−1 measurable and take values
in Θ, we have

(θ − θ∗)T bn(θ) ≤ −K1‖θ − θ∗‖2, (28)

‖bn(θ)‖ ≤ K2‖θ − θ∗‖, (29)

Eθ∗ [‖Ψn(θ1)−Ψn(θ2)‖|Fn−1] ≤ K3‖θ1 − θ2‖, (30)

Eθ∗ [‖Hψn(θ)‖|Fn−1] ≤ K4. (31)

Proof. We will only show that (28) is true. The validity of the remaining in-
equalities can be proved similarly. Also, without loss of generality, we assume
that d = 1.

From (7), we have that (θ−θ∗)Eθ∗ [ψn(θ) | Fn−1] ≤ K1|θ−θ∗|, for any θ ∈ Θ.
If θ is a simple random variable, i.e. there exists a partition {Am, 1 ≤ m ≤ M}
of Ω, where M is a fixed integer, such that Am ∈ Fn−1, 1 ≤ m ≤ M , and

θ =
∑M

m=1 cm1Am , where cm ∈ Θ, then, we have at once that

(θ − θ∗) bn(θ) = (

M∑
m=1

cm1Am − θ∗)Eθ∗ [ψn(θ)|Fn−1]

=

M∑
m=1

1Am(cm − θ∗)Eθ∗ [1Amψn(θ)|Fn−1]

=

M∑
m=1

1Am(cm − θ∗)Eθ∗ [1Amψn(cm)|Fn−1]

=

M∑
m=1

1Am(cm − θ∗)Eθ∗ [ψn(cm)|Fn−1]

≤ −
M∑

m=1

1AmK1|cm − θ∗|2 = −
M∑

m=1

K1|θ − θ∗|2.

From here, using the usual limiting argument we conclude that (28) holds true
for any Fn−1 measurable random variable θ.

In the rest of this section we will verify that Assumption M and properties
R0–R8 are satisfies in Example 15.

It is clear that the Markov chain {Zn, n ≥ 0}, as defined in Example 15,
satisfies (i) and (iii) in Assumption M. Next we will show that Z is a positive
Harris chain (see Definition 20). For any Borel set B ∈ B(R) with strictly
positive Lebesgue measure, and any z0 ∈ R, we have that

lim
n→∞

Pθ∗(Zn /∈ B, . . . , Z1 /∈ B|Z0 = z0)

= lim
n→∞

Pθ∗(Zn /∈ B|Zn−1 /∈ B) · · ·Pθ∗(Z2 /∈ B|Z1 /∈ B)Pθ∗(Z1 /∈ B|Z0 = z0)

= lim
n→∞

Pθ∗(Z2 /∈ B|Z1 /∈ B)n−1
Pθ∗(Z1 /∈ B|Z0 = z0) = 0,
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and thus Z satisfies Definition 20.(a). Also, since the density (with respect to
Lebesgue measure) of Z1 is

fZ1,θ∗(z1) =

∫
R

pθ∗(z0, z1)fZ0,θ∗(z0)dz0 =
1√
2πσ∗ e

− (z1−μ∗)2

2(σ∗)2 ,

then Z1 ∼ N (μ∗, (σ∗)2), and consequently, we get that Zn ∼ N (μ∗, (σ∗)2) for
any n ≥ 0. This implies that N (μ∗, (σ∗)2) is an invariant distribution for Z.
Thus, Z is a positive Harris chain, and respectively, by Remark 21, Z is an
ergodic process.

As far as propreties R0–R8, we fist note that

ψn(θ) = ∇ log pθ(Zn−1, Zn)

=
(Zn − ρZn−1 − (1− ρ)μ

σ2(1 + ρ)
,− 1

σ
+

(Zn − ρZn−1 − (1− ρ)μ)2

(1− ρ2)σ3

)T
,

bn(θ) = Eθ∗ [ψn(θ)|Fn−1]

=
(
− (1− ρ)(μ− μ∗)

σ2(1 + ρ)
,
σ∗,2 − σ2

σ3
+

(1− ρ)(μ− μ∗)2

(1 + ρ)σ3

)T
,

Ψn(θ) =

[
− 1−ρ

(1+ρ)σ2 −2(Zn−ρZn−1−(1−ρ)μ)
(1+ρ)σ3

−2(Zn−ρZn−1−(1−ρ)μ)
(1+ρ)σ3

1
σ2 − 3(Zn−ρZn−1−(1−ρ)μ)2

(1−ρ2)σ4

]
.

We denote by Yn := Zn − ρZn−1 − (1− ρ)μ, and we immediately conclude that

Eθ∗ [Yn|Fn−1] = (1− ρ)(μ∗ − μ),

Eθ∗ [Y 2
n |Fn−1] = (1− ρ)2(μ− μ∗)2 + (σ∗)2(1− ρ2),

Eθ∗ [Y 4
n |Fn−1] = (1− ρ)4(μ∗ − μ)4 + 6(1 + ρ)(1− ρ)3(μ∗ − μ)2(σ∗)2

+ 3(σ∗)4(1− ρ2)2.

(32)

From here, and using the fact that Θ is bounded, it is straightforward, but
tedious,9 to show that R4, R5, and R6 are satisfied. Also, it is clear that R0 is
true, and using (32) by direct computations we get that R1 and R2 are satisfied.
Again by direct evaluations, we have that

I(θ) = Eθ[ψ1(θ)ψ1(θ)
T ] =

[ 1−ρ
(1+ρ)σ2 0

0 2
σ2

]
,

which is positive definite matrix, and thus R7 is satisfied.
Since

Eθ∗ [ψ1(θ)] =

(
(1− ρ)(μ∗ − μ)

σ2(1 + ρ)
,
(σ∗)2 − σ2

σ3
+

(1− ρ)(μ− μ∗)2

(1 + ρ)σ3

)
, (33)

then θ∗ = (μ∗, (σ∗)2) is clearly the unique point at which left hand side of (33)
vanishes.

9The interested reader can contact the authors for details.
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Next, we show that there is no θ ∈ ∂Θ such that Eθ∗ [ψ1(θ)]+ζ(θ) = 0, where
ζ(θ) = (ζ1(θ), ζ2(θ)) is defined in R3. Assume the existence of θ0 = (μ0, (σ0)2) ∈
∂Θ such that Eθ∗ [ψ1(θ

0)] + ζ(θ0) = 0. Note that (1−ρ)(μ∗−μ)
σ2(1+ρ) < 0, if μ > μ∗;

and (1−ρ)(μ∗−μ)
σ2(1+ρ) > 0, if μ < μ∗. Hence, ζ1(θ) = 0 for any θ, which implies that

μ0 = μ∗, (34)

and (σ∗)2−(σ0)2

(σ0)3 + ζ2(θ
0) = 0. Therefore,

ζ2(θ
0) =

(σ0)2 − (σ∗)2

(σ0)3
. (35)

The fact that θ0 ∈ ∂Θ and μ0 = μ∗ will imply (σ0)2 = b1, or (σ
0)2 = b2. This,

together with (35), yields

ζ2(θ
0) =

b21 − (σ∗)2

(σ0)3
, when (σ0)2 = b1,

or

ζ2(θ
0) =

b22 − (σ∗)2

(σ0)3
, when (σ0)2 = b2,

both of which cannot be true as we can easily check that ζ(θ0) /∈ −C(θ0). Thus,
by contradiction we get that θ0 does not exist. So we conclude that there is no
stationary point on ∂Θ and R3 is satisfied.

Finally, we will verify R8. By Jensen’s inequality and Cauchy-Schwartz in-
equality, we have that

exp
(
Eθ∗ sup

0≤i≤n
|ψi(θ

∗)|
)
≤ Eθ∗ exp

(
sup

0≤i≤n
|ψi(θ

∗)|
)

= Eθ∗

[
sup

0≤i≤n
exp |ψi(θ

∗)|
]

≤
n∑

i=1

Eθ∗ exp |ψi(θ
∗)|

≤
n∑

i=1

Eθ∗ exp(
|Yi|

σ2(1 + ρ)
+

1

σ
+

Y 2
n

(1− ρ)2σ3
)

≤
n∑

i=1

(
Eθ∗ exp(

2|Yi|
σ2(1 + ρ)

)
) 1

2
(
Eθ∗ exp(

2

σ
+

2Y 2
i

(1− ρ)2σ3
)
) 1

2

.

Note that Yi, i = 0, . . . , n is normally distributed, and therefore, there exist two
constants C1 and C2, that depend on θ∗ such that

Eθ∗ exp

(
2|Yi|

σ2(1 + ρ)

)
= C1, Eθ∗ exp

(
2

σ
+

2Y 2
i

(1− ρ)2σ3

)
= C2.

Hence,

Eθ∗ sup
0≤i≤n

|ψi(θ
∗)| ≤ logn+

1

2
logC1C2,



Recursive construction of confidence regions 4695

and, thus R8 is satisfied:

lim
n→∞

Eθ∗

[
sup

0≤i≤n

∣∣∣ 1√
n
ψi(θ

∗)
∣∣∣] ≤ lim

n→∞

(
log n√

n
+

logC1C2

2
√
n

)
= 0.

Proof of Proposition 5. We will use Theorem 6.1.1 in [KY03] to show (16). We
write our estimator in the following form

θ̃n = θ̃n−1 +
β

n
[bn(θn−1) + (ψn(θn−1)− bn(θn−1)) + Jn] ,

and show that (A4.3.1), (A6.1.1)–(A6.1.7) in [KY03] are satisfied for θ̃.
From ergodicity of Z we obtain that

lim
n→∞

1

n

n∑
i=0

(bi(θ)− Eθ∗ [ψ1(θ)]) = 0, lim
n→∞

1

n

n∑
i=0

(ψi(θ)− bi(θ)) = 0,

which respectively imply that

lim
n→∞

Pθ∗

⎧⎨
⎩sup

i≥n
max
0≤t≤τ

∣∣∣∣∣∣
m(iτ+t)−1∑
j=m(iτ)

β

i
(bi(θ)− Eθ∗ [ψ1(θ)])

∣∣∣∣∣∣ ≥ ε

⎫⎬
⎭ = 0,

lim
n→∞

Pθ∗

⎧⎨
⎩sup

i≥n
max
0≤t≤τ

∣∣∣∣∣∣
m(iτ+t)−1∑
j=m(iτ)

β

i
(ψi(θ)− bi(θ))

∣∣∣∣∣∣ ≥ ε

⎫⎬
⎭ = 0,

for any θ ∈ Θ, ε > 0 and some τ > 0, where m(t) is the unique value of n

such that
∑n−1

i=0
β
i ≤ t <

∑n
i=0

β
i . Therefore, (A6.1.3) and (A6.1.4) are verified.

Assumption (A6.1.5) clearly holds true in our setup. Assumption (8) and the
fact that bn(θ

∗) = 0 guarantee that (A6.1.6) and (A6.1.7) are satisfied. Hence,
according to Theorem 6.1.1 in [KY03], the estimator θ̃ converges to some limit
set of the differential equation (6).

From R2, we see that Eθ∗ [ψ1(·)] is the derivative of Eθ∗ [π1(·)] which is a
continuously differentiable real-valued function. Then, the limit points of (6)
are stationary points. By R3, we have that the only stationary point of (6) is
θ∗. Therefore, we conclude that θ̃ converges to θ∗ almost surely in Pθ∗ .

Proof of Proposition 6. Putting Vn(θ̃n−1) := ψn(θ̃n−1)−bn(θ̃n−1), from (14) we
immediately have that

Δn = Δn−1 +
β

n
bn(θ̃n−1) +

β

n
Vn(θ̃n−1) +

β

n
Jn, Jn ∈ −C(θ̃n).

It is not hard to see that
‖Δn‖ ≤ ‖Δ′

n‖,
where Δ′

n := Δn−1 + β
nbn(θ̃n−1) +

β
nVn(θ̃n−1). Hence, it is sufficient to show

that
Eθ∗‖Δ′

n‖ = O(n−1).
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The fact that Vn(θ̃n−1) is a martingale difference yields

Eθ∗‖Δ′
n‖2 = Eθ∗‖Δn−1 +

β

n
bn(θ̃n−1)‖2 +

β2

n2
Eθ∗‖Vn(θ̃n−1)‖2.

From here, applying consequently (11), (8), (7), and noting that bn(θ
∗) = 0, we

get

Eθ∗‖Δ′
n‖2 = Eθ∗

∥∥∥∥Δn−1 +
β

n
bn(θ̃n−1)

∥∥∥∥
2

+O(n−2)

≤ Eθ∗

[
‖Δn−1‖2 +

β2K2
2

n2
‖Δn−1‖2 +

2β

n
ΔT

n−1bn(θ̃n−1)
]
+O(n−2)

≤
(
1 +

β2K2
2

n2
− 2βK1

n

)
Eθ∗‖Δn−1‖2 +O(n−2)

≤
(
1 +

β2K2
2

n2
− 2βK1

n

)
Eθ∗‖Δ′

n−1‖2 +O(n−2),

where the last inequality holds true for large enough n. Also, for any ε > 0, and
for large enough n, we get

Eθ∗‖Δ′
n‖2 ≤ (1− (2K1β − ε)n−1)Eθ∗‖Δ′

n−1‖2 +O(n−2). (36)

For ease of writing, we put p := 2K1β−ε and cn := Eθ∗‖Δ′
n‖2. Take ε sufficiently

small, so that p > 1, and then chose an integer N > p. Then, for n > N we
have by (36) that

cn ≤ cN

n∏
j=N+1

(
1− p

j

)
+D1

n∑
j=N+1

1

j2

n∏
k=j+1

(
1− p

k

)

≤ cN

n∏
j=N+1

(
1− p

j

)
+D1

n∑
j=N+1

1

j2
,

where D1 is some strictly positive number. Using the fact that
∑n

j=m 1/j2 =

O(1/n) and
∏n

j=m(1− p/j) = O(1/np), for any fixed m, p ≥ 1, we immediately
get that cn ≤ O(1/n). This concludes the proof.

Proof of Theorem 9. First, we show the quasi-asymptotic linearity of θ̂. Due to
Taylor’s expansion, we have that

1

n

n∑
i=1

ψi(θ
∗)− 1

n

n∑
i=1

ψi(θ̃i−1) = − 1

n

n∑
i=1

Ψi(θ̃i−1)Δi−1

+
1

n

n∑
i=1

ΔT
i−1Hψi(ηi−1)Δi−1

= : An +Bn, (37)

where ηi−1, 1 ≤ i ≤ n, is in a neighborhood of θ∗ such that ‖ηi−1 − θ∗‖ ≤
‖θ̃i−1 − θ∗‖. Note that
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An =− 1

n

n∑
i=1

Ψi(θ̃i−1)
(
Δn −

n∑
j=i

β

j
ψj(θ̃j−1)

)

=− InΔn +
β

n

n∑
i=1

Iiψi(θ̃i−1) +
β

n

n∑
i=1

IiJi,

and by (37), we get

InΔn =
1

n

n∑
i=1

[
(Id + βIi)ψi(θ̃i−1) + βIiJi

]
− 1

n

n∑
i=1

ψi(θ
∗) +Bn,

and therefore, using the representation (18), we immediately have

θ̂n + I−1(θ̃n)Inθ
∗ =

I−1(θ̃n)

n

n∑
i=1

ψi(θ
∗)− I−1(θ̃n)Bn. (38)

Next we will show that

Pθ∗ - lim
n→∞

In = −I(θ∗). (39)

First, by (9), we deduce that

Eθ∗

[ 1
n

n∑
i=1

‖Ψi(θ̃i−1)−Ψi(θ
∗)‖
]
≤ K3

n

n∑
i=1

Eθ∗‖Δi−1‖.

Due to Proposition 6, 1
n

∑n
j=1 Eθ∗‖Δi−1‖ ≤ 1

n

∑n
j=1 j

−1/2 = O(n−1/2). Hence,

1

n

n∑
i=1

‖Ψi(θ̃i−1)−Ψi(θ
∗)‖ Pθ∗−−−−→

n→∞
0. (40)

Therefore,

Pθ∗ - lim
n→∞

In = Pθ∗ − lim
n→∞

1

n

n∑
i=1

Ψi(θ̃i−1) = Pθ∗ − lim
n→∞

1

n

n∑
i=1

Ψi(θ
∗). (41)

Next, observe that in view of Proposition 18

lim
n→∞

1

n

n∑
i=1

Ψi(θ
∗) = Eθ∗ [Ψ1(θ

∗)] = Eθ∗ [Hπ1(θ
∗)] = Eθ∗ [H log pθ∗(Z0, Z1)].

Invoking the usual chain rule we obtain that

H log pθ∗(Z0, Z1) =
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
− ∇pθ∗(Z0, Z1)∇pθ∗(Z0, Z1)

T

p2θ∗(Z0, Z1)

=
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
− ψ1(θ

∗)ψT
1 (θ

∗),

so that

Eθ∗ [H log pθ∗(Z0, Z1)] = Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

]
− I(θ∗).
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We will now show that Eθ∗

[
Hpθ∗ (Z0,Z1)
pθ∗ (Z0,Z1)

]
= 0. Denote by fZ0 the density function

of Z0 under Pθ∗ and in view of (5), we have

Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

]
=Eθ∗

[
Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

∣∣∣∣Z0

]]

=

∫
R

Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

∣∣∣∣Z0 = z0

]
fZ0(z0)dz0

=

∫
R

∫
R

Hpθ∗(z0, z1)

pθ∗(z0, z1)
pθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R

∫
R

Hpθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R

H

∫
R

pθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R

(H1)fZ0(z0)dz0 = 0.

Recalling (41) we conclude that (39) is satisfied.
By Assumption R8 and strong consistency of θ̃ we obtain that

lim
n→∞

I−1(θ̃n) = I−1(θ∗) Pθ∗ − a.s., (42)

which, combined with (39) implies that

−I−1(θ̃n)Inθ
∗ Pθ∗−−−−→

n→∞
θ∗. (43)

Next, we will show that

√
nBn

Pθ∗−−−−→
n→∞

0. (44)

Indeed, by (10),
√
nEθ∗‖Bn‖ ≤ K4√

n

∑n
i=1 Eθ∗‖Δi−1‖2, and consequently, in view

of Proposition 6,

lim
n→∞

√
nEθ∗‖Bn‖ ≤ lim

n→∞

K4√
n
logn = 0,

which implies (44).
Now, taking ϑn = −I−1(θ̃n)Inθ

∗, Gn = I−1(θ̃n) and εn = I−1(θ̃n)Bn, we

deduce quasi-asymptotic linearity of θ̂ from (38), (42), (43) and (44).

Finally, we will show the weak consistency of θ̂. By ergodicity of Z, in view
of Proposition 18, and using the fact that θ∗ is a (unique) solution of (13), we
have that

1

n

n∑
i=1

ψi(θ
∗) = Eθ∗ [ψ1(θ

∗)] = 0, Pθ∗ − a.s.

Thus, limn→∞
I−1(θ̃n)

n

∑n
i=1 ψi(θ

∗) = 0 Pθ∗ almost surely. This, combined with

(38), (43) and (44) implies that θ̂n
Pθ∗−−→ θ∗, as n → ∞. The proof is complete.
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Proof of Proposition 10. Let ϑn = −I−1(θ̃n)Inθ
∗, Gn = I−1(θ̃n) and

I−1(θ̃n)Bn = εn. Then, property (19) follows from (43).
In order to prove (20), we note that according to Theorem 9 we have

θ̂n − ϑn =
Gn

n

n∑
i=1

ψi(θ
∗) + εn,

√
nεn

Pθ∗−−−−→
n→∞

0.

Next, Proposition 24 implies that

1√
n

n∑
i=1

ψi(θ
∗)

d−−−−→
n→∞

N(0, I(θ∗)).

Consequently, since by (42) Gn
Pθ∗−−→ I−1(θ∗), using Slutsky’s theorem we get

Gn√
n

n∑
i=1

ψi(θ
∗)

d−−−−→
n→∞

N(0, I−1(θ∗)).

The proof is complete.
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