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Abstract: We propose a new method to perform approximate likelihood
inference in latent variable models. Our approach provides an approxima-
tion of the integrals involved in the likelihood function through a reduc-
tion of their dimension that makes the computation feasible in situations
in which classical and adaptive quadrature based methods are not appli-
cable. We derive new theoretical results on the accuracy of the obtained
estimators. We show that the proposed approximation outperforms several
existing methods in simulations, and it can be successfully applied in pres-
ence of multidimensional longitudinal data when standard techniques are
not applicable or feasible.
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1. Introduction

Latent variable models are used in many research fields where it is of interest
to study constructs that are unobservable but can be indirectly measured by
indicators related to them. Examples can be found in sociology where ques-
tionnaires are utilized to measure attitudes and opinions, in educational testing
where students ability is evaluated using exams, and in medicine where quality
of life is assessed by function scores (e.g., been able to walk independently).

A general framework that includes a large variety of latent variable models
is represented by the generalized linear latent variable models [18, 28]. Their
purpose is to describe the relationship between a set of p responses or items,
and a set of q latent variables or/and random effects (with q < p). The latent
variables are supposed to account for the association between the response vari-
ables, while random effects are usually introduced in the model to account for
some unobserved heterogeneity.

The generalized linear latent variable models can be estimated either using
the maximum likelihood method [18, 8], or under the bayesian paradigm [5,
6]. Here, we focus on the former. The maximization procedure requires the
latent variables and/or random effects to be integrated out from the likelihood
function, and in general analytical solutions do not exist. Numerical quadrature
based methods represent a widespread solution to this problem and, among
them, the adaptive Gauss Hermite quadrature is considered the gold standard
[21, 25]. However, it is computationally unfeasible with a large number of latent
variables.

Alternatively, the Laplace approximation does not suffer from the curse of
dimensionality since it does not require to solve any integral [4]. It has been ap-
plied to latent variable models by [8]. In the bayesian framework, [24] combined
it with numerical integration to provide a fast and accurate method, the so
called integrated nested Laplace approximation, to approximate the predictive
density of the latent variables/random effects. The simplicity of the standard
Laplace approximation has a cost related to the fact that the order of the ap-
proximation error is O(p−1). Moreover, it becomes less adequate as the degree
of discreteness increases [10]. Several authors developed higher order versions
of the method to improve the approximation error [30, 27, 23, 22, 7, 2]. How-
ever, their implementation requires to compute many partial derivatives of the
integrand.
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In this paper, we propose a new approach to approximate the integrals in-
volved in the likelihood of latent variable models, that we refer to as dimension-
wise quadrature method. It consists of representing the integrand as a sum of
not overlapping components that are the terms of the Taylor series expansion of
the function. Truncating the expansion reduces the dimension of the integrals,
and makes the computation feasible also when the number of latent variables
in the model is large. Moreover, in common circumstances in which existing
methods may not converge or have very high bias, the proposed technique still
performs robustly and efficiently. The corresponding estimators are asymptot-
ically as accurate as the adaptive Gauss Hermite estimators. Differently from
higher order Laplace approximations, the proposed approach does not require
any derivative computation, hence it is very simple to implement.

The paper is organized as follows. In Section 2, we illustrate the integration
problem when a maximum likelihood estimation of the model is used, and we
discuss the proposed dimension-wise quadrature method for multidimensional
integration. The asymptotic properties of the corresponding estimators are also
derived. The finite sample performance of the proposed estimators are analyzed
in a simulation study presented in Section 3, together with an investigation
of the approximation error. The application to empirical data is illustrated in
Section 4, and Section 5 concludes the paper.

2. Inference based on the dimension-wise quadrature method

2.1. Setting

Maximum likelihood estimates in the generalized linear latent variable frame-
work are typically obtained by using either the expectation maximization al-
gorithm or the direct maximization through Newton-type algorithms. For a
random sample of size n, the observed data log-likelihood function is

�(θ) =

n∑
l=1

log f(yl; θ) =

n∑
l=1

log

∫
Rq

g(yl | bl)h(bl)dbl, (2.1)

where θ denotes the vector of model parameters, and f(yl; θ) is the probabil-
ity associated to the individual response pattern yl. Typically, the assumption
of conditional or local independence is made, which states that the p observed
variables yl are independent given the q latent variables bl. The conditional dis-
tribution g(yl | bl) is referred to as the measurement part of the model and is
taken from the exponential family. The prior density h(bl) represents the struc-
tural part and can be any continuous density function that ensures unimodality
of the integrand in (2.1).

In general, the multidimensional integrals involved in (2.1) cannot be solved
analytically. An approximation is needed, on which the bias and variance of
resulting estimators depend. For the derivations illustrated here, we follow the
notation by [27] based on summation convention, and, for simplicity, we omit
the individual subscript l.
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2.2. The proposed method for multidimensional integration

Let L(b) denote the logarithm of the integrand in (2.1). Our proposed approx-
imation relies on the asymptotic expansion of L(b) around its mode bmo =
argmaxb∈Rq L(b), that is

L(b) = L(bmo) +
1

2
Li1,i2(bmo)(b− bmo)

i1,i2 + ν(b),

where Li1,i2(bmo) are the second order partial derivatives of L evaluated at the
mode, and (b − bmo)

i1,i2 refers to specific components of the vector b − bmo.
ν(b) includes all the terms of order higher than two in the expansion. Grouping
these terms with respect to the number of variables involved in the derivation,
we obtain

ν(b) =

q∑
w=1

∞∑
k=3

1

k!
L1j1 i1...1jw iw(bmo)(b− bmo)

1j1 i1...1jw iw ,

where {1j1i1 . . . 1jw iw} is a set of indices in which the index i1 is repeated j1
times, the index i2 is repeated j2 times, and so on, with

∑w
u=1 ju = k and

i1 < i2 < . . . < iw. L1j1 i1...1jw iw(bmo) are the kth order partial derivatives of L
evaluated at the mode and taken with respect to w variables. The probability
associated to the individual response pattern is

f(y; θ) = (2π)q/2 | Σmo |1/2 exp{L(bmo)}Eφ [exp{ν(b)}] , (2.2)

where the expected value is taken with respect to a multivariate normal density
function φ(b; bmo,Σmo) whose mean vector is given by the mode bmo and its
covariance matrix is minus the inverse of the Hessian matrix of L(b) evaluated
at its mode, that is Σmo = −Li1,i2(bmo).

Corollary 2.1. The continuous, differentiable, and real valued function
exp{ν(b)} in (2.2) has the following convergent Taylor series expansion

exp{ν(b)} =

q∑
w=1

tw =

q∑
w=1

∞∑
k=3

1

k!

∑
P

Lp1(bmo) . . . Lpt(bmo)(b− bmo)
1j1 i1...1jw iw ,

being the third sum over all partitions P = p1 | . . . | pt of the k indices
{1j1i1 . . . 1jw iw} into t blocks, each of size greater than or equal to three.

Each term tw, 1 ≤ w ≤ q, is the summation of derivatives involving w vari-
ables. For example, t1 =

∑∞
k=3(1/k!)

∑
P Lp1(bmo) . . . Lpt(bmo)(b− bmo)

1ki1 in-
volves all the partitions in t blocks, each of size greater than three, of the set in
which the index i1 is repeated k times. That is, it encompasses the derivatives
of any order taken with respect to just one variable. A different representation
of the terms tw, 1 ≤ w ≤ q, is provided in the following Proposition.

Proposition 2.1. Let the function exp{νr(b)} = exp{ν(bk1,...,kr )}, 1 ≤ k1 <
. . . < kr ≤ q, define a summation of terms that contain at most r variables,
being the other q − r variables fixed to the corresponding modes. It follows that
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tw =

w∑
r=0

(−1)w−r

(
q − r
w − r

)
exp{νr(b)}.

Proposition 2.1 is proved in the Appendix A.
Hence, the function exp{ν(b)} admits the exact representation

exp{ν(b)} =

q∑
w=1

tw =

q∑
r=0

q−r∑
w=0

(−1)w
(

q − r
w

)
exp{νr(b)}, (2.3)

known as cut high dimensional model representation [12, 31].

Corollary 2.2. An approximation of the function exp{ν(b)} can be obtained by
truncating the exact expansion (2.3) as

exp{ν(b)} ≈
s∑

w=1

tw =

s∑
r=0

s−r∑
w=0

(−1)w
(

q − r
w

)
exp{νr(b)},

being s << q or, equivalently,

exp{ν(b)} ≈
s∑

r=0

(−1)r
(

q − s+ r − 1
r

)
exp{νs−r(b)}. (2.4)

We refer to (2.4) as dimension-wise approximation. The corresponding ap-
proximated marginal density function results

fa(y; θ)

= fL

[
s∑

r=0

(−1)r
(
q − s+ r − 1

r

) ∑
t1,...,ts−r

exp{νs−r(bt1,...,ts−r )}w∗
t1 . . . w

∗
ts−r

]
,

(2.5)

where fL = (2π)q/2 | Σmo |1/2 exp{L(bmo)}, and
∑

t1,...,ts−r
=∑nq

t1=1 . . .
∑nq

ts−r=1, and nq is the number of quadrature points selected for each

latent variable. bt1,...,ts−r = (2)1/2Cmo(0, bt1 , 0, . . . , 0, btj , 0, . . . , 0, bts−r , 0)
T +

bmo, with Cmo obtained from the Cholesky decomposition of the matrix Σmo.
w∗

tj = wtjπ
−1/2, where btj and wtj , j = 1, ..., s− r, are the classical Gauss Her-

mite nodes and weights, respectively [29]. (2.5) is obtained by applying what we
call dimension-wise quadrature.

When s = 0, the quantity among squared brackets in (2.5) reduces to one,
such that fa(y; θ) reduces to the Laplace approximation of the integral. In other
words, the dimension-wise quadrature provides an approximation of f(y; θ) that
is more accurate than the classical Laplace approximation, due to the inclusion
of higher (than two) order terms in the Taylor series expansion of L(b). On the
other hand, when no integral dimension reduction is performed,

fa(y; θ) = 2q/2 | Σmo |1/2
∑

t1,...,tq

g(y | b∗t1,...,tq )h(b
∗
t1,...,tq )w

∗
t1 . . . w

∗
tq ,
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Step 1 Choose s and nq

Step 2 For each l (1 ≤ l ≤ n)

• Compute the mode bmo,l of the integrand in (2.1), and its Hessian evaluated at bmo,l

• Compute the fL term of expression (2.5) where exp{L(bmo,l)} = g(yl|bmo,l)h(bmo,l)
• For each r (0 ≤ r ≤ s)

- Compute the term (−1)r
(

q − s+ r − 1
r

)
- Compute the higher than two order terms
νs−r(bt1,...,ts−r,l) = L(bt1,...,ts−r ,l)− L(bmo,l)

−0.5Li1,i2 (bmo,l)(bt1,...,ts−r ,l − bmo,l)
i1,i2

- Compute the sum
∑

t1,...,ts−r
exp{νs−r(bt1,...,ts−r ,l)}w∗

t1
. . . w∗

ts−r

• Obtain the approximate marginal density function fa(yl; θ) of expression (2.5)

Step 3 Get the approximation of the log-likelihood function la(θ) as the sum of
log(fa(yl; θ)) over l

Table 1

Pseudo-code description of the dimension-wise quadrature method

where b∗t1,...,tq = (b∗t1 , . . . , b
∗
tq )

T = (2)1/2Cmo(bt1 , . . . , btq )
T + bmo and w∗

tj =

wtj exp[b
2
tj ] are the adaptive Gauss Hermite nodes and weights, respectively.

The approximation of the log-likelihood function (2.1) is derived by (2.5)
following the main steps detailed in Table 1, where the implementation of the
proposed dimension-wise quadrature is described. In this study, its maximization
is performed using a quasi-Newton algorithm in which the gradient and the
Hessian matrix are obtained using numerical derivatives.

2.3. Statistical properties of the estimators

To investigate the properties of the dimension-wise quadrature based estimators,
denoted by θML, the asymptotic behavior of the approximation (2.5) is analyzed,
and a detailed derivation of the corresponding error rate is given in Appendix
B. We establish the asymptotic properties of θML under the following regularity
conditions.

Condition 2.1. �(θ) has a unique maximum at θ0 ∈ Θ.

Condition 2.2. The parameter space Θ is compact. Under concavity of the
objective function, the approximated log-likehood �a(θ), compactness of Θ can
be replaced by the assumption that the true parameter vector θ0 lies in the in-
terior of the parameter space, and the estimator θML lies in the interior of a
neighborhood containing θ0 [19].

Condition 2.3. �(θ) is continuous.

Condition 2.4. The empirical approximated log-likelihood function �a(θ) con-
verges uniformly in probability to �(θ).
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A formal proof of these conditions in presence of ordinal and binary data is
given by [9] and [1], respectively.

Proposition 2.2. Under Conditions 2.1–2.4,

(θML − θ0) = Op

{
max

(
n−1/2, p−[

nq
3 +1]

)}
. (2.6)

Thus, θML is consistent as long as both n and p grow to ∞. A formal proof of
Proposition 2.2 is given in Appendix C. The n−1/2 term comes from the standard
asymptotic theory, whereas the p−[nq/3+1] term derives from the dimension-wise
quadrature approximation. For nq ≥ 3, these estimators are more accurate than
the classical Laplace one, that are of order O(p−1). In particular, the proposed
estimators share the same accuracy of the adaptive Gauss Hermite one, but the
dimension-wise quadrature method avoids the main computational limitations
of the latter.

As discussed by [9] and [1] for the Laplace and adaptive Gauss Hermite based
estimators, respectively, when numerical techniques are used, the corresponding
estimators belong to the class of M -estimators. Hence,

Proposition 2.3. Under Conditions 2.1–2.4 and if H(θ0) = −E{∂2�a(θ0)/
∂θ∂θT } is nonsingular, (n)1/2(θML−θ0) converges in distribution as n → ∞ to a
zero mean normal random vector whose covariance matrix is
H(θ0)

−1U(θ0){H(θ0)
−1}T , being U(θ0) = E

[
{∂�a(θ0)/∂θ}{∂�a(θ0)/∂θ}T

]
.

2.4. Comparison with the adaptive Gauss Hermite quadrature

The dimension-wise quadrature method is more advantageous than classical
and adaptive quadrature techniques from a computational point of view. When
evaluating the individual marginal density f(y; θ) using the adaptive rule with
nq quadrature points selected for each dimension, the total number of function
or response evaluations is nq

q. In contrast,
∑s

i=0 q!/{(s − i)!(q − s + i)!}ns−i
q

function evaluations are required using the dimension-wise quadrature. Figure
1 shows how the ratio of these two function evaluation numbers varies with
respect to s, the number of terms involved in the dimension-wise quadrature, in
presence of eight latent variables and for nq equal to 5, 7 and 11. A reduction
of the computational effort is achieved when the ratio

∑s
i=0 q!/{(s − i)!(q −

s+ i)!}ns−i
q

/
nq
q < 1. The amount of reduction depends on both s and nq. For

the univariate dimension-wise quadrature, the ratio has a magnitude of order
10−4, 10−5, and 10−7 when nq = 5, 7 and 11, respectively. In the bivariate case
(s = 2), the magnitude of the ratio is of order 10−3, 10−4, and 10−11 when
nq = 5, 7 and 11, respectively. Furthermore, even if not shown here, it is evident
that the reduction is dramatically enhanced as the number q of latent variables
in the model increases.

It is worth noting that the dimension-wise quadrature method is feasible
in cases in which the classical quadrature techniques are not. At the moment,
the adaptive rule is doable in presence of up to ten latent variables in the
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Fig 1. Computational load, q = 8, nq = 5, 7, 11.

model, and if a maximum of five quadrature points are used per each dimension
(using a Intel(R)Core (TM) i7-2600, 3.40 GHz CPU with 32 Gb RAM). This is
particularly restrictive when dealing with longitudinal data, where the number
of latent variables in the model increases proportionally with the number of
items. On the other hand, the dimension-wise quadrature is feasible for any
number of latent variables since it depends on the number of terms (s) involved
in the approximation.

The choice of s is fundamental in the dimension-wise quadrature technique.
Standard criteria like AIC and BIC are not applicable since they would lead
to choose the highest value of s. Indeed, as s increases, the value of the log-
likelihood typically increases due to the additional information included in it
(for further details see [17]). This behaviour of the log-likelihood is shown in
the simulation study described in the next Section. For this reason, we follow
the same ‘rule of thumb’ applied by [17] for the choice of the number of quadra-
ture points in the traditional quadrature techniques, that is we increase s until
estimates stabilize. This rule is applied in the real data example in Section 4.
We underline that, once the value s is selected, the accuracy of the estimates
obtained by applying the dimension-wise quadrature can be improved by in-
creasing the number of quadrature points selected for each dimension.

3. Finite sample results

3.1. Monte Carlo simulation study

The performance of the proposed method is evaluated in finite samples by means
of a Monte Carlo simulation study in presence of binary data. In this specific
case,
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g(y | b) = exp
[
yT η − 1T log{1 + exp(η)}

]
, (3.1)

where η represents the systematic component of the model defined as η = α0 +
αT b. α0 is a p-dimensional vector of item specific intercepts, and α is a structure
matrix that contains unknown factor loadings. b = (b1, . . . , bq)

T is a vector of q
factors that account for the associations among the observed variables, assumed
to be normally distributed with zero mean vector and correlation matrix Ψ. The
relationship between the systematic and the random component is expressed
through a logit link function. The technical details for the application of the
dimension-wise quadrature in this particular case are reported in Appendix D.

We consider a four-factor model with eight indicators. Moreover, we use
five quadrature points per dimension to compare the performance of the pro-
posed method with the Laplace approximation and the adaptive Gauss Her-
mite quadrature method, that occurs when the approximated integral is four-
dimensional. The true values of the model parameters have been selected so
that at least q2 constraints are imposed to guarantee invariance to factor rota-
tions [11]. Four constraints are obtained from the correlation matrix Ψ, being
the main diagonal elements equal to one. This also ensures the identification of
the scale of the latent variables. Further constraints are obtained by assuming
a simple structure for α, that is by partitioning the manifest variables into four
non-overlapping groups, each indicative of a different latent variable.

The true values of the free loadings are fixed to 1.5 and the correlation pa-
rameters to 0.6. This results in low correlations between the variables underlying
the binary items. In this case, it is known that, in general, the Laplace approx-
imation performs well.

We set n = 100, n = 500, n = 1000 and used 500 replicates for each sample
size. Figure 2 reports the box plots of the Monte Carlo estimators for α11 and
for ψ12 based on Laplace (s = 0), the dimension-wise quadrature method (s =
1, 2, 3), and the adaptive Gauss Hermite quadrature for the different sample
sizes. The results for all the other parameters are very similar, and they are not
reported here for simplicity.

The Laplace estimators are highly biased for both the loading and the cor-
relation parameter. The bias does not decrease as n increases since the error
rate of the approximation, that is O(p−1), always predominates as n → ∞. On
the contrary, both the dimension-wise quadrature with s = 1, 2, 3 and the adap-
tive Gauss Hermite approximation produce estimators with small bias and the
bias tends to zero as n increases. The Laplace approximation strongly underesti-
mates the variability of the loading estimators compared with the gold standard
adaptive Gauss Hermite quadrature. On the other hand, the variability of both
the loading and the correlation estimators based on the dimension-wise quadra-
ture is increasingly similar to the corresponding adaptive based estimators as s
increases.

The computational performance of the algorithm based on the different ap-
proximation methods is analyzed in Table 2. The average log-likelihood (Av-
loglik) increases for increasing values of s. As for the computational time (Av-
time), the algorithm is slower when s = 3 and with the adaptive quadrature. For
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Fig 2. Box-plots of α11 (a) and ψ12 (b) estimates for the four-factor model under Laplace
(s = 0), dimension-wise quadrature (s = 1, 2, 3) and adaptive Gauss Hermite quadrature
approximation.

Table 2

Computational performance of the algorithms based on the Laplace approximation (s = 0),
the dimension-wise quadrature (s = 1, 2, 3) and the adaptive Gauss Hermite quadrature for

the four factor model, n = 100, 500, 1000.

n = 100
s=0 s=1 s=2 s=3 adaptive

Av-loglik −504.12 −501.34 −499.21 −498.67 −498.59
Nrfev 33.50 52.35 63.33 70.68 71.41
Avtime (s) 20.42 32.41 73.96 459.18 470.28
n = 500

s=0 s=1 s=2 s=3 adaptive
Av-loglik −2550.53 −2538.69 −2531.31 −2530.26 −2530.22
Nrfev 55.16 62.19 53.32 55.20 55.50
Avtime (s) 42.85 109.65 479.39 1488.51 1522.72.
n = 1000

s=0 s=1 s=2 s=3 adaptive
Av-loglik −5113.20 −5090.11 −5075.77 −5073.73 −5073.65
Nrfev 53.83 49.93 45.76 46.96 46.92
Avtime (s) 63.38 152.78 805.01 2245.13 2611.01

example, when n = 500 and n = 1000, in these cases on average it requires about
three times to converge compared to s = 2. Although, as expected, the Laplace
approximation appears to be the fastest method, in certain circumstances it
may not converge or has very high bias, as shown above. On the other hand,
the proposed method still performs robustly and efficiently. In terms of number
of function evaluations (Nrfev) the methods perform quite similarly apart from
the case of n = 100 where there are noticeable differences.

The behaviour of the approximation methods in presence of high correlations
between the underlying variables have been also investigated. The results are
similar to those shown here, provided good parameter starting values [17].
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3.2. Investigation of the approximation error

We analyzed the theoretical error induced by each approximation technique in
two simple cases: a three and four-factor model. Table 3 illustrates the error
produced by the dimension-wise quadrature and the Laplace method in approx-
imating the marginal density f(y, θ) overall possible response patterns. For the
former, we used five quadrature points for dimension coherently with the pre-
vious simulation study. The benchmark is represented by the adaptive Gauss
Hermite quadrature with 15 quadrature points per dimension that provides a
very good approximation of the function up to the ninth digit, as shown in the
third column of Table 3. The differences are evaluated in terms of Maximum
Absolute Error (Max Abs Error) and Average Absolute Error (Avg Abs Error)
observed over all possible response patterns computed for each rule with respect
to the benchmark approximation.

Table 3

Comparison of integration rules based on Avg Abs Error and Max Abs Error over all
possible response patterns for each rule with respect to the benchmark adaptive

Gaussian-Hermite quadrature with 15 nodes in each dimension.

Three-factor model
Rule s nq

∑
f(y; θ) Avg Abs Error Max Abs Error

Adaptive 15 1.0000000 - -
Gauss Hermite 5 0.9997155 4.54e-06 1.08e-04

Dimension-wise 1 5 0.9875631 1.94e-04 2.72e-03
quadrature 2 5 0.9986880 2.05e-05 4.87e-04

Laplace 0 - 0.9620533 5.93e-04 1.47e-03
Four-factor model
Rule s nq

∑
f(y; θ) Avg Abs Error Max Abs Error

Adaptive 15 1.00000000 - -
Gauss Hermite 5 0.99972328 1.10e-06 6.92e-05

Dimension-wise 1 5 0.98238138 6.88e-05 2.85e-03
quadrature 2 5 0.99715424 1.11e-05 8.05e-04

3 5 0.99965834 1.34e-06 5.84e-05

Laplace 0 - 0.95340396 1.82e-04 8.87e-04

As expected, the biggest differences are observed for the Laplace approxima-
tion. In both models, it provides the worst approximation, with a percentage
of uncovered area around 5%. On the other hand, the dimension-wise method
performs well, and better as s increases. Specifically, with s = 2 for the three-
factor model and s = 3 in the four-factor model, the area under the curve is
almost completely covered. The approximation provided by the dimension-wise
quadrature method with s = 3 is, on average, equal to that obtained with the
adaptive quadrature up to the sixth digit, and provides very similar results to
the adaptive quadrature with the same number of quadrature points (nq = 5).
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4. Data analysis

We analyze data from the Aging, Demographics and Memory Study, that is
the first population based study of dementia in the United States (the data are
available on the website http://www.rand.org). The participants, aged 70 or
older individuals, received a thorough in-home clinical and neuropsychological
assessment that allowed researchers to estimate the prevalence, predictors, and
outcomes of dementia in the United States elderly population. They were asked
to answer to the items of a questionnaire devoted to the cognitive assessment.
A detailed description of the measures of the cognitive functioning can be found
in [20]. For our analysis, we selected a subset of these measures corresponding
to binary items concerning the following subtractions: (1) 100 minus 7 equals
what? [SER71], (2) And 7 from that? [SER72], (3) And 7 from that? [SER73],
(4) And 7 from that? [SER74], (5) And 7 from that? [SER75]. For all of them,
1 means correct answer and 0 means wrong answer.

Previous exploratory and confirmatory analysis on the Aging, Demographics
and Memory Study data [14, 13] highlighted that these items are measures of
a latent factor called serial 7’s test correspondent to a specific sub-scale related
to the mental status of the interviewed people. Three waves of data (2001–2003,
2002–2005, 2006–2008) were collected on a sub-sample of n = 71 individuals.
The aim is to investigate how the working memory and mental processing task
in which respondents counted backward from 100 by 7s changes over time.

The analysis of multidimensional longitudinal data can be challenging since
a large number of random effects/latent variables can be required to take into
account for different sources of variability in the data.

We evaluate the performance of the proposed approach by applying the gen-
eralized linear latent variable models for multidimensional longitudinal data
proposed by [6] and [3] to p binary variables observed at T different time
points, such that the response vector y = (y11, . . . , ypT )

T is pT - dimensional.
Beyond the association between several items at the same time point, their
dependence over time as well as the variability of the same item at differ-
ent time points have to be considered. The latter is accounted by p item-
specific random effects u = (u1, . . . , up)

T , whereas the former is explained
by means of T time-dependent latent factors z = (z1, . . . , zT )

T , such that
the vector of latent variables b = (z, u)T is (p + T )-dimensional. The corre-
lation of the latent variables z over time is modeled through a first order non-
stationary autoregressive process of parameter φ and V ar(z1) = σ2

1 . Hence,
the covariance matrix of b is a block matrix Ψ = diag(Γ,Σu) with Σu =
diagi=1,...,p{σ2

ui
}. The elements of Γ are the variances and covariances of the

latent variables zt, t = 1, . . . , T , that is γt,t = V ar(zt) = φ2(t−1)σ2
1 + I(t ≥

2)
∑t−1

k=1 φ
2(k−1) and γt,t′ = Cov(zt, zt′) = φt+t′−2σ2

1 + I(t ≥ 2)
∑t−2

k=0 φ
t′−t+2k,

where I(.) is the indicator function and t < t′. The measurement part of the
model is specified as in (3.1). The linear predictor is characterized by a pT -
dimensional vector α0 of item- and time-specific intercepts, and a matrix α of
dimension (pT × (p + T )) whose generic sub-matrix of the j-th item is given
by [αjIT O[j, 1T ]]. IT is the identity matrix, and O[j, 1T ] is a null matrix of

http://www.rand.org
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dimension T × (T + 1) whose j-th column is substituted by a T -dimensional
vector of ones.

In the longitudinal setting, the number of latent variables increases linearly
with the number of observations. In this particular example, the number of la-
tent variables and random effects is equal to eight (q = 8), being p = 5 and
T = 3. Although for these data the adaptive Gauss Hermite approximation is
feasible if five quadrature points are selected per dimension, its computational
burden is too heavy. More than two hours are required for just one function
evaluation. Thus, we only apply the dimension-wise quadrature method, whose
computational advantages have been discussed before. We consider a fully con-
strained model (equal thresholds and equal loadings over time) in order to obtain
the same metric of the latent variable at the three time points. The resulting
measurement invariance allows comparisons of the factor across time [15, 16].

As for the choice of s, we start fitting the model with s equal to 0 (Laplace
approximation), and we increase its value until the mean of the absolute relative
differences in parameter estimates (�) is sufficiently small (order of 10−3).

Table 4

Estimated model parameters for the non-stationary model and absolute relative differences
between consecutive values of s, Aging, Demographics and Memory Study dataset.

s = 0 s = 1 s = 2 s = 3 s = 4 �01 �12 �23 �34

α̂1 1.000 1.000 1.000 1.000 1.000 - - - -
α̂2 0.512 0.487 0.555 0.585 0.585 0.048 0.139 0.055 0.000
α̂3 0.438 0.437 0.508 0.529 0.529 0.001 0.163 0.040 0.001
α̂4 0.517 0.520 0.589 0.621 0.620 0.006 0.134 0.054 0.001
α̂5 0.609 0.579 0.686 0.727 0.726 0.051 0.185 0.060 0.001

φ̂ 1.015 1.007 0.982 0.992 0.992 0.008 0.025 0.011 0.001
σ̂2
1 6.799 7.178 6.102 5.753 5.756 0.056 0.150 0.057 0.001

σ̂2
u1

1.988 1.550 0.443 0.579 0.566 0.221 0.714 0.307 0.023
σ̂2
u2

1.109 1.022 1.159 1.367 1.356 0.079 0.134 0.179 0.008
σ̂2
u3

0.425 0.526 0.588 0.744 0.736 0.238 0.119 0.264 0.010
σ̂2
u4

0.491 0.549 0.512 0.705 0.693 0.117 0.067 0.376 0.017
σ̂2
u5

0.113 0.107 0.299 0.388 0.383 0.052 1.788 0.296 0.014
Av(�) - - - - - 0.080 0.329 0.155 0.007
log-lik −520.38 −519.97 −518.89 −517.74 −517.78 - - - -
time (s) 259.18 547.28 541.76 2930.92 16251.971 - - - -

In Table 4, we report the estimated model parameters under the proposed
method using five quadrature points for s = 0, 1, 2, 3, 4. Parameter estimates
sensibly change from s = 1 to s = 2 (the average �12 = 0.329) whereas they are
all very close when s = 3 and s = 4 (the average �34 = 0.007). This indicates
that, for this particular example, the additional information included in the
likelihood when s is greater than 3 is almost irrelevant. From a computational
point of view, there is a substantial difference in the time to convergence as
the value of s increases, that is as a greater number of terms are involved in
the approximation. The computational time for s equal to four is more than
five times the computational time for s equal to three. It is evident that the
latter can be considered as the reference solution. Table 5 shows the parameter
estimates for this case with associated asymptotic standard errors in brackets.
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Table 5

Estimated model parameters with standard errors in brackets, s=3, Aging, Demographics
and Memory Study dataset.

α̂ σ̂2
ui

SER71 1.00 0.44 (0.22)
SER72 0.56 (0.27) 1.16 (1.54)
SER73 0.51 (0.31) 0.59 (0.79)
SER74 0.59 (0.38) 0.51 (0.62)
SER75 0.69 (0.30) 0.30 (0.24)

The significance of the variances of the random effects can be tested by us-
ing the likelihood ratio statistics (LR) for consecutive nested models that are
asymptotically mixture of two weighted chi-squared distributions [26]. In Ta-
ble 6, we report the values of these statistics with associated p-values. All the
variances are not significantly different from zero, indicating that there is no
relevant individual heterogeneity on each item over time. On the other hand,
the autoregressive parameter is significant (φ = 0.99 with standard error equal
to 0.15), and indicates a highly persistent latent process over time.

Table 6

Likelihoods and likelihood ratio statistics with associated p-values for comparing nested
random-effects models, s=3, Aging, Demographics and Memory Study dataset.

log-lik LR p-value

No RE model −524.66
One RE model −523.85 1.617 0.102
Two RE model −522.71 2.273 0.226
Three RE model −522.51 0.414 0.875
Four RE model −519.98 5.057 0.225
Five RE model −517.74 4.468 0.415

5. Discussion

One of the main problems in the estimation of the generalized linear latent
variable models is that the integrals involved in the likelihood do not always have
an analytical solution. A gold standard approach is represented by the adaptive
Gauss Hermite quadrature, that is known to provide quite accurate estimates,
but becomes computational unfeasible in presence of a large number of factors.
A typical case is represented by generalized linear latent variable models for
longitudinal data where the number of latent variables/random effects increases
proportionally with the number of items.

In this paper, we have proposed a new method that overcomes these limi-
tations since it decomposes the q-dimensional integral into the sum of 1, . . . , s-
dimensional integrals, being s << q, that can be easily approximated using clas-
sical Gauss Hermite quadrature techniques. We have shown that the dimension-
wise quadrature uses less information than the adaptive based one but the es-
timators obtained with the two methods share the same asymptotic properties.
Moreover, in finite samples, the dimension-wise quadrature based estimators
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present similar accuracy to the adaptive based estimators, whereas Laplace es-
timators tend to be less accurate in general.

We implemented the proposed method for generalized linear latent variable
models for mixed data in R combined with Fortran, and the code is available
from the authors upon request. However, the extension of the dimension-wise
method to other models is straightforward.

Appendix A: Proof of Proposition 2.1

Let exp{νr(b)} define the summation of terms that contains at most r variables,
that is

exp {νr(b)} = exp{ν(bk1,...,kr )} (A.1)

=
∑

1≤k1<...<kr≤q

exp{ν(bmo,1, . . . , bmo,k1−1, bk1 , bmo,k1+1, . . . , bmo,kr−1,

bkr , bmo,kr+1, . . . , , bmo,q)},

being the other q − r variables fixed to the corresponding modes. Using Taylor
expansion at bmo,

exp {ν(bmo,1, . . . , bk1 , bmo,k1+1, . . . , bmo,kr−1, bkr , . . . , , bmo,q)}

=

r∑
w=0

∞∑
k=3

1

k!

∑
P

Lp1(bmo) . . . Lpt(bmo)(b− bmo)
1j1ki1 ,...,1jwkiw ,

where the third sum is over all partitions P = p1 | . . . | pt of k indices
{1j1ki1 , . . . , 1jwkiw}, 1 ≤ i1 < . . . < iw ≤ r,

∑w
u=1 ju = k, into t blocks of

size greater than or equal to three, being {1j1ki1 , . . . , 1jwkiw} a set of indices in
which i1 is repeated j1 times, i2 is repeated j2 times, and so on. Hence, (A.1)
becomes

exp{νr(b)} =
∑

1≤k1<...<kr≤q

r∑
w=0

∞∑
k=3

1

k!

∑
P

Lp1(bmo) . . .

Lpt(bmo)(b− bmo)
1j1ki1 ,...,1jwkiw

=

r∑
w=0

∑
1≤k1<...<kr≤q

tw =

r∑
w=0

(
q − w
r − w

)
tw, (A.2)

being tw defined as in Corollary 2.1. Making use of the relationships induced by
the Pascal’s triangle of binomial coefficients, (A.2) can be conversely written as

tw =

w∑
r=0

(−1)w−r

(
q − r
w − r

)
exp{νr(b)}.
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Appendix B: Asymptotic behavior of the dimension-wise
quadrature approximation

Motivated by the simulation study and real data application, we derive the
properties of the dimension-wise quadrature based estimators in generalized
linear latent variable models for binary data. We consider a simple structure
for the loading matrix, that is the manifest variables are partitioned into q non-
overlapping groups of size pi, i = 1, . . . , q, each indicative of a different latent
variable. The logarithm of the integrand in (1) is

L(b) = log g(y | b) + log h(b) =

q∑
i=1

pi∑
j=1

[yj(α0j + αjibi) +

− log(1 + exp(α0j + αjibi))]−
q

2
log(2π)− 1

2
log | Ψ | −1

2
bTΨ−1b,

where
∑q

i=1 pi = p, α0j , j = 1, . . . , pi, i = 1, . . . , q, are item specific intercepts,
and αji, j = 1, . . . , pi, i = 1, . . . , q, are the factor loadings. The pi’s have the same
order, that is min(pi) = O(p). Ψ is a correlation matrix for identification reasons.
To analyze the statistical properties of the approximated integral solution (1),
we consider the expansion of exp{ν(b)} given in Corollary 2.1, that is

exp{ν(b)} =

q∑
w=1

∞∑
k=3

1

k!

∑
P

Lp1(bmo) . . . Lpt(bmo)(b− bmo)
1j1 i1...1jw iw (B.1)

where the third sum is over all partitions P of the k indices {1j1i1 . . . 1jw iw}, in
which the index i1 is repeated j1 times, the index i2 is repeated j2 times, and so
on, such that

∑w
u=1 ju = k and i1 < i2 < . . . < iw. In particular, P = p1 | . . . | pt

is a partition of the k indices {1j1i1 . . . 1jw iw} into t blocks, each of size greater
than or equal to three. Based on (B.1), the exact solution of the integral is given
by

f(y; θ) = fL

⎧⎨⎩
q∑

w=0

∞∑
k=2

∑
P,Q

Lp1(bmo) . . . Lpt(bmo)L
q1(bmo) . . . L

qk(bmo)

⎫⎬⎭ ,

where fL = (2π)q/2 | Σmo |1/2 exp{L(bmo)}. Since only even order moments
of multivariate normal variables do not vanish, both partitions P and Q refer
to 2k indices {1j1i1 . . . 1jw iw}, such that

∑w
u=1 ju = 2k. Specifically, Q = q1 |

. . . | qk denotes the partition of these 2k indices into k blocks, each of size
two. Each component Lqm(bmo),m = 1, . . . , k, refers to specific elements of the
matrix Σmo. Then, the approximation of f(y; θ) based on the dimension-wise
quadrature can be rewritten as

fa(y; θ) = fL

⎧⎨⎩
s∑

w=0

nq∑
k=2

∑
P,Q

Lp1(bmo) . . . Lpt(bmo)L
q1(bmo) . . . L

qk(bmo)

⎫⎬⎭ .

(B.2)
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L(b) and its derivatives are O(p) when the differentiation is performed with
respect to the same component of b, otherwise they are O(1) or O(0). Further-
more,

Corollary B.1. If q = o(p), then the diagonal elements of Σmo are O(p−1) and
the off-diagonal are O(p−2).

The asymptotic order of the proposed approximation is derived by analyzing
the order of the bipartition (P,Q) with

∑w
u=1 ju = 2(nq + 1) for w = 1, . . . , s.

For fixed q, when w = 1 the asymptotic order in (B.2) is O(pt−m). On the
other hand, when w ≥ 2, the asymptotic order of the term corresponding to
the bipartition (P,Q) in (B.2) is O(pt−k) if the blocks in the bipartition P
are of even size, and is of order O(p−k+1) when at least one of the blocks in
the bipartition P is of odd size. Hence, the asymptotic error of the proposed
approximation based on nq quadrature points is the same associated to the
bipartition (P,Q) of 2(nq+1) indices {12(nq+1)i1}, that is O

(
p−[nq/3+1]

)
, where

notation [r] indicates the largest integer not exceeding r. It is equivalent to the
asymptotic error associated to the adaptive Gauss Hermite quadrature [1].

Appendix C: Consistency of the dimension-wise quadrature based
estimators

This section concerns with the consistency of the dimension-wise quadrature
based estimators. All the following proofs proceed along the lines of [1], who
derived the rate of convergence of the estimator based on the adaptive Gauss
Hermite quadrature for generalized linear latent variable models.

Let Sa(·) denote the approximated score vector based on the dimension-wise
quadrature approximation (2.5); then we obtain

n∑
l=1

Eb|y{Sl(θML; b)} = S(θML) =

n∑
l=1

{
Sl(θML, bmo) + . . .+O

(
p−[

nq
3 +1]

)}
n−1S(θML) = n−1Sa(θML) +O

(
p−[

nq
3 +1]

)
, (C.1)

since θML is chosen such that
∑n

l=1 Ea,b|y{Sl(θML; b)} = Sa(θML) = 0. Under
common regularity conditions, we apply the Taylor series expansion in S(θ)
around the true parameter vector θ0:

S(θML) = S(θ0) +H(θ∗)(θML − θ0), (C.2)

where θ∗ lies on the segment joining θ0 and θML, and H(θ∗) = ∂S(θ)/∂θ|θ=θ∗ =∑n
l=1 ∂Sl(θ, bmo)|∂θ|θ=θ∗ =

∑n
l=1 Hl(θ

∗, bmo). From equations (C.1) and (C.2)
we obtain

(θML − θ0) = −
{
n−1

n∑
l=1

Hl(θ
∗, bmo)

}−1 {
n−1S(θ0) +O

(
p−[

nq
3 +1]

)}
.
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In addition, we have that, as n → ∞, n−1H(θ∗) converges in probability to
Ey{H(θ0)}, where the expectation is taken with respect to f(y; θ), and H(θ∗) =∑n

l=1 Hl(θ
∗, bmo). By further assuming that Ey {H(θ0)} is non-singular,{

n−1H(θ∗)
}−1

converges in probability to Ey {H(θ0)}−1
. It follows that

n1/2(θML − θ0) = −E [H(θ0)]
−1

[
n−1/2S(θ0) +O

(
n1/2p−[

nq
3 +1]

)]
⇒

(θML − θ0) = −Ey [H(θ0)]
−1

[
n−1S(θ0) +O

(
p−[

nq
3 +1]

)]
= Op

[
max

(
n−1/2, p−[

nq
3 +1]

)]
.

Appendix D: Computational details of the dimension-wise
quadrature in presence of binary data

For the latent variable model for binary data described in Subsection 3.1, the
quantities L(b) and Li1,i2(b) involved in the expression of fL, and ν(b) involved
in the computation of the approximated marginal density function fa(y, θ) in
(2.5), have the following expressions

L(b) = −q

2
log(2π)− 1

2
log |Ψ|+ yT η − 1T log{1 + exp(η)} − 1

2
bTΨ−1b,

and

Li1,i2(b) = −Σ−1 =
∂L(b)

∂b∂bT
=

p∑
i=1

αT
i αi{ηi/(1 + ηi)

2} −Ψ−1.

The mode bmo is obtained by using a Newton-Raphson iterative scheme as
follows

b(it)mo = b(it−1)
mo − [(Σ(it−1)

mo )−1G(b(it−1)
mo )],

where ‘it’ is the iteration counter and G(b) is the first derivative of L(b) with
respect to b. For binary data, it has the following expression

G(b) =
∂L(b)

∂b
= αT η

1 + η
−Ψ−1b.
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