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1. Introduction

Circular data occur when the sample space is described by a circle, as opposed to
the real line in standard statistics. They often arise in biology (migration paths
of animals), meteorology (wind and marine current directions), and geology
(orientations of joints and faults, landforms, oriented stones). Other examples
include phenomena that are periodic in time, like daily and seasonal socio-
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economic phenomena. If compared to a linear scale, a circular one has special
features. Firstly, the beginning and the end of the measurement scale coincide,
and their common location is called the origin (or zero direction). This latter
is arbitrary, and likewise any designation of median, high or low values. Also
note that for circular data there is no concept of standardisation. The only data
transformations which do not change the relative positions of the observations
are rotation and reflection.

Nonparametric circular density estimation could be seen as a non-mature
research field. Although basic kernel density estimation is well known (see, for
example, [6], [2], [8] and [14]), not much has been written on more sophisti-
cated methods, aimed at bias reduction. This would be useful for efficient point
estimation in the cases of heavy density tails, multi-modality or asymmetry.
Additionally, it would improve the precision in estimating a confidence interval
for the value of the density at a point, or confidence bands for the whole density.
Indeed, it is well known that the bias of nonparametric methods leads to in-
correct centring of the confidence interval with severe consequences on coverage
probability. In the Euclidean setting small bias methods have been suggested as
a remedy, for example, by [1] and [5].

In this paper we propose estimating equations for circular density estimation
(and its derivatives) where local versions of population trigonometric moments
are equated with their empirical counterparts. We model the unknown density
by a periodic series expansion whose coefficients are the system variables. There-
fore, we estimate the value of functions at a point, as opposed to the classical
method of moments which is used for global parameters. It will be seen that
modelling via longer series will give smaller asymptotic bias without asymptotic
variance inflation. The system is linear and has a closed-form solution, so our
estimators have a general formulation depending on both expansion degree and
the order of the target derivative.

Concerning the novelty of our contribution, we note that polynomial-like
estimators have never been obtained by explicitly starting from population mo-
ments, as we do in the present paper, but rather from least squares or likelihood
scores. A reason for this could be that in the Euclidean setting the existence
of whatever population moment constitutes a strict assumption, whereas for
differentiable circular densities this is not the case, due to the compactness of
the sample space. As a link to previous work, we note that classic method of
moments has been applied for parameter estimation by [12] when data come
from a mixture of von Mises populations and the end is to separate the two
components of the mixture. Additional novelty lies in the introduction of sim-
ple estimators of circular density derivatives. A nice collection of fundamental
problems where derivative estimation is central can be found in [11]. We simply
remark that higher order derivatives play a key rôle in the inference on modes
and density functionals. Finally, this article also contains some theory for the
case of dependent data. Although most circular real datasets comprise depen-
dent data, we note that nonparametric density estimation based on circular,
dependent data seems, at the moment of writing, a totally unexplored field in
circular statistics.
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In Section 2 we obtain the estimators. Some interpretative reasoning connect
them to previous Euclidean literature based on quite different ideas. In Section
3 we first derive general asymptotic properties, then we focus on von Mises
kernel theory. Finally, in Section 4 we show how the method performs, using
simulation experiments and real data case studies, also through a comparison
with other methods existing in the literature.

2. The estimators

The �th trigonometric moment (about the zero direction) of the absolutely con-
tinuous distribution function F of a circular random variable Θ is defined as
a� + ib�, � ∈ N, where i2 = −1, and a� and b� stand for the �th cosine and sine
moments respectively, i.e.

a� := E[cos(�Θ)] =

∫ π

−π

cos(�α)dF (α), b� := E[sin(�Θ)] =

∫ π

−π

sin(�α)dF (α).

Any distribution on the circle is determined by its characteristic function, and
this uniqueness property, differently from the Euclidean setting, assures that
they are determined by their moments. Assuming that F admits continuous
derivatives up to order p+1 at θ ∈ [−π, π), p ∈ N, then f(α) := F (1)(α) can be
approximated by the sin-polynomial

f̃p(α; θ) :=

p∑
j=0

f (j)(θ) sinj(α− θ)

j!

with negligible error if |α − θ| is small. We can interpret f̃p(α; θ) as a (trun-
cated) Taylor-like expansion suited for functions defined on a circle because its
increment has periodic nature. In fact, the sine function preserves the sign of
α − θ, and also takes small values when α and θ are separated by a very small
arc. Notice that, if the arc contains the origin, this latter property does not hold
for the simple difference.

Nonparametric estimating equations could be obtained by matching sample
moments to their corresponding approximated theoretical ones given by∫ π

−π

cos(�α)f̃p(α; θ)dα,

∫ π

−π

sin(�α)f̃p(α; θ)dα,

with density derivatives at θ ∈ [−π, π), from order 0 up to order p, which
constitute the system variables. However, recalling that f(α) is satisfyingly ap-
proximated by f̃p(α; θ) only if α belongs to a narrow neighbourhood of θ, and
that, on the other hand, empirical moments estimate the exact ones, we see that
in this strategy the sides of the equations are doomed to be rather different. A
way to alleviate this drawback is to use new moment expressions, where the
integrands are weighted by uni-modal, symmetric density functions centred at
θ, as in the formal
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Definition 2.1. Let Kκ denote a generic circular kernel with concentration
parameter κ ∈ (0,∞) (see [2]). For � ∈ N, we define the �th local trigonomet-
ric (resp. cosine and sine) moments, at θ ∈ [−π, π), of a circular distribution
function F the quantities

a�(θ) :=

∫ π

−π

Kκ(α−θ) cos(�α)f(α)dα, b�(θ) :=

∫ π

−π

Kκ(α−θ) sin(�α)f(α)dα.

The idea is that above local moments are essentially determined by the values
taken by integrands over a tight interval centred at θ, where approximation
f̃p is reliable. Tightness inversely depends on the magnitude of concentration
parameter κ. As a simple parallel with Euclidean kernel density estimation,
we would say that κ moves toward the same direction as the inverse of the
bandwidth.

Then, our simultaneous equations would be based on quantities reported in

Definition 2.2. Let Kκ denote a generic circular kernel with concentration
parameter κ ∈ (0,∞). We define approximated local trigonometric (resp. cosine
and sine) moments of order � ∈ N at θ ∈ [−π, π) of a circular distribution with
density f the quantities

p∑
j=0

f (j)(θ)cj�(θ) and

p∑
j=0

f (j)(θ)sj�(θ), (2.1)

where

cj�(θ) :=

∫ π

−π

Kκ(α− θ) cos(�α)
1

j!
sinj(α− θ)dα,

and

sj�(θ) :=

∫ π

−π

Kκ(α− θ) sin(�α)
1

j!
sinj(α− θ)dα.

Letting Θ1, . . . ,Θn be a random sample of angles from the unknown density f ,
sample local trigonometric (resp. cosine and sine) moments at θ are defined as

C�(θ) :=
∑n

i=1 Kκ(Θi − θ) cos(�Θi)

n
and S�(θ) :=

∑n
i=1 Kκ(Θi − θ) sin(�Θi)

n
.

Notice that, for fixed n and θ, a trade-off in selecting the value of parameter κ
arises. In fact, on the population side of above definition, we have observed that
a big κ ensures accuracy of expansion. On the other hand, sample quantities
require maximize the amount of data effectively participating to the estimation
process, and this is produced through a small κ. This suggests to formulate κ
as an increasing function of n.

Regarding asymptotic accuracy, other than the obvious convergence of the
sums to integrals, we would require that quantities in Equation (2.1) satisfyingly
approximate a�(θ) and b�(θ), respectively. This is easily seen to be the case if
the concentration parameter κ of the kernel increases with n. As finite sample
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properties, obviously the use of sin-polynomials along with circular kernels will
guarantee estimators that are both periodic and rotationally invariant.

Importantly, the facts that most of circular kernels can be approximated by
Euclidean ones if their concentration parameter is big, and that in a neighbour-
hood of 0 we have sin(x) ≈ x could misleadingly suggest that, under certain
asymptotic conditions, they could be successfully employable also when data
have periodic nature. But this does not hold because linear kernels are guaran-
teed to give estimates that are a) severely wrong in a region around the origin
(potentially the whole circle); b) not rotationally invariant. This has a strong
practical relevance when considering that the choice of origin is arbitrary.

From now on, we assume Kκ to be a second sin-order circular kernel with
concentration parameter κ ∈ (0,∞) (see [2]), i.e. a 2π-periodic density function
admitting the absolutely convergent Fourier series representation

Kκ(α) =
1 + 2

∑∞
j=1 γj(κ) cos(jα)

2π
.

Remark 2.1. The particular case of no concentration gives constant weights,
formally as κ → 0, Kκ(α) → (2π)−1. This makes the estimate independent on
the data. For example, setting both κ and p to zero always yields an uniform
density (see also Section 2.1). Curiously, for real-line kernel methods the shape
of the estimate is never perfectly independent on the specific sample at hand. In
fact, a positive weight fixed over the whole support still gives estimates that are
not constant for finite samples due to the unavoidable presence of boundaries.

Note that γ0(κ) = 1. Moreover, the second sin-order implies that c00(θ) = 1
and c20(θ) �= 0, while due to the symmetry of Kκ, c

j
0(θ) = 0 for odd j. For

� ≥ 0 and j ≥ 0, direct calculation, involving Fourier coefficients, gives general
expressions as follows

cj�(θ) =

⎧⎪⎨
⎪⎩

1
j!2j

∑j
s=0

(
j
s

)
(−1)s+(j+1)/2γ|�−j+2s|(κ) sin(�θ) if j is odd,

1
j!2j

∑j
s=0

(
j
s

)
(−1)s+j/2γ|�−j+2s|(κ) cos(�θ) if j is even,

(2.2)

and

sj�(θ) =

⎧⎪⎨
⎪⎩

1
j!2j

∑j
s=0

(
j
s

)
(−1)s+1+(j+1)/2γ|�−j+2s|(κ) cos(�θ) if j is odd,

1
j!2j

∑j
s=0

(
j
s

)
(−1)s+j/2γ|�−j+2s|(κ) sin(�θ) if j is even.

(2.3)

For a pth order approximation the estimating equations have p+1 unknowns.
With the aim of including complete trigonometric moments in the system, we
need to start from order zero (which produces a single equation because sj0(θ) =
S0(θ) = 0) only if the number of such unknowns is odd. In the next sections we
distinguish the case of even p from odd p, but some unification in notation can
be obtained by defining q as the integer part (floor) of (p+ 1)/2.
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2.1. Even p

When the sin-polynomial degree p is even, simultaneous equations are obtained
by including local trigonometric moments from order 0 up to order p/2. In
matrix form these can be expressed as

Bpβ = M , (2.4)

where

β′ := (β0 β1 . . . βp) ,

M′ := (C0(θ) C1(θ) S1(θ) . . . Cq(θ) Sq(θ)) ,

and

Bp :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 c10(θ) . . . cp0(θ)
c01(θ) c11(θ) . . . cp1(θ)
s01(θ) s11(θ) . . . sp1(θ)
...

...
. . .

...
c0q(θ) c1q(θ) . . . cpq(θ)
s0q(θ) s1q(θ) . . . spq(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The density estimator is defined to be the solution for β0, i.e.

f̂(θ; p) :=
|Ap|
|Bp|

, (2.5)

where Ap is the same as Bp but with the first column replaced byM. Elementary
orthogonality arguments prove that both Ap and Bp have full rank.

Remark 2.2. Note that using expressions (2.2) and (2.3) in the general solution
(2.5) leads to explicit closed-form solutions for the estimators whatever the
kernel is. In particular, Cramer’s rule is not used as a numerical algorithm,
since it is known to be expensive and unstable, but only as a way to represent
exact solutions of the system, which will are seen to be convenient for various
asymptotic considerations.

Clearly, recalling that
∫
Kκ = 1, we see that the case p = 0 yields the

standard kernel density estimator

f̂(θ; 0) =
1

n

n∑
i=1

Kκ(Θi − θ).

When Kκ is a von Mises kernel, i.e. γj(κ) = Ij(κ)/I0(κ), with Ij , j ∈ N,
denoting the modified Bessel function of first kind and order j, the estimator
for p = 2 has the following simple form

f̂(θ; 2) =
I0(κ)I2(κ)f̂(θ; 0)− I2

1 (κ)f̂(θ; 1)

I0(κ)I2(κ)− I2
1 (κ)

, (2.6)
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that is a linear combination of density estimators with p = 0 and p = 1 (for a
definition of the latter see formula (2.8) in the next section). Such a structure
(which will generally result in an estimator which is not non-negative for p �= 0)
is reminiscent of the jackknife technique, as originally formulated by [10], where
a density estimator is defined as a linear combination of two distinct ones in
order to get bias reduction.

The solution for βj , j ∈ (1, . . . , p), of the above system gives estimator for
f (j)(θ), which is

f̂ (j)(θ; p) :=
|Aj

p|
|Bp|

,

where Aj
p is the same of Bp, but with the (j+1)th column replaced by M. Notice

that in the first equation of system (2.4), recalling that for odd j cj0 = 0, the
coefficients βj disappear. This in turn implies the same odd derivative estimators
as for the p− 1 degree.

2.2. Odd p

When the sin-polynomial degree p is odd, we consider the matching between
local trigonometric moments from order 1 up to order (p+ 1)/2, obtaining the
following system expressed in matrix form

Dpβ = N ,

where Dp and N are defined as Bp and M with, respectively, the first row and
first element omitted. The solution for β0 gives the estimator

f̂(θ; p) :=
|Cp|
|Dp|

, (2.7)

where Cp has the same columns of Dp, except the first one which is replaced by
N . The same arguments as in the previous section prove that both Cp and Dp

have full rank, also Remark (2.2) applies.
The use of a von Mises kernel yields simple estimators for p = 1 and p = 3,

as follows

f̂(θ; 1) =
1

2πnI1(κ)

n∑
i=1

cos(Θi − θ) exp(κ cos(Θi − θ)), (2.8)

f̂(θ; 3) =
w(κ)f̂(θ; 1) + κ2I2(κ) 1

2πn

∑n
i=1 cos(2Θi − 2θ) exp(κ cos(Θi − θ))

w(κ) + κ2I2(κ)2
,

with w(κ) := 6κI0(κ)I1(κ) − (12 + κ2)I1(κ)2. We could interpret the solution
for p = 1 as a standard kernel density estimate using the non-positive kernel
Kκ(θ) = cos(θ) exp(κ cos(θ))/(2πI1(κ)), where the cosine function further de-
creases the weight assigned to observations as they get far from the estimation
point. Consequently, the peaks (valleys) of the estimate become basically higher
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(thinner). The cubic fit is reminiscent of the jackkinife technique observed in
expression (2.6). Concerning derivative estimators, the solution of the above
system for βj , j ∈ (1, . . . , p), yields

f̂ (j)(θ; p) :=
|Cj

p|
|Dp|

,

with Cj
p being the same as Dp, but with the (j + 1)th column replaced by N .

3. Large samples results

A fundamental assumption made in this section is that the concentration pa-
rameter of the kernel κ = κn is an increasing function of sample size n. To keep
notation less cumbersome, such dependence will be suppressed.

The bias of f̂(θ; p) is obtained in the following

Result 3.1. Given the random sample of angles Θ1, . . . ,Θn from the unknown
density f , consider estimators (2.7) and (2.5) for odd and even p, respectively.
Assume that

i) Kκ is a second sin-order circular kernel whose Fourier coefficients strictly
increase with κ;

ii) limn→∞ κ = ∞;
iii) f is (p+1)-times and (p+2) differentiable for odd and even p, respectively.

Then, for odd p

E[f̂(θ; p)]− f(θ) =
|C̃p|
|Dp|

f (p+1)(θ) + o

(
|C̃p|
|Dp|

)
,

where C̃p is the same as Cp, but with the first column replaced by

(
cp+1
1 (θ) sp+1

1 (θ) . . . cp+1
(p+1)/2(θ) sp+1

(p+1)/2(θ)
)′

,

while, for even p,

E[f̂(θ; p)]− f(θ) =
|Ãp|
|Bp|

f (p+2)(θ) + o

(
|Ãp|
|Bp|

)
,

with Ãp being the same as Ap, but with the first column replaced by

(
cp+2
0 (θ) cp+2

1 (θ) sp+2
1 (θ) . . . cp+2

p/2 (θ) sp+2
p/2 (θ)

)′
.

Proof. See Appendix.
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Circularity makes the normalization of the estimates easily tractable. Indeed,
we have just seen that E[f̂(θ; p)] is asymptotically formulated as a sum between
f(θ) and a linear combination of the derivatives of f at θ. Now, from the fact
that derivatives of a circular density function are obviously periodic functions,
it follows from Fubini’s theorem that the expectation of the area of the estimate
is equal to one, without regard to the values of p and κ. This comes in stark
contrast with Euclidean higher order bias theory.

Concerning the variance, we get the following

Result 3.2. Given the random sample of angles Θ1, . . . ,Θn from the unknown
density f , consider estimator (2.7) for odd p ((2.5) for even p, respectively). Let
Mij denote the (i, j) minor of Cp (Ap, resp.). Then, we have

Var[f̂(θ; p)] =
1

V 2
p

⎧⎨
⎩

p+1∑
i=1

M2
i1Var[ai1] + 2

∑
i �=j

(−1)(i+j)Mi1Mj1Cov[ai1, aj1]

⎫⎬
⎭ ,

(3.1)
where aij stands for the (i, j)th entry of Cp (Ap, resp.), Vp := |Dp| (Vp := |Bp|,
resp.). Specifically, the possible covariance expressions, under assumptions of
Result 3.1, for (�,m) ∈ N × N and � ≥ m, omitting O(n−1) terms, are

Cov[C�(θ), Cm(θ)] =
f(θ)

4nπ
{cos((�−m)θ)P (�,m) + cos((�+m)θ)Q(�,m)} ,

Cov[S�(θ),Sm(θ)] =
f(θ)

4nπ
{cos((�−m)θ)P (�,m)− cos((�+m)θ)Q(�,m)} ,

Cov[S�(θ), Cm(θ)] =
f(θ)

4nπ
{sin((m− �)θ)P (�,m) + sin((�+m)θ)Q(�,m)} ,

Cov[Sm(θ), C�(θ)] =
f(θ)

4nπ
{sin((�−m)θ)P (�,m) + sin((�+m)θ)Q(�,m)} ,

with

P (�,m) :=
�−m∑
i=0

γi(κ)γ�−m−i(κ) + 2
∞∑

i=�−m+1

γi(κ)γi−(�−m)(κ),

Q(�,m) :=

�+m−1∑
i=1

γi(κ)γ�+m−i(κ) + 2

∞∑
i=0

γi(κ)γ�+m+i(κ).

Proof. See Appendix.

Asymptotic normality of f̂(θ; p), for both even and odd p, can be easily
demonstrated starting from the fact that both |Ap| and |Bp| are linear combi-
nations of sample averages of independent and identically distributed random
variables.

3.1. Von Mises kernel theory

Although very general, Results 3.1 and 3.2 do not allow further evaluations like,
for example, convergence rates or optimal smoothing. In fact, they are general
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with respect to the kernel, and therefore Fourier coefficients remain unspecified.
However, it is well known that in local density estimation the choice of the
kernel is generally not considered an important task. Specifically, we could select
whatever kernel showing uni-modality, symmetry, smoothness, rapidly decaying
tails to zero and that is able to concentrate its whole mass around zero. Now,
well known circular densities that are uni-modal and symmetric are: triangular,
cardioid, wrapped Cauchy, von Mises and wrapped normal.

Once said that the first one is not smooth enough, the second one is not
able to indefinitely concentrate, and that the third one has too heavy tails,
von Mises and wrapped normal densities remain to us. However, since from
moderate concentration and upwards they have nearly identical shape, their
use gives generally same results. These considerations suggest that restricting
the theory to von Mises kernel is not a severe choice.

In what follows we show how using the von Mises density as the kernel leads
to a number of interesting considerations. The asymptotic bias of f̂(θ; p) for
some values of p is obtained in the following

Result 3.3. Given a random sample of angles Θ1, . . . ,Θn, from the unknown
density f , consider estimator f̂(θ; p), θ ∈ [−π, π), with Kκ being a von Mises
kernel. Assuming that κ → ∞ as n → ∞,

E[f̂(θ; 0)]− f(θ) =
1

κ

I1(κ)
2I0(κ)

f (2)(θ) + o

(
1

κ

)

E[f̂(θ; 1)]− f(θ) =
1

κ

I2(κ)
2I1(κ)

f (2)(θ) + o

(
1

κ

)
,

and

E[f̂(θ; 2)]− f(θ) =
1

κ2

{I2
2 (κ)− I1(κ)I3(κ)}

8{I0(κ)I2(κ)− I2
1 (κ)}

f (4)(θ) + o

(
1

κ2

)
.

Proof. See Appendix.

Comparing the asymptotic bias of the local constant and the local linear
fit, we see that, despite both have the same magnitude, the local linear one is
smaller than the constant one for each value of κ. This is in clear contrast with
ordinary polynomial fitting, where the relative merits depend on the estimation
point. For p = 2, the asymptotic bias is O(1/κ2), and so the jackknife idea works
by cancelling the larger bias term.

Concerning the variance, asymptotic results for some values of p are collected
in the following

Result 3.4. Given a random sample of angles Θ1, . . . ,Θn, from the unknown
density f , consider estimator f̂(θ; p), θ ∈ [−π, π), equipped with a von Mises
kernel. Assuming that κ/n → 0 as n → ∞

Var[f̂(θ; 0)] =
f(θ)

n

I0(2κ)
2πI2

0 (κ)
+O

(
1

n

)
, (3.2)
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Var[f̂(θ; 1)] =
f(θ)

n

{
I0(2κ) + I2(2κ)

4πI2
1 (κ)

}
+O

(
1

n

)
, (3.3)

and

Var[f̂(θ; 2)] =
f(θ)

n
×{

I0(2κ)[I2
1 (κ) + 2I2

2 (κ)] + I1(κ)[I1(κ)I2(2κ)− 4I2(κ)I1(2κ)]
4π{I2

1 (κ)− I0(κ)I2(κ)}2
}
+O

(
1

n

)
.

Proof. See Appendix.

Using the properties of Bessel functions, we can see that, for big enough κ, the
asymptotic variances in the above result have magnitude O(

√
κ/n). However,

when comparing p = 0 and p = 1, we observe a phenomenon similar to that
seen for biases, but in this case the superiority is on the local constant side.
Moreover, concerning asymptotic behaviour of the quadratic fit, we have

lim
κ→∞

V ar[f̂(θ; 2)]

V ar[f̂(θ; 0)]
=

27

16
.

These results clearly indicate that fitting a quadratic polynomial would be
convenient when the bias is severe: in fact, we observe a variance inflation,
inevitably produced by the need of estimating more parameters, that with a big
enough sample size will be dominated by bias reduction.

Concerning the smoothing degree, setting R(g) :=
∫ π

−π
g2(α)dα, for a square

integrable function g, we get

Result 3.5. Given a random sample of angles Θ1, . . . ,Θn from the unknown
density f , consider estimator f̂(θ; p), θ ∈ [−π, π), having the von Mises kernel
as the weight function. The value of κ which minimizes the asymptotic mean
integrated squared error of f̂(·; p) with p ∈ (0, 1) is

κAMISE =
(
2nπ1/2R

(
f (2)

))2/5

,

while, for p = 2,

κAMISE =

(
4

27
nπ1/2R

(
f (4)

))2/9

.

Proof. See Appendix.

It follows that the rate of convergence of f̂(θ; p) is n−4/5 for both p = 0 and
p = 1, while it is n−8/9 for p = 2. The rate of convergence for whatever order p
is provided by the following

Result 3.6. Given a random sample of angles Θ1, . . . ,Θn from the unknown
density f , consider estimator f̂(θ; p), θ ∈ [−π, π), with Kκ being a von Mises

kernel. The convergence rate of f̂(θ; p) is n−2(p+1)/(1+2(p+1)) for odd p, and
n−2(p+2)/(1+2(p+2)) for even p.
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Proof. See Appendix.

Finally, as circular samples often come in form of dependent data – think,
for example, of direction of winds or marine currents taken at a given location
within a period of time – it could be of interest to ensure the effect of some
general dependence structures on our methods. In what follows we assume that
data come from an α-mixing stochastic process.

Result 3.7. Let Θ1, . . . ,Θn be a realization of an α-mixing process. If

i) the mixing coefficients satisfy |α(ω)| ≤ Q1ω
−λ, ω ∈ Z, for positive con-

stants Q1 and λ > 2;
ii) the joint density g of (Θl,Θm) satisfies ‖g‖∞ < ∞, for l ∈ (1, . . . , n),

m ∈ (1, . . . , n);

then, for p ∈ N, the convergence rate of estimator f̂(θ; p), θ ∈ [−π, π), with the
von Mises kernel is the same as the i.i.d. case.

Proof. See Appendix.

A similar result for kernel density estimator in the Euclidean multivariate
setting can be found, for example, in [9].

4. Practical performance

4.1. Density estimation

This simulation study compares both best possible and practical performances
of the estimators. As accuracy indicator we refer to integrated mean squared
error (IMSE). Kernels used are von Mises probability density functions, denoted
by vM(μ, κ), where parameters μ and κ indicate respectively the mean direction
and the concentration parameter.

When p > 0 our estimates are not guaranteed to be bona-fide. However, we
have not correct them because elementary considerations say that the quantity∫
f̂ goes to one at the same rate as the asymptotic bias, and therefore the

pointwise convergence rates of f̂ to f remain unaffected up to a coefficient
equal to the value of f at θ. As a final remark, we recall that the case p = 0 is
the classical circular kernel density estimator, firstly proposed by [6]. Therefore,
p = 0 is the best possible benchmark, useful to check practical utility of our
proposals.

In the first study empirical IMSE curves are obtained as functions of κ.
We see that, even if the sample sizes are moderate (n = 100), the standard
circular kernel density estimate is not optimal. We observe that when the pop-
ulation is not very peaked (left panel of Figure 1) the local linear estimator
wins, while for a more concentrated population (left panel of Figure 2) higher
order sin-polynomial estimators are preferable. This is easily seen after noting
that higher order derivatives become more important for reducing bias when
the concentration parameter of the population increases. In the right panels



Nonparametric moment-based circular density estimation 4335

Fig 1. log(IMSE) for a range of values of κ for p = 0 (solid), p = 1 (dashed), p = 2 (dotted),
p = 3 (dotdash) and p = 4 (+) for 500 samples of size n = 100 (left) and n = 1000 (right)
from a vM(0, 1).

Fig 2. log(IMSE) for a range of values of κ for p = 0 (solid), p = 1 (dashed), p = 2 (dotted),
p = 3 (dotdash) and p = 4 (+) for 500 samples of size n = 100 (left) and n = 1000 (right)
from a vM(0, 5).

of these figures we use n = 1000. Since a bigger sample size leads to a more
accurate estimate of the derivatives, we can see that the best performances are
given by estimators of higher orders, because, in contrast with the case n = 100,
bias reduction dominates variance inflation.

Specifically for the vM(0, 1) population model the sin-polynomial order p = 3
is the best, while in the second model performance improves with the value of
p. Moreover, it is worth noting that the cosine correction of the von Mises
kernel (p = 1) gives a slight improvement on p = 0 for n = 100, whereas same
convergence rates yields equivalent behaviours for n = 1000.
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Fig 3. Population density models with parameters (mean direction, concentration) used for
the simulation on density estimation. Top line, from left: von Mises (0, 1); Wrapped Cauchy
(0, 1), equal mixture between two Wrapped Normals with parameters (0, 1) and (0.5, 0.5). Bot-
tom line, from left: equal mixture between two Wrapped Normals with parameters (−π/2, 1)
and (π/2, 1), equal mixture between two Wrapped Normals with parameters (−2π/5, 1) and
(2π/5, 1), mixture between two Wrapped Normals with weights 19/20 and 1/20, and parame-
ters (0, 1) and (1, 0.2).

In a second experiment, we estimate various densities by selecting smooth-
ing degree by simple least squares cross-validation. Our population models are
represented in Figure 3. Other than the standard von Mises, we have consid-
ered classical more difficult cases like multimodality, asymmetry or heavy tails.
A promising estimator has been included as a competitor, other than stan-
dard kernel density method (p = 0). It is the circular local likelihood method
described in [3]. Such an estimator can be defined as a polynomial estimator
derived starting from a likelihood score. The Authors present closed formulas
for polynomial degrees 1 and 2. We have included here both of them. We use
sample sizes equal to 100 or 500. They have been taken moderate in order to
check usefulness of the methods in practical situations. Our theoretical results
have already described the behaviour of our proposals for large samples.

The results are collected in Tables 1 to 6. We can see that the selector works
in a reasonable way, although the known tendency to undersmoothing arises
when comparing median with average values of the obtained bandwidths. This
tendency is more evident for small p and n. Coming to IMSE performances,
the message arising from the results is as follows. The worst estimator is, by
far, the classical kernel method. Our local moment approach has a clear edge
on the local likelihood one. As indicated previously, bigger sample sizes and
larger curvature favour the choice of higher polynomial degrees. Interestingly,
the best estimator, for n = 500, is the third order polynomial model. This is
welcome surprise, provided that sample size is not very big and the estimator
has a simple closed form. Additionally, we note that third order remains nearly
un-exploited in practical case studies, for both Euclidean and non-Euclidean
polynomial methods.
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Table 1

Comparison between proposed estimators and circular local likelihood ones (bracketed) in
terms of average integrated squared errors (×1000) over 500 samples of sizes 100 or 500
drawn from a vM(0, 1) population. Median and mean of the smoothing degrees selected by

least-squares cross-validation.

Sample
size

Polynomial
degree

IMSE×1000 median of
bandwidths

mean of
bandwidths

100

0 7.32 4.10 7.55

1
5.51 1.66 3.27

(7.57) (3.97) (7.50)

2
9.49 3.34 4.25

(10.41) (3.14) (4.21)

3 7.09 1.77 2.23

500

0 2.05 8.10 11.45

1
1.60 1.60 2.02

(2.08) (8.07) (11.30)

2
2.06 4.13 5.19

(2.77) (5.52) (7.08)

3 1.61 2.30 2.69

Table 2

Comparison between proposed estimators and (circular local likelihood ones) in terms of
average integrated squared errors (×1000) over 500 samples of sizes 100 or 500 drawn from
a wC(0, 1) population. Median and mean of the smoothing degrees selected by least-squares

cross-validation.

Sample
size

Polynomial
degree

IMSE×1000 median of
bandwidths

mean of
bandwidths

100

0 8.04 4.24 6.56

1
7.10 1.85 4.65

(8.14) (4.12) (6.35)

2
10.08 3.27 4.19

(11.09) (3.25) (4.20)

3 8.02 1.69 2.02

500

0 2.39 9.12 12.85

1
2.67 1.74 6.02

(2.40) (8.99) (12.67)

2
2.28 4.10 5.27

(3.03) (5.77) (7.51)

3 2.04 2.36 2.93
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Table 3

Comparison between proposed estimators and (circular local likelihood ones) in terms of
average integrated squared errors (×1000) over 500 samples of sizes 100 or 500 drawn from

a 0.5wN(0, 1) + 0.5wN(.5, .5) population. Median and mean of the smoothing degrees
selected by least-squares cross-validation.

Sample
size

Polynomial
degree

IMSE×1000 median of
bandwidths

mean of
bandwidths

100

0 12.52 10.90 17.13

1
14.35 8.89 13.67

(12.98) (10.54) (17.16)

2
11.44 4.06 5.89

(11.83) (2.78) (4.18)

3 11.08 2.56 3.68

500

0 3.57 21.96 32.76

1
4.30 20.57 29.77

(3.68) (22.52) (32.46)

2
2.86 5.97 8.23

(3.35) (6.43) (9.40)

3 3.14 4.38 5.64

Table 4

Comparison between proposed estimators and (circular local likelihood ones) in terms of
average integrated squared errors (×1000) over 500 samples of sizes 100 or 500 drawn from
a 0.5wN(−π/2, 1) + 0.5wN(π/2, 1) population. Median and mean of the smoothing degrees

selected by least-squares cross-validation.

Sample
size

Polynomial
degree

IMSE×1000 median of
bandwidths

mean of
bandwidths

100

0 6.52 1.69 3.97

1
6.77 2.36 5.21

(6.48) (1.65) (3.84)

2
10.23 2.79 3.57

(11.24) (3.56) (4.08)

3 3.90 9.56e-04 0.48

500

0 1.96 6.91 9.81

1
1.91 5.47 8.52

(1.97) (6.87) (9.59)

2
2.01 2.80 3.97

(2.87) (5.57) (7.03)

3 1.74 1.42 1.62
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Table 5

Comparison between proposed estimators and (circular local likelihood ones) in terms of
average integrated squared errors (×1000) over 500 samples of sizes 100 or 500 drawn from

a 0.5wN(−2π/5, 1) + 0.5wN(2π/5, 1) population. Median and mean of the smoothing
degrees selected by least-squares cross-validation.

Sample
size

Polynomial
degree

IMSE×1000 median of
bandwidths

mean of
bandwidths

100

0 6.67 2.74 4.60

1
6.33 2.11 4.38

(6.89) (2.70) (5.32)

2
10.08 2.96 3.78

(10.96) (3.28) (3.93)

3 6.88 1.10 1.33

500

0 1.76 6.22 8.63

1
1.83 3.98 6.31

(1.80) (6.26) (8.57)

2
2.07 3.44 4.34

(2.80) (5.65) (6.78)

3 1.57 1.87 2.29

Table 6

Comparison between proposed estimators and (circular local likelihood ones) in terms of
average integrated squared errors (×1000) over 500 samples of sizes 100 or 500 drawn from
a 19/20wN(0, 1) + 1/20wN(1, 0.2) population. Median and mean of the smoothing degrees

selected by least-squares cross-validation.

Sample
size

Polynomial
degree

IMSE×1000 median of
bandwidths

mean of
bandwidths

100

0 8.97 5.30 9.22

1
6.61 1.61 3.36

(9.31) (5.20) (9.09)

2
11.08 3.70 5.21

(11.23) (2.76) (3.93)

3 8.66 2.01 2.70

500

0 2.92 11.90 19.99

1
2.79 1.58 1.59

(3.11) (12.40) (21.21)

2
3.11 4.91 7.80

(3.59) (6.04) (8.94)

3 2.82 2.54 4.47
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4.2. Slope and curvature estimation

Using the same samples as the first case study, we have additionally estimated
first and second derivatives. The results are reported in Figures 4 and 5. We see
that the interpretation given in Section 4.1 largely applies. Recalling that when
p is even we have same odd derivative estimators as in the p− 1 degree case, we
show in Figure 4 only two curves.

Fig 4. log(IMSE) for a range of values of κ for p = 1 and p = 2 (solid), p = 3 and p =
4 (dashed) for 500 samples of size n = 1000 from a vM(0, 1) (left) and vM(0, 5) (right)
comparing the first derivative estimation.

Fig 5. log(IMSE) for a range of values of κ for p = 2 (solid), p = 3 (dashed) and p = 4 (dotted)
for 500 samples of size n = 1000 from a vM(0, 1) (left) and vM(0, 5) (right) comparing the
second derivative estimation.
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4.3. Application

To illustrate the methods on some real data we consider the arrival times of
delayed planes in 2008. The full dataset is available from [7], but here we focus
on two airlines (American Airlines and Continental) and one airport (Atlanta).
The arrival times are converted to the 24-hour clock (which is periodic) and all
days of the year are included in the analysis. Overall, there were 2676 (AA) and
1278 (CO) delayed flights. A brief examination of the data shows that arrival
times are recorded to an integer number of minutes, and there is a tendency to
round to the nearest 5 minutes.

We considered density estimation with polynomial degrees p = 0, 1 and 2,
with smoothing parameters chosen by least squares cross-validation. The many
coincident values in the data led to cross-validation selection of κ which diverged,
so we “jittered” both datasets by adding random von Mises quantities with
concentration 15.

Fig 6. Density estimation of arrival times of delayed flights for American Airlines (black)
and Continental Airlines (red) using sin-polynomial degree p = 0 (continuous) and p = 1
(dashed). The smoothing parameters were chosen by least-squares cross-validation.

The resulting density estimates of the arrival times are shown in Figure 6.
The results for p = 2 are not shown as they were very similar to the case p = 0
for both datasets. Of course, the actual arrival times (even for delayed flights)
will be closely related to scheduled arrivals and for the passengers the number
of minutes delay is the most important information, but we note that the p = 1
probability density estimates are, in general, smoother than those for p = 0. We
can also note a tendency for later arrival times — a sort of shift in the day — for
American Airlines, relative to Continental Airlines. The smoothing parameters
were 25.4 and 139.1 for p = 0 (AA and CO) and 3.13 and 1.84 for p = 1 (AA
and CO) — it is interesting to observe that the magnitude is greater for CO for
p = 0, but greater for AA for p = 1.
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5. Discussion

In this paper we propose closed form estimators derived as a solution of a sys-
tem of estimating equations. Other than having nice theoretical properties, our
estimators seem to work satisfyingly in practical situations. As the consequence,
methods for non-parametrically estimating a circular density, more sophisticated
than traditional estimator presented in [6], seem a promising research field to
pursue. We also introduce in circular statistics both simple formulas for local
estimation of density derivatives and theory for the case of dependent observa-
tions.

Our method makes possible to efficiently employ a priori information on the
smoothness of a circular density, especially when the curvature of the target
population is pronounced. Surely, such a higher order differentiability can re-
veal a disadvantage for making local moments less generally applicable than
traditional circular kernel method.

A promising development for our approach could lie in replacing our series
expansion by a circular parametric family. Here we would estimate optimal
smoothing along with the density parameters. This would amount to a totally
parametric method in correspondence of a null concentration of the kernel, as
opposite to the situation described in Remark 2.1.

Appendix

Proof of Result 3.1. For odd (even, respectively) p, the result follows by observ-
ing that the approximation of E[C�(θ)] and E[S�(θ)], for � ∈ (1, . . . , (p + 1)/2)
(� ∈ (0, . . . , p/2), resp.), by expansion (2) for f around θ up to order (p + 1)
((p+ 2), resp), yields

E[C�(θ)] =
rp∑
j=0

cj�(θ)f
(j)(θ) + o

(
c
rp
� (θ)

)
,

and

E[S�(θ)] =

rp∑
j=0

sj�(θ)f
(j)(θ) + o

(
s
rp
� (θ)

)
,

with rp := p+ 1 (rp := p+ 2, resp.).

Proof of Result 3.2. Equation (3.1) easily follows by the formulation of f̂(θ; p),
while results for covariance components are obtained by using the first term of
expansion (2) to approximate f around θ.

Proof of Result 3.3. For p = 0 and p = 1, starting from the closed form of
f̂(θ; 0), and f̂(θ; 1) respectively, expansion (2) up to the second order leads to

the result. Starting from formula (2.6), and using the bias results for f̂(θ; 0),

and f̂(θ; 1), we find that the second-order bias of f̂(θ; 2) is zero. Then, using
expansion (2) up to the fourth order yields the asymptotic bias.
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Proof of Result 3.4. When p = 0, the asymptotic variance directly follows by
using the first term of expansion (2) for f around θ in

Var[f̂(θ; 0)] =
1

n

∫ π

−π

K2
κ(α− θ)f(α)dα− 1

n

{∫ π

−π

Kκ(α− θ)f(α)dα

}2

,

along with the fact that for a von Mises kernel one has∫ π

−π

K2
κ(α)dα =

I0(2κ)
2πI2

0 (κ)
.

When p = 1, by applying (3.1) withM11 = s11(θ),M21 = c11(θ), V1 = c01(θ)s
1
1(θ)−

s01(θ)c
1
1(θ), where

c01(θ) =
I1(κ) cos(θ)

I0(κ)
, s01(θ) =

I1(κ) sin(θ)
I0(κ)

,

c11(θ) = −I1(κ) sin(θ)
κI0(κ)

, s11(θ) =
I1(κ) cos(θ)

κI0(κ)
,

and, using the first term of expansion (2) for f around θ,

Var[a11] = Var[C1(θ)] =
f(θ)

n

{
I0(2κ) + I2(2κ) cos(2θ)

4πI2
0 (κ)

}
+O

(
1

n

)
,

Var[a21] = Var[S1(θ)] =
f(θ)

n

{
I0(2κ)− I2(2κ) cos(2θ)

4πI2
0 (κ)

}
+O

(
1

n

)
,

Cov[a11, a21] = Cov[C1(θ),S1(θ)] =
f(θ)

n

I2(2κ) sin(2θ)
4πI2

0 (κ)
+O

(
1

n

)
.

The same result can be obviously obtained also starting from equation (2.8).
When p = 2, the asymptotic variance can be easily obtained starting from
formulation (2.6), and using (3.2) and (3.3) along with

Cov[f̂(θ; 0), f̂(θ; 1)] =
f(θ)

n

I1(2κ)
2πI0(κ)I1(κ)

+O

(
1

n

)
.

Proof of Result 3.5. For κ big enough we have that, for p ∈ (0, 1),

Bias[f̂(θ; p)] =
1

2κ
f (2)(θ)+o

(
1

κ

)
and Var[f̂(θ; p)] =

f(θ)

n

√
κ

4π
+o

(√
κ

n

)
,

while

Bias[f̂(θ; 2)] = − 1

8κ2
f (4)(θ) + o

(
1

κ2

)
and

Var[f̂(θ; 2)] =
f(θ)

n

27

16

√
κ

4π
+ o

(√
κ

n

)
.

By minimising the resulting asymptotic mean integrated squared errors over κ
we get the results.
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Proof of Result 3.6. First of all, when κ is big enough, the following simple
expressions hold respectively for odd j

cj�(θ) ≈
−�OF(j) sin(�θ)

j!κ(j+1)/2
, sj�(θ) ≈

�OF(j) cos(�θ)

j!κ(j+1)/2
, (5.1)

and even j

cj�(θ) ≈
OF(j − 1) cos(�θ)

j!κj/2
, sj�(θ) ≈

OF(j − 1) sin(�θ)

j!κj/2
, (5.2)

where OF stands for the Odd Factorial, defined by OF(2r) := (2r−1)(2r−3) . . . 1,

r ∈ N. As a consequence, in virtue of Result 3.1 the bias of f̂(θ; p) isO(κ−(p+1)/2)
for odd p, while it is O(κ−(p+2)/2) for even p. For the variance components,
it results P (�,m) = I�−m(2κ)/I2

0 (κ), and Q(�,m) = I�+m(2κ)/I2
0 (κ). Then,

starting from equation (3.1), using approximations (5.1) and (5.2) along with
the fact that each of the above quantities have magnitude O(

√
κ/n), it can

be shown that the asymptotic variance of f̂(θ; p) has magnitude O(
√
κ/n) for

whatever polynomial order p. Combining this result with the asymptotic bias
results, we find that the value of κminimising the asymptotic mean squared error
of f̂(θ; p) has order respectively O(n2/(1+2(p+1))) for odd p, and O(n2/(1+2(p+2)))
for even p.

Proof of Result 3.7. For s ∈ (1, . . . , n), and integer � let

C�(θ,Θs) := Kκ(Θs − θ) cos(�Θs), and S�(θ,Θs) := Kκ(Θs − θ) sin(�Θs),

and using again q as the integer part of (p+ 1)/2, for even p define

L′
s := (C0(θ,Θs) C1(θ,Θs) S1(θ,Θs) . . . Cq(θ,Θs) Sq(θ,Θs)),

and let As,p be defined as Ap but with the first column replaced by Ls. Moreover,
for odd p, let Os be defined as Ls but with the first element omitted, and let
Cs,p be the same as Cp but with the first column replaced by Os.

Then, by stationarity, for even p

Var[f̂(θ; p)] =
1

|Bp|2

{
1

n
Var[|A1,p|] +

2

n

n−1∑
s=1

(
1− s

n

)
Cov[|A1,p|, |As+1,p|]

}
,

(5.3)
while, for odd p, the above identity holds with D and C in place of B and A,
respectively. Here we consider the case of even p, while the case of odd p can be
easily obtained by following the same reasoning with due modifications. Notice
that the first summand in the RHS of (5.3) corresponds to the variance of
estimator for the i.i.d. case, which, when the von Mises kernel is employed, has
magnitude O(

√
κ/n). Then, we have to show that the covariance term reflecting

the extra-variability due to the dependence is o(
√
κ/n).

To this end, notice that, for even p

Cov[|A1,p|, |As+1,p|] =
p+1∑
i=1

p+1∑
j=1

(−1)i+jMi1Mj1Cov[ai1,1, aj1,s+1],



Nonparametric moment-based circular density estimation 4345

where aij,s stands for the (i, j)th entry of As,p, and Mij is defined as in the
statement of Result 3.2. We now reason in a similar way as in the proof of
Theorem 5.1 in [4]. In particular, we firstly note that, due to the boundedness
of sine and cosine, it holds that

|Cov[ai1,1, aj1,s+1]| ≤ E[ai1,1aj1,s+1] + E[ai1,1]
2 ≤ ‖g‖∞ + E[ai1,1]

2

then, in virtue of assumption ii), for a sequence of integers un → ∞ and a
constant Q2, we have

un∑
s=1

|Cov[|A1,p|, |As+1,p|]| ≤ unQ2. (5.4)

Moreover, the use of Billingsley’s inequality leads to

|Cov[ai1,1, ai1,s+1]| ≤ 4α(s)‖ai1,1‖∞‖ai1,s+1‖∞ ≤ 4α(s)‖Kκ‖2∞,

and observing that for κ big enough I0(κ) � eκ/
√
2πκ, and recalling assumption

i), we find that, for some constant Q4,

n−1∑
s=un

|Cov[|A1,p|, |As+1,p|]| ≤ Q4

∞∑
s=un

s−λκ = O(u−λ+1
n κ). (5.5)

Now, letting un = κλ/4, recalling assumption i), equations (5.4) and (5.5) yield
the result.

References

[1] Di Marzio, M. and Taylor, C. C. (2009). Using small bias nonparametric
density estimators for confidence interval estimation. Journal of Nonpara-
metric Statistics, 21:2, 229–240. MR2488156

[2] Di Marzio, M., Panzera, A. and Taylor, C. C. (2011). Kernel density es-
timation on the torus. Journal of Statistical Planning and Inference, 141,
2156–2173. MR2772221

[3] Di Marzio, M., Fensore, S., Panzera, A. and Taylor, C. C. (2016). Practical
performance of local likelihood for circular density estimation. Journal of
Statistical Computation and Simulation, 86, 2560–2572. MR3511013

[4] Fan, J. and Yao, Q. (2003). Nonlinear Time Series: Nonparametric and
Parametric Methods. New York: Springer-Verlag. MR1964455

[5] Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap
confidence intervals for a probability density. The Annals of Statistics, 20,
675–694. MR1165587

[6] Hall, P., Watson, G. S. and Cabrera, J. (1987). Kernel density estimation
with spherical data. Biometrika, 74, 751–762. MR0919843

[7] Kaggle. Airlines Delay: Airline on-time statistics and delay causes. www.
kaggle.com/giovamata/airlinedelaycauses

http://www.ams.org/mathscinet-getitem?mr=2488156
http://www.ams.org/mathscinet-getitem?mr=2772221
http://www.ams.org/mathscinet-getitem?mr=3511013
http://www.ams.org/mathscinet-getitem?mr=1964455
http://www.ams.org/mathscinet-getitem?mr=1165587
http://www.ams.org/mathscinet-getitem?mr=0919843
www.kaggle.com/giovamata/airlinedelaycauses
www.kaggle.com/giovamata/airlinedelaycauses


4346 M. Di Marzio et al.

[8] Oliveira, M., Crujeiras, R. M. and Rodŕıguez-Casal A. (2012). A plug-in
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