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the false positive rate (type I error) and false negative rate (type II error)
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signals without assuming the minimum nonzero signal strength condition.
Favorable finite sample performances over the �2-penalized least-squares
estimator and the unstructured maximum likelihood estimator are shown
on simulated data. We also provide two real examples on estimating the de-
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1. Introduction

Vector autoregression (VAR) is a basic tool in multivariate time series analysis
and it has been extensively used to model the cross-sectional and serial depen-
dence in various applications from economics and finance [31, 3, 4, 10, 32, 14,
34, 13, 1]. There are two fundamental limitations of the vector-autoregressive
models. First, conventional methods to estimate the transition matrix of a VAR
model are based on the least squares (LS) estimator and the maximum likeli-
hood estimator (MLE), in which the parameter estimation is consistent when
the sample size increases and the model size is fixed [8, 25]. Since the number
of parameters grows quadratically in the number of time series variables, the
VAR model typically includes no more than ten variables in many real appli-
cations [18]. However, due to the recent explosive data enrichment, analysis of
panel data with a few hundred variables is often encountered, in which the LS
and MLE are not suitable even for a moderate problem size. Second, stationar-
ity plays a major role in the VAR model. Therefore, the stationary VAR does
not capture the time-varying underlying data generation structures, which have
been observed in a broad regime of applications in economics and finance [2, 27].

Motivated by the limitations of the VAR, this paper studies the estimation
problems of the time-varying VAR (TV-VAR) model for high-dimensional time
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series data. Let Xd×n = (x1, · · · ,xn) be a sequence of d-dimensional observa-
tions generated by a mean-zero TV-VAR of order 1 (TV-VAR(1))

xi = A(i/n)xi−1 + ei, (1.1)

where A(t), t ∈ [0, 1], is a d× d matrix-valued deterministic function consisting
of the transition matrices Ai := A(i/n) at evenly spaced time points and ei
are independent and identically distributed (iid) mean-zero random errors, i.e.
innovations. In this paper, our main focus is to estimate the transition matrices
Ai for the TV-VAR(1) and the extension to higher-order VAR is straightforward.
Indeed, for a general TV-VAR of order k ≥ 1

xi = Ai,1xi−1 +Ai,2xi−2 + · · ·+Ai,kxi−k + ei,

we can rewrite zi = (x�
i , · · · ,x�

i−k+1)
� at time i = k, k + 1, · · · , n, as a TV-

VAR(1) in the augmented space

zi = Aizi−1 + ẽi,

where

Ai =

⎛
⎜⎜⎜⎜⎜⎝

Ai,1 Ai,2 · · · Ai,k−1 Ai,k

Id×d 0d×d · · · 0d×d 0d×d

0d×d Id×d · · · 0d×d 0d×d

...
...

...
...

...
0d×d 0d×d · · · Id×d 0d×d

⎞
⎟⎟⎟⎟⎟⎠ , ẽi =

⎛
⎜⎜⎜⎝

ei
0d×1

...
0d×1

⎞
⎟⎟⎟⎠ ,

Id×d is the d× d identity matrix and 0d×d′ is the d× d′ zero matrix. Then, we
need only to estimate the first d rows in Ai.

To make the estimation problem feasible for high-dimensional time series
when d is large, it is crucial to carefully regularize the coefficient matrices Ai.
The main idea is to use certain low-dimensional structures in Ai and the degree
of freedom of (1.1) can be dramatically reduced. In our problem, we assume
two key structures in Ai. First, since our goal is to estimate a sequence of
transition matrices, which can be viewed as the discrete version of a matrix-
valued function, it is natural to impose the smoothness condition to A(t). In
this case, (1.1) is closely related to the locally stationary processes, a general
class of non-stationary processes proposed by [15]. Examples of other linear and
nonlinear locally stationary processes can be found in [11]. In particular, let
i0 = 1, · · · , n, be any time point and t0 = i0/n. Then, under suitable regularity
conditions [16], there exists a stationary process x̃i(t0) such that for all j =
1, · · · , d,

|Xij − X̃ij(t0)| = OP(|i/n− t0|+ 1/n),

where Xij and X̃ij(t0) are the j-th element of xi and x̃i(t0) respectively, and

x̃i(t0) = A(t0)x̃i−1(t0) + ei.
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Therefore, xi is an approximately stationary VAR process x̃i(t0) in a small
neighborhood of t0.

Second, at each time point i = 1, · · · , n, we need to estimate a d× d matrix.
There have been different structural options in literature, such as the sparse
[21, 35, 33, 30], banded [19], and low-rank [22] transition matrix, all of which
only considered the stationary VAR model. In this paper, we consider a sequence
of sparse transition matrices and we allow the sparsity patterns to change over
time. Note that our problem is also different from the emerging literature for
estimating the high-dimensional covariance matrix and its related functionals
of time series data [11, 12, 37, 5], since our goal is to directly estimate the data
generation mechanism specified by A(·).

To simultaneously address the two issues, we propose a hybridized method
of the nonparametric smoothing technique and �1-regularization to estimate the
sparse transition matrix of the locally stationary VAR. The proposed method
is equivalent to solving a sequence of large numbers of linear programs and
therefore the estimates can be efficiently obtained by using the high-performance
(i.e. parallel) computing technology; see Section 2 for details. In Section 3, we
establish the rate of convergence under suitable assumptions on the smoothness
of the covariance function and the sparsity of the transition matrix function A(·).
Specifically, the dimension d is permitted to increase sub-exponentially fast in
the sample size n to obtain consistent estimation, i.e. d = o(exp(n)). In addition,
we also prove that when our estimator is followed by thresholding, type I and
type II errors in the pattern recovery asymptotically vanish in the presence
of weak signals. In contrast with the existing literature on consistent model
selection, we do not require the minimum nonzero signal strength to be bounded
away from zero. Simulation studies in Section 4 and two real data examples in
Section 5 demonstrate favorable performances and more interpretable results of
the proposed TV-VAR model. Technical proofs are deferred to Section 6.

We fix the notations that will be used in the rest of the paper. Let M be a
generic matrix, I ⊂ N is an index subset, [M ]∗I and [M ]I∗ be the submatrix
of M with columns and rows indexed by I, resp. Denote J = {1, · · · , d}. Let
ρ(M) = sup|v|=1 |Mv| be the spectral norm of M . |M |1, |M |∞ and |M |F are

the entry �1, �∞ and Frobenius norm of M , resp. |M |�1 = maxj≤d

∑d
k=1 |Mjk|

and |M |�∞ = maxk≤d

∑d
j=1 |Mjk| are the matrix �1 and �∞ norm of M , resp.

supp(M) = {(�, j) : M�j �= 0} is the support of M and |S| is the number
of nonzeros in the support set S. For q > 0 and a random variable (r.v.) X,
‖X‖q = (E|X|q)1/q and we say that X ∈ Lq iff ‖X‖q < ∞. Write ‖X‖ = ‖X‖2.
Denote a ∧ b = min(a, b) and a ∨ b = max(a, b). If a and b are vectors, then the
maximum and minimum are interpreted element-wise.

2. Method and algorithm

For m ∈ Z, let Σi,m = Cov(xi,xi+m) = E(xix
�
i+m). Then

Σi−1,1 = Σi−1,0A
�
i and Σi,−1 = AiΣi−1,0. (2.1)
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Therefore, for any estimator, say Âi, that is reasonably close to the true co-
efficient matrices Ai, we must have (Σi−1,1 − Σi−1,0Â

�
i ) ≈ 0d×d and (Σi,−1 −

ÂiΣi−1,0) ≈ 0d×d. A naive estimator for Ai would be constructed to invert the
sample versions of (2.1). Estimators of this kind do not have good statistical
properties in high-dimensions because of the ill-conditioning and the dependence
information in Ai is not directly used in estimation. If Ai is known to be sparse
as a priori, we may consider the following constrained minimization program

minimizeΛ∈Rd×d |Λ|1 (2.2)

subject to |Σi−1,1 − Σi−1,0Λ|∞ ≤ τ

|Σi,−1 − Λ�Σi−1,0|∞ ≤ τ.

Because Σi,1 and Σi,0 are unknown, the solution of (2.2) is an oracle estimator
and therefore it is not implementable in practice.

Let A(·) be the continuous version of Ai, i = 1, · · · , n, in (1.1), and fix a
t ∈ (0, 1). To estimate A(t), we first estimate Σi,1 and Σi,0 in (2.1) by their
empirical versions. Let

Σ̂t,� =

n∑
m=1

w(t,m)xmx�
m+�, � = −1, 0, 1, (2.3)

be the kernel smoothed estimator of Σi,0,Σi,1 and Σi,−1, where w(t,m) are
the nonnegative weights. Here, we consider the Nadaraya-Watson smoothed
estimator

w(t,m) =
K( t−m/n

bn
)∑n

�=1 K( t−�/n
bn

)
, (2.4)

whereK(·) is a nonnegative bounded kernel function with support in [−1, 1] such

that
∫ 1

−1
K(v)dv = 1 and bn is the bandwidth parameter. We assume throughout

the paper that the bandwidth satisfies the natural conditions: bn = o(1) and
n−1 = o(bn). Then, our estimator Â(t) is defined as the transpose of the solution
of

minimizeΛ∈Rd×d |Λ|1 (2.5)

subject to |Σ̂i−1,1 − Σ̂i−1,0Λ|∞ ≤ τ

|Σ̂i,−1 − Λ�Σ̂i−1,0|∞ ≤ τ.

Observe that (2.5) is equivalent to the following d optimization sub-problems

β̂j(t) = arg min
u∈Rd

|u|1 (2.6)

subject to |[Σ̂i−1,1]∗j − Σ̂i−1,0u|∞ ≤ τ

|[Σ̂i,−1]j∗ − u�Σ̂i−1,0|∞ ≤ τ

in that [Â(t)]j∗ = β̂j(t)
�. Since the d sub-problems (2.6) can be independently

solved, we can efficiently compute the solution of (2.5) by parallelizing the op-
timizations of (2.6). In addition, each sub-problem in (2.6) can be recasted as a
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linear program (LP)

minimizev,u∈R
d
+

|v|1 + |w|1
subject to −Σ̂i−1,0v + Σ̂i−1,0w ≤ τ −max{[Σ̂i−1,1]∗j , [Σ̂i−1,−1]

�
∗j}

Σ̂i,0v − Σ̂i−1,0w ≤ τ +min{[Σ̂i,1]∗j , [Σ̂i,−1]
�
∗j}

so that β̂j(t) = v̂− ŵ, where (v̂, ŵ) is the nonnegative solution of the LP. Note
that (2.6) can be efficiently solved by the simplex algorithm [26]. Compared with
the estimation of sparse transition matrix for the stationary VAR model [21],
our estimator requires to solve two sample versions of Yule-Walker equations in
(2.1) and (2.5) due to the non-stationarity and therefore two-sided constraints
of the estimator Â(t) are needed in (2.5).

3. Asymptotic properties

3.1. Locally stationary VAR process in L2

To establish an asymptotic theory for estimating the continuous matrix-valued
transition function A(·) of the non-stationary VAR, it is more convenient to
model the time series as realizations from a continuous d-dimensional process.
Following the framework of [17], x1, · · · ,xn are viewed as realizations of the
continuous d-dimensional process x(t) = (X1(t), · · · , Xd(t))

�, t ∈ [0, 1], on the
discrete grid ti = i/n, i = 1, · · · , n, i.e. x(i/n) = A(i/n)x((i − 1)/n) + e(i/n)
and the temporal dependence of xi is carried out on the rescaled time indices ti.

Definition 3.1 (Locally stationary VAR process in L2). A mean-zero non-
stationary VAR process {xi; i = 1, · · · , n} in R

d of the form (1.1) is said to be
locally stationary in L2, or weakly locally stationary, if for every i = 1, · · · , n and
t = i/n, there exists a mean-zero stationary VAR process {x̃m(t);m = 1, · · · , n}
given by

x̃m(t) = A(t)x̃m−1(t) + em (3.1)

such that for all m = 1, · · · , n,

max
1≤j≤d

‖X̃mj(t)−Xmj‖ ≤ C

(∣∣∣m
n

− t
∣∣∣+ 1

n

)
(3.2)

and the constant C > 0 does not depend on d,m, and n.

Note that the approximating stationary VAR process in Definition 3.1 gen-
erally depends on t. As suggested by the Yule-Walker equations (2.1), given a
fixed time of interest, estimation of A(t) relies on an estimate of Σt,�. Consider
� = 0 and let Σ(t) = Σt,0 be the matrix-valued covariance function at lag-zero.
With a finite number of observations x1, · · · ,xn, it is unclear how to define the
covariance function Σ(·) off the n points ti = i/n. Nevertheless, the weakly lo-
cally stationary VAR processes provide a natural framework for extending Σ(ti)
to Σ(t) for all t ∈ (0, 1).
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Since A(·) is continuous on [0, 1], the stationary VAR process in (3.1) is
defined for all t ∈ (0, 1). Let Σ̃(t) = E[x̃m(t)x̃m(t)�]. By (3.2) and the Cauchy-
Schwarz inequality, we have for each j, k = 1, · · · , d,

|σjk(ti)− σ̃jk(ti)| = |E(XijXik)− E(X̃ij(ti)X̃ik(ti))|
≤ ‖Xij‖2 · ‖Xik − X̃ik(ti)‖+ ‖X̃ik(ti)‖ · ‖Xij − X̃ij(ti)‖
≤ (‖Xij‖2 + ‖X̃ik(ti)‖) max

1≤j≤d
‖Xij − X̃ij(ti)‖

≤ Cn−1,

where the constant C here is uniform in j, k = 1, · · · , d and i = 1, · · · , n.
Therefore, we get

Σ(ti) = Σ̃(ti) +O(n−1).

Letting n → ∞ and by the continuity of A(·), we can extend Σ(t) = Σ̃(t) for all
t ∈ (0, 1). Similar extension can be done for Σt,� for � = ±1. In Section 3.2, it
will be shown that the asymptotic theory of estimating A(t), t ∈ (0, 1) depends
on the smoothness of the weakly locally stationary VAR processes only through
the smoothness of Σ(t) and therefore A(t).

3.2. Rate of convergence

In this section, we characterize the rate of convergence of our estimator (2.5)
under various matrix norms. We assume d ≥ 2. To study the asymptotic prop-
erties of the proposed estimator, we make the following assumptions on model
(1.1).

1. The coefficient matrices are sparse: let 0 ≤ α < 1, for each i = 1, · · · , n,

Ai ∈ Gα(s,Md) = G|
α(s,Md) ∩ G−

α (s,Md), (3.3)

where

G|
α(s,Md) =

{
Θ ∈ R

d×d : max
j≤d

d∑
�=1

|Θ�j |α ≤ s, |Θ|�1 ≤ Md

}
,

G−
α (s,Md) =

{
Θ ∈ R

d×d : max
�≤d

d∑
j=1

|Θ�j |α ≤ s, |Θ|�∞ ≤ Md

}
.

2. The marginal and lag-one covariance matrix processes {Σ0(t)}t∈[0,1] and

{Σ1(t)}t∈[0,1] are smooth functions in R
d×d: Σ�,jk(t) ∈ C2([0, 1]), � = 0, 1,

where C2([0, 1]) is the class of functions defined on [0, 1] that are twice
differentiable with bounded derivatives uniformly in j, k = 1, · · · , d.

3. The random innovations ei = (ei1, · · · , eid)� have iid components and

sub-Gaussian tail: P(|eij | ≥ x) ≤ Ce−cx2

for all x > 0.
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Before proceeding, we discuss the above assumptions. (3.3) requires that the
transition matrices are sparse in both columns and rows at all time points.
A similar matrix class defined by (3.3) was first proposed in [7] for symmetric
matrices and it has been widely used for estimating high-dimensional covariance
and precision matrix; see e.g. [9, 11]. If α = 0, then the maximum number of
nonzeros in columns and rows of Ai is at most s. Assumption 2 requires that
the marginal and lag-one covariance matrices evolve smoothly in time. The
smoothness is not defined directly on A(·) for the ease of theorem statements.
In view of (3.2), Assumption 2 is implied by the smoothness on Ai under extra
regularity conditions. For a generic matrix M(t) parameterized by t ∈ (0, 1), we
let Ṁ(t) and M̈(t) be the first two element-wise derivatives of M(t) w.r.t. t.

Lemma 3.1. Assume that supt∈[0,1] |A(t)|�1 < 1. Then we have

|Σ̇(t)|∞ ≤ 2|Ȧ(t)|∞ · |A(t)|�1 · |Σ(t)|�1
1− |A(t)|2�1

(3.4)

and

|Σ̈(t)|∞ ≤ 8|Ȧ(t)|∞ · |A(t)|2�1 · |Ȧ(t)|�1 · |Σ(t)|�1
(1− |A(t)|2�1)2

(3.5)

+
4max{|Ȧ(t)|∞, |Ä(t)|∞} ·max{|A(t)|�1 , |Ȧ(t)|�1} · |Σ(t)|�1

1− |A(t)|2�1
.

By Lemma 3.1, if supt∈[0,1] |A(t)|�1 < 1 and Ajk(·) ∈ C2([0, 1]) such that

supt∈[0,1] |Ȧ(t)|�1 ∨ |Σ(t)|�1 ≤ K for some constant K, then Σjk(·) is also a

C2([0, 1]) function and therefore Assumption 2 is fulfilled.
Assumption 3 specifies the tail probability of the innovations ei. In [21], ei’s

follow iid N(0,Ψ) for some error covariance matrix Ψ. A simple transforma-
tion by Ψ−1/2 will reduce to the case that ei has iid components with the
standard normal distribution, a special case of Assumption 3, which covers the
sub-Gaussian innovations.

Theorem 3.2. Let ρ̄ = supi≥0 ρ(Ai). Fix an i ∈ [nbn + 1, n(1 − bn) + 1].
Suppose that Assumption 1,2,3 are satisfied, ρ̄ < 1 and Ai ∈ Gα(s,Md). Then,
with probability at least 1−2d−1, we have the estimator Âi with tuning parameter
τ ≥ C(1 +Md)(b

2
n +

√
(log d)/(nbn)) obeys

|Âi −Ai|∞ ≤ 2τ |Σ−1
i−1,0|�1 , (3.6)

ρ(Âi −Ai) ≤ C(α)s(τ |Σ−1
i−1,0|�1)1−α, (3.7)

d−1|Âi −Ai|2F ≤ C(α)s(τ |Σ−1
i−1,0|�1)2−α. (3.8)

From Theorem 3.2, the bandwidth bn � ((log d)/n)−1/5 gives the optimal rate
of convergence and the resulting tuning parameter τ ≥ C(1+Md)((log d)/n)

−2/5.
When d is fixed, it is known that the optimal bandwidth in the nonparametric
kernel density estimation is n−1/5 for twice continuously differentiable functions
under the mean integrated square error. So in the high-dimensional context, the
dimension only has a logarithm impact on the choice of optimal bandwidth.
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3.3. Pattern recovery

We also study the recovery of time-varying patterns using the estimator (2.5).
Let Si = supp(Ai) be the nonzero positions of Ai. If the nonzero entries of Ai are
small enough, then it is impossible to accurately distinguish the small nonzeros
and the zeros. Therefore, the best hope we can expect is that the nonzero entries
of Ai with large magnitudes can be well separated from the zeros in Ai. Let

u� = 2τ |Σ−1
i−1,0|�1 , (3.9)

where τ is determined in Theorem 3.2. We use the thresholded version of (2.5)
as an estimator of Si

Ŝi = Tu�
(Âi) = {1(|Âi,jk| > u�)}dj,k=1. (3.10)

By Theorem 3.2, the maximal fluctuation |Âi − Ai|∞ is controlled by u� with

probability at least 1− 2d−1. So if we apply a thresholding procedure for Âi at
the level u�, then we expect that the zeros and non-zeros with magnitudes larger

than 2u� in Ai can be identified by the thresholded support of Âi. Precisely, we
have the instantaneous partial recovery consistency.

Theorem 3.3. Assume that Assumption 1,2,3 are satisfied. Then, for any fixed
time points i ∈ [nbn + 1, n(1− bn) + 1], P(Ŝi ⊂ Si) ≥ 1− 2d−1 and P({(m, k) :
|Ai,mk| > 2u�} ⊂ Ŝi) ≥ 1− 2d−1.

Theorem 3.3 states that, with high probability, the zeros in Ai can be iden-
tified and the nonzero entries in Ai with strong signal strength above 2u� can

be recovered by Ŝi. Therefore, the false positives (type I error) of the estima-
tor (3.10) are asymptotically controlled; see Theorem 3.5 for precise statement.
However, Theorem 3.3 does not provide too much information regarding the false
negatives since there is no characterization of the signal strength in (0, 2u�).

Let β > 0 and u0 ∈ (0, 1). We introduce the following d× d matrix class

Gα,β(s,Md, Ld)

=Gα(s,Md) ∩
{
Θ :

|{(m, k) : |Θmk| ∈ (0, u)}|
|supp(Θ)| ≤ Ldu

β , ∀0 < u < u0

}
. (3.11)

For A ∈ Gα,β(s,Md, Ld), the parameters β and Ld control the proportion of
small entries in the support of A. If β is large and Ld grows slowly, then the
fraction of weak signals in A is small and therefore the false negatives (type II
error) can also be well controlled. Below, we shall give such an example.

Example 3.1 (A spatial design). Let 0 < r < 1. Consider a d × d symmetric
matrix A = (Amk)d×d that is generated by the covariance function of a spa-
tial process Z1, Z2, ..., Zd, which is a random vector that is observed at sites
h◦
1, ..., h

◦
d ∈ D in some spatial domain D. Assume that the covariance between

Zm and Zk,m, k = 1, · · · , d satisfies

Amk := cov(Zm, Zk) =

{
f(π(h◦

m, h◦
k)) π(h◦

m, h◦
k) <

d1−r

2

0 π(h◦
m, h◦

k) ≥ d1−r

2

, (3.12)
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where π(h◦
m, h◦

k) is the distance between the sites h◦
m and h◦

k

π(h◦
m, h◦

k) =
|m− k|

dr
(3.13)

and f is a real-value covariance function. Here, we consider the rational quadratic
covariance function [11, 36]

f(π(h◦
m, h◦

k)) =
1

(1 + π(h◦
m, h◦

k)
2)γ

, γ > 1. (3.14)

In this example, Amk = 0 if |m− k| ≥ d/2, so A is a banded matrix.

Lemma 3.4. For A in Example 3.1, then there exists a large enough constant
C > 0 depending only on r, α, γ such that A ∈ Gα,β(s,Md, Ld), where

s =

⎧⎨
⎩

Cdr log d if 2γα = 1
Cdr if 2γα > 1
Cdrd(1−r)(1−2γα) if 0 < 2γα < 1

, (3.15)

Md =

⎧⎨
⎩

Cdr log d if γ = 1/2
Cdr if γ > 1/2
Cdrd(1−r)(1−2γ) if 0 < γ < 1/2

, (3.16)

and Ld = Cd2(1−r)γβ.

For any fixed distance parameter r ∈ (0, 1), the weak signal parameter Ld has
a natural dependence on γ. If γ is smaller, then the covariance function f decays
to zero slower and there is a less fraction of weak signals in A. This can allow Ld

to grow slowly in d. Note that class Gα,β(s,Md, Ld) is much less stringent than
the widely used condition for support recovery and model selection in literature,
which requires that the minimal nonzero signal strength is uniformly bounded
away from zero [28]. To quantify the error in the pattern recovery, we use the
following two error rate measures.

Definition 3.2. The false positive rate (FPR) and false negative rate (FNR)
of Ŝi are defined as

FPRi =
|Ŝi ∩ Sc

i |
|Sc

i |
, FNRi =

|Ŝc
i ∩ Si|
|Si|

. (3.17)

By convention, if Sc
i = ∅, then FPRi = 0; if Si = ∅, then FNRi = 0.

If FPRi = FNRi = 0 with probability tending to one, which is a very strong
requirement, then we have the pattern recovery consistency P(Ŝi = Si) → 1.
Below, we show that both FPR and FNR are asymptotically controlled in the
presence of weak signals.

Theorem 3.5. Assume that Assumption 1,2,3 are satisfied. Fix an i ∈ [nbn +
1, n(1 − bn) + 1]. If Ai ∈ Gα(s,Md), then we have P(FPRi = 0) ≥ 1 − 2d−1.

If in addtiion Ai,m ∈ Gα,β(s,Md, Ld), then we also have P(FNRi ≤ 2βLdu
β
� ) ≥

1− 2d−1.
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Since u� = o(1), the FNR vanishes with probability tending to one if Ld =

o(u−β
� ).

4. Simulation studies

In this section, we present some numerical results on simulated datasets. We
compare the following five methods:

(i) Our TV-VAR estimator (2.5).
(ii) The stationary vector autoregressive model (Stat. VAR) [21].
(iii) The time-varying lasso method [23].
(iv) The time-varying ridge method [20].
(v) The time-varying maximum likelihood estimator (MLE).

Methods (iii), (iv) and (v) are extensions of the lasso [23], ridge regression [20]
and MLE to the time-varying setting by kernel smoothing. We include (ii), i.e.
the stationary VAR model, as the baseline method that ignores the dynamic
features in the transition matrices. (iii) is a competitor of (i). We solve (iii) with
the FISTA [6] and we solve (i) and (ii) with the simplex algorithm [26].

4.1. Data generation

We consider different setups of n = 100 and d = 20, 30, 40 and 50. For each setup
(n, d), the data are generated by the following procedure. First, the baseline co-
efficient matrices A01 and A02 are generated by using the sugm.generator() in
flare R package [24]. We consider four graph structures defined in flare: hub,
cluster, band and random for A01 and A02. Examples of these four structures
are shown in Appendix B. Then we normalize ρ(A01) = 0.2, ρ(A02) = 1 and
smoothly interpolate on the intermediate values

Ai = (1− ti)
4A01 + t2iA02, ti = i/n for i = 1, · · · , n.

Following [21], we specify the innovation covariance matrix Ψ = Σ − A01ΣA
�
01

where Σ = Id. [21] showed that the choice of Σ does not affect the numeric
performance significantly. In our simulation studies, we use the Epanechnikov
kernel K(v) = 0.75(1 − v2)I(|v| ≤ 1) and fix the model order k = 1. The
bandwidth bn is set to be bn = 0.8n−1/5 for (i), (iii) and (iv).

4.2. Tuning parameter selection

For the tuning parameter selection in (i)–(iv), we propose a data-driven proce-
dure that minimizes the one-step-ahead prediction errors as follows.

1. Choose a grid for the tuning parameter (say τ) and the number n1 of
training data points.
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2. For each τ , perform the one-step-ahead prediction on the testing set by
estimating At with Ât(τ) and then predict Xt by X̂t = Ât(τ)Xt−1, where
t = n1+1, ..., n. Then calculate the prediction error at time t as Errt(τ) =
||Xt − Ât(τ)Xt−1||2.

3. Calculate the average errors over the last n− n1 time points

Err(τ) =
1

n− n1

n∑
t=n1+1

Errt(τ)

4. Select τ̂ that minimizes Err(τ).

4.3. Comparison results

4.3.1. Estimation errors

For each setup, we run 100 simulations and for each simulation indexed by nn we
estimate the transition matrix at each time point indexed by t, where t = 1, .., n.
Then, we calculate the error errt,nn = |Ât,nn − At|ρ for t = 1, ..., n and nn =
1, ..., 100. We also report errors under �F , �1 and �∞ norms. Next, the averaged
errors over different time points are aggregated as errnn = 1

b−a

∑b
t=a errt,nn

where a = [nbn] + 1 and b = [n(1 − bn)] − 1. Finally, the averaged errors are

reported over 100 simulations as err = 1
100

∑100
nn=1 errnn. The results are shown

in Table 1, 2, 3 and 4.
From Table 1 to Table 4, larger d often results in larger errors. In general, the

unstructured MLE performs the worst almost under all matrix norms. Although
the ridge method shrinks the coefficients in the transition matrix to zeros, the
values of those coefficients are not exactly zeros. Thus, the estimated transition
matrices by the ridge method are not sparse which lead to higher estimation
errors compared with the TV-VAR, time-varying lasso and stationary VAR. Sta-
tionary VAR always perform worse than TV-VAR and time-varying lasso, since
it cannot capture the dynamic structure. The time-varying lasso performs better
than any other methods except TV-VAR. The proposed TV-VAR performs the
best almost under all matrix norms.

4.3.2. Pattern recovery

For the TV-VAR, we also report the FPRt,l,nn and FNRt,l,nn in (3.17), where
l = 1, .., 30 which are the indexes of 30 possible tuning parameters from 0.001 to
0.45. Then, we calculate the averaged FPRl =

1
100

∑100
nn=1{ 1

b−a

∑b
t=a FPRt,l,nn}

and FNRl =
1

100

∑100
nn=1{ 1

b−a

∑b
t=a FNRt,l,nn}. Following [9], we set the u� to

10−3, which is considered to be numerical nonzero. The ROC curves for all
possible values of the sparsity control parameter are plotted in Fig. 1a, Fig. 1b,
Fig. 1c and Fig. 1d. Based on the ROC curves, the TV-VAR method has better
discrimination power for band or random patterns than hub or cluster patterns.
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Table 1

Comparison of estimation errors under different setups. The standard deviations are shown
in parentheses. Here �ρ, �F , �1 and �∞ are the spectral, Frobenius, �1 and �∞ matrix norm

resp. The pattern of transition matrix is ‘hub’.

d=20

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.407 1.102 0.453 1.530 2.770

(0.083) (0.248) (0.068) (0.075) (0.205)

�1 0.395 1.747 0.446 1.532 2.762

(0.088) (0.516) (0.076) (0.068) (0.255)

�ρ 0.329 0.778 0.348 0.604 1.157

(0.038) (0.147) (0.032) (0.022) (0.08)

�F 0.239 0.292 0.228 0.342 0.568

(0.011) (0.032) (0.011) (0.008) (0.02)

d=30

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.643 1.154 0.695 2.116 4.350

(0.125) (0.295) (0.111) (0.087) (0.302)

�1 0.694 2.197 0.732 2.102 4.302

(0.135) (0.652) (0.109) (0.073) (0.302)

�ρ 0.430 0.846 0.443 0.710 1.607

(0.046) (0.141) (0.04) (0.024) (0.112)

�F 0.245 0.288 0.244 0.393 0.729

(0.013) (0.026) (0.014) (0.006) (0.02)

d=40

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.711 1.221 0.800 2.594 6.183

(0.103) (0.256) (0.095) (0.079) (0.426)

�1 0.812 2.868 0.872 2.586 6.198

(0.144) (0.775) (0.126) (0.082) (0.406)

�ρ 0.460 0.958 0.486 0.793 2.168

(0.041) (0.124) (0.035) (0.024) (0.142)

�F 0.253 0.296 0.259 0.429 0.907

(0.011) (0.02) (0.011) (0.006) (0.021)

d=50

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.827 1.158 0.944 3.043 8.478

(0.124) (0.219) (0.102) (0.095) (0.633)

�1 1.019 3.574 1.072 3.055 8.558

(0.19) (1.021) (0.135) (0.098) (0.65)

�ρ 0.504 1.052 0.531 0.863 2.874

(0.045) (0.157) (0.032) (0.021) (0.224)

�F 0.266 0.297 0.278 0.454 1.108

(0.014) (0.019) (0.012) (0.006) (0.027)
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Table 2

Comparison of estimation errors under different setups. The standard deviations are shown
in parentheses. Here �ρ, �F , �1 and �∞ are the spectral, Frobenius, �1 and �∞ matrix norm

resp. The pattern of transition matrix is ‘cluster’.

d=20

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.400 1.093 0.465 1.527 2.736

(0.073) (0.300) (0.084) (0.081) (0.202)

�1 0.383 1.695 0.448 1.527 2.731

(0.074) (0.506) (0.077) (0.083) (0.251)

�ρ 0.324 0.774 0.352 0.601 1.133

(0.032) (0.143) (0.033) (0.025) (0.084)

�F 0.239 0.291 0.228 0.341 0.562

(0.011) (0.03) (0.011) (0.008) (0.019)

d=30

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.557 1.127 0.631 2.095 4.305

(0.096) (0.285) (0.097) (0.083) (0.308)

�1 0.589 2.236 0.664 2.120 4.343

(0.132) (0.659) (0.110) (0.093) (0.297)

�ρ 0.399 0.848 0.424 0.710 1.607

(0.045) (0.135) (0.038) (0.024) (0.112)

�F 0.241 0.289 0.239 0.393 0.729

(0.009) (0.027) (0.010) (0.006) (0.020)

d=40

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.705 1.139 0.783 2.612 6.179

(0.115) (0.225) (0.108) (0.106) (0.44)

�1 0.803 2.986 0.847 2.596 6.171

(0.153) (0.874) (0.133) (0.098) (0.452)

�ρ 0.460 0.974 0.479 0.794 2.158

(0.042) (0.15) (0.037) (0.022) (0.156)

�F 0.253 0.295 0.258 0.428 0.906

(0.011) (0.022) (0.012) (0.006) (0.022)

d=50

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.841 1.116 0.964 3.052 8.593

(0.121) (0.198) (0.108) (0.106) (0.703)

�1 1.023 3.384 1.070 3.043 8.498

(0.177) (1.055) (0.152) (0.09) (0.558)

�ρ 0.504 1.015 0.531 0.863 2.874

(0.04) (0.162) (0.036) (0.021) (0.224)

�F 0.267 0.292 0.278 0.454 1.108

(0.013) (0.019) (0.013) (0.006) (0.027)
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Table 3

Comparison of estimation errors under different setups. The standard deviations are shown
in parentheses. Here �ρ, �F , �1 and �∞ are the spectral, Frobenius, �1 and �∞ matrix norm

resp. The pattern of transition matrix is ‘band’.

d=20

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.402 1.048 0.453 1.532 2.738

(0.072) (0.251) (0.068) (0.08) (0.188)

�1 0.385 1.645 0.437 1.531 2.707

(0.075) (0.476) (0.077) (0.068) (0.183)

�ρ 0.326 0.758 0.347 0.600 1.132

(0.033) (0.137) (0.032) (0.021) (0.072)

�F 0.237 0.289 0.226 0.341 0.563

(0.011) (0.031) (0.01) (0.008) (0.019)

d=30

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.574 1.139 0.637 1.537 4.316

(0.094) (0.319) (0.101) (0.058) (0.314)

�1 0.590 2.306 0.654 1.537 4.312

(0.131) (0.727) (0.123) (0.057) (0.323)

�ρ 0.401 0.863 0.422 0.537 1.607

(0.041) (0.154) (0.038) (0.019) (0.112)

�F 0.240 0.290 0.239 0.315 0.729

(0.009) (0.028) (0.011) (0.005) (0.02)

d=40

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.800 1.170 0.886 2.590 6.198

(0.134) (0.253) (0.113) (0.098) (0.429)

�1 0.925 2.772 0.964 2.597 6.221

(0.155) (0.825) (0.127) (0.09) (0.457)

�ρ 0.489 0.938 0.510 0.793 2.168

(0.041) (0.138) (0.035) (0.024) (0.142)

�F 0.262 0.293 0.270 0.429 0.907

(0.013) (0.022) (0.012) (0.006) (0.021)

d=50

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.839 1.143 0.992 3.056 8.550

(0.125) (0.222) (0.118) (0.100) (0.579)

�1 1.011 3.673 1.105 3.047 8.635

(0.175) (1.212) (0.126) (0.099) (0.678)

�ρ 0.506 1.047 0.541 0.862 2.872

(0.045) (0.176) (0.034) (0.021) (0.223)

�F 0.267 0.295 0.280 0.454 1.108

(0.014) (0.02) (0.013) (0.005) (0.027)
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Table 4

Comparison of estimation errors under different setups. The standard deviations are shown
in parentheses. Here �ρ, �F , �1 and �∞ are the spectral, Frobenius, �1 and �∞ matrix norm

resp. The pattern of transition matrix is ‘random’.

d=20

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.397 1.060 0.447 1.538 2.704

(0.078) (0.244) (0.07) (0.071) (0.188)

�1 0.379 1.661 0.433 1.532 2.762

(0.080) (0.574) (0.081) (0.077) (0.235)

�ρ 0.323 0.757 0.344 0.600 1.132

(0.036) (0.140) (0.033) (0.021) (0.072)

�F 0.237 0.286 0.227 0.341 0.563

(0.013) (0.031) (0.012) (0.008) (0.019)

d=30

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.567 1.138 0.641 1.541 4.294

(0.103) (0.264) (0.102) (0.066) (0.292)

�1 0.590 2.280 0.658 1.543 4.292

(0.132) (0.724) (0.119) (0.062) (0.268)

�ρ 0.398 0.865 0.423 0.537 1.607

(0.044) (0.146) (0.041) (0.019) (0.112)

�F 0.240 0.290 0.239 0.315 0.729

(0.01) (0.026) (0.012) (0.005) (0.020)

d=40

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.713 1.210 0.810 2.595 6.148

(0.098) (0.268) (0.104) (0.096) (0.413)

�1 0.813 2.904 0.869 2.600 6.205

(0.136) (0.851) (0.128) (0.09) (0.432)

�ρ 0.458 0.951 0.482 0.793 2.168

(0.036) (0.142) (0.034) (0.024) (0.142)

�F 0.252 0.296 0.260 0.429 0.907

(0.01) (0.021) (0.012) (0.006) (0.021)

d=50

TV-VAR Stat. VAR Lasso Ridge MLE

�∞ 0.830 1.207 1.002 3.060 8.452

(0.109) (0.234) (0.120) (0.108) (0.553)

�1 1.023 3.529 1.129 3.061 8.457

(0.187) (1.214) (0.151) (0.092) (0.551)

�ρ 0.504 1.034 0.543 0.865 2.861

(0.039) (0.180) (0.033) (0.022) (0.198)

�F 0.267 0.298 0.282 0.455 1.107

(0.013) (0.021) (0.013) (0.005) (0.027)
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Fig 1. ROC curves under different settings

We also calculate u� by using the true value of Σ in (3.9) and the resulting
ROC curves are shown in Appendix C. Those ROC curves are similar to those
based on u� = 10−3.

5. Real data analysis

5.1. Finance data: stock prices

In this section, we compare the aforementioned estimators on a real financial
dataset. The dataset is from Yahoo! Finance (finance.yahoo.com). The data
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matrix contains daily closing prices of 452 stocks that are consistently in the
S&P 500 index between January 1st, 2003 and January 1st, 2008. We choose
such time range to avoid the effects of the two financial crises in the year of 2001
and 2008, which could make the stock prices non-smooth with sharp drops and
pick-ups. In total, there are 1,258 time points. We first standardize the data to
zero mean and unit variance and detrend the data. We then fit the detrended
data for those stocks which are most smoothed (without obvious change points)
using AR(1) model and perform the Ljung-Box Tests by using Box.test() in
R. We keep those stocks with nonzero coefficients at significant level 0.05. 30
stocks are finally selected and 10 of them are shown in Table 9. The ten selected
stocks in Table 9 are from six sectors including: Consumer Staples, Consumer
Discretionary, Industrials, Financials, Utilities and Energy. The resulting data
matrix is denoted as X̄ ∈ R

1258×30. We use the Priestley-Subba Rao (PSR)
stationarity test (such as stationarity() in R package fractal) to some of
the stocks such as Kellogg Co. and Target Corp. to find that these time series
are not stationary at significant level 0.05. Thus, it is inappropriate to model
the data with the stationary VAR model in [21]. Finally we fit the data X̄
into the sparse TV-VAR model with order k = 1, stationary VAR [21] with
order k = 1, time-varying lasso method [23], time-varying ridge method [20]
and time-varying MLE.

In order to compare the performance of the five methods, we consider the
one-step-ahead prediction for X̄t, t = 1159, ..., 1258, by using X̄Jt,∗, where Jt =
{j : t−1158 ≤ j ≤ t−1} as the training set. We estimate the transition matrices
Ât(λ) where λ is the regularization parameter such as the τ in the TV-VAR or
the shrinkage parameter in the ridge method. We use the Epanechnikov kernel
K(v) = 0.75(1− v2)I(|v| ≤ 1) with bandwidth bn = 0.3, which means that only
the last 30% data in the training set are used for prediction for the TV-VAR,
time-varying lasso method, time-varying ridge method and time-varying MLE.
Since stationary VAR [21] model uses all training data, in order to make fair
comparisons, we only treat the last 30% time points (347 observations) in X̄Jt,∗
as the training set for the stationary VAR. The averaged prediction error for a
specific λ is measured by:

Err(λ) =
1

100

1258∑
t=1159

‖X̄t,∗ − Ât(λ)X̄t−1,∗‖2.

The smallest averaged one-step-ahead prediction errors minλ∗Err(λ) for five
methods were shown in Table 5. In Figure 2, we show an example for the pre-
dicted closing prices from the five methods and the detrended true closing prices
of Target Corp. Clearly, the methods with time-varying structures perform sim-
ilarly but outperform stationary VAR.

One advantage of the TV-VAR compared with the stationary VAR is that
it can capture the time-varying data structures. If we treat a transition matrix
as an adjacency matrix for an undirected weighted graph, we can visualize the
graph structures at different time points. For instance, Fig 3a, 3b, 3c and 3d are
four graphical representations of the TV-VAR, which clearly show some time-
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evolving patterns. In the graphs, different vertices represent different stocks and
the edges represent the cross-sectional dependence between stocks. Bolder lines
indicate stronger dependence and the stocks in the same sector are in the same
color. In order to illustrate the time-varying structure clearly, we only consider
the 10 stocks in Table 9. From these four figures, we observe that stocks in the
same and closely related sectors are often connected. For examples, CME Group
Inc. and Hartford Financial Svc. GP from Financials sector show a dynamic
dependence structure, and Boeing Company in Industrials shows the consistent
correlation with Exxon Mobil Corp. in Energy sector.

Table 5

The prediction errors for the five methods on the stock price data. The standard deviations
are shown in parentheses.

TV-VAR Stat. VAR Lasso Ridge MLE

Err(λ∗) 0.4822 2.2824 0.4580 0.4843 0.4902
Standard Deviation (0.1751) (0.5169) (0.1810) (0.1747) (0.1799)

Fig 2. Comparison of the predicted closing prices and the true detrended closing prices of
Target Corp.

5.2. Economic data: exchange rates

We also apply the exchange rates data on international currencies and study
how the exchange rates evolve over time. We use the exchange rates data from
the Federal Reserve Bank at St. Louis and choose the date range from Jan-
uary 1st, 2003 to January 1st, 2008 to avoid the financial crises’ effects on
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Fig 3. The graphs based on adjacency matrices estimated by TV-VAR

exchange rates. In total, there are 1,303 time points. We choose 15 major cur-
rencies from the continents including Europe, Australia, North America, Asian,
South America and we normalize each currency by the exchange rate of the
U.S. dollar shown in Table 10. As in Section 5.1, we standardize and detrend
the data. The exchange rates for all currencies to the U.S. dollars are smoothed
and in addition the PSR test rejects the stationarity hypothesis of the ex-
change rate Euro/U.S. at the significant level 0.05. Thus, stationary VAR is
also not appropriate in this application, which is also supported by our em-
pirical findings in Table 6 and Figure 4. We compare the performance of the
five methods by the one-step-ahead prediction errors for the last 50 data and
use the same prediction metric in Section 5.1. The bandwidth here is bn = 0.3.
We do not include the prediction curve of the stationary VAR in Figure 4
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Table 6

The prediction errors for the five methods on the exchange rates data. The standard
deviations are shown in parentheses.

TV-VAR Stat. Var Lasso Ridge MLE

Err(λ∗) 0.2990 8.7637 0.2554 0.2634 0.2638
Standard Deviation (0.0924) (5.2835) (0.1037) (0.1032) (0.1032)

Fig 4. Compare the predicted and true detrended exchange rate of U.K./U.S.

since its errors are too large. Table 6 and Figure 4 show that methods with
time-varying structure performs similarly but much better than the stationary
VAR.

6. Proofs

Proof of Lemma 3.1. Since x̃m(t) is a stationary VAR, we have Σ̃(t) = Id×d+
A(t)Σ̃(t)A(t)�. By the extension, Σ(t) = Σ̃(t) for all t ∈ (0, 1). Applying the
chain rule of differentiation w.r.t. t, we get

Σ̇(t) = Ȧ(t)Σ(t)A(t)� +A(t)Σ̇(t)A(t)� +A(t)Σ(t)Ȧ(t)�.

By Lemma 6.1 and the triangle inequality,

|Σ̇(t)|∞
≤|Ȧ(t)|∞|Σ(t)|�∞ |A(t)|�1 + |A(t)|�1 |Σ̇(t)|∞|A(t)|�1 + |A(t)|�1 |Σ(t)|�1 |Ȧ(t)|∞.

Then, (3.4) follows from the assumption that supt∈[0,1] |A(t)|�1 < 1 and that

Σ(t) is symmetric. (3.5) follows from the differentiation of Σ̇(t) w.r.t. t.
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Lemma 6.1. Let A,B,C be matrices of compatible dimension for the product
ABC. Then

|ABC|∞ ≤ |A|�1 |B|∞|C|�∞ ,

|ABC|∞ ≤ |A|�1 |B|�1 |C|∞,

|ABC|∞ ≤ |A|∞|B|�∞ |C|�∞ .

Proof of Lemma 6.1. The first and second inequalities follow from

|ABC|∞ = max
i,j

∣∣∣∣∣∣
∑
k,m

AikBkmCmj

∣∣∣∣∣∣ ≤ max
i,j

∑
k

|Aik|
∑
m

|BkmCmj |

≤
(
max

i

∑
k

|Aik|
)
max
j,k

∑
m

|BkmCmj |

≤ |A|�1 min {|B|∞|C|�∞ , |B|�1 |C|∞} .

The third inequality follows from the second one by considering (ABC)� =
C�B�A� and |A�|�1 = |A|�∞ .

Recall the TV-VAR(1) model xi = Aixi−1 + ei. The following key lemma
presents a large deviation bound for the marginal and lag-one autocovariance
matrices with sub-Gaussian innovations.

Lemma 6.2. Suppose ρ̄ = supi≥0 ρ(Ai) < 1 and

sup
t∈[0,1]

|Σ̇m,jk(t)| ∨ |Σ̈m,jk(t)| ≤ C0,m = 0, 1,

for some absolute constant C0 < ∞. If ei = (ei1, · · · , eid) has iid sub-Gaussian
components, i.e. ‖eij‖q ≤ C1q

1/2 for all q ≥ 1, then, for any fixed t ∈ [bn, 1−bn],
we have with probability at least 1− 2d−1 that

|Σ̂t,0 − Σt,0|∞ ∨ |Σ̂t,1 − Σt,1|∞ ≤ C

(
b2n +

√
log d

nbn

)
, (6.1)

where the constant C = C(ρ̄, C0, C1) does not depend on n, bn and d.

Proof of Lemma 6.2. First, consider the marginal covariance matrix m = 0.
For each j, k = 1, · · · , p, we write

Σ̂0,jk(t)−Σ0,jk(t) = {Σ̂0,jk(t)−E[Σ̂0,jk(t)]}+{E[Σ̂0,jk(t)]−Σ0,jk(t)} = I+ II.

For |ti−t| ≤ bn, by the assumption supt∈[0,1] |Σ̈0,jk(t)| ≤ C0, Taylor’s expansion

yields that Σ0,jk(ti) = Σ0,jk(t) + Σ̇0,jk(t)(ti − t) +O(b2n) for all t ∈ [bn, 1− bn].
Note that for � = 0, 1, 2, we have

sup
t∈[bn,1−bn]

∣∣∣∣∣
n∑

i=1

K

(
ti − t

bn

)
(ti − t)� − nbn

∫ 1

−1

K(v)v�dv

∣∣∣∣∣ = O(1).
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Then, the bias part is controlled by

II =

n∑
i=1

w(t, i)Σ0,jk(ti)− Σ0,jk(t)

= Σ̇0,jk(t)

n∑
i=1

w(t, i)(ti − t) +O(b2n) = O((nbn)
−1 + b2n). (6.2)

Now, we deal with the stochastic part I. Let Yi,jk = XijXik − E(XijXik).
Clearly, E(Yi,jk) = 0 and I =

∑n
i=1 w(t, i)Yi,jk. Let Bi,0 = Id and Bi,m =

Ai · · ·Ai−m+1 for m ≥ 1. Then, supi ρ(Bi,m) ≤ ρ̄m and we have the moving-
average (MA) representation of xi =

∑∞
m=0 Bi,mei−m. Let ξ = (e�n , e

�
n−1, · · · )�,

Wt = diag(w(t, n), · · · , w(t, 1)) be n× n diagonal matrix, and

B̃(j) =⎛
⎜⎜⎜⎜⎜⎝

Bn,0,j· Bn,1,j· Bn,2,j· · · · Bn,n−1,j· Bn,n,j· · · ·
0 Bn−1,0,j· Bn−1,1,j· · · · Bn−1,n−2,j· Bn−1,n−1,j· · · ·
0 0 Bn−2,0,j· · · · Bn−2,n−3,j· Bn−2,n−2,j· · · ·
...

...
...

. . .
...

...
...

0 0 0 · · · B1,0,j· B1,1,j· · · ·

⎞
⎟⎟⎟⎟⎟⎠ .

Then, we can write I = ξ�(B̃(j))�WtB̃
(k)ξ−tr((B̃(j))�WtB̃

(k)). By the Hanson-
Wright inequality [29, Theorem 1.1], there exists a constant C := C(C1) such
that for all x > 0

(∗) := P

(
|ξ�(B̃(j))�WtB̃

(k)ξ − tr((B̃(j))�WtB̃
(k))| ≥ x

)

≤ 2 exp

{
−Cmin

[
x2

|(B̃(j))�WtB̃(k)|2F
,

x

ρ((B̃(j))�WtB̃(k))

]}
.

Observe that (B̃(j))�WtB̃
(k) has the same nonzero eigenvalues as the n × n

matrix W
1/2
t B̃(k)(B̃(j))�W

1/2
t . Therefore, by the Cauchy-Schwartz inequality,

we get

|W 1/2
t B̃(k)(B̃(j))�W

1/2
t |2F = tr

[
W

1/2
t B̃(j)(B̃(k))�WtB̃

(k)(B̃(j))�W
1/2
t

]
= tr

[
(B̃(k))�WtB̃

(k)(B̃(j))�WtB̃
(j)

]
≤ |(B̃(k))�WtB̃

(k)|F · |(B̃(j))�WtB̃
(j)|2F

and by the definition of matrix spectral norm

ρ(W
1/2
t B̃(k)(B̃(j))�W

1/2
t |) ≤ ρ(W

1/2
t B̃(k))ρ((B̃(j))�W

1/2
t )

= ρ1/2((B̃(k))�WtB̃
(k))ρ1/2((B̃(j))�WtB̃

(j)).
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Therefore, (*) is bounded by

2 exp

{
−Cmin

[
x2

maxj≤p |W 1/2
t B̃(j)(B̃(j))�W

1/2
t |2F

,

x

maxj≤p ρ(W
1/2
t B̃(j)(B̃(j))�W

1/2
t )

]}
.

For i = 1, · · · , n and l = 0, · · · , n− i, let

γ
(j)
i,l =

∞∑
m=0

[w(t, i)w(t, i+ l)]1/2|Bi,m,j·B
�
i+l,m+l,j·|.

By the Cauchy-Schwartz inequality and the spectral norm bound supi ρ(Bi,m) ≤
ρ̄m, we have

γ
(j)
i,l ≤ [w(t, i)w(t, i+ l)]1/2

∞∑
m=0

(
p∑

k=1

B2
i,m,jk

)1/2 ( p∑
k=1

B2
i+l,m+l,jk

)1/2

≤ [w(t, i)w(t, i+ l)]1/2
∞∑

m=0

ρ̄mρ̄m+l = [w(t, i)w(t, i+ l)]1/2
ρ̄l

1− ρ̄2
.

Then, it follows that

|W 1/2
t B̃(j)(B̃(j))�W

1/2
t |2F

≤
∑n

i=1 w(t, i)
2

(1− ρ̄2)2
+ 2

n−1∑
l=1

n−l∑
i=1

[w(t, i)w(t, i+ l)]1/2
ρ̄l

(1− ρ̄2)2

≤
2
[∑n−1

l=0 ρ̄2l
] [∑n

i=1 w(t, i)
2
]

(1− ρ̄2)2

≤ C(ρ̄)
n∑

i=1

w(t, i)2 =
C(ρ̄)

nbn

and

ρ(W
1/2
t B̃(j)(B̃(j))�W

1/2
t )

≤ 2

[
1

1− ρ̄2
max
1≤i≤n

w(t, i) +

n−1∑
l=1

ρ̄l

1− ρ̄2
max

1≤i≤n−l
[w(t, i)w(t, i+ l)]1/2

]

≤
2
[∑n−1

l=0 ρ̄l
]
[max1≤i≤n w(t, i)]

1− ρ̄2
≤ C(ρ̄)

nbn
.

Therefore, we have that for any x > 0

sup
t∈[bn1−bn]

P(|
n∑

i=1

w(t, i)Yi,jk| ≥ x) ≤ 2 exp[−Cnbn min(x2, x)]. (6.3)
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Now, by (6.2) and using the union bound applied to (6.3), we obtain that there
exists a constant C which only depends on ρ̄, C0, C1 such that

|Σ̂t,0 − Σt,0|∞ ≤ C

(
b2n +

√
log d

nbn

)

holds with probability ≥ 1 − 2d−1. Similar argument applied to m = 1 shows
that the lag-one autocovariance matrix obeys the same bound in (6.1).

Proof of Lemma 3.4. Denote l = d/2. For 0 < α < 1, note that

max
1≤m≤d

d∑
k=1

Aα
mk = 2

l−1∑
k=1

Aα
lk +Aα

ll = 2

l−1∑
k=1

Aα
lk + 1.

Then, we have

l−1∑
k=1

Aα
lk =

l−1∑
k=1

1

(1 + |l − k|2/d2r)γα

=
l−1∑
k=1

d2rγα

(d2r + k2)γα

≤ 1 +

∫ l

1

d2rγα

(d2r + x2)γα
dx

= 1 + dr
∫ d1−r/2

d−r

1

(1 + x2)γα
dx

≤ Cdr
∫ d1−r/2

1

x−2γαdx,

where C > 0 is a constant depending only on r, γ, α. Then, it follows that

max
1≤m≤d

d∑
k=1

Aα
mk =

⎧⎨
⎩

O(dr) if 2γα > 1
O(dr log d) if 2γα = 1

O(dr+(1−r)(1−2γα)) if 1 < 2γα < 1
.

So, A ∈ G−
α (s,Md) for our choice of s and Md. Since A is symmetric, A ∈

Gα(s,Md). Next, we show that A ∈ Gα,β(s,Md, Ld). Observe that |supp(A)| =
(3d − 2)d/4. By construction, Amk ≤ u is equivalent to π(h◦

m, h◦
k) ≥ f−1(u) =

(u− 1
γ − 1)

1
2 . Therefore, Amk ≤ u if and only if |m − k| ≥ dr(u− 1

γ − 1)
1
2 . Since

dr(u− 1
γ − 1)

1
2 is monotone decreasing with respect to u,

∃
¯
u ∈ (0, u0], s.t.

d

2
− 2 < dr(

¯
u− 1

γ − 1)
1
2 ≤ d

2
− 1.

So we only need to consider u ∈ [
¯
u, u0] because if u ∈ (0,

¯
u), then |{(m, k) : 0 <

Amk ≤ u}| = |{(m, k) : |m−k| ≥ d/2}| = 0. Therefore, if we choose Ld such that
Ld

¯
uβ � 1, then A ∈ Gα,β(s,Md, Ld). That is, Ld = C

¯
u−β = Cd2(1−r)γβ.
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Proof of Theorem 3.2. Put ε = C(b2n +
√

(log d)/(nbn)). Recall that A�
i =

Σ−1
i−1,0Σi−1,1. By Lemma 6.2, we have, with probability at least 1− 2d−1, that

|Σ̂t,0−Σt,0|∞ ≤ ε and |Σ̂t,1−Σt,1|∞ ≤ ε for any t ∈ [bn, 1−bn]. Then, with such
high probability, the true transition matrix Ai is feasible for the minimization
program (2.5) with τ ≥ (1 +Md)ε because

|Σ̂i−1,1 − Σ̂i−1,0A
�
i |∞ = |Σ̂i−1,1 − Σ̂i−1,0Σ

−1
i−1,0Σi−1,1|∞

≤ |Σ̂i−1,1 − Σi−1,1|∞ + |(I − Σ̂i−1,0Σ
−1
i−1,0)Σi−1,1|∞

≤ ε+ |Σ̂i−1,0 − Σi−1,0|∞|A�
i |�1 ≤ τ.

Hence, |Âi|1 ≤ |Ai|1. But then
|Â�

i −A�
i |∞

= |Â�
i − Σ−1

i−1,0Σi−1,1|∞
= |Σ−1

i−1,0(Σi−1,0Â
�
i − Σi−1,1)|∞

= |Σ−1
i−1,0(Σi−1,0Â

�
i − Σ̂i−1,0Â

�
i + Σ̂i−1,0Â

�
i − Σ̂i−1,1 + Σ̂i−1,1 − Σi−1,1)|∞

≤ |Σ−1
i−1,0(Σ̂i−1,0 − Σ̂i−1,1)Â

�
i |∞ + |Σ−1

i−1,0(Σ̂i−1,0Â
�
i − Σ̂i−1,1)|∞

+ |Σ−1
i−1,0(Σ̂i−1,1 − Σi−1,1)|∞

≤ |Σ−1
i−1,0|�1(|Σ̂i−1,0 − Σ̂i−1,1|∞|Âi|�1 + τ + ε)

≤ |Σ−1
i−1,0|�1(ε|Ai|�1 + τ + ε)

≤ 2τ |Σ−1
i−1,0|�1 .

Let u ≥ 0 and Tj = {m : |Ai,jm| ≥ u}, j = 1, · · · , d. Define D(u) =

maxj≤d

∑d
m=1(|Ai,jm| ∧ u). Then, by the triangle inequality and the equiva-

lence between (2.5) and (2.6), we have uniformly in j = 1, · · · , d,
|[Âi −Ai]j∗|1 ≤ |[Âi]j,T c

j
|1 + |[Ai]j,T c

j
|1 + |[Âi −Ai]j,Tj |1

= |[Ai]j∗|1 − |[Âi]j,Tj |1 + |[Ai]j,T c
j
|1 + |[Âi −Ai]j,Tj |1

≤ 2|[Ai]j,T c
j
|1 + 2|[Âi −Ai]j,Tj |1

≤ 2|[Ai]j,T c
j
|1 + 4τ |Σ−1

i−1,0|�1 |Tj |
≤ 2D(u)(1 + 2τ |Σ−1

i−1,0|�1/u).

Choose u = 2τ |Σ−1
i,0 |�1 . Since D(u) ≤ su1−α for Ai ∈ Gα(s,Md), it follows that

|[Âi −Ai]j∗|1 ≤ 4D(u) ≤ 4su1−α = C(α)s(|Σ−1
i,0 |�1τ)1−α.

The analysis of the other constraint is similar. Now, (3.7) and (3.8) are imme-
diate in view of ρ2(M) ≤ |M |�1 |M |�∞ and |M |2F ≤ d|M |∞|M |�1 for any d × d
matrix M .

Proof of Theorem 3.3. Suppose (m, k) /∈ Si, i.e. Ai,mk = 0. On the event

G = {|Âi − Ai|∞ ≤ u�}, we have |Âi,mk| ≤ u� and (m, k) /∈ Ŝi. Therefore, by

Theorem 3.2, we have P(Ŝi ⊂ Si) ≥ 1− 2d−1. On the other hand, suppose that
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|Ai,mk| > 2u�, then on the event G, it follows from the triangle inequality that

|Ai,mk| − |Âi,mk| ≤ |Âi,mk − Ai,mk| ≤ u�. Therefore, |Âi,mk| > u� and we have

P({(m, k) : |Ai,mk| > 2u�} ⊂ Ŝi) ≥ 1− 2d−1.

Proof of Theorem 3.5. If |Si| = 0, then the first claim is trivial. So we may
assume that Si �= ∅. Suppose (m, k) /∈ Si, then on the event G = {|Âi −
Ai|∞ ≤ u�}, we have |Âi,mk| ≤ u� and (m, k) /∈ Ŝi. Therefore, Ŝi ∩ Sc

i = ∅
on G and P(FPRi = 0) ≥ 1 − 2d−1 by Theorem 3.2. On the other hand,
let Ni(u) = {(m, k) : 0 < |Ai,mk| ≤ 2u}. For any u > 0, Ni(u) ⊂ Si and

Ŝc
i ∩Si ⊂ Ni(u)∪(Ŝc

i ∩Si∩Ni(u)
c). Hence, |Ŝc

i ∩Si| ≤ |Ni(u)|+|Ŝc
i ∩Si∩Ni(u)

c|.
If (m, k) ∈ Ŝc

i and |Ai,mk| > 2u�, then Ŝc
i ∩Si∩Ni(u�)

c = ∅ on G. Choose u = u�

and then on the event G, we have

FNRi =
|Ŝc

i ∩ Si|
|Si|

≤ |Ni(u�)|
|Si|

+
|Ŝc

i ∩ Si ∩Ni(u�)
c|

|Si|
≤ 2βLdu

β
� ,

from which the theorem follows.

Appendix A: Detailed setup of the simulation studies

We use sugm.generator() to genereate sparce matrice from multivariate nor-
mal distributions with four graph structures- hub, cluster, band and random.

Table 7

The meanings of sugm.generator()’s arguments

Arguments Meanings

g Represents the number of hubs or clusters when the pattern is “hub” or
“cluster”

prob Represents the probability that an off-diagonal entry will be non-zero.
v Assigns the values to the off-diagonal entries in the precision matrix and

controls the magnitude of partial correlations with u.
u A positive number which is added to the diagonal entries of the precision

matrix.

Table 8

Detailed setup of sugm.generator()

Hub Cluster

d g prob v u d g prob v u

20 8 NULL 0.001 10 20 8 NULL 0.001 10
30 10 NULL 0.001 10 30 10 NULL 0.001 10
40 15 NULL 0.001 10 40 15 NULL 0.001 10
50 20 NULL 0.001 10 50 20 NULL 0.001 10

Band Random

d g prob v u d g prob v u

20 1 NULL 0.001 10 20 NULL 0.001 0.001 10
30 1 NULL 0.001 10 30 NULL 0.001 0.001 10
40 1 NULL 0.001 10 40 NULL 0.001 0.001 10
50 1 NULL 0.001 10 50 NULL 0.001 0.001 10
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Besides taking the patterns of graphs, the sugm.generator() also takes other
four critical input arguments which are g, prob, v and u shown in Table 7. The
detailed setup of these fours parameters in our simulation is shown in Table 8.

Appendix B: Examples for four graph structures

Fig 5. Examples of the baseline coefficient matrices in four graph structures. Zero entries are
colored in grey. Positive entries and negative entries are colored in red and black respectively.
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Appendix C: ROC curves based on the true thresholding
parameters u�

Fig 6. ROC curves under different settings
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Appendix D: Selected stocks and currencies in real data analysis

Table 9

Part of the 30 selected stocks

Stock (Abb.) Sector (Abb.)

1 Kellogg Co. (Kellogg) Consumer Staples (CS)
2 Target Corp. (Target) Consumer Discretionary (CD)
3 Boeing Company (Boeing) Industrial (IND)
4 CME Group Inc. (CME) Financials (FIN)
5 Prudential Financial (Prudential) Financials (FIN)
6 Edison Int’l (Edison) Utilities (UTI)
7 Lockheed Martin Corp. (Lockheed) Industrial (IND)
8 PepsiCo Inc. (PepsiCo) Consumer Staples (CS)
9 Hartford Financial Svc. GP (Hartford) Financials (FIN)
10 Exxon Mobil Corp. (Exxon) Energy (ENE)

Table 10

Selected currencies

Currencies Currencies

1 Euro / U.S. 9 Mexico / U.S.
2 U.K. / U.S. 10 South Korea / U.S.
3 Swiss / U.S. 11 India / U.S.
4 Australia / U.S. 12 Thailand / U.S.
5 New Zealand / U.S. 13 South Africa / U.S.
6 Canada / U.S. 14 Norway / U.S.
7 Singapore / U.S. 15 Sweden / U.S.
8 Brazil / U.S.
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