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Abstract: We study the asymptotic behavior of the least concave majo-
rant of an estimator of a concave distribution function under general condi-
tions. The true concave distribution function is permitted to violate strict
concavity, so that the empirical distribution function and its least con-
cave majorant are not asymptotically equivalent. Our results are proved
by demonstrating the Hadamard directional differentiability of the least
concave majorant operator. Standard approaches to bootstrapping fail to
deliver valid inference when the true distribution function is not strictly
concave. While the rescaled bootstrap of Diimbgen delivers asymptotically
valid inference, its performance in small samples can be poor, and depends
upon the selection of a tuning parameter. We show that two alternative
bootstrap procedures—one obtained by approximating a conservative up-
per bound, the other by resampling from the Grenander estimator—can be
used to construct reliable confidence bands for the true distribution. Some
related results on isotonic regression are provided.
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1. Introduction

Nonparametric estimation under shape constraints such as monotonicity and
concavity has received increasing attention in recent years. Groeneboom and
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Jongbloed (2014) provide a helpful introduction to the current state of the field.
As pointed out by Walther (2009), nonparametric estimation under shape con-
straints is attractive for two main reasons: (1) shape constraints are often implied
by theoretical models or are at least plausible assumptions, and (2) nonpara-
metric estimation under shape constraints is often feasible without the use of
tuning parameters, as opposed to classical kernel or series estimators. Perhaps
the best known shape constrained estimator is the Grenander estimator of a
nonincreasing density function. Grenander (1956) showed that, given a random
sample drawn from a nonincreasing probability density, the left-derivative of the
least concave majorant (LCM) of the empirical distribution function achieves
the maximum likelihood among all nonincreasing densities.

In this paper we provide some new results concerning the asymptotic behavior
of the least concave majorant of an empirical distribution function. Quite a lot
is known about its left-derivative, the Grenander estimator, already. Denote by
fn the Grenander estimator of a nonincreasing density f based on a sample of
size n with empirical distribution F,,, and by [F,, the LCM of F,,. The pointwise
asymptotic distribution of fn was obtained by Prakasa Rao (1969) at points
where f is strictly decreasing, and by Carolan and Dykstra (1999) and Jankowski
(2014) at points where f is flat or misspecified. The rate of convergence is n'/? in
the former case and n'/2 in the latter, and the limit distribution is non-Gaussian.
Results on the global asymptotic behavior of fn—speciﬁcally, of its Lp-risk—
have been provided by Groeneboom (1985), Groeneboom et al. (1999), Kulikov
and Lopuhad (2005), Durot (2007) and Durot et al. (2012). These global results
require f to be strictly decreasing on its support. Kulikov and Lopuhaé (2006a)
studied the behavior of fn near the boundary of its support, while Woodroofe
and Sun (1993) and Balabdaoui et al. (2011) studied its behavior at zero.

Turning to the asymptotic behavior of F,, it is natural to consider weak
convergence of the process G,, = \/ﬁ(Iﬁ'n — F). A result of Kiefer and Wolfowitz
(1976) implies that [, and F,, are asymptotically equivalent when F satisfies
strict concavity on its support, so that G, converges weakly to G = Bo F, a
Brownian bridge B composed with F'. Other results on the behavior of ]ﬁ‘n —F,
when F' is strictly concave on its support have been provided by Wang (1994)
and Kulikov and Lopuhad (2006b, 2008). On the other hand, when F' is the
uniform distribution on the unit interval it is known that Fn and F,, are not
asymptotically equivalent, and Gn converges weakly to the LCM of B, a process
studied in detail by Carolan and Dykstra (2001). Carolan (2002) considered the
more general case where F is affine over some maximal subinterval [a, b] of its
support, and showed that the restriction of G, to [a, b] converges weakly to the
LCM of the restriction of G to [a, b].

Our main result, Theorem 2.1 below, establishes the weak convergence of
Gy, in the intermediate cases where F' is concave but not necessarily strictly
concave or uniform. As might be guessed from the results of Carolan (2002), the
weak limit G can be obtained by taking LCMs of G over the distinct intervals
on which F' is affine. Our proof exploits the fact that the LCM operator is

Hadamard directionally differentiable (see Definition 2.2 and Proposition 2.1
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below) despite not being fully Hadamard differentiable. This provides enough
structure to invoke the Delta method (Shapiro, 1991; Diimbgen, 1993) and in
this way derive the weak limit of Gn. Our result applies not only to the LCM of
an empirical distribution function, but to any estimator of F' obtained by taking
the LCM of an estimator F,, of F for which /n(FF,, — F) converges weakly to a
continuous process G vanishing at infinity. Thus, for instance, we may take F,, to
be a smoothed estimate of F', as in Eggermont and LaRiccia (2000), and we may
allow the data used to construct FF,, to exhibit limited serial dependence. We
allow F' to have bounded or unbounded support on the nonnegative half-line.

Our weak convergence result for G, can be useful, for example, when con-
structing uniform confidence bands for F. However, doing so requires consistent
estimation of the law of the weak limit (@, which turns out to be nontrivial.
The fact that the LCM operator fails to be fully Hadamard differentiable im-
plies that the bootstrap does not produce consistent estimates of the law of G
(Diimbgen, 1993; Fang and Santos, 2015). In other words, the Delta method
generalizes under Hadamard directional differentiability to obtaining the weak
limit of G,, but not to obtaining bootstrap consistency. We show in Theorem
3.1 that it instead approximates a process that coincides with G only when F'is
strictly concave. The rescaled bootstrap of Diimbgen (1993) does produce con-
sistent estimates of the law of G (Theorem 3.2) but, consistent with Diimbgen’s
warning of nonrobustness, we find that it performs poorly in numerical simu-
lations. We suggest two alternative bootstrap procedures that can be used to
construct reliable confidence bands for a concave distribution function. One is
obtained by approximating the distribution of the uniform norm of G, which
stochastically dominates the uniform norm of G and can be consistently boot-
strapped. The other is obtained by resampling from the Grenander estimator.
This latter procedure is interesting in that, while it fails to provide consistent
estimates of the law of G, it does provide unconditionally consistent estimates
of upper quantiles of the law of the uniform norm of G. Theorem 4.1 identifies
the process approximated by bootstrapping from the Grenander estimator, and
numerical simulations are used to show that the upper quantiles of its uniform
norm coincide with the upper quantiles of the uniform norm of G.

In Appendix A we briefly discuss how our approach to studying the asymp-
totic behavior of estimators of concave distribution functions may be extended
to the study of isotonic regression. Specifically, we develop limit theory for the
greatest convex minorant of the cumulative sum diagram, whose left-derivative
is the isotonic regression estimator. Weak convergence of a suitably normalized
version of the cumulative sum diagram is established in Proposition A.1, and of
its greatest convex minorant in Proposition A.2.

Before proceeding further we introduce some additional notation. We denote
by R* the set {z € R : z > 0}. The underlying probability space on which all
random elements are defined is (2, F, P). For a set T, we let £°°(T") denote the
set of uniformly bounded, real valued functions on 7. Of particular importance
is the space £°° = (>°(R™), which we equip with the uniform metric d* and ball
o-field A. Random elements of £>° are F/A-measurable maps from € to £>°. We
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denote by ~» weak convergence in (£*°,d>°) in the sense of Hoffmann-Jgrgensen.
We denote by Cy = Co(R™) the collection of continuous real valued functions
on RT vanishing at infinity, also equipped with d*°. We denote by || - || the
uniform norm on ¢*°(7T'), where T should be clear from context.

2. Weak convergence of G, to G

The distribution function F' to be estimated is taken to be that of a nonnegative
real valued random variable. We treat it as an element of ¢>° and maintain
throughout that it satisfies the following condition.

Assumption 2.1. F': RT — R is a concave distribution function.

No further technical conditions will be directly imposed on F'. To maintain
generality about the underlying sampling scheme and method of estimation,
we suppose the existence of a sequence Fi,Fs,... of random elements of £°°
satisfying the following high level condition, in which G,, denotes /n(F,, — F).

Assumption 2.2. G, ~ G for some random element G of £*° with sample
paths in Cj.

If F,, is the empirical distribution function of an independent and identically
distributed (iid) sample of size n drawn from F' then G, is the usual empirical
process and clearly Assumption 2.2 is satisfied with G = Bo F’ and B a Brownian
bridge. More generally, we may allow the sample drawn from F to satisfy a
mixing condition or related property (Dehling and Philipp, 2002). The ball o-
field A on £°° is coarse enough to accommodate empirical distribution functions
as random elements of ¢°°, unlike the Borel o-field on ¢°° (cf. Pollard, 1984,
pp. 65-66). We might also take F,, to be a smoothed empirical distribution
function (van der Vaart, 1994) or allow [F,, to be some other estimator satisfying
Assumption 2.2 under suitable regularity conditions.

To exploit the concavity of F' we propose using the estimator F, = MF,,,
where M is the LCM operator. If F,, is the empirical distribution function of an
iid sample drawn from F, then the left-derivative of ¥, is the classical Grenander
estimator of the probability density for F. The following definition is adapted
from Beare and Moon (2015, Def. 2.1).

Definition 2.1. Given a nonempty convex set T C R™T, the LCM over T is the
operator My : £>° — (°°(T) that maps each 6 € £>° to the function

Mr0(x) = inf{g(x) : g € £>°(T), g is concave, and § < gon T}, zeT.

Note that 0(z) < Mrp(z) < supgp0(z') for all x € T, so that we do in fact
have M6 € £>°(T) for each § € £°. We write M as shorthand for Mg+ and
refer to M as the LCM operator.

The definition of Mr given here differs from that of Beare and Moon (2015)
only in that those authors took the domain of My to be £2°([0, 1]) and required
T to be a closed subinterval of the unit interval. It is easy to show that M6
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is a concave majorant of § by arguing as in Eggermont and LaRiccia (2001,
pp. 225-226). Other well known or easily established properties of M7 include
monotonicity, convexity, positive homogeneity of degree one, and weak contrac-
tivity (Durot and Tocquet, 2003, Lem. 2.2): [|Mp80; — Mqpbs|| < |61 —062]. Beare
and Moon (2015) investigated the differential properties of My ;) in order to
study the asymptotic behavior of a test of the monotone density ratio property
proposed by Carolan and Tebbs (2005). For an application of this test to an em-
pirical puzzle in the financial literature, see Beare and Schmidt (2016). Related
tests of shape constraints based on the LCM operator have been developed by
Delgado and Escanciano (2012, 2013, 2016).

As pointed out by Beare and Moon (2015), Mg 1 fails to be Hadamard dif-
ferentiable and hence violates the assumptions made in standard treatments
of the Delta method (see e.g. van der Vaart and Wellner, 1996, Thm. 3.9.4);
however, Mg 1j does satisfy a certain form of directional differentiability intro-
duced by Shapiro (1990). Quite remarkably, the Delta method is valid under this
weaker notion of differentiability (Shapiro, 1991), although the Delta method
for the bootstrap typically fails (Diimbgen, 1993). Fang and Santos (2015) dis-
cuss the contributions of Shapiro and Diimbgen at length, providing a range
of extensions, and illustrating their applicability to a variety of problems in
econometrics.

Definition 2.2. Let D and E be Banach spaces. A map ¢ : D — E is said to
be Gateaux directionally differentiable at 8 € D tangentially to a set Dy C D if
there is a map ¢ : Dg — E such that

—gp(h)|| —0 (2.1)

E

H $(0 + tnth) —9(9)

for all h € Dg and all ¢1,t,,... € RT such that ¢, | 0. It is said to be Hadamard
directionally differentiable at 0 € D tangentially to a set Dy C D if there is a
map ¢y : Dy — E such that

—¢p(h)|| —0 (2.2)

E

H (0 +tn?n) —9(9)

for all h € Dy and all hy, ho,... € D and t1,t9,... € RT such that ¢, | 0 and
lhn — h|lp — 0.

As with various notions of differentiability in the literature, Hadamard direc-
tional differentiability can be understood by looking at the restrictions imposed
on the approximating map (i.e. the derivative) and the way the approximation
error is controlled. Specifically, define the remainder term

Remy(h) = ¢(0 + h) — (¢(6) + ¢5(h)) , (2.3)

where ¢(60) + ¢y (h) can be viewed as the first order approximation to ¢(6 + h).
Hadamard directional differentiability of ¢ implies that the approximation error
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Remy(h) satisfy that Remg(th)/t tends to zero uniformly in h € K for any
compact set K —i.e.,

sup
heK

—0 as tl0. (2.4)

E

H Remy(th)
t

Compact differentiability in this sense, together with continuity of ¢y, is equiv-
alent to Hadamard directional differentiability (Shapiro, 1990, Prop. 3.3). How-
ever, while continuity of ¢}, is assured under Hadamard directional differentia-
bility, linearity is often lost. Gateaux directional differentiability is of course
weaker than Hadamard directional differentiability, as no robustness with re-
spect to perturbations in the direction h is required.

Our first result, similar to Lemma 3.2 of Beare and Moon (2015), establishes
Hadamard directional differentiability of the LCM operator. Its proof, along
with the proofs of other results to be stated, may be found in Section 5 below.

Proposition 2.1. The LCM operator M : £>° — £*° is Hadamard directionally
differentiable at any concave 6 € £>° tangentially to Cy. Its directional derivative
My - Co — £°° is uniquely determined as follows: for any h € Cy and x € RT,
we have Myh(x) = Mr, h(x), where Ty, = {x} UUp s, and Uy, is the union
of all open intervals A C RT such that (1) z € A, and (2) 0 is affine on A.

Remark 2.1. A concave 6 € ¢*° is nondecreasing, and is continuous on (0, c0).

Remark 2.2. If 0 is affine on an open interval containing x € (0,00), then the
set Tp , is the maximal such open interval. If  is not affine on an open interval
containing « € (0, 00), or if z = 0, then we have Ty , = {«} and Mjh(z) = h(z).
The directional derivative Mj, therefore behaves like a hybrid of the LCM and
identity operators: for any direction h € Cj, it majorizes h by concave functions
on regions over which 6 is affine but acts like an identity map elsewhere.

Our next result summarizes some useful properties of Mj,.

Proposition 2.2. For each 0 € (>°, the Hadamard directional derivative M} is

weakly contractive and convex. Further, M is linear if and only if 0 is strictly
concave on R, in which case Myh = h for all h € Cy.

Let G, = /n(F, — F) and let G = M/G. With Hadamard directional
differentiability of M in hand, we obtain the weak limit of G,, by employing the
Delta method.

Theorem 2.1. Under Assumptions 2.1 and 2.2 we have Gy, ~ G.

Remark 2.3. Theorem 2.1 can be viewed as an extension of a result of Carolan
(2002), who showed in the proof of his Theorem 5 that when F is affine over a
maximal interval [a,b] C RT, the restriction of G,, to [a, b] converges weakly to
the LCM of the restriction of G to [a,b]. Our result extends his to obtain weak
convergence of the entire process G, even when F may have multiple affine
segments separated by kinks, or by intervals over which it is strictly concave.
Further, since our proof is an application of the Delta method, it is simple for us



Weak convergence of the least concave majorant 3847

to consider general estimators F,, satisfying Assumption 2.2, whereas Carolan
(2002) requires F,, to be the empirical distribution based on iid draws from F'.

Remark 2.4. For typical choices of I, satisfying Assumption 2.2 we will have
G(z) = 0 for all  such that F(z) = 1.

Remark 2.5. If F is strictly concave then we know from Proposition 2.2 that M/,
is the identity map on Cjy. In this case G = G, and so Theorem 2.1 implies the
asymptotic equivalence of F, and F,.. More generally, asymptotic equivalence
of F,, and F,, holds when F is strictly concave at all  such that F (x) <1, and
G(z) = 0 for all = such that F(z) =1

3. Bootstrap approximation of the law of G,

Parallel to the level of generality adopted in our treatment of the estimator
F,, in the previous section, we here maintain a high degree of generality with
respect to the method used to obtain a bootstrap version of F,,. Let F},F5, ...
be random elements of ¢°°. For each n we assume the existence of independent
o-fields X,, W} C F such that F,, is &}, /A-measurable and F;, is (X, @ W)/ A-
measurable. X}, should be interpreted as the o-field generated by the data used
to construct [F,,, and W, should be interpreted as the o-field generated by
the random weights associated with the bootstrap procedure used to generate
a realization of F} . For instance, if IF,, is the empirical distribution of an iid
sample (X1, ..., X,) drawn from F, then the standard nonparametric bootstrap
involves computing

1 n
Fr(z) = ~ > WX <), zeRT,
i=1

where (W{,,,..., Wy ) is a multinomial random vector with n categories and
probabilities (n~!,...,n~1), distributed independent of (Xi,...,X,). In this
case X, is the o-field generated by (X, ..., X, ) and W is the o-field generated
by (Wy ., ..., Wy ). More general resampling schemes such as block bootstraps
or Markovian procedures for serially dependent data may also be accommodated
within our framework; see Radulovié¢ (2002) for a survey and discussion.

We require some additional notation. Let P denote the collection of all prob-
ability measures on the measurable space (¢°°,.4). Denote by dp a metric on P
that metrizes weak convergence in £°° under d.; for instance, we could take dp
to be the bounded Lipschitz metric, as in Pollard (1984, pp. 74-75). Given an
arbitrary random element H of > and o-field C C F, denote by L(H) the law
of H and by £(H|C) the law of H conditional on C, the latter uniquely defined
up to almost sure equivalence.

Let Gi = /n(F;, — F,,), the bootstrap version of G,. We assume that the
bootstrap law of G}, delivers a valid approximation to the law of G,, in the
following sense.

Assumption 3.1. G}, satisfies dp (L(G}, | X,,), L(Gy,)) — 0 in outer probability.
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Assumption 3.1 is automatically satisfied when F} is the standard nonpara-
metric bootstrap version of the empirical distribution of iid draws from F'. It is
also satisfied by various dependent resampling schemes under suitable technical
conditions, as discussed by Radulovié¢ (2002).

We would like to obtain a valid bootstrap approximation to the law of Gn.
An obvious approach is to use as an approximation the law of \/n(MF¥ — MF,,)
conditional on X,,. If we could apply the Delta method for the bootstrap (see e.g.
van der Vaart and Wellner, 1996, Thm. 3.9.11) it would be possible to conclude
that

dp (L (VA(ME, — MF,) | X,) ,£(G)) = 0 (3.1)

in outer probability, justifying the use of the law of \/n(MF; — MT,,) conditional
on X, as an approximation to the law of G,,. Unfortunately it is not possible
to apply the Delta method for the bootstrap in this way when the directional
derivative M, is nonlinear, and the above statement of convergence in outer
probability is typically false unless F' is strictly concave on its support. This is
a consequence of Proposition 1 of Diimbgen (1993) and Theorem A.1 of Fang
and Santos (2015); see also Volgushev and Shao (2014, p. 417). We instead have
the following result characterizing the unconditional weak limit of \/n(MF} —

Theorem 3.1. Under Assumptions 2.1, 2.2 and 3.1, we have

where G’ is an independent copy of G.

The unconditional weak limit appearing in Theorem 3.1 is equal to Gif F
is strictly concave on its support, but otherwise typically differs from G. In the
latter case we cannot have weak convergence of /n(MF} — MF,,) conditional
on X, to G, so the bootstrap is not well-behaved.

In view of the failure of the standard bootstrap approximation to the law of
@n, we may instead consider an alternative route based on a suitable estimator
/\;l; of the operator M’.. The simple plug-in estimator M]'Fn is not effective
because from Proposition 2.1 it is clear that M'zh is typically not continuous
in F for fixed h. We may instead construct M;L using a version of numerical
differentiation. Specifically, let M; be given by

M(F,, + toh) — M(F,,)
t

M h = , het, (3.2)
with ¢1,%s, ... a sequence of positive reals chosen to satisfy the following condi-
tion.

Assumption 3.2. As n — oo we have t,, — 0 and /nt,, — 0.

A bootstrap approximation to the law of G,, is provided by the law of M;G;‘L
conditional on X,,. Note that, in view of the A, /A-measurability of F,, and
(X, ® W;)/A-measurability of G}, we may in practice simulate the law of

n?
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M G* conditional on X,, by evaluating M/, at repeated bootstrap realizations
of Gj,. The next result indicates that this modified bootstrap procedure leads
to asymptotically valid approximation of the law of G,,.

Theorem 3.2. If Assumptions 2.1, 2.2, 3.1 and 3.2 hold, then
dp (LM, Gy, | %), L(G)) =0
i outer probability.

The bootstrap procedure just described is precisely the rescaled bootstrap
studied by Diimbgen (1993). It can also be viewed as a special case of the more
general bootstrap procedure studied by Fang and Santos (2015). Though The-
orem 3.2 is immediate from Proposition 2 of Diimbgen (1993) and Proposition
2.1 above, to provide additional clarity we give a proof based on verifying the
conditions of Theorem 3.2 of Fang and Santos (2015). Despite the asymptotic
approximation established in Theorem 3.2, we will see in the following section
that confidence bands constructed using the rescaled bootstrap perform poorly
in numerical simulations.

We close this section by pointing out a connection between the rescaled boot-
strap and the more familiar m-out-of-n bootstrap. This connection was identified
by Diimbgen (1993), who pointed to earlier uses of the m-out-of-n bootstrap by
Bretagnolle (1983) and Beran and Srivastava (1985, 1987); see also Bickel et
al. (1997). Suppose we let F¥ be the empirical distribution of an iid sample
of m = m(n) draws from F,,, and set G* = /m(F: —F,) and t, = m~/2.
Assumption 3.1 will be satisfied if, for instance, [F,, is the empirical distribution
of an iid sample from F' and m tends to infinity with n (see e.g. Shorack and
Wellner, 1986, pp. 763-764) while Assumption 3.2 will be satisfied if m increases
to infinity more slowly than n. For this choice of G}, and ¢,, we have

MG}, = Vm (M(F;,) — M(Fy)),

and so our rescaled bootstrap approximation to the law of G, is precisely the
usual m-out-of-n bootstrap approximation. It is thus apparent that, when the
m-out-of-n bootstrap works, it does so because it implicitly provides an estimate
of M’=G by numerical differentiation, as in (3.2). Our more general framework
allows us to retain this aspect of the m-out-of-n bootstrap procedure, while
using bootstrap samples of size n rather than m to approximate the law of G,,.

4. Uniform confidence bands for F'

In this section we consider a variety of methods for constructing uniform con-
fidence bands for F' and investigate their performance using numerical simula-
tions. It is apparent from Theorem 2.1 that (1 — a)-level uniform confidence
bands for F may be constructed from IF,, and a suitable estimate of the (1 —a)-
quantile of [|G||. Denote this quantile by

¢ =inf{ce R: P(IG]| < ) > 1 —a).
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Different estimates of ¢! =% will yield different confidence bands for F.
The rescaled bootstrap of Diimbgen (1993) discussed in Section 3 provides
one way to estimate ¢'~®. The rescaled bootstrap estimate is

g\~ =inf{c € R: P(IN,GL] < c|X,) > 1—a},

which may be computed by evaluating || M/,G* || at repeated bootstrap realiza-
tions of G*. We will call I, +n~'/2¢2 = the rescaled bootstrap confidence bands.
With Theorem 3.2 in hand it is straightforward to establish the following result.

Proposition 4.1. Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold, and suppose that
the distribution function of |G| is continuous and strictly increasing at q*=°.
Then qL=% — ¢*=% in probability, and

e’
= q
P<||]Fn—F|| <t ) g
Vn

A limitation of the rescaled bootstrap (aside from poor small sample perfor-
mance, which we shall come to shortly) is the need to choose the tuning param-
eter t,,. There is an alternative procedure we can use to construct conservative
confidence bands for F' that does not require the use of a tuning parameter.
A consequence of the weak contractivity of the LCM operator is that we must
have ||Gy, | < ||G,|| when F is concave. If F,, is the empirical distribution func-
tion of an iid sample drawn from F', and we are willing to assume further that
F(0) = 0, then the law of |G| is distribution free and its (1 — a)-quantile,
which we denote by 1=, may be obtained by Monte Carlo simulation or from
tables of critical values for the Kolmogorov-Smirnov test. This quantile provides
an upper bound on the (1 — a)-quantile of |G|, and so we have

sl—a

T an
P|F,—-F| < >1-—
(1. - FI<B2) 210

for any fixed n, without resorting to asymptotics. We will call F,, & n=1/2g! -
the conservative fized n confidence bands.

In more general settings where [F,, is not the empirical distribution function
of an iid sample drawn from F, the law of |G| may need to be estimated in
order to obtain conservative confidence bands for F. Under Assumption 3.1, this
may be achieved using a suitable bootstrap technique. Define the quantile

¢ " =mf{ceR: P(|G| <c)>21-a}
and its bootstrap estimator
G =mf{ceR: P (|G| <c|X,) >1-a}.

We will call F,, + n‘l/Qq,lL_o‘ the conservative bootstrap confidence bands. The
next result confirms they are asymptotically valid though potentially conserva-
tive.
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Proposition 4.2. Let Assumptions 2.1, 2.2 and 3.1 hold, and suppose that the
distribution function of |G| is continuous and strictly increasing at ¢*~<. Then
GL= — '~ in probability, and

l—a
A = q
1 fP(|F,—F| <= >1-o.
e (” ”—ﬁ)— °

Our next procedure for constructing confidence bands is motivated by the
Delta method approximation (3.1), which suggests the use of bands of the form
F, +n~12G ~ with

Gn = inf{c € R: P(Vnl|MF;, = .| <c|%,) > 1 - a}.

We will call an + n_1/2c’j,1fa the naive bootstrap confidence bands. As discussed
earlier, the Delta method approximation (3.1) is only valid for those F that
are strictly concave on their support, because linearity of M’ is required to
apply the Delta method for the bootstrap. When F' is not strictly concave on
its support we do not expect the naive bootstrap confidence intervals to achieve
their nominal coverage rate asymptotically. Their limiting behavior is instead
governed by Theorem 3.1.

The final method of constructing confidence bands we shall consider was
suggested by a referee, and has also been studied by Sen et al. (2010). Assume
that F,, is the empirical distribution function of an iid sample (Xi,...,X,)
drawn from F. Let F! be the empirical distribution function of n iid draws
from F,; such draws may be constructed by applying the quantile function
corresponding to F, to each of n draws from the uniform distribution on the
unit interval, independent of one another and of A,,, the o-field generated by
(X1,...,X,). Define

gy =inf{c € R: P(Vn| MF}, = F, | < ¢|X,) > 1 —a}.

We will call F,, + n’l/Q(jTlfo‘ the constrained bootstrap confidence bands, be-
cause the distribution from which our bootstrap sample is drawn is constrained
to satisfy concavity. Their unconditional limiting behavior is governed by the
following result.

Theorem 4.1. Under Assumption 2.1 we have
VA(ME], = F,) ~» Mp(G + M5(G') — Mp(G),

where G’ is an independent copy of G.

Based on the fact that the weak limit in Theorem 4.1 is generally not equal
to the weak limit G of G, unless F is strictly concave, we might expect the
constrained confidence bands to perform poorly, but in fact they perform well
in our numerical simulations. It turns out that the upper quantiles of the uni-
form norms of these two weak limits are, as far as we can tell from numerical
computations, identical. We will come back to this fortuitous property shortly.
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Sen et al. (2010) have shown that confidence intervals for the left-derivative
of F' at a point obtained by bootstrapping from [, are asymptotically invalid
and have coverage rates well below the nominal level at relevant sample sizes.
Moreover, their results indicate that resampling from the Grenander estima-
tor can yield bootstrap processes that weakly converge unconditionally but not
conditional on the data; note that Theorem 4.1 says nothing about conditional
convergence. The good performance of the constrained confidence bands for F
in our numerical simulations is therefore quite surprising.

To assess the small sample behavior of the various confidence bands just de-
scribed we ran two sets of numerical simulations, with the former involving iid
samples and the latter serially dependent samples. First we describe the former
set of simulations. In each of 10000 experimental replications we randomly gen-
erated an iid sample of size n = 100 from one of three distribution functions to
be defined shortly, and estimated that distribution using F,,, the LCM of the em-
pirical distribution function. Setting o = 0.1, we computed the rescaled, naive
and constrained bootstrap confidence bands. For the rescaled bootstrap we used
twenty values of the tuning parameter ¢,, running from 0.05 to 1 in increments of
0.05. Note that at t,, = 0.1 = n~/2 the rescaled bootstrap confidence bands are
identical to the naive bootstrap confidence bands. All confidence bands were
computed using 1000 bootstrap samples. We also computed the conservative
fixed n confidence bands, with 1~ = 1.2 obtained by Monte Carlo simulation.

The three distribution functions we used in our numerical simulations are
plotted in Figure 1. All three distributions are supported on the unit interval.
The first distribution is the uniform distribution on the unit interval, F (z) = x.
The second distribution is the piecewise linear function

1 : 1
Fy() = 7T 1f0§x§1—ﬁ
22+ (V2-1)z ifl—%§x<1.

The third distribution, whose graph forms a quarter circle, is
Fi(x) = v/z(2 — x).

Note that Fj is linear on its support, that Fj is strictly concave on its support,
and that F3 is concave but not strictly concave on its support.
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Fic 2. Coverage rates under iid sampling. Solid, dashed and dotted lines show coverage rates
for the rescaled, comstrained and maive bootstrap confidence bands respectively. Dash-dotted
lines show coverage rates for the conservative fixed n confidence bands.

The results of our first set of numerical simulations are displayed in Figure 2.
The three panels correspond to the three different distribution functions plotted
in Figure 1. The vertical axes measure coverage rates and the horizontal axes
indicate the tuning parameter t,, used for the rescaled bootstrap. Coverage rates
for the rescaled, naive and constrained bootstrap confidence bands are plotted
with solid, dotted and dashed lines respectively. Coverage rates for the conserva-
tive fixed n confidence bands are plotted with dash-dotted lines. We enumerate
several observations on the displayed results.

1. Theorem 3.1 implies that the naive bootstrap confidence bands should
have limiting coverage rate equal to the nominal level for the strictly con-
cave distribution function Fj3, and indeed the computed coverage rate with
n = 100 is 0.86, fairly close to the nominal level of 0.9. The coverage rates
are 0.73 and 0.80 for F; and F5 respectively, well below the nominal level.

2. The conservative fixed n confidence bands are, as expected, conservative,
with coverage rates of 0.95 for Fy, F» and Fj.

3. The rescaled bootstrap confidence bands do not perform well, despite the
asymptotic justification for their use provided by Proposition 4.1. At ¢,, =
n~1/2 = 0.1 they are identical to the naive bootstrap confidence bands by
construction. For F} and Fy, as we increase t,, the coverage rate rises, but
never attains the nominal rate. For F3 the coverage rate is insensitive to
the choice of t,,. Additional unreported simulations showed the coverage
rate for all three distributions effectively flat for ¢, > 1.

4. The constrained bootstrap confidence bands perform well, with coverage
rates of 0.87, 0.88 and 0.88 for Fi, Fy and Fj respectively. They dominate
the rescaled bootstrap confidence bands across all values of ¢,,.

The good performance of the constrained bootstrap confidence bands is sur-
prising because Theorem 4.1 indicates that the weak limit of /n(MFf — Iﬁ‘n)
differs from G except when F is strictly concave. To investigate further, we
computed the quantile functions of the uniform norms of the weak limits G,

M4 (G 4+ G') — M (G') and Mu(G + M=(G')) — M'=(G’) appearing in The-
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Fic 3. Quantile functions for the uniform and L'-norms of the weak limits G, M (G +
G') = M%(G) and MH(G + ML (G')) — M (G') are shown in solid, dotted and dashed lines
respectively.

orems 2.1, 3.1 and 4.1, for each of the three distributions F}, F» and F3. This
was achieved by ordering the uniform norms of 10000 independent realizations
of the three weak limits; each such realization was constructed from two in-
dependent Brownian bridges B and B’ computed using Karhunen-Lo¢ve series
truncated at 10000 terms, evaluated over a grid of 1000 points spread evenly
over the unit interval. The computed quantile functions are displayed in the
top three panels of Figure 3. The three panels correspond to Fij, Fy and Fj
respectively. Solid, dotted and dashed lines are used to plot the quantile func-
tions of the uniform norms of the weak limits G, M’ (G + G') — M/,(G') and
M (G+M(G')) — M (G’) respectively. As expected, the three quantile func-
tions coincide in the third panel, because the weak limits coincide when F' is
strictly concave. The quantile function for |M’%7(G + G') — M'=(G')]| lies be-
low the quantile function for ||G|| in the first two panels, consistent with the
undercoverage of the naive bootstrap confidence bands shown in the first two
panels of Figure 2. What is more interesting is that the quantile functions for
|G| and [ M/n(G + M'm(G)) — M/u(G')|| are nearly identical in the first two
panels. Visible discrepancies occur only at quantiles of around 0.4 and below.
The near-equality of these two quantile functions explains the good behavior
of the constrained bootstrap confidence bands in Figure 2. Note that while the
laws of the uniform norms of G and M’ (G + M'5(G')) — M/p(G') are approxi-



Weak convergence of the least concave majorant 3855

2.5 2.5 2.5
27 s
1.5 ’
L
51
; 0 +————
2.5 0 5 1 15 2 25
(a) Fy (b) F, (c) F3

FIG 4. Scatterplots of ||G|| versus M5 (G + ML (G')) = MR(G)]].

mately equal, the same is not true more generally for other choices of norm. In
the second row of panels in Figure 3 we plot quantile functions for the L'-norms
of the three weak limits. The three quantile functions are more clearly distinct
from one another in the first two of these panels.

To provide further insight into the relationship between ||G| and || M’ (G +
M%(G)) = M (G)||, in Figure 4 we display scatterplots of the two quantities
based on 1000 independent draws of (G,G’). The horizontal axes measure |G|
and the vertical axes measure ||[M%(G + M%(G')) — M%(G')|. In panel (c),
all realizations lie on the 45°-line, because M, is linear (and idempotent). In
panels (a) and (b) this is not the case; however, deviations from the 45° line
occur overwhelmingly toward the lower quantiles of the distributions of the two
uniform norms. In panel (a) we do not see a single deviation from the 45° line
beyond 0.5 on the horizontal axis, which corresponds roughly to the 0.4 quantile
of |G|

The poor performance of the rescaled bootstrap confidence bands apparent
in Figure 2 was anticipated by Diimbgen (1993, p. 126), who warned that the
rescaled bootstrap is “very nonrobust and shouldn’t be used”. He attributed this
nonrobustness to the fact that the rescaled bootstrap typically fails to be con-
sistent under a sequence of parameters indexed by the sample size (in our case,
under a sequence of distributions F},) converging at a rate no faster than n~1/2,
Note that the consistency property we established in Theorem 3.2 requires F
to be fixed. The results in Figure 2 confirm the pertinence of Diimbgen’s warn-
ing, especially in view of the dominant performance of the constrained bootstrap
confidence bands. In additional unreported simulations, we investigated whether
the performance of the rescaled bootstrap improved with larger sample sizes.
We found that its performance continued to be disappointing even with sample
sizes as large as n = 1000, exhibiting substantial undercoverage over all tuning
parameter values. By comparison, the constrained bootstrap confidence bands
obtained a coverage rate of nearly exactly 0.9 with n = 1000.
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Fic 5. Coverage rates under dependent sampling. Solid, dashed and dotted lines show coverage
rates for the rescaled, conservative and naive bootstrap confidence bands respectively.

We ran a second set of simulations to investigate the case of dependent sam-
pling. The samples generated were stationary Markov chains of length n = 100.
The invariant distribution of each chain was chosen to be Fy, F5 or F3, as dis-
played in Figure 1. Dependence in each chain was induced using a Gaussian
copula function with correlation parameter p = 0.75. This means that the bi-
variate distribution of any two consecutive observations in a chain has Gaussian
copula with p = 0.75 and marginal distributions both equal to one of F}, F» and
F3. See Beare (2010, 2012) for more on copula-based Markov models and their
dependence properties. For each Markov chain of length n we computed its em-
pirical distribution function F,,. Bootstrap versions F}, of F,, were generated by
applying the so-called local bootstrap of Paparoditis and Politis (2002), which
resamples observations in such a way as to preserve Markovian dependence.
A tuning parameter used for the local bootstrap was chosen using a plug-in
procedure based on an auxiliary first-order autoregression, as described by Pa-
paroditis and Politis (2002, p. 315). See Beare and Seo (2014) for additional
discussion of the local bootstrap and its application to copula-based Markov
models.

The results of our second set of simulations are displayed in Figure 5. As
with the first set of simulations, coverage rates were computed over 10000 ex-
perimental replications, and confidence bands were computed using 1000 boot-
strap samples. Coverage rates were computed for the rescaled, conservative and
naive bootstrap confidence bands, all based on the local bootstrap. We did not
compute coverage rates for the constrained bootstrap confidence bands or con-
servative fixed n confidence bands because their applicability is confined to the
iid setting. We enumerate some brief comments on the displayed results.

1. The naive bootstrap confidence bands have coverage rates of 0.80 and 0.81
for I and Fy respectively, which is an improvement on the iid case, but
nevertheless well below the nominal level of 0.9. For the strictly concave
distribution F3, where Theorem 3.1 indicates that we might expect the
naive confidence bands to perform well, the coverage rate is only 0.83.

2. Despite the asymptotic conservatism established in Proposition 4.2, the
conservative bootstrap confidence bands are in fact only conservative for
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Fy. For Fy and Fj their coverage rate is 0.87, a little below the nominal
level.

3. The coverage rates for the rescaled bootstrap confidence bands are qual-
itatively similar to the iid case, being equal to the coverage rate of the
naive bootstrap confidence bands at ¢, = n~*/2 = 0.1 and then either
rising (for F; and F») or staying relatively flat (for F3) as t,, increases.
They are dominated by the conservative bootstrap confidence bands for
all values of t,.

We conclude from the results displayed in Figure 5 that the conservative
bootstrap confidence bands are the most reliable of the three confidence bands
considered. These results are of course specific to the structure of dependence
and method of resampling considered, but they at least point to the possibility of
effective inference in a dependent setting using the conservative bootstrap con-
fidence bands, and provide further evidence of poor performance of the rescaled
and naive bootstrap confidence bands.

5. Proofs

Proof of Proposition 2.1. Weak contractivity of M yields ¢ 1| M(0 + t,hy) —
M(O+t,h)|| < ||hn—h| — 0. It therefore suffices for us to demonstrate Gateaux,
rather than Hadamard, directional differentiability of M. That is, we wish to
show that for each concave 6 € £>°, the maps Mle,n :Co— L and (y: Cy — £
defined by

M b=t [M(0 + t,h) — M(0)] for each n € N and each h € Cy

and
Goh(z) = Mr, h(x) for each h € Cy and each x € R
satisfy
sup |[Mj ,h(z) — (oh(x)| = 0 for each h € Cy. (5.1)
zER

Under (5.1) we may conclude that M is Hadamard directionally differentiable at
6 tangentially to Cy, with directional derivative Mj, = (p. We shall verify (5.1)
for all concave 8 € ¢ by applying Dini’s theorem. This involves four steps. First
we show that Mgmh and (gh are continuous on R™. Next we find continuous
extensions of Mj  h and (ph to R* := [0, 0], the one point compactification
of R*. Next we show that Mj  h(x) is nonincreasing in n for each z € RT.
Finally we show that Mj  h(z) — (ph(x) for each z € RY.

To show that M/G,nh’ is continuous on R, we first observe that continuity of

p.nlv on (0,00) follows from the fact that the LCMs M(6) and M(6 + t,h)
are both concave on R*, hence continuous on (0,00). It remains to establish
continuity at zero. Since M(0) is bounded from below and nondecreasing on
(0,00) (it is bounded from below by —||0|| and must therefore be nondecreasing
due to its concavity), its right-limit at zero exists, and we denote it by M (60)(0+).
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The right-limit of 6 at zero exists for the same reason, and we denote it by 6(0+).
We will show that

M(60)(0+) = 0(0+) (5.2)
by supposing that this equality is false and deducing a contradiction. Due to
the fact that M(#) majorizes 6, if (5.2) is false then there exists ¢ > 0 and
a < M(0)(0+) such that, for all z € (0,¢), we have M(6)(x) > a > 0(x). Let
¥ € £ be equal to M(0) on [, 00), be given by

() = a+ e (M) - a)a

for z € (0,¢), and be equal to 6(0) at zero. Then ¥ is a concave majorant of 6
lying strictly below M () on (0, ¢), a contradiction. This establishes (5.2), and
a similar argument using 6 + ¢, h in place of 6 establishes that

M(6 + t,h)(04) = 0(0+) + t,h(0). (5.3)

At zero the LCMs satisfy M(6)(0) = 6(0) and M (0 + t,,h)(0) = 6(0) + t,,h(0).
Combining these equalities with (5.2) and (5.3), we obtain

lm Mp , h(w) = £, [M(6 + tah) (04) = M(0) (0+)]

= £, [M(6 + ,h)(0) — M(6)(0)]
= M}, h(0).

This shows that Mle,nh is continuous at zero, and hence everywhere on R™*.

To show that (ph is continuous on R* observe that for any x € R* either
the set Tp . is an open interval containing x, or it is the singleton {z}. In the
former case (yh coincides with the concave function M,  h over Tpy , so (ph is
continuous at z. Suppose instead that Ty, = {x}, so that (ph(x) = h(z) (this
is the relevant case when z = 0). Then for any 2’ > z it must be the case that
Ty C (x,00), and consequently

h(z") < Coh(a") < Mg ooyh(a”). (5.4)

The function h is continuous and therefore has right-limit h(z) at x. We can
show that the function M, )h has right-limit A(z) at 2 in the same way
that we showed (5.2). Letting 2’ decrease to z, we deduce from (5.4) that (ph
has right-limit h(x) at z, and is therefore right-continuous at z. A symmetric
argument shows that (yh is left-continuous at x when z > 0. We conclude that
Cph is continuous everywhere on R*, as claimed.

Next we obtain continuous extensions of My ,h and (ph to R*. A bounded,
nondecreasing real valued function on R*—in particular, any concave member
of £>°—is convergent to its supremum at infinity. Since M, h is t; ! times the
difference of two such functions, M(0 + t,h) and 0, we may extend it continu-
ously to Rt by defining

My h(0) =t Lli_)n;o M(O + t,h)(z) — lim G(x)}

T—r 00

=t,* [ sup (0(x) + t,h(z)) — sup H(z)] . (5.5)
zeR+ zeRT
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To obtain a continuous extension of (yh to RT, first consider the case where
a:=inf{zx € RT : 0(x) = sup,cr+ 0(y)} < 00, so that # achieves its supremum
on [a, 00), or possibly (0, 00) if a = 0. In this case we have (gh(z) = M4 00)h(2)
for all x > a. The function M, o)h is concave and bounded from below by h,
which vanishes at infinity, so M4 o)h must be nondecreasing. Also, M4 o0)h
is bounded from above by ||A[|. Since M4 )7 is nondecreasing and bounded it
must be convergent at infinity, and so we may continuously extend (ph to R™
by defining
Coh(00) = lim M4 o0)h(x) = sup h(z).
T—00 >a

Next suppose that we instead have a = oco. In this case # does not achieve its
supremum on R, and consequently Ty, is of finite length for each z € R™.
Fix ¢ > 0. Since h € Cy, there exists N < oo such that, for all z > N,
we have |h(z)| < e. But Ty n is of finite length, so there must exist a finite
N’ > N such that N is less than all elements of Ty n-. For all z > N’ we have
|Coh(z)| = |[Mr, M(x)| < [Mn,)h(x)| < €. Since € was arbitrary it follows
that {yph vanishes at infinity. We thus obtain a continuous extension of (yh to
R* in the case a = co by defining (gh(c0) = 0.

Before continuing further it will be useful to extend the domain and codomain
of the LCM operator to accommodate sums of bounded functions and affine
functions. Letting S denote the collection of maps from R™ to R formed by
summing a function in £°° and an affine function, we define

Mf(z) =inf{g(z): g €S, gis concave, and f < g}, fe€S, zcRT,

which evidently reduces to our earlier definition of M f when f € ¢>°. Consider
functions f,g € S with g affine, and write the latter as g(z) = o 4+ 7z with
o,7 € R. The second part of the first sentence of Lemma 2.1 of Durot and
Tocquet (2003) implies that M(f + g)(z) = M(f + o)(x) + 7z, and the first
part of the same sentence implies that M(f+0) = M f+o. This proves a useful
property of M: we have M(f + g) = Mf + g for any f,g € S with g affine.
We next show that Mg, h(x) is nonincreasing in n for each x € R™T. First
consider the case z € (0,00); our arguments for this case are similar to those
in the proof of Lemma 3.2 of Beare and Moon (2015). Since 6 is concave, for
each z € (0,00) the supporting hyperplane theorem ensures the existence of an
affine function &, : R — R such that &, (x) = 6(z) and &, > 0. We now have

My h(x) =t MO + tah)(x) — & (x)]  since 6 is concave and & (z) = 0(x)
=t MO+ t,h — &)(x) since — &, is affine
=M(h+t,1(0 &) (z) since M is positive homogeneous.
Since M is monotone and &, > 0, this shows that M’g,nh(x) is nonincreasing in n
for each = € (0, 00). Next consider the case z = 0. Since M f(0) = f(0) for every
f €S, we have Mj  h(0) = h(0), which is constant and hence nondecreasing
in n. Finally consider the case z = co. Letting £ = sup,cgr+ 0(x), we see from

(5.5) that My, h(00) = sup,cr+[h(z)+1;, " (8(2) —€xo)], which is nondecreasing
in n.
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It remains to demonstrate that My, h(x) — (ph(z) for each x € RT. It is
clear that (ph(0) = h(0) and we observed already that My, h(0) = h(0) for
every n, so the desired convergence holds for = 0. From (5.5), we also have

M h(oo) =t | sup (6(x) + tpoh(z)) — sup O(z)| - sup (),
xeRT rzeRT r€arg max 6

with the stated convergence following from the Hadamard directional differen-
tiability of the supremum operator; see e.g. Lemma B.1 of Fang and Santos
(2015), which applies since R* is homeomorphic to [0, 1]. Note that we should
interpret h(co) = 0 and argmax6 = {oo} if § does not attain its supremum
on R*. We now have Mj,  h(co) — sup,s, k() if 6 attains its supremum on
R*, and Mj (o) — 0 otherwise, so that in either case we have the de-
sired convergence My  h(o0) — (ph(co). It remains to establish convergence at
points & € (0,00). Our arguments here are again similar to those in the proof
of Lemma 3.2 of Beare and Moon (2015). Let hg . = h +t,;1(0 — &), and
recall that My, h(z) = Mhg,, (7). A representation of the LCM in terms of a
supremum of secant segments (cf. Carolan, 2002, Lem. 1) allows us to write

Mhg () = sup sup

z’'€[0,x) z' €(x,00)

' —x z—a
£B”*

/ 1
p hono(z') + pa—— ho .o (x ):| . (5.6)

Since &, is affine and &;(z) = 6(x), the term in square brackets in (5.6) equals

a —x x—a 2 —x x—a
mh(l’l) + mh(x”) + t;l {mﬂ(x') + o xﬁ(x") — 0(1’):|
(5.7)
The term in square brackets in (5.7) is equal to zero whenever z',z"” € Ty,
and is less than zero otherwise. Moreover, letting Tg’m ={yeRt:|jy—2z| <
0 for some z € Ty}, for any 6 > O there exists € > 0 such that the term in
square brackets in (5.7) is less than —e whenever we do not have z’, 2" € TG‘S,E.

For n large enough that sup,cg+ h(y) —t,,'e < inf cg+ h(y), we may therefore
exclude points outside of Tg’z from the suprema in (5.6), yielding

Mhg ()
" /
' —z , T—x "
= sup sup [7,/ Do e (@) + ———hona(2")
x/ €[0,2)NTE | @' €(m,00)NTY T =T T’ =
2 —x x—x
! 1
< s swp | S0 4 S| = My ),
x’E[O,x)ﬁTgyT/ x”E(w,oo)ﬁTgyT =T =T ’

with the inequality following from the nonpositivity of the term in square brack-
ets in (5.7). Since hg n,. = h on Ty, we also have M,  h(z) < Mhg o (2). We
have now shown that Mg, ,h(z) < My h(z) < Mqs h(z) for all n sufficiently
large, implying that 1

lim sup MG ,h(z) — M, ()| < [Mgs h(z) — Mz,  h(z)].

n—oQ



Weak convergence of the least concave majorant 3861

To obtain the desired convergence My, , h(x) — Mr, h(z) = (ph(z) it remains
only to show that MTg’mh(I) — Mr, h(x) as 6 — 0. Fix n > 0. Since h € Cy
it is uniformly continuous on R*, and so for all sufficiently small § > 0 we have
[h(z") — h(z")| < n whenever |z’ — 2| < §. Therefore, using the representation
of an LCM as a supremum of secant segments once more, we have

' —x x—a
Myps h(z) = sup sup ———h(2') + ——h(z")
6 » ] 7 ] /
’ r’E[O,I)ﬂT;I :c”G(m,oo)ﬂTs‘iI r’ = T —x
' —x z—z
< sup sup {ﬁh(f) =+ ﬁh(fﬂ)} +n
2/ €[0,2)NTy, 5 x"" €(x,00)NTy & r’ —x T’ —x

= Mg, h(z) +n
for all sufficiently small § > 0. Since n > 0 was arbitrary and M, h(z) <
MTés’Ih(w), we conclude that MTés’zh(x) — My, h(z) as 6 — 0. O
Proof of Proposition 2.2. Weak contractivity of M implies that
MG by = MG hol| = 81 IM(O + tha) = M0+ toha)l| < |7y — hal.

Letting n — oo proves weak contractivity of Mj,. Next, we use the convexity of
M to write

M (ahy + (1 = a)hg) =t [M(a(0 + tphy) + (1 — a)(0 + tpha)) — M(6)]
<t aM(O + t,hy) + (1 — a)M(0 + t,ho) — M(6)]
= aM’G,nhl + (1 - Oé)M/@’nhQ.

Letting n — oo proves convexity of Mj. Finally, we observe that if 0 is strictly
concave on R* then Ty, is a singleton for all z € R™, and so M} is the
identity. If instead 6 is affine in a neighborhood of some « € Rt then My, h #
—Mr, ,(—h) unless h is constant on Tp ., and hence My is not linear. O

Proof of Theorem 2.1. In view of Proposition 2.1, this is immediate from the
Delta method for Hadamard directionally differentiable operators, as stated by
Shapiro (1991, Thm. 2.1), Diimbgen (1993, Prop. 1) or more recently Fang and
Santos (2015, Thm. 2.1). O

Proof of Theorem 3.1. In view of Proposition 2.1, this is immediate from Propo-
sition 1 of Dliimbgen (1993). Alternatively, we could appeal to Theorem 2.2 of
Kosorok (2008a) to obtain

(V(F, = B, Vil — F)) ~ (G, &) in 6% x £,
and then to the continuous mapping theorem to obtain
Vn((Fr,F,) — (F,F)) ~ (G+G',G') in £ x £,
and then finally apply the functional Delta method with the map
0 X L%° > (01,02) — M(01) — M(03) € £°

to obtain the desired weak convergence in £°°. O
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Proof of Theorem 3.2. In view of Proposition 2.1, this is immediate from Propo-
sition 2 of Dlimbgen (1993). In the interests of clarity it might also be helpful
to prove our result by applying Theorem 3.2 of Fang and Santos (2015), the
assumptions of which we now verify. Assumptions 2.1(i), 3.1(i) and 3.2 of Fang
and Santos are satisfied by construction. Assumption 2.1(ii) of Fang and Santos
is implied by Proposition 2.1. Assumption 2.2 of Fang and Santos is implied by
our Assumptions 2.1 and 2.2. Assumption 2.1(iii) of Fang and Santos is satisfied
since C is closed (see Remark 2.2 of Fang and Santos). Assumption 3.1(ii) of
Fang and Santos is implied by our Assumption 3.1. It remains to verify As-
sumption 3.3 of Fang and Santos. In view of Remark 3.5 of Fang and Santos, it
suffices for us to show that (1) M/, is Lipschitz continuous uniformly in n, and
(2) | M. h — Mh|| — 0 in outer probability for each h € C. (1) is true since

”M;zhl - M;Lh‘2H = t;1||M(Fn + tnhl) - M(Fn + tnh2)” < ”hl - th,
by weak contractivity of M. To prove (2) we write
M. h =t M(F + tohy) — MF) — (Vnt,) ™" - Vn(MF,, — MF),

where h,, = h+ (y/nt,) tv/n(F, — F). Since ||h,, — h|| = 0 in outer probability
under Assumptions 2.2 and 3.2, we have ||t {[M(F +t,h,) — MF]—=Muh| = 0
in outer probability by Proposition 2.1 and the extended continuous mapping
theorem (see e.g. Diimbgen, 1993, p. 136). We also have ||(v/nt,) "t /n(MF,, —
MF)|| — 0 in outer probability by Assumption 3.2 and Theorem 2.1. O

Proof of Proposition 4.1. Let H, denote the distribution function of | M/,G* ||
conditional on X, and let H denote the distribution function of ||G|. Since
the norm || - || is Lipschitz continuous we may apply Theorem 3.2 with dp
the bounded Lipschitz metric to obtain E(f(|M.,G%|)|X,) — Ef(|G|) in
probability for all Lipschitz continuous maps f : R — [0, 1]. It now follows from
Lemma 10.11(i) of Kosorok (2008b) that we have H,(c) — H(c) in probability
for all continuity points ¢ of H. Fix € > 0 and choose two such continuity points
c1 and ¢y satisfying ¢17% —€ <1 < ¢17 < ca < ¢* "%+ e and H(ey) +6 <
1 —a < H(ecz) — § for some ¢ > 0; this is always possible since H is strictly
increasing at ¢* ~®. Observe that if |¢} ™% —¢'~| > € then either 1 —a < H,,(c1)
or Hy(c2) <1 — a. Thus,

P(lg,=* = q' % > €) < P(1 = a < Hy(c1)) + P(Hn(c2) <1 a)
< P(Hy(c1) > H(c1) + 6) + P(Hy(cs) < H(cs) — 6).

Since H,(c1) — H(c1) and Hp(c2) — H(cz) in probability, it follows that
gL~ — ¢!~ in probability, as claimed. Convergence of the coverage probability
to 1 — a now follows from Theorem 2.1, the continuous mapping theorem, and
the fact that H is continuous at ¢'~. O

Proof of Proposition 4.2. It may be shown that g.=® — ¢!~ in probability and
that P(||F,,—F|| < n~'/2¢:~*) — 1—a by arguing as in the proof of Proposition
4.1, but using Assumption 3.1 in place of Theorem 3.2. Weak contractivity of
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M implies that ||F,, — F|| < ||F,, — F||, so we have P(||F,, — F|| < n~1/2g.~) >
P(||F, — F|| < n~/2g.~®), and the desired result follows by taking the limit
inferior of both sides. O

Proof of Theorem 4.1. We first show that
dp(L(Vn(Fl, —F,) | X,), £(G)) = 0 (5.8)

almost surely (a.s.), with dp the bounded Lipschitz metric. Let P,, be the prob-
ability measure corresponding to F,,, and let PP, be the probability measure

corresponding to F!, the empirical distribution of n iid bootstrap draws from
P,. Let G, p, = v/n(P, — P,). Then we may write

\/H(FIL - Fn)(x) = Gn,Pnfm (59)

where f, = 1(_o 4 for all z € R. We aim to invoke Lemma 2.8.7 of van
der Vaart and Wellner (1996). First, F = {f, : * € R} is Donsker and pre-
Gaussian uniformly in all probability measures on R (Giné and Zinn, 1991),
and hence uniformly in {P, }. Condition 2.8.6 of Lemma 2.8.7 of van der Vaart
and Wellner (1996) is trivially satisfied since F is uniformly bounded. It remains
for us to verify that their condition 2.8.5 holds a.s. Let Py be the probability
measure corresponding to F'. Pick f., f, € F and assume z < y without loss of
generality. Then using the notation in van der Vaart and Wellner (1996),

0P, (fo, fy) = PPy (Far )| = [V Pala,y] = (Pu(@, y)? =/ Po(@, y] — (Po(,y))?|.

Condition 2.8.5 of van der Vaart and Wellner (1996) requires that pp, (fz, fy) —
ppy (fx, fy) uniformly in z,y. By applying Marshall’s lemma and the Glivenko-
Cantelli theorem we see that P,(z,y] — FPo(x,y] uniformly in z,y a.s., and
so condition 2.8.5 holds a.s. Thus Lemma 2.8.7 of van der Vaart and Wellner
(1996) implies that G, p, ~» Gp, in £*°(F) a.s., where Gp, is tight, centered
and Gaussian with EGp, f,Gp, fy = Pofofy — PofsPofy. In view of (5.9) and
the fact that EG(z)G(y) = EGp, f+Gp, fy, it follows that (5.8) holds a.s.

With the conditional weak convergence (5.8) in hand, we may apply Theorem
2.2 of Kosorok (2008a) to obtain

(Vn(Fl —1,), vVn(F, — F)) ~ (G,G') in £ x (>, (5.10)

(Note that (5.8) holding a.s. implies /n(F, — F,,) I% G in Kosorok’s notation,
due to the fact that \/n(F}, —T,) is ball measurable and cadlag; see Biicher and
Ruppert, 2013, p. 224.) For each n let g, : £>° X £>° — £>° x {*° be the map

9n(01,02) = (01, VR(M(F + "1 /260y) — M(F))),

and note that for any sequence of pairs (61,5, 02 ,,) in £°° x £>° converging to some
(01,02) € £>° x Cy, Proposition 2.1 ensures that g, (61,,,02,,) — (01, Mz(62)).
We may therefore apply the extended continuous mapping theorem with the
maps g, to the weak convergence (5.10), yielding

(Vn(Fl —1,), vVn(F, — F)) ~ (G, M'(G")) in £ x £,
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Applying the continuous mapping theorem with the map (61, 62) — (61 +62,65)
then gives

VA((E] F) = (FF)) ~ (G + Mp(G), Mip(€)) in £ x £,

Finally, we apply the functional Delta method with the map (61, 602) — M (6;)—
0> to obtain

VI(ME], = )~ Myp (G + Mp(G')) = Mp(G')  in £,

as claimed. |

Appendix A: Extension to isotonic regression

While the primary focus of our paper has been on the behavior of estimators of
concave distribution functions, the approach we have taken may be used to study
other shape constrained estimators. In this appendix we briefly explain how
the results on the Hadamard directional differentiability of the LCM operator
developed here and in Beare and Moon (2015) may be used to characterize the
limiting behavior of the greatest convex minorant (GCM) of the cumulated sum
diagram (CSD), whose left-derivative is the isotonic regression estimator.

Let (X1,Y1),...,(Xn,Yn) be n iid pairs of random variables satisfying

Yi=m(X;)+e, i=1,...,n,

where m : R — R is nondecreasing and ¢4, . .., €, are iid centered random vari-
ables independent of X7, ..., X,,. We impose the following technical conditions.

Assumption A.1. (a) The second moment 02 = Ee? is positive and finite;
(b) the distribution function F of X; has compact support [a, b] and is continu-
ously differentiable on that support with strictly positive derivative f; (c) m is
continuously differentiable on [a,b] with derivative m’.

Let the X;’s arranged in ascending order be denoted by X(1),..., X(,), and
the corresponding Y;’s and &;’s by Y(1),...,Y(y) and €(1),...,€(,). The isotonic
regression estimator of m proposed by Brunk (1958) is given by

t
Y0

at each observation X;). Alternatively, 7, (X(;)) is given by the left-derivative
at i of the GCM over [0, n] of the CSD of Yy, ..., Y(,) (Brunk, 1958; Mukerjee,
1988). Recall that this CSD is given by {(k, S, (k)) : k =0, ...,n} where S,,(0) =
0 and

k
Su(k)=> Yy, k=1,...,n
j=1
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To apply our theory we reformulate the CSD as a random element of £>°([0, 1])
by setting

[nu

nu)
Z Yy + ————Y(nul+1) (A1)

for u € [0, 1], where we define Y{g) = Y{,,41) = 0 and for x € R we denote by [x]
the largest integer in [z — 1, x]. The second term on the right-hand side of (A.1)
is bounded in absolute value by n~! max;<, |Y;|, which is op(n~1/2) since the
Y;’s are iid and EY? < oo under Assumption A.1. The first term admits the

decomposition

—Zyw = Zm X@)+ Z% (A.2)

The €;’s are iid and independent of the X;’s, so the second term on the right-
hand side of (A.2) is independent of the first and is equal in law to n=1 > nul] €,

which satisfies
[nu]

_126‘ ~ oW (u

under Assumption A.1(a), where W is a standard Brownian motion; throughout
this appendix, ~- signifies weak convergence in £>°([0, 1]) unless otherwise stated.
The first term on the right-hand side of (A.2) can be rewritten as

[nu

[nu]/n u
= Zm (X@iy) / m(Qy(t))dt = /o m(Qn(t))dt + Op(n™1),

where Q,, is the empirical quantile function for Xi,..., X,. Under Assump-
tion A.1(b) we may apply the functional Delta method in conjunction with
Lemma 21.4(ii) of van der Vaart (1998) to obtain v/n(Q, — Q) ~ —B/(f(Q))
in £°((0,1)), where B is a standard Brownian bridge, and @ is the quantile
function for X;. Another application of the functional Delta method, but this
time in conjunction with an obvious generalization of Lemma 22.9 of van der
Vaart (1998) and appealing to Assumption A.1(c), can be used to show that

NG ( / “m@ueyar - [ miwiar) - - M

Let S(u fo ))dt. We have proved the following result.

Proposition A.1. Under Assumption A.1 we have
Vi (8, = S0) - — [ T B+ o) in <(0.1),

where B is a standard Brownian bridge, W is a standard Brownian motion, and
B and W are independent.
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Let S, = —M{0,1)(=Sn), the GCM of S,,. The isotonic regression estimate
(X)) is equal to the left-derivative of S, at i/n. We can obtain a char-
acterization of the limiting behavior of S, from Proposition A.1 by applying
Lemma 3.2 of Beare and Moon (2015), which is similar to Proposition 2.1 above
but applies to LCMs of functions in ¢°°([0, 1]). This result requires the point in
£°([0,1]) at which we differentiate to be concave, continuously differentiable,
and weakly increasing from zero to one. To apply it we therefore set

A= / | (m(Q) = m®) dt >0,

and define
Solu) = { o m(Q() = m(®) dt x>0
—u ifA=0,

so that S(u) = ASp(u)+ Lo(u), where Lo(u) = m(b)u. Note that —Sy is concave,
continuously differentiable, and weakly increasing from zero to one.

Suppose that A > 0. The weak convergence established in Proposition A.1
may then be rewritten as

Lo(u) — Sp(u) L[ m/(Q(t)) 4
Vvn ( 3 ( So(u))> ~ 3 /0 00) B(t)dt )\W(u) (A.3)
Since Ly is affine and A > 0, Lemma 2.1 of Durot and Tocquet (2003) implies
that the LCM of A™"(Lo(u) — Sy (u)) is A= (Lo(u) — Sy (w)). Therefore, in view
of the weak convergence (A.3) and the Hadamard directional differentiability of
Mp,1) established in Lemma 3.2 of Beare and Moon (2015), an application of
the functional Delta method yields

Lo &, / o )
\/ﬁ< 0 h\ - (—So)> ~ M[OJ],—SO (X/o %B@)dt — XVV()) ’

which in view of the positive homogeneity of Mfo 1],—8, may be rewritten as

Vit = 8) = ~Mlg ( /0 | %B(wdt _ O—W(.)) L (A4

The directional derivative M, ,; _g in direction h € C([0,1]) majorizes h by
concave functions on regions over which —Sj is affine but acts like an identity
map elsewhere, similar to the derivative in Proposition 2.1. In particular, if m
is strictly increasing on the support of F' then —Sj is strictly concave, and so

Vi) - 8(u) =~ - [ ' %B(tmt oW (u),

indicating asymptotic equivalence of S, and S,.
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Suppose instead that A = 0, so that m’ = 0 on the support of F. In this case
the weak convergence established in Proposition A.1 may be rewritten as

Vi (Sn — S) ~ oW, (A.5)

with S = Lg. Since Ly is affine, Lemma 2.1 of Durot and Tocquet (2003) implies
that the LCM of \/n(Lo — S,) is /(Lo — S,). From (A.5) and the continuous
mapping theorem we therefore have \/n(S, — S) ~» —Mip,1)(—=oW). Lemma 3.2
of Beare and Moon (2015) shows that MEO)1]7750 = M{p,;) when A = 0, and so
we have established that the weak convergence (A.4) holds also when A = 0.

Thus we have proved the following result on the limiting behavior of S,.

Proposition A.2. Under Assumption A.1 we have the weak convergence (A.4)
in €2°([0,1]), where B is a standard Brownian bridge, W is a standard Brownian
motion, and B and W are independent.

Our results on the limiting behavior of S,, and S suggest a simple test of
the null hypothesis that the nondecreasing function m is in fact flat. Under this
null, it may be shown using the weak convergence (A.5), Lemma 2.1 of Durot
and Tocquet (2003) and the continuous mapping theorem that

VS, —Sp) ~ 0 (MW — W),

On the other hand, if m is strictly increasing then S,, and S,, are asymptotically
equivalent, and we have ﬁ”gn — S,|| = 0 in probability. This suggests using
a test statistic of the form T}, = /n||S, — Sp||/6n, Where 6, is a consistent
estimator of o, and rejecting the null of flatness when T,, is smaller than the
a-quantile of ||[MW — W||. Such a procedure will reject with probability ap-
proaching a when m is flat, and with probability approaching one when m is
strictly increasing.
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