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Variables graphical models via �1 and trace penalized D-trace loss (LVD),
which achieves parameter estimation and model selection consistency un-
der certain identifiability conditions. We also present an efficient ADMM
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1. Introduction

Model selection for high-dimensional data has attracted much attention in recent
years due to the need to analyze and interpret various types of high-dimensional
data resulting from technological advances, including the analysis of gene ex-
pression data, spectroscopic imaging, fMRI data, and weather forecasting. A
model selection problem that is of great importance is the estimation of a high-
dimensional covariance matrix and its inverse, also known as the precision ma-
trix. A number of papers have studied this problem in the context of Gaussian
graphical models (Cox and Wermuth, 1996), which are represented by an undi-
rected graph G = (V,E), where V contains p nodes corresponding to a collection
of joint Gaussian random variables and the edges E = (eij)1≤i<j≤p describe the
conditional independence relationships among variables. Every pair of variables
not included in E is conditionally independent given all the other variables and
corresponds to a zero entry in the precision matrix (Lauritzen, 1996).

To deal with the singularity problem presented by high-dimensional data to
infer precision matrix, regularization methods have been proposed to impose
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sparsity constraint on the precision matrix and infer the sparse precision ma-
trix, where an �1 penalty is often applied to induce sparsity (Yuan and Lin,
2007; Friedman et al., 2008; Rothman et al., 2008; Cai et al., 2011; Zhang and
Zou, 2014). Some explicit rates of convergence of such estimators have been
obtained (Rothman et al., 2008; Lam and Fan, 2009; Cai et al., 2011; Raviku-
mar et al., 2011). An alternative approach of estimating a sparse Gaussian
model, first proposed by Meinshausen and Bühlmann (2006), is to perform an
�1-regularized regression on every variable. It can asymptotically recover the
true graph although does not provide estimates of the precision matrix. Other
neighbourhood-based methods have been then introduced to estimate the pre-
cision matrix, see Yuan (2010), Sun and Zhang (2013) and Ren et al. (2015).
For a comprehensive review on theoretical properties and optimalities of the
estimation of structured covariance and precision matrices, see a recent review
paper (Cai et al., 2016) and the references therein.

In many applications, however, the graph structure among variables can be
decomposed into intrinsic local connections and external global effects. One
such example is related to the analysis of genomic data, where Gaussian graph-
ical models have been applied to infer the relationship between genes at the
transcriptional level (Segal et al., 2005; Li and Gui, 2006). Although a direct
application provides some insights into the gene regulatory network, it ignores
the effects of covariates such as sex, age, race, genetic variants on gene expres-
sion, and those unmeasured confoundings that may blur the statistical inference
(Cheung and Spielman, 2002). Some methods have been proposed to model the
conditional Gaussian graphical models to adjust for the effect of covariates (Li
et al., 2012; Cai et al., 2013; Chen et al., 2016). Nevertheless, these approaches
are not applicable when we either do not observe all relevant variables, or do
not incorporate them into the model. To further illustrate the impact of latent
variables, Figure 1 shows a simple example of a graph with 7 nodes. Node G is
a latent variable and Figure 1(a) is the full graph with all variables. Recall that
an edge between two nodes indicates conditional dependence between these two

Fig 1. An illustrative example. The left panel is the full graph with all variables observed and
the right panel is the reduced graph without node G.
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variables conditioning on all other variables in the graph. Without adjusting for
the effect of latent variable G, the reduced graph demonstrated in Figure 1(b)
is much denser, where many spurious conditional dependence are observed.

The problem of Gaussian graphical model with latent variables was first stud-
ied by Chandrasekaran et al. (2012). Under the joint Gaussian assumption, the
authors proposed a regularized maximum likelihood approach and described
conditions under which such graphical model was identifiable and the estima-
tors were consistent. A number of alternative estimators were then proposed
by other researchers in the accompanied discussion papers. Yuan (2012), Lau-
ritzen and Meinshausen (2012) and Agakov et al. (2012) described an EM-based
estimator, which could be treated as an alternative algorithm as well as the
ADMM algorithm proposed by Ma et al. (2013). The error bounds for the es-
timated precision matrix in the Frobenius norm were analyzed by Meng et al.
(2014) under more stringent conditions. Giraud and Tsybakov (2012) proposed
two approaches based on the Dantzig selector (Candès and Tao, 2007) and the
neighborhood selection approach (Meinshausen and Bühlmann, 2006). Ren and
Zhou (2012) further analyzed a CLIME-like (Cai et al., 2011) estimator, and the
results were improved using a regression method (Ren et al., 2015). The max-
imum likelihood approach with non-convex penalties are also studied by Xu
et al. (2017). Finally, Städler and Bühlmann (2012) considered Gaussian graph-
ical models with missing values, which could also be applied to this problem if
we treat hidden variables as missing data.

In this paper, we consider a factor model where the unobserved and observed
variables follow a linear relationship. Under such regime, the sample covariance
matrix can be decomposed into the sum of a low-rank matrix and the inverse of
a sparse matrix, which correspond to the effect of latent variables and the true
conditional dependence between manifest variables, respectively. This problem is
analogous to the “sparse plus low-rank” matrix decomposition problem (Chan-
drasekaran et al., 2011; Candès et al., 2011; Hsu et al., 2011; Agarwal et al.,
2012) after reformulation. Fan et al. (2013) considered a similar factor model,
but they focused on the estimation of a high dimensional covariance matrix
and assumed a sparse error covariance matrix. Besides, Kalaitzis and Lawrence
(2012) developed the residual component analysis, which also included the low-
rank plus inverse sparse matrix decomposition as a special case. Nevertheless,
they adopted a Bayesian approach and had to solve an intractable problem in
an EM fashion. In this article, we propose an �1 and trace penalized approach to
estimating the precision matrix so as to recover the true graph after adjusting
for the effect of hidden variables. Following Chandrasekaran et al. (2012), we
present conditions under which such “inverse sparse plus low-rank” decomposi-
tion is identifiable. Theoretical analysis reveals that our LVD estimator enjoys
estimation and model selection consistency under such identifiability conditions.
We also develop an efficient alternating direction method of multipliers (ADMM)
for solving our optimization problem. Simulation studies and a real data analysis
validate our theoretical results and show its supremacy over other competitors.

The rest of the paper is organized as follows. In Section 2, after basic notation
is introduced, we present the formation of our method. Then in Section 3 we in-
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troduce the associated computational algorithm. Theoretical analysis including
the identifiability results and rates of convergence is established in Section 4.
Numerical performance of our method is presented through simulation studies
and a real data analysis in Sections 5 and 6, respectively. Section 7 concludes
with a summary and discussion. The proofs of main results are given in the
Appendix.

2. Methodology

2.1. Notation

For a vector a = (a1, · · · , ap)T ∈ R
p, define ‖a‖1 =

∑p
i=1 |ai| and ‖a‖2 =√∑p

i=1 a
2
i . For a symmetric matrix A = (aij) ∈ R

p×p, we write tr(A) for
the trace of A, and φmin(A) and φmax(A) for the minimum and maximum
eigenvalues of A. Define the element-wise �∞ norm ‖A‖∞ = max1≤i,j≤p |aij |,
the element-wise �1 norm ‖A‖1 =

∑
i,j |aij |, the Frobenius norm ‖A‖F =√∑

i,j a
2
ij , the spectral norm ‖A‖2 = φ

1/2
max(ATA), and the nuclear norm ‖A‖∗ =√

tr(ATA). We use the the notation A � 0 or A � 0 to denote that A is pos-
itive definite/semidefinite.

2.2. The LVD procedure

Suppose Y = (Y1, · · · , Yp)
T ∈ R

p is a manifest random vector (gene expression
levels) andX ∈ R

r is a hidden random vector (confounding factors), we consider
the following model

Y = BX + ε, (2.1)

where B is a p× r unknown coefficient matrix representing the effect of latent
variables on Y , and ε is a p×1 random Gaussian error vector independent of X
with mean zero, covariance matrixΣ∗ and precision matrix S∗ = (Σ∗)−1. Hence
S∗ is the parameter of main interest that characterizes the gene-gene interaction
network conditioning on latent variables. Without loss of generality, we assume
that Y and X are centered at zero and E(XXT ) = I, where I is the identity
matrix. Taking variance on both sides of (2.1) and writing ΣY = Var(Y ), we
obtain

ΣY = BBT + (S∗)−1. (2.2)

If we only observe Y , we only have access toΣY . The two terms that compose
ΣY can be interpreted as follows: The matrix BBT serves as a summary of
the effect of marginalization over latent variables X, which is low-rank if the
number of latent variables is small compared to that of observed variables. The
precision matrix S∗ has an interpretation of conditional independence between
observed variables given latent variables. Specifically, Yi ⊥ Yj |{X, Yk : k �= i, j}
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if and only if S∗
ij = 0. If the interaction network can be depicted by a sparse

graphical model, then S∗ is sparse. Thus, the covariance matrix ΣY can be
decomposed into the sum of a low-rank matrix and the inverse of a sparse
matrix. We are interested in detecting the nonzero entries of S∗ in order to
construct a conditional independence graph for Y after the effect of hidden
variables X on Y is removed.

Remark 2.1. We note that X and ε can be correlated and the “row-rank plus
sparse inverse” relationship still holds, since in this case we have

ΣY = BBT +BCov(X, ε) + Cov(ε,X)BT + (S∗)−1.

Now that rank(A + B) ≤ rank(A) + rank(B), the sum BBT +BCov(X, ε) +
Cov(ε,X)BT is still a low-rank matrix as long as r is small.

Suppose that we have n independent and identically distributed observations
Y(1), · · · ,Y(n) from (2.1). Let Σn = 1

n

∑n
i=1 Y(i)Y

T
(i) be the sample covariance

matrix. Unlike the joint Gaussian distribution on (X,Y ) assumed by Chan-
drasekaran et al. (2012), we do not impose any specific distribution on X, thus
a maximum likelihood approach is inapplicable. Note that (S∗)−1 in (2.2) is
not a convex function of S∗, we take inverse on both sides of (2.2) and use the
Sherman-Morrison-Woodbury formula to obtain

(ΣY )
−1 = S∗ − S∗B(I +BTS∗B)−1BTS∗ = S∗ −L∗, (2.3)

where we set L∗ = S∗B(I + BTS∗B)−1BTS∗. Inspired by Zhang and Zou
(2014), we consider the following quadratic loss function based on (2.2):

LOSS(S,L;Σn) =
1

2
tr((S −L)Σn(S −L))− tr(S −L). (2.4)

This is called the D-trace loss in Zhang and Zou (2014), since it is expressed
as the difference of two trace operators. To see the intuition of this loss, if we

multiply Σ
1/2
Y on both sides of (2.3), where Σ

1/2
Y is the square root of ΣY such

that Σ
1/2
Y Σ

1/2
Y = ΣY , we have

(ΣY )
−1/2 = Σ

1/2
Y (S∗ −L∗).

Now considering the Frobenious norm of the difference of these two terms lead
to the D-trace loss in (2.4) if we discard terms independent of S or L and replace
ΣY with its sample version Σn.

Remark 2.2. As noted in Zhang and Zou (2014), the D-trace norm loss bears
some resemblance to the one proposed in Liu and Luo (2015). Indeed, they
considerer the same loss for S − L as in (2.4), except in a column-by-column
fashion. Specifically, let si and li be the ith column of S and L respectively,
then the loss function for si − li in Liu and Luo (2015) takes the form

1

2
(si − li)

TΣn(si − li)− eTi (si − li),
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where ei is the ith standard orthonormal basis of Rp. Nevertheless as pointed
out in Zhang and Zou (2014) the positive-definite property of a matrix that
should be taken into account in graphical models, can only be properly dealt
with using a loss viewing S − L as a whole rather than columnwisely. This is
even more crucial in our setting, as the information in the low-rank matrix L
will be lost if we consider li, i = 1, . . . , p, separately.

For consideration of a low-rank L and a sparse S, we propose to estimate S
and L by solving the following �1 and trace regularized D-trace loss

minR,S,L
1
2 tr(RΣnR)− tr(R) + λn(γ‖S‖1 + tr(L))

subject to R = S −L,R � 0,L � 0,
(2.5)

where λn is a tuning parameter that controls the strength of regularization
and γ is a tuning parameter that provides a trade-off between the �1 and trace
penalties. These penalties are used to encourage sparsity and low-rankness as
the �1 and nuclear norm (trace when L is positive semidefinite) are convex re-
laxations of the sparsity level and rank, respectively; see for example in Donoho
(2006); Candès and Tao (2010). Finally, the positive (semi)definite constraints
are imposed on S−L and L according to model (2.2) and decomposition (2.3).

2.3. Relations to other models

2.3.1. Penalized likelihood approach

Chandrasekaran et al. (2012) assumed that (Y ,X) are joint Gaussian with a
covariance matrix Σ(Y,X) = [ ΣY ΣY X

ΣXY ΣX
] and precision matrix Ω(Y,X) = Σ−1

(Y X).

Then by the Schur complement (Horn and Johnson, 2012) with respect to block
ΩX , we have

Σ−1
Y = ΩY −ΩY XΩ−1

X ΩXY . (2.6)

They proposed a regularized maximum likelihood approach to estimate the
sparse structure ΩY and the low-rank term ΩY XΩ−1

X ΩXY . We see that cri-
terion (2.6) is the same as (2.3) and is also used by other authors, see Ren
and Zhou (2012); Giraud and Tsybakov (2012); Xu et al. (2017) among others.
Since the joint Gaussian distribution implies a linear conditional distribution
of Y given X, our assumption is weaker and arrives at the same matrix de-
composition criterion. Nevertheless, we emphasize that allowing for X to take
distributions other than Gaussian, especially discrete distributions, is of partic-
ular interest in practice. The global dependence between variables is often due
to factors taking discrete values such as batch effects, hence the joint Gaussian
assumption is sometimes unrealistic.

As to different forms of loss function, we make two remarks here. First, one
might think that the log likelihood is the optimal loss in terms of estimating
the precision matrix under the joint Gaussian assumption due to its likelihood
explanation. Under our regime, however, even though ε in (2.1) follows a Gaus-
sian distribution to ensure the conditional independence interpretation, we do
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not make any distribution assumption for X. Hence our loss function, which
is analogous to the least squares loss, is more convenient under such model.
Second, similar to the discussion presented in Zhang and Zou (2014), both loss

functions have an optimum occurs at the true value if we replace Σ̂n with its
true valueΣY . The preference for these two loss functions may alter from case to
case and we will explore more about the performances of these two approaches
in numerical studies.

2.3.2. Factor analysis

The factor analysis (FA) model can be expressed in the same form as in (2.1),
but with different assumptions on the random error ε. We state here explicitly as

Y = BX + ε,

where B is a p × r unknown factor loading matrix, X is the r × 1 hidden fac-
tors satisfying EX = 0 and EXXT = I. Last, ε is a p × 1 Gaussian random
error independent of X, with zero mean and covariance matrix Σ satisfying
Σ = diag{σ1, . . . , σp}.

The main difference between our model and the classical factor analysis model
is the goal of inference. Our interest lies in the detection of conditional depen-
dence between observed variables after adjusting for the effect of latent factors,
and we do not pay much attention to the global dependence induced by hidden
factors. On the other hand, the underlying assumption in FA is that the variabil-
ity among manifest variables can be captured by a small number of unobserved
factors, and parameters of interest include B,X and {σi, i = 1, . . . , p}. In gen-
eral, the decomposition of correlations among observed variables are the same
for these two models, where the hidden variables describe the global dependence
while the random error depicts a more subtle local dependence. With different
goals in mind, there are substantial differences both on the assumptions made
on the linear model and the strategies used to make statistical inference.

Fan et al. (2013) considered the same factor model as in (2.1), but assumed a
sparse error covariance Σ∗ instead of a sparse error precision matrix. Based on a
fast diverging eigenvalues assumption, they introduced the principal orthogonal
complement thresholding estimator for estimating the covariance and derived
its convergence rate. Although the “low-rank plus sparse” decomposition bears
some resemblance to our model, interpretations of these two models differ sig-
nificantly. Further, their main interest lies in estimating the high-dimensional
covariance matrix of observed variables, i.e., ΣY , which is also different from
our method.

3. Algorithm and tuning parameter selection

3.1. Numerical algorithm

In this section we develop an efficient algorithm for solving the optimization
problem (2.5). Since R � 0 is not a closed convex cone, we instead consider the
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following problem:

minR,S,L
1
2 tr(RΣnR)− tr(R) + λn(γ‖S‖1 + tr(L)),

subject to R = S −L,R = RT ,L � 0.
(3.1)

Note that we drop the positive-definite constraint for S−L. Although S−L is an
estimate ofΣY , which should be positive-definite according to its interpretation,
solving (3.1) is more convenient than the one that imposes positive-definiteness
on S − L. Furthermore, we find in our numerical experiments that in all cases
the solution to (3.1) does satisfy the constraint.

Remark 3.1. For the sake of completeness, we also develop methods for solving
the following problem:

minR,S,L
1
2 tr(RΣnR)− tr(R) + λn(γ‖S‖1 + tr(L)),

subject to R = S −L,R � εI,L � 0,
(3.2)

where ε is a pre-defined threshold. The algorithm for solving this problem is
deferred in Appendix C.

We next introduce the ADMM for solving (3.1). For notational simplicity, let

f(R) =
1

2
tr(RΣnR)− tr(R),

g(S) = λnγ‖S‖1,
h(L) = λntr(L) + I(L � 0),

where the indicator function I(L � 0) is defined as

I(L � 0) =

{
0, if L � 0,
+∞, otherwise.

We now rewrite the problem (3.1) into one with two blocks: let Z = (R,S,L),
Z̃ = (R̃, S̃, L̃), we aim to solve

minZ,Z̃ f(R) + g(S) + h(L) + φ(Z̃),

subject to Z = Z̃,
(3.3)

where φ(Z̃) = I(R̃− S̃ + L̃ = 0). Its Lagrange form is then given by

f(R) + g(S) + h(L) + φ(Z̃) +
〈
Λ,Z − Z̃

〉
+

ρ

2

∥∥∥Z − Z̃
∥∥∥2
F
,

where Λ ∈ R
p×p is the multiplier of the linear constraint R̃ = R, ρ > 0 is

the penalty parameter for the violation of the constraint and 〈·, ·〉 denotes the
standard trace inner product. Hence the ADMM algorithm can be written as

Zk+1 = argmin
Z

f(R) + g(S) + h(L) +
〈
Λk,Z − Z̃k

〉
+

ρ

2

∥∥∥Z − Z̃k
∥∥∥2
F
, (3.4)
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Z̃k+1 = argmin
Z̃

〈
Λk,Zk+1 − Z̃

〉
+

ρ

2

∥∥∥Zk+1 − Z̃
∥∥∥2
F
+ φ(Z̃), (3.5)

Λk+1 = Λk + ρ(Zk+1 − Z̃k+1). (3.6)

Step (3.6) is trivial, we now elaborate on strategies for solving subproblems
(3.4) and (3.5). As for (3.4), let W k = Z̃k − 1

ρΛ
k and partition it into three

blocks W k = (W k
R,W

k
L ,W

k
S ), then (Sk+1,Lk+1,Rk+1) can be solved sepa-

rately as follows. To update Sk+1, we have

Sk+1 = argmin
S

λnγ‖S‖1 +
ρ

2

∥∥S −W k
S

∥∥2
F
,

which implies
Sk+1 = Shrink(W k

S , λnγ/ρ), (3.7)

where the shrink operator is defined as

Shrink(S, τ) =

⎧⎨
⎩

Sij − τ, if Sij > τ,
Sij + τ, if Sij < −τ,
0, if |Sij | ≤ τ.

To update Lk+1, we have

Lk+1 = argmin
L

λntr(L) + I(L � 0) +
ρ

2

∥∥L−W k
L

∥∥2
F
.

Hence
Lk+1 = Proj(W k

L − λnI/ρ), (3.8)

where the projection operator is defined in the following way: for a real symmet-
ric matrix L, let L = ULdiag(σL)U

T
L be its eigenvalue decomposition, define

Proj(L) as
Proj(L) = ULdiag(πL)U

T
L ,

where π is given by

πL,i = max{σL,i, 0}, i = 1, . . . , p.

Last, to update Rk+1, we write

Rk+1 = argmin
R=RT

1

2
tr(RΣnR)− tr(R) +

ρ

2

∥∥R−W k
R

∥∥2
F
. (3.9)

The first-order optimality condition is then given by

1

2
(Rk+1Σn +ΣnR

k+1)− I + ρ
(
Rk+1 −W k

R

)
= 0.

Following Zhang and Zou (2014), the above problem has an explicit form solu-
tion. Let Σn = UΣdiag(σΣ)U

T
Σ be the eigenvalue decomposition of Σn, where

UΣ ∈ R
p×p, then we have

Rk+1 = UΣ

{
UT

Σ (ρW k
R + I)UΣ ◦ΠΣ

}
UT

Σ , (3.10)
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where ◦ denotes the Hadamard product of matrices and ΠΣ is defined as

ΠΣ,ij =
2

σΣ,i + σΣ,j + 2ρ
, i, j = 1, . . . , p.

The proofs of (3.7) and (3.8) are obvious, and we provide a proof of (3.10) in
Appendix B for completeness.

We next derive solution to the sub-problem (3.5). Note that solving (3.5) is
equivalent to

min
Z̃

1

2

∥∥∥∥Z̃ −Zk+1 − 1

ρ
Λk

∥∥∥∥
2

F

, s.t., R̃− S̃ + L̃ = 0.

Let T k = Zk+1 + 1
ρΛ

k and partition T k similarly into three blocks T k =

(T k
R,T

k
S ,T

k
L) in the same form as Z̃ = (R̃, S̃, L̃). Then the first-order optimality

condition is given by(
R̃, S̃, L̃

)
−
(
T k
R,T

k
S ,T

k
L

)
+ (Γ,−Γ,Γ) = 0,

where Γ is the Lagrange multiplier associated with Z̃. Therefore, we have

R̃ = T k
R − Γ, S̃ = T k

S + Γ, L̃ = T k
L − Γ. (3.11)

Combining the above display with the equality constraint R̃− S̃+ L̃ = 0 yields

Γ = (T k
R + T k

L − T k
S )/3,

which completes the update of Z̃. We summarize the proposed algorithm as
follows.

Algorithm 1 ADMM for solving (3.1)
Require: Σn and parameters λn, γ.
Ensure: Ŝ and L̂.

1. Initialize Z0, Z̃0 and Λ0 with some possible values.
While not converge do
2. Update Zk+1 by solving equations (3.7), (3.8) and (3.10).
3. Update Z̃k+1 as in (3.11).
4. Update Λk+1 as in (3.6).
End while.

The stopping criterion of our algorithm is when both the primal error (Zk+1−
Z̃k+1) and the dual error (Z̃k+1 − Z̃k) is small enough with a tolerance level
of 10−4. In view of (3.3), the proposed ADMM is a special case of the consen-
sus problem (Boyd et al., 2011, Chap 7) with two blocks. The composition of
quadratic form and affine mapping (L−S) imply that the D-trace loss is convex
as well as the two penalty terms and the positive semidefinite constraint, which
guarantees the global convergence of our algorithm. From the view of computa-
tional complexity, as it suffices to do the SVD of Σn in (3.9) for once, the most
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time-consuming step is the SVD for solving (3.8) in each iteration, whose com-
plexity is O(p3). Such decomposition can be further accelerated by only solving
leading singular values and vectors when λn is not too small. Besides, ADMM
would usually converge to a moderate accuracy in only tens of iterations (Boyd
et al., 2011, Chap 3.2.2), which is also observed in our numerical experiments
and proves to be sufficient. Using a laptop with Intel Core I5-5200 2.20GHz
and 8 GB of RAM, our codes written in MATLAB 9.1.0 is able to converge in
seconds for a few hundreds of nodes and in tens of seconds when p = 1000.

3.2. Choices of tuning parameters

We have two tuning parameters to be tuned: λn that controls the strength of
regularization and γ that provides a trade-off between regularizations on S and
L. We will show later in Theorem 4.1 that the consistency results hold for a
range of values of γ, which means our LVD procedure is robust with respect to
γ. This phenomenon is also observed by Chandrasekaran et al. (2012) and in
our numerical studies.

As for λn, we tune it via K -fold cross validation for a fine gird of λ. Specifi-
cally, we denote the cross validation error for λ by

CVλ(Y ) =
1

K

K∑
k=1

1

2
tr
((

Ŝ
(−k)
λ − L̂

(−k)
λ

)
Σ(k)

n

(
Ŝ

(−k)
λ − L̂

(−k)
λ

))

− tr
(
Ŝ

(−k)
λ − L̂

(−k)
λ

)
(3.12)

where Σ
(k)
n is the sample covariance matrix for the kth part sample, and Ŝ

(−k)
λ

and L̂
(−k)
λ are the estimates under λ with the kth part sample removed.

Another useful practice is to apply a warm-start method on decreasing se-
quences of values for λ. Exactly, if we want to compute a sequence of solutions
of (3.1) for λ1 > λ2 > · · · > λL, the initial values of the solution at λi can be

chosen as the solution at λi−1. Note that when λ1 is large, Ŝ would be very
sparse, thus the algorithm is not very sensitive to the initial values for λ1. Sub-
sequently, for other values of λi, the initial values would be close to the resulting
estimates, hence the number of iterations is greatly reduced. The proposed al-
gorithm would usually stop after tens of iterations and the performance of this
warm start strategy proves to be satisfactory in practice.

4. Theoretical analysis

4.1. Identifiability

Before we investigate theoretical properties of the proposed LVD estimator, it
is important to first cope with the identifiability issue. Recall that the whole
procedure stems from the decomposition (2.3), that is, the inverse of the pop-
ulation covariance can be decomposed into the sum of a sparse matrix and a
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low-rank matrix. Obviously this decomposition problem is ill-posed if we only
have access to the sample covariance matrix without any further assumptions.
To deal with this problem, we begin by introducing some notion that plays an
important role in the identifiability issue.

Indeed there are cases where such a decomposition is unidentifiable. For ex-
ample, if the sparse matrix S∗ itself has a low rank (after subtracting its diagonal
entries), then we can subtract these entries from S∗ and add them to L∗. Figure
2 illustrates an example of the “sparse plus low-rank” decomposition that seems
to be identifiable, as entries of the low-rank matrix L∗ (rank(L) = 1) spread
out over all entries of the matrix.

Fig 2. An illustrative example of the decomposition (ΣY )−1 = S∗ + (−L∗).

Such identifiability problem has been studied in Candès et al. (2011); Chan-
drasekaran et al. (2011, 2012); Hsu et al. (2011). We follow the framework de-
veloped by Chandrasekaran et al. (2012) to deal with this problem. Since the set
of sparse matrices and the set of low-rank matrices can be viewed as algebraic
varieties (sets of solutions to systems of polynomial equations), we denote the
tangent space at the sparse matrix S∗ by

Ω(S∗) =
{
N ∈ R

p×p : supp(N) ⊂ supp(S∗)
}
.

Similarly, the tangent space at the low-rank matrix L∗ is defined as follows:
suppose L∗ is a rank-r square matrix with its singular value decomposition
given by L∗ = ULdiag(σL)V

T
L , where UL,VL ∈ R

p×r and σL ∈ R
r, then the

tangent space at L∗ is given by

T (L∗) =
{
ULY

T
1 + Y2V

T
L : Y1,Y2 ∈ R

p×r
}
.

Denote by Ω∗ = Ω(S∗) and T ∗ = T (L∗). Since both Ω∗ and T ∗ are subspaces in
R

p×p, a sufficient and necessary condition for S∗ and L∗ to be identifiable with
prior knowledge ofΣY ,Ω

∗ and T ∗ is that these subspaces intersect transversally:

Ω∗ ∩ T ∗ = {0}.

To quantify transversality between these two tangent spaces, Chandrasekaran
et al. (2012) introduced the following quantity with respect to the tangent space
Ω∗ and T ∗:

ξ(T ∗) = max
N∈T∗,‖N‖2=1

‖N‖∞,
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μ(Ω∗) = max
N∈Ω∗,‖N‖∞=1

‖N‖2.

According to definitions, a small ξ(T ∗) means that any element in the tan-
gent space T ∗ cannot have its support concentrated in a few locations; a small
μ(Ω∗) implies that the spectrum of any element in Ω∗ is not too concentrated.
Hence these two quantities serve as tools for measuring “incoherence” of the
row/column spaces of the low-rank matrix and the spectrum of the sparse ma-
trix respectively. As discussed in Chandrasekaran et al. (2011), we always have
ξ(T ∗) ≤ 1. Further if rank(L∗) = r and it has almost maximally incoherent

row/column spaces, ξ(T ∗) can be as small as ∼
√

r
p . Similarly, μ(Ω∗) is upper-

bounded by the maximal degree of S∗, which implies that if S∗ has at most
deg(S∗) nonzero entries per row/column, then we must have μ(Ω∗) ≤ deg(S∗).

We next present the irrepresentability condition for establishing the model
selection consistency of our LVD estimator. As our loss function is itself a
quadratic loss, a key quantity is its derivative with respect to S and L (c.f.,
the Gram matrix and its role in the analysis of Lasso). Specifically, we define
the following linear operator

hΣ(R) =
1

2
(ΣR+RΣ), (4.1)

where both Σ and R are p× p matrices. For any linear subspace T of matrices,
denote by PT the projection onto T . To measure transversality between the
tangent spaces Ω∗ and T ∗ in terms of the operator hΣY

(·), we need to analyze
the following quantities. First, the minimum gain of hΣY

(·) restricted to Ω∗ and
the maximum effect of elements in Ω∗ on the orthogonal complement (Ω∗)⊥ are
given by

αΩ = min
M∈Ω∗,‖M‖∞=1

‖PΩ∗hΣY
(M)‖∞,

δΩ = max
M∈Ω∗,‖M‖∞=1

‖P(Ω∗)⊥hΣY
(M)‖∞.

Similarly, the minimum gain of hΣY
(·) restricted to T ∗ and the maximum effect

of elements in T ∗ on the orthogonal direction (T ∗)⊥ are defined as

αT = min
M∈T∗,‖M‖2=1

‖PT∗hΣY
(M)‖2,

δT = max
M∈T∗,‖M‖2=1

‖P(T∗)⊥hΣY
(M)‖2.

Finally, we also need to control the behavior of hΣY
(·) restricted to Ω∗ in the

spectral norm and its behavior restricted to T ∗ in the �∞ norm, that is

βT = max
M∈T∗,‖M‖∞=1

‖hΣY
(M)‖∞,

βΩ = max
M∈Ω∗,‖M‖2=1

‖hΣY
(M)‖2.



Graphical model selection with latent variables 3499

Note that the two sets of quantities (αΩ, δΩ) and (αT , δT ) measures the effect
of hΣY

(·) restricted to spaces Ω∗ and T ∗ in the natural norm, respectively. For
notational simplicity, set

α = min{αΩ, αT }, β = max{βT , βΩ}, δ = max{δΩ, δT }.

Then the following irrepresentability condition is assumed in our theoretical
analysis: there exists a ν ∈ (0, 1

2 ) such that

δ

α
< 1− 2ν. (4.2)

We note that this assumption can be viewed as a generalization of the irrep-
resentability condition assumed in high-dimension regression literature (Mein-
shausen and Bühlmann, 2006; Zhao and Yu, 2006) and graphical model lit-
erature (Ravikumar et al., 2011; Zhang and Zou, 2014). It also bears some
resemblance to the one imposed in Chandrasekaran et al. (2012), although the
operators lie in the core of the analysis are different owing to different loss
functions.

Finally, the superposition of penalizations can be seen as a norm,

fγ(S,L) = γ‖S‖1 + ‖L‖∗,

which implies that its dual norm is given by

gγ(S,L) = max

{
‖S‖∞

γ
, ‖L‖2

}
.

This dual norm gγ(·, ·) will serve as a tool for measuring consistency in our
following analysis.

4.2. Estimation and model selection consistency

In this section, we analyze the performance of the proposed LVD estimator in a
nonasymptotic framework. Let (Ŝ, L̂) be the solution to optimization problem
(2.5). We establish rates of convergence under the assumption that Y(1), . . . ,Y(n)

are independent and identically distributed samples from a sub-Gaussian dis-
tribution with covariance ΣY . That is, we assume that there exists K > 0 such
that

P(|Y(i)| > t) ≤ exp(1− t2/K2) for all i and t > 0. (4.3)

This assumption implies that the observed variable Y have a sub-Gaussian tail,
which is used to control the deviation between the sample covariance matrix and
the population counterpart measured in the spectral norm, i.e., ‖Σn −ΣY ‖2.
Remark 4.1. If this condition is relaxed to that Y has finite fourth moment,
Vershynin (2012) proved a suboptimal rate that only differed from the optimal
one by a logarithmic factor log p and conjectured the same convergence rate.
For the sake of simplicity, we stick to the sub-Gaussian tails. Still, we emphasize
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that it is weaker than the joint Gaussian distribution in Chandrasekaran et al.
(2012). One possible choice of the scaling is when the number of latent variables
and the magnitude of coefficient matrix B are fixed, X could follow a discrete
distribution with finite values or a sub-Gaussian distribution.

We are now ready to present results that establish estimation and model
selection consistency of our LVD estimator. Denote by ψ1 = φmin(ΣY ) ≤
φmax(ΣY ) = ψ2 and d the maximum node degree in S∗. We further let θ be
the minimum magnitude of nonzero entry of the sparse matrix S∗ and σ be the
minimum nonzero eigenvalue of the low-rank matrix L∗.

Theorem 4.1 (Estimation and model selection consistency). Suppose that the
irrepresentability condition (4.2) holds, and μ(Ω∗) and ξ(T ∗) satisfy the follow-
ing condition for identifiability

μ(Ω∗)ξ(T ∗) ≤ 1

2

(
να

(2− ν)β

)2

. (4.4)

If we choose γ and λn such that

γ ∈
[
ξ(T ∗)β(2− ν)

να
,

να

2μ(Ω∗)β(2− ν)

]
, λn = max

{
1,

1

γ

}
(3− 2ν)CK

ψ1

√
p

n
,

(4.5)

where CK is an absolute constant that only depends on K, and assume that

σ >
3

α
λn and

ψ1

ψ2
> max

{
1,

1

γ

}
3(3− 2ν)

α
CK

√
p

n
,

then with probability at least 1− 2 exp{−p}, we have

gγ

(
Ŝ − S∗, L̂−L∗

)
≤ 3

α
λn. (4.6)

Hence if we further assume θ > 3γ
α λn, then under the same probability we have

sign(Ŝ) = sign(S∗). (4.7)

The proof of Theorem 4.1 is given in Appendix D. Theorem 4.1 says that
under the identifiability condition (4.4), the irrepresentability condition (4.2)
and some conditions on the smallest eigenvalue on L∗ and ΣY , then with proper
chosen tuning parameters γ and λn, our proposed LVD procedure is consistent
with certain rates of convergence. Model selection consistency is also achieved by
further assuming a minimal signal strength condition on the precision matrix S∗.

Our results look similar to those of Chandrasekaran et al. (2012) (hereafter
referred to as CPW by taking initials of authors). As both methods require
irrepresentable and identifiability conditions, it is interesting to compare our
conditions (4.2) and (4.4) with theirs. Although taking the same form, specific
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Table 1

Comparison of key quantities used in irrepresentabiliy and identifiability conditions.

LVD CPW

αT 1 + π
2(1−π)

1 + π
1−π

αΩ 1 + π
p(1−π)

1 + 2π
p(1−π)

+

{
1− (p− 1)

{
1+ 2π

p(1−π)
+2

(
π

p(1−π)

)2

1+ 2π
p(1−π)

+2(p−1)
(

π
p(1−π)

)2

}} (
π

p(1−π)

)2

δT 0 0

δΩ
π

p(1−π)
π(2−π)

p(1−π)2

βT < 1 < 1

βΩ 1 + π
1−π

1 + 2π
1−π

+
(

π
1−π

)2

definitions of some quantities, such as α, β, and δ, differ from each other. The
key difference is the operator (4.1) and the counterpart of theirs, which is

hCPW
ΣY

(R) = ΣY RΣY .

All six quantities defined with a hΣY
(·) in our approach should be replaced with

hCPW
ΣY

(·) in their analysis. It is in general difficult to give a thorough comparison
between these two sets of conditions. Instead, we consider a simple and special
case in which these quantities could be computed explicitly.

Let S∗ = Ip be the p × p identity matrix and L = π(1p/
√
p)(1p/

√
p)T =

πJp/p be the rank-1 matrix with the maximal incoherence with standard or-
thonormal basis, where Jp is the p×p matrix with all ones and π is a parameter.
Note that to guarantee L∗ and S∗−L∗ are both positive definite, we must have
0 < π < 1. In this specific circumstances, all six quantities for both methods are
given in Table 1. Hence for the irrepresentability condition, as long as p ≥ 2,

our method requires π
p(1−π)

/(
1 + π

p(1−π)

)
< 1, which always holds regardless

of π. In contrast, the CPW approach requires
max{δCPW

T ,δCPW
Ω }

min{αCPW
T ,αCPW

Ω } =
δCPW
Ω

αCPW
Ω

< 1.

For a fixed 0 < π < 1, the solution of the above inequality (as a function of p)
is the largest root of a cubic function and its approximate solution is given by

p ≈
√
2π

(1−π)2 . This means if π is close to 1, the dimensionality should be large

enough to guarantee the incoherence of the low-rank matrix. For example when
π = 0.9, the identifiability condition fails for the CPW method when p < 118
(118 is the exact number and 127 is the approximation).

Similarly, we can compare the identifiability condition between these two
methods, and it suffices to focus on the right hand side of equation (4.4). Denote

by ζ = να
(2−ν)β and set ν = 1

2 (1 − δ
α ), we have ζ = να

(2−ν)β = α(α−δ)
(3α+δ)β . It can

be shown after tedious calculation that ζLVD > ζCPW always holds when p ≥ 2
and 0 < π < 1. For any fixed 0 < π < 1, the ratio ζLVD/ζCPW has a limit
greater than 1 when p → ∞. Figure 3 shows the ratio when 30 ≤ p ≤ 1000
and 0 < π ≤ 0.75. Note that we do not include large π and small p as the
irrepresentability condition for CPW barely or does not hold in this scenario.
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Fig 3. Comparison of identifiability condition between LVD and CPW.

Besides, the limit of ζLVD/ζCPW goes to 1 when π is small and can be large as
π increases.

We make a few more remarks on Theorem 4.1. First, the maximum degree of
S∗ and the rank of L do not explicitly appear in the theorem, but are hidden in
conditions and other factors. To better illustrate their impacts on our results,
we focus on μ(Ω∗) and ξ(T ∗) and assume temporarily that α, β, δ, ν, ψ1, ψ2 are
of the order O(1). Recall that μ(Ω∗) ≤ d := deg(S∗) and ξ(T ∗) ∼

√
r/p if L∗

is nearly maximally incoherent. In this circumstance, condition (4.4) essentially

requires d
√

r
p = O(1) and λn is of the order somewhere between O(d

√
p
n ) and

O( p√
rn

) (depending on the choice of γ). These results match the rate of CPW,

but hopefully improve other factors appearing in the rate and are derived after
removing the joint Gaussian assumption.

Second, the consistency result (as well as CPW) holds for a range of values of
γ, which is preferable in practice since we do not need to tune two parameters.
If we choose γ at the upper end, we have the following corollary.

Corollary 4.1. Under the assumptions of Theorem 4.1 and assume α, β, ν are
constants. If we choose γ � 1

d and λn � d
√

p
n , then we have

gγ

(
Ŝ − S∗, L̂−L∗

)
= Op

(
d

√
p

n

)

as long as σ, ψ1

ψ2
� d

√
p
n . Further, model selection consistency for S∗ holds if

θ �
√

p
n .

Finally, our technical analysis is different from CPW. While they resorted
to Brouwer’s fixed point theorem in proofs, we use a more direct approach to
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analyze the LVD procedure owing to its simple quadratic form. Since there
is no log-determinant term in our loss function, we additionally assume the
spectrum of observed covariance matrix ΣY is well-conditioned to guarantee
positive-definiteness of our estimates.

5. Simulation studies

In this section simulation studies are carried out to compare the numerical
performance of our LVD estimator ŜLVD, the regularized maximum likelihood
estimator ŜCPW from Chandrasekaran et al. (2012), and the graphical lasso

Ŝglasso from Friedman et al. (2008). We are particularly interested in investi-
gating how these methods perform differently in relation to different settings of
latent variables and how the dimensionality affects their performance.

We consider nine models as shown in Table 2. For each model, we gen-
erate a r × p coefficient matrix B with its entries independently following
Unif([−1.5,−0.5] ∪ [0.5, 1.5]). Each element of the n × r design matrix X is
independently drawn from a Bernoulli(0.5) or a standard Normal distribution
according to different model set-ups. We generate the p × p precision matrix
with P(S∗

ij �= 0|i �= j) shown in Table 2 and diagonal entries equaling to 1. If
S∗
ij �= 0, i �= j, we set |Sij | = 0.25 and its sign with equal probability. Finally, we

generate a n× p random error matrix E so that each row Ei· ∼ Np(0, (S
∗)−1).

The n× p outcome matrix Y is set to be Y = XB +E.

The nine models are divided into three groups in terms of dimensionality.
While the sample size are fixed at n = 200, the number of observed variables
ranges from p = 20 in the first three models to p = 50 in Models 4–6, and we
consider a moderately high dimension with p = 100 in Models 7–9. Within each
group, the latent variables follow from Bernoulli distributions in the first model
and Normal distributions in the second model. We also set r = 0 in the third
model, which corresponds to no latent variable at all. When X is normal, Y
also has a normal distribution, which may give an edge to ŜCPW since it adopts
the maximum likelihood approach. If X has binary values, on the other hand,

Table 2

Parameters for nine models.

Parameters
(n, p, r) type of X P(S∗

ij �= 0|i �= j)

Model 1 (200, 20, 2) Bernoulli 0.2
Model 2 (200, 20, 2) Normal 0.2
Model 3 (200, 20, 0) – 0.2

Model 4 (200, 50, 2) Bernoulli 0.1
Model 5 (200, 50, 2) Normal 0.1
Model 6 (200, 50, 0) – 0.1

Model 7 (200, 100, 5) Bernoulli 0.05
Model 8 (200, 100, 5) Normal 0.05
Model 9 (200, 100, 0) – 0.05
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Y will follow a mixture Gaussian distribution. This setting is very common in
real data analysis when X is used to model batch effects or other categorical
covariates such as sex and race. Finally, we expect Ŝglasso to perform well when
there is no latent variable. The number of latent variables is set to be r = 2 in
Models 1–2 and 4–5, and increases to r = 5 in Models 7–8.

For each model, we choose the tuning parameter λn using 10-fold cross val-
idation as described in Section 3.2. As for γ, we have shown that our estimate
is insensitive to a wide choice of low-rank tuning parameters, which is also
observed by Chandrasekaran et al. (2012); Yuan (2012) and in our numerical
experiments, hence we report here the results with a pre-chosen fixed constant
that may vary across models. The tuning parameters for CPW and glasso are
also chosen using 10-fold cross validation, except that the cross validation er-
ror is defined as the negative log likelihood according to their loss functions.
Further, the tuning parameter γ for CPW is also fixed at a constant such that
the low-rank matrices estimated by the LVD and CPW have approximately the
same rank for the sake of fairness.

Since our main goal is to estimate S∗, especially its non-zero pattern that car-
ries information on direct interactions among manifest variables after adjusting
for the effect of latent variables, we use six measures on estimation and model
selection quantities to assess the performance of each method. The estimation
error Ŝ − S∗ are evaluated by the spectral norm, the matrix �1 norm and the
Frobenius norm. Further, the model selection performance is characterized by
the true positive rate (TPR), the true negative rate (TNR), and the Matthews
correlation coefficient (MCC). Specifically, these three measures are defined as

TPR =
TP

TP + FN
, TNR =

TN

TN+ FP
,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP, TN, FP and FN are the numbers of true positives, true negatives,
false positives and false negatives in identifying the non-zero elements in the
off-diagonal precision matrix.

The simulation results for Models 1–9 are summarized in Table 3. We see
that when p is small, our proposed LVD procedure outperforms the other two
methods in terms of all measures, especially when X has a discrete distribution.
When the dimensionality is moderately high, the performance of our estimator
and that of ŜCPW on TPR, TNR and MCC are comparable to each other. This
is because the marginal distribution of Y does not deviate significantly from
a multivariate normal distribution owing to dimensionality, and the fact that
the penalized likelihood can be viewed as a penalized log-determinant Bregman
divergence (Ravikumar et al., 2011). Nevertheless, we note that ŜLVD has the
smallest estimation error even if when p is moderately high. Finally, it can be
seen that the graphical lasso estimator only performs well in the absence of latent
variables as expected. Notice that glasso may not achieve the best estimation
performance even in the case without latent variables, owing to different choices
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Table 3

Simulation results for Models 1–9. Each performance measure is averaged over 100
replications with standard deviations shown in parentheses.

Method ‖ · ‖2 ‖ · ‖�1
‖ · ‖F TPR TNR MCC rank(L̂)

Model 1, (n, p, r) = (200, 20, 2), Bernoulli

LVD 0.96 (0.01) 1.71 (0.03) 1.93 (0.02) 0.75 (0.01) 0.89 (0.00) 0.61 (0.01) 5.14 (0.06)

CPW 1.12 (0.01) 1.97 (0.02) 2.36 (0.02) 0.53 (0.02) 0.96 (0.00) 0.57 (0.01) 5.05(0.07)

glasso 1.34 (0.01) 2.19 (0.02) 2.59 (0.02) 0.79 (0.01) 0.41 (0.00) 0.16 (0.01) −
Model 2, (n, p, r) = (200, 20, 2), Normal

LVD 1.00 (0.01) 1.76 (0.03) 1.96 (0.03) 0.72 (0.02) 0.90 (0.01) 0.59 (0.01) 4.94 (0.08)

CPW 1.13 (0.01) 1.97 (0.03) 2.36 (0.03) 0.56 (0.02) 0.95 (0.00) 0.56 (0.01) 4.70 (0.07)

glasso 1.35 (0.01) 2.23 (0.02) 2.61 (0.02) 0.78 (0.01) 0.41 (0.00) 0.15 (0.01) −
Model 3, (n, p, r) = (200, 20, 0)

LVD 0.76 (0.01) 1.24 (0.02) 1.51 (0.02) 0.97 (0.01) 0.88 (0.01) 0.76 (0.01) 0 (0)

CPW 0.93 (0.01) 1.49 (0.02) 1.92 (0.02) 0.95 (0.01) 0.87 (0.01) 0.71 (0.01) 0.03 (0.02)

glasso 0.93 (0.01) 1.49 (0.02) 1.91 (0.02) 0.95 (0.01) 0.86 (0.01) 0.71 (0.01) −

Model 4, (n, p, r) = (200, 50, 2), Bernoulli

LVD 0.86 (0.01) 1.68 (0.02) 2.55 (0.03) 0.75 (0.01) 0.89 (0.00) 0.51 (0.01) 4.67 (0.10)

CPW 0.97 (0.01) 1.84 (0.02) 3.02 (0.02) 0.64 (0.02) 0.94 (0.00) 0.53 (0.01) 4.70 (0.13)

glasso 1.25 (0.01) 2.32 (0.02) 3.39 (0.03) 0.64 (0.01) 0.59 (0.00) 0.14 (0.01) −
Model 5, (n, p, r) = (200, 50, 2), Normal

LVD 0.82 (0.01) 1.63 (0.02) 2.50 (0.02) 0.74 (0.01) 0.89 (0.00) 0.49 (0.00) 4.55 (0.08)

CPW 0.97 (0.01) 1.81 (0.02) 3.06 (0.02) 0.56 (0.02) 0.95 (0.00) 0.51 (0.01) 4.22 (0.13)

glasso 1.23 (0.01) 2.27 (0.02) 3.40 (0.03) 0.60 (0.01) 0.59 (0.00) 0.12 (0.01) −
Model 6, (n, p, r) = (200, 50, 0)

LVD 0.81 (0.01) 1.59 (0.02) 2.45 (0.02) 0.74 (0.01) 0.94 (0.00) 0.63 (0.00) 2.88 (0.10)

CPW 0.92 (0.01) 1.76 (0.02) 2.89 (0.03) 0.61 (0.01) 0.97 (0.00) 0.65 (0.01) 2.76 (0.13)

glasso 0.90 (0.01) 1.70 (0.02) 2.84 (0.03) 0.69 (0.01) 0.95 (0.00) 0.63 (0.00) −

Model 7, (n, p, r) = (200, 100, 5), Bernoulli

LVD 0.95 (0.01) 1.95 (0.02) 4.04 (0.01) 0.58 (0.00) 0.96 (0.00) 0.46 (0.00) 10.22 (0.09)

CPW 0.99 (0.01) 2.03 (0.02) 4.36 (0.04) 0.57 (0.01) 0.95 (0.00) 0.44 (0.00) 9.52 (0.23)

glasso 1.28 (0.00) 2.79 (0.01) 4.89 (0.03) 0.68 (0.01) 0.64 (0.00) 0.14 (0.00) −
Model 8, (n, p, r) = (200, 100, 5), Normal

LVD 0.96 (0.00) 1.96 (0.02) 4.07 (0.01) 0.57 (0.00) 0.96 (0.00) 0.46 (0.00) 10.15 (0.08)

CPW 1.01 (0.01) 2.04 (0.02) 4.42 (0.04) 0.51 (0.01) 0.96 (0.00) 0.45 (0.00) 10.35 (0.24)

glasso 1.28 (0.00) 2.81 (0.02) 4.92 (0.03) 0.67 (0.01) 0.64 (0.00) 0.14 (0.00) −
Model 9, (n, p, r) = (200, 100, 0)

LVD 0.86 (0.01) 1.75 (0.02) 3.60 (0.03) 0.72 (0.01) 0.96 (0.00) 0.58 (0.01) 4.06 (0.13)

CPW 0.92 (0.01) 1.83 (0.02) 3.98 (0.04) 0.69 (0.01) 0.96 (0.00) 0.58 (0.01) 3.48 (0.19)

glasso 0.89 (0.01) 1.80 (0.01) 3.84 (0.04) 0.76 (0.01) 0.94 (0.00) 0.55 (0.01) −

of tuning parameters caused by different loss functions used in cross validation.
While we use the Frobenious norm as in (3.12), the other two methods adopt
the log determinant loss. Our method tend to choose a smaller tuning parameter
compared with those from CPW and glasso, which may lead to better estimation
performance. Similar results have also be observed in Zhang and Zou (2014),
and such difference is negligible when tuning parameters are changing; see later
in Figure 4.

To further investigate the performance on graph structure recovery, we obtain
the receiver operating characteristic (ROC) curve for each simulated data set by
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Fig 4. The average ROC curves obtained by varying the tuning parameter over 100 replica-
tions.

varying the turning parameter for the sparse matrix. Figure 4 shows the ROC
curves averaged over 100 replications. Figures on the same row correspond to
same dimensionality and different set-ups of latent variable X. The performance
of our LVD estimator is comparable to that of the penalized likelihood method
in most cases and better than the other two methods when p = 20 and X
follows a Bernoulli distribution. The graphical lasso estimator, on the other
hand, performs poorly when there exists latent variables, that is, in Models
1–2, 4–5, and 7–8. We also note that in these cases, there is a “kink” in the
ROC curve for glasso. Below this critical point, the graphical lasso estimator
performs no better than random guess; as p and r increase (thus the effects of
latent variables decrease), this critical point moves towards the original point.
This phenomenon implies that a direct application of graphical lasso in real data
analysis may lead to unreliable results if there is concern over latent variables,
especially when the number of node is not large. Finally, we emphasize that
the two methods accounting for the effect of latent variables, ŜLVD and ŜCPW,
perform no worse than Ŝglasso in all models.
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6. Analysis of a yeast data set

To demonstrate our method in real data analysis, we present results from the
analysis of a yeast genetical genomics data set generated by Brem and Kruglyak
(2005). They used BY4716 and the wild isolate RM11-1a as parent strains to
grow 112 yeast segregants. Then they isolated RNA and hybridized cDNA to
microarrays that had 6216 yeast genes assayed on each array. It is nearly impos-
sible to build a gene-gene interaction network for all the genes owing to the small
sample size and restricted perturbation in biological systems. We instead apply
our method to a set of 56 genes that belong to the yeast mitogen-activated
protein kinase (MAPK) signaling pathway provided by the KEGG database
(Kanehisa et al., 2010).

The S. cerevisiae genome encodes multiple MAP kinase orthologs. Fus3 me-
diates cellular response to peptide pheromones, Kss1 permits adjustment to
nutrient limiting conditions and Hog1 is necessary for survival under hyperos-
motic conditions. Besides, Slt2/Mpk1 is required for repair of injuries to the cell
wall. Figure 5 displays the illustrative pathway structure. Since several genes
such as Ste20, Ste12 and Ste11 appear in multiple locations, this graph cannot
be treated as the ”true graph” for evaluating or comparing different methods.
Our goal is to construct a conditional independent network among these genes
at the expression levels and compare the results to this reference graph in the
hope of gaining some biological interpretations.

We apply the above methods to this set of 56 genes and use 10-fold cross-
validation to choose tuning parameters for all approaches. The model selected
by cross-validation include 44 (LVD), 508 (CPW) and 536 (glasso) links among
the 56 genes, respectively. While the graphical lasso estimator tends to choose
a large number of interactions as expected, we see that ŜCPW also selects too

Fig 5. The yeast MAPK pathway downloaded from http: // www. wikipathways. org/ index.

php/ Pathway: WP510 (Kelder et al., 2012).

http://www.wikipathways.org/index.php/Pathway:WP510
http://www.wikipathways.org/index.php/Pathway:WP510
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many links to interpret. On the other hand, our LVD estimator results in a much
sparser graph, which implies that the yeast data set we are analyzing may be
subject to the effect of latent variables. We emphasize that we choose γ such that
the low-rank matrices estimated by LVD and CPW have the same rank. Further,
although tuning γ will change the rank of the estimated low-rank matrix, the
resulting graph of these two methods are stable across different values of γ.

Figure 6 shows the undirected graph for 37 linked genes on the MAPK path-
way constructed base on our estimator. Although we do not expect the resulting
graph to fully recover the original MAPK pathway, it indeed has some biolog-
ical meanings. For example, DIG1, FUS1, FUS3, GPA1, FAR1, STE2, STE3,
STE12, STE18 and STE20 are linked together, which suggests a strong interac-
tions between these genes because they are all involved in the yeast pheromone
and mating process. Similarly, PKC1 and MKK1, MLP1 and SWI4 are linked
together, while Slt2, RLM1, FKS1 and MID2 are linked through CTT1 and
MSN4 owing to their interaction in the cell wall remodelling process. Finally,
CTT1, SHO1, MSN4, YPD1, MCM1 and SLN1 are connected via SLT2 and
RLM1 since they participate in osmolyte synthesis. Our method also estimates
a low-rank matrix that summarizes the effects of latent variables; some methods
have been developed to interpret latent variables (Taeb and Chandrasekaran,
2016) and factorize this low-rank matrix, for example, into sparse factors (Wit-
ten et al., 2009).

Fig 6. Latent variables’ effects adjusted conditional independence graph constructed based on
the estimated precision matrix for the 37 genes on the yeast MAPK pathway.
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To compare across different methods, we follow the stability selection ap-
proach (Meinshausen and Bühlmann, 2010) and fit the graph for all three meth-
ods based on 100 bootstrap subsamples of size �n/2� with tuning parameters
fixed at the values chosen before. An extra cut-off threshold πthr that deter-
mines whether an interaction is stable varies across methods and is derived
according to Theorem 1 in Meinshausen and Bühlmann (2010) such that the
expected number of wrong edges is less than 30 among the 1540 possible edges.
Since the cut-off thresholds πthr for stability selection have respective values
for different methods, the resulting graphs have comparable number of edges
with 36 for LVD, 39 for CPW and 50 for glasso. Among these edges, 26 of
them are selected by all three methods, with another 2 links selected simulta-
neously by our method and glasso/CPW. Although our estimator selects the
least number of edges in the graph, it involves the most number of genes whose
interactions can be interpreted by the real MAPK pathway illustrated in Fig-
ure 5.

7. Conclusion

In this paper, we study the problem of modeling the statistical dependence of
random variables as a sparse graphical model conditioning on a few additional
latent components. Since it is very common that the observed variables are cor-
related with some hidden variables in real world data, considering such model
is of great importance. We develop the LVD procedure, an �1 and trace regu-
larized minimization method for latent-variable graphical model selection, and
prove its estimation and model selection consistency under certain identifiabil-
ity conditions. We also propose a computationally efficient algorithm that can
be applied to high-dimensional settings. Our simulation studies verify our the-
oretical results and show the superior performance of our method over other
approaches. Finally we demonstrate the effectiveness of our method in a yeast
gene expression data set.

Several improvements and extensions of our method deserve further analysis.
Both joint Gaussian distribution and our linear factor model (2.1) assume a
Gaussian distribution for the random error to facilitate the estimation of condi-
tional independence among variables. Graphical models for non-Gaussian data
have attracted a lot of attention recently, including discrete variables (Raviku-
mar et al., 2010; Loh and Wainwright, 2013), exponential families (Yang et al.,
2015), and mixed data (Chen et al., 2015; Cheng et al., 2016; Fan et al., 2017). It
is of great interest to develop statistically consistent methods for latent-variable
modeling with such non-Gaussian variables. As a matter of fact, Tan et al. (2016)
have already studied semiparametric exponential family graphical models with
latent variables when replicates within each subject are available. Another im-
portant issue that is worthwhile to pursue concerns about controlling the false
discovery rate (FDR) and constructing confidence intervals for latent variable
graphical models. Similar problems for Gaussian graphical models have been
considered by Liu (2013); Wasserman et al. (2014); Janková and van de Geer
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(2015); Ren et al. (2015). Particularly, results on entrywise confidence interval
for latent variables graphical models under the joint Gaussian assumption have
been established in Ren et al. (2015). It is promising to extend these method-
ologies to the more general distribution assumptions, with an emphasize on
controlling the FDR of detected edges.

Appendix A: Additional simulation studies

A.1. Stability of γ

We have already showed in Theorem 4.1 that estimation and model selection
consistency is possible for a range of γ. In this section we investigate the perfor-
mance of our LVD estimator when γ is varied. For simplicity, we only consider
Model 4 in Section 5, that is, n = 200, p = 50, r = 2 and the latent variables
take binary values. Recall that in Table 3, the average rank of the estimated
low-rank matrix is 4.67 for our LVD estimator. Table 4 summarizes results when
we vary γ. For each γ fixed, we choose λn using 10-fold cross validation. Note
that γ = 0.15 corresponds to results in Table 3.

We see that as γ varies from 0.12 to 0.35, the average estimated rank of the
low-rank matrix ranges from 2.85 to 13.11. Nevertheless, the estimation errors
measured in all three quantities remain stable regardless of different choices of γ,
especially when 0.15 ≤ γ ≤ 0.3. Besides, the Matthews Correlation Coefficient

Table 4

Simulation results for a range of γ. Each performance measure is averaged over 100
replications with standard deviations shown in parentheses.

γ ‖ · ‖2 ‖ · ‖�1
‖ · ‖F TPR TNR MCC rank(L̂)

0.12 0.86 (0.01) 1.70 (0.02) 2.54 (0.03) 0.78 (0.01) 0.85 (0.00) 0.46 (0.00) 2.85 (0.08)

0.13 0.86 (0.01) 1.68 (0.02) 2.53 (0.03) 0.77 (0.01) 0.86 (0.00) 0.47 (0.01) 3.36 (0.08)

0.14 0.86 (0.01) 1.67 (0.02) 2.53 (0.03) 0.77 (0.01) 0.87 (0.00) 0.49 (0.01) 4.07 (0.08)

0.15 0.86 (0.01) 1.68 (0.02) 2.55 (0.03) 0.75 (0.01) 0.89 (0.00) 0.51 (0.01) 4.67 (0.10)

0.16 0.85 (0.01) 1.67 (0.02) 2.54 (0.02) 0.74 (0.01) 0.90 (0.00) 0.52 (0.01) 5.24 (0.11)

0.17 0.85 (0.01) 1.67 (0.02) 2.53 (0.02) 0.73 (0.01) 0.91 (0.00) 0.52 (0.01) 6.03 (0.11)

0.18 0.85 (0.01) 1.67 (0.02) 2.53 (0.02) 0.71 (0.01) 0.91 (0.00) 0.53 (0.01) 6.69 (0.13)

0.19 0.85 (0.01) 1.67 (0.02) 2.53 (0.02) 0.70 (0.01) 0.92 (0.00) 0.54 (0.01) 7.26 (0.13)

0.20 0.85 (0.01) 1.68 (0.02) 2.54 (0.02) 0.68 (0.01) 0.93 (0.00) 0.55 (0.01) 7.83 (0.13)

0.22 0.84 (0.01) 1.69 (0.02) 2.54 (0.02) 0.65 (0.01) 0.94 (0.00) 0.55 (0.01) 8.99 (0.13)

0.24 0.84 (0.01) 1.70 (0.02) 2.54 (0.02) 0.62 (0.02) 0.95 (0.00) 0.55 (0.01) 10.11 (0.15)

0.26 0.83 (0.01) 1.71 (0.02) 2.54 (0.02) 0.58 (0.02) 0.96 (0.00) 0.55 (0.01) 11.22 (0.18)

0.28 0.84 (0.01) 1.73 (0.02) 2.59 (0.03) 0.54 (0.02) 0.97 (0.00) 0.54 (0.01) 11.91 (0.22)

0.30 0.85 (0.01) 1.75 (0.03) 2.64 (0.03) 0.49 (0.02) 0.97 (0.00) 0.53 (0.01) 12.41 (0.25)

0.32 0.85 (0.01) 1.77 (0.03) 2.69 (0.04) 0.45 (0.02) 0.98 (0.00) 0.51 (0.01) 12.70 (0.28)

0.35 0.87 (0.01) 1.80 (0.03) 2.76 (0.04) 0.38 (0.02) 0.98 (0.00) 0.48 (0.01) 13.11 (0.31)
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is even larger when we increase γ, i.e., when our LVD method estimates the L̂
with a moderate high rank. Consequently, the estimated sparse matrix becomes
more sparse (TPR decreases and TNR increases) since γ provides a trade-off
between the sparse and the low-rank matrices.

A.2. Effect of r

To understand how the global effects caused by latent variables affect the per-
formance of different methods, we extend the simulation study in Section 5
by varying r. In order to better illustrate the effect of r, we consider the low-
dimensional scenario, that is, n = 200 and p = 20. As is explained in Section
5, we fix γ at a pre-chosen constant so that the low-rank matrices estimated by
LVD and CPW have approximately the same rank, and we only set X taking
binary values for simplicity.

Table 5 summarizes results when r is varied from 0 to 4. We have already seen
in Section 5 that glasso only performs well when there is no latent variable at
all. Although the performance of all three methods deteriorates as r increases,
our LVD procedure outperforms other approaches in all cases.

Table 5

Simulation results for a range of r. Each performance measure is averaged over 100
replications with standard deviations shown in parentheses.

Method ‖ · ‖2 ‖ · ‖�1
‖ · ‖F TPR TNR MCC rank(L̂)

r = 0

LVD 0.76 (0.01) 1.24 (0.02) 1.51 (0.02) 0.97 (0.01) 0.88 (0.01) 0.76 (0.01) 0 (0)

CPW 0.93 (0.01) 1.49 (0.02) 1.92 (0.02) 0.95 (0.01) 0.87 (0.01) 0.71 (0.01) 0.03 (0.02)

glasso 0.93 (0.01) 1.49 (0.02) 1.91 (0.02) 0.95 (0.01) 0.86 (0.01) 0.71 (0.01) −
r = 1

LVD 0.96 (0.01) 1.69 (0.03) 1.94 (0.03) 0.74 (0.02) 0.95 (0.00) 0.72 (0.01) 4.13 (0.07)

CPW 1.11 (0.01) 1.94 (0.03) 2.34 (0.02) 0.50 (0.02) 0.99 (0.00) 0.62 (0.01) 4.04(0.08)

glasso 1.26 (0.01) 2.03 (0.02) 2.36 (0.02) 0.76 (0.01) 0.45 (0.01) 0.17 (0.01) −
r = 2

LVD 0.96 (0.01) 1.71 (0.03) 1.93 (0.02) 0.75 (0.01) 0.89 (0.00) 0.61 (0.01) 5.14 (0.06)

CPW 1.12 (0.01) 1.97 (0.02) 2.36 (0.02) 0.53 (0.02) 0.96 (0.00) 0.57 (0.01) 5.05(0.07)

glasso 1.34 (0.01) 2.19 (0.02) 2.59 (0.02) 0.79 (0.01) 0.41 (0.00) 0.16 (0.01) −
r = 3

LVD 1.01 (0.01) 1.86 (0.02) 2.09 (0.02) 0.55 (0.01) 0.93 (0.00) 0.51 (0.01) 6.68 (0.06)

CPW 1.16 (0.01) 2.06 (0.02) 2.47 (0.02) 0.26 (0.01) 0.98 (0.00) 0.38 (0.01) 6.46 (0.08)

glasso 1.40 (0.01) 2.36 (0.02) 2.80 (0.02) 0.79 (0.01) 0.36 (0.00) 0.13 (0.01) −
r = 4

LVD 1.06 (0.01) 1.92 (0.03) 2.20 (0.02) 0.47 (0.01) 0.91 (0.00) 0.41 (0.01) 7.38 (0.07)

CPW 1.18 (0.01) 2.09 (0.03) 2.55 (0.02) 0.21 (0.02) 0.98 (0.00) 0.31 (0.01) 7.10 (0.09)

glasso 1.44 (0.01) 2.44 (0.02) 2.95 (0.02) 0.80 (0.01) 0.31 (0.00) 0.10 (0.01) −
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Appendix B: Derivation of (3.10)

Proof. We rewrite the first-order optimality condition for (3.9) as

1

2
(Rk+1Σn +ΣnR

k+1)− I + ρ
(
Rk+1 −W k

R

)
= 0. (B.1)

Since Σn is positive-semidefinite, let Σn = UΣdiag(σΣ)U
T
Σ be the eigenvalue

decomposition of Σn, where UΣ ∈ R
p×p. Write Ṙk+1 = UT

ΣRk+1UΣ and mul-
tiply UT

Σ from the left and UΣ from the right in (B.1), we obtain

1

2

(
Ṙk+1diag(σΣ) + diag(σΣ)Ṙ

k+1
)
+ ρṘk+1 = ρUT

Σ (W k
R + I)UΣ.

To solve Ṙk+1 from the above display, all we need to do is to make sure that
for each i, j = 1, . . . , p, we have

1

2

(
Ṙk+1

ij σΣ,j + σΣ,iṘ
k+1
ij

)
+ ρṘk+1

ij =
(
ρUT

Σ (W k
R + I)UΣ

)
ij
,

which establishes (3.10).

Appendix C: Numerical algorithm for solving (3.2)

The ADMM described in Algorithm 1 for solving (3.1) need to be slightly modi-
fied. Specifically, we need to update Rk+1 by solving the following optimization
problem instead of (3.9):

Rk+1 = argmin
R	εI

1

2
tr(RΣnR)− tr(R) +

ρ

2

∥∥R−W k
R

∥∥2
F
. (C.1)

As there is no explicit form solution for this problem, we could solve it via
an inner loop of ADMM. After introducing an auxiliary variable Ř such that
Ř = R, we turn to solve

min 1
2 tr(RΣnR)− tr(R) + ρ

2

∥∥R−W k
R

∥∥2
F
+ I(Ř � εI)

subject to Ř = R.

It can be easily seen that the updates of R and Ř are similar to (3.10) and
(3.8). We finally note that it is sufficient to solve (3.1) in practice, which is
much simpler and faster.

Appendix D: Proof of Theorem 4.1

We start from a Lemma that characterizes the deviation of the sample covariance
matrix from its true value, whose proof can be found in Vershynin (2010).
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Lemma D.1. Under assumption (4.3), the empirical covariance matrix satisfies

P

{
‖Σn −ΣY ‖2 ≤ CK

√
p

n

}
≥ 1− 2 exp(−p)

where CK is a constant that only depends on K.

Proof of Theorem 4.1. In what follows we will condition on the event that the
result in Lemma D.1 holds, which occurs with probability at least 1− 2 exp(p).
The key idea used in the proof is a technique known as the primal-dual witness
method used previously in analysis of the Lasso (Wainwright, 2009) and graph-
ical model (Ravikumar et al., 2011). The proof is summarized in the following
three steps.

Step 1. Let (Š, Ľ, Ř) be the solution to the following problem:

minS,L,R
1
2 tr(RΣnR)− tr(R) + λn(γ‖S‖1 + ‖L‖∗),

subject to R = S −L,R = RT ,L = LT .
(D.1)

Note that there is no positive-(semi)definite constraint in (D.1). It will be shown
later in Step 2 that under conditions assumed in Theorem 4.1, Ř and Ľ are
positive-(semi)definite with high probability, hence it suffices to study problem
(D.1). We will show in this step that if we solve (D.1) subject to additional
constraints that S and L belong to tangent spaces Ω∗ and T ∗, that is,

minS,L,R
1
2 tr(RΣnR)− tr(R) + λn(γ‖S‖1 + ‖L‖∗),

subject to R = S −L,R = RT ,L = LT ,S ∈ Ω∗,L ∈ T ∗,
(D.2)

then these two sets of solutions are the same.
Step 2. We analyze the solution to optimization problem (D.2) (denoted by

(S̄, L̄, R̄)) and show that (S̄, L̄, R̄) enjoys estimation consistency measured in
terms of gγ(S̄ − S∗, L̄− L∗) as claimed in Theorem 4.1. We further show that
under suitable conditions on minimum magnitude of nonzero entry of S∗ and
minimum nonzero singular value of L∗, Ř and Ľ are positive-(semi)definite with
high probability, thus model selection consistency for S∗ is achieved. Therefore,
we have (Ŝ, L̂, R̂) = (Š, Ľ, Ř) = (S̄, L̄, R̄), which completes the proof of The-
orem 4.1.

Proof of Step 1.
The first-order optimality condition for (D.1) is given by

1

2

(
ŘΣn +ΣnŘ

)
− I ∈ −λnγ∂‖Š‖1,

1

2

(
ŘΣn +ΣnŘ

)
− I ∈ λn∂‖Ľ‖∗.

Similarly, the first-order optimality condition for the constrained problem (D.2)
is given by

1
2

(
R̄Σn +ΣnR̄

)
− I +Q(Ω∗)⊥ ∈ −λnγ∂‖S̄‖1,

1
2

(
R̄Σn +ΣnR̄

)
− I +Q(T∗)⊥ ∈ λn∂‖L̄‖∗,

(D.3)
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where Q(Ω∗)⊥ and Q(T∗)⊥ are Lagrange multipliers such that Q(Ω∗)⊥ ∈ (Ω∗)⊥

and Q(T∗)⊥ ∈ (T ∗)⊥. Recall that

hΣ(R) =
1

2
(ΣR+RΣ).

Restricting (D.3) to the space Y∗, we have

PΩ∗
(
hΣn(R̄)− I

)
= −λnγsign(S̄),

PT∗
(
hΣn(R̄)− I

)
= λnŪ V̄ T ,

where L̄ = Ūdiag(σ̄)V̄ T is the SVD of L̄. Let A and A† be the addition and
adjoint of the addition operator, that is, for matrices A and B, we have

A(A,B) = A+B and A†(A) = (A,A).

Further denote by PY the projection onto Y . Setting

Z = PY∗A† (hΣn(R̄)− I
)
,

we then have gγ(Z) = λn. Since (S̄, L̄, R̄) satisfies the optimality condition for
(D.1) on Y∗, we need to show that

gγ
(
P(Y∗)⊥A† (hΣn(R̄)− I

))
< λn.

Let En = Σn −Σ∗,ΔS = S̄ −S∗ and ΔL = L∗ − L̄. Rewriting hΣn(R̄)− I in
terms of En,ΔS and ΔL, we obtain

hΣn(R̄)− I =
1

2
((Σ∗ +En)(R

∗ +ΔS +ΔL) + (R∗

+ΔS +ΔL)(Σ
∗ +En))−Σ∗R∗

= hΣ∗APY∗(ΔS ,ΔL) + hEn(R
∗).

Therefore, we need to prove

gγ
(
P(Y∗)⊥A† (hΣn(R̄)− I

))
≤ gγ

(
P(Y∗)⊥A†hΣ∗APY∗(ΔS ,ΔL)

)
+ gγ

(
P(Y∗)⊥A†hEn(R

∗)
)

= T1 + T2 < λn.

Let m = max{1/γ, 1}, we first note that term T2 can be bounded as

gγ
(
P(Y∗)⊥A†hEn(R

∗)
)
≤ gγ

(
A†hEn(R

∗)
)
≤ m‖EnR

∗‖2 ≤ mCK

ψ1

√
p

n
,

where the last inequality follows from ψ1 ≤ λmin(ΣY ) and Lemma D.1. To
bound term T1, we first show that under the irrepresentability condition (4.2),
we have

gγ
(
P(Y∗)⊥A†hΣ∗APY∗(ΔS ,ΔL)

)
≤ (1− δ)gγ

(
PY∗A†hΣ∗APY∗(ΔS ,ΔL)

)
.

(D.4)
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For S ∈ Ω∗,L ∈ T ∗ with ‖S‖∞ = γ and ‖L‖2 = 1, it follows from definitions
of α, β, γ and ξ(T ∗) that

‖PΩ∗hΣ∗(S +L)‖∞ ≥ ‖PΩ∗hΣ∗(S)‖∞ − ‖PΩ∗hΣ∗(L)‖∞
≥ αγ − ‖hΣ∗(L)‖∞
≥ αγ − βξ(T ∗).

Similarly, we have

‖PT∗hΣ∗(S +L)‖2 ≥ ‖PT∗hΣ∗(L)‖2 − ‖PT∗hΣ∗(S)‖2
≥ α− ‖hΣ∗(S)‖2
≥ α− 2βγμ(Ω∗).

Combining these results yields

gγ
(
PY∗A†hΣ∗APY∗(S,L)

)
≥ α− βmax

{
ξ(T ∗)

γ
, 2γμ(Ω∗)

}
. (D.5)

To upper-bound gγ
(
P(Y∗)⊥A†hΣ∗APY∗(S,L)

)
, we have

gγ
(
PY∗⊥A†hΣ∗APY∗(S,L)

)
for S ∈ Ω∗,L ∈ T ∗ with ‖S‖∞ = γ and ‖L‖2 = 1,

we have

‖P(Ω∗)⊥hΣ∗(S+L)‖∞ ≤ ‖P(Ω∗)⊥hΣ∗(S)‖∞+‖P(Ω∗)⊥hΣ∗(L)‖∞ ≤ δγ+βξ(T ∗),

and

‖P(T∗)⊥hΣ∗(S +L)‖2 ≤ ‖P(T∗)⊥hΣ∗(L)‖2 + ‖P(T∗)⊥hΣ∗(S)‖2 ≤ δ + βμ(Ω∗)γ.

Therefore, we obtain

gγ
(
P(Y∗)⊥A†hΣ∗APY∗(S,L)

)
≤ δ + βmax

{
ξ(T ∗)

γ
, γμ(Ω∗)

}
. (D.6)

Note that if we choose γ such that

γ ∈
[
ξ(T ∗)β(2− ν)

να
,

να

2μ(Ω∗)β(2− ν)

]
,

we have

max

{
ξ(T ∗)

γ
, 2γμ(Ω∗)

}
≤ να

β(2− ν)
. (D.7)

This observation together with (D.5) and (D.6) implies

gγ
(
PY∗⊥A†hΣ∗APY∗(ΔS ,ΔL)

)
gγ (PY∗A†hΣ∗APY∗(ΔS ,ΔL))

≤
δ + βmax

{
ξ(T∗)

γ , 2γμ(Ω∗)
}

α+ βmax
{

ξ(T∗)
γ , 2γμ(Ω∗)

}

≤
δ
α + ν

2−ν

1 + ν
2−ν
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≤ (1− 2ν)(2− ν) + ν

2
< 1− ν,

which completes the proof of (D.4). Finally, recall thatZ = PY∗A† (hΣn(R̄)− I
)

and gγ(Z) = λn, we obtain

gγ
(
PY∗A†hΣ∗APY∗(ΔS ,ΔL)

)
= gγ

(
PY∗A†(Z − hEn(R

∗)
)

≤ gγ
(
PY∗A†(Z)

)
+ gγ

(
PY∗A†(hEn(R

∗)
)

≤ λn +
2mCK

ψ1

√
p

n

Combining these bounds together yields

gγ

(
P(Y∗)⊥A†

(
hΣn(R̂Y∗)− I

))
≤ (1− ν)

(
λn +

2mCK

ψ1

√
p

n

)
+

mCK

ψ1

√
p

n

≤ (1− ν/2)λn

as long as we choose λn as

λn =
(3− 2ν)mCK

ψ1

√
p

n
,

which completes the proof of Step 1.
Proof of Step 2.
We investigate estimation performance of the solution to the constrained

problem (D.2). Since

gγ(ΔS ,ΔL) = gγ(PY∗(ΔS ,ΔL)),

we aim to control the last term using gγ(PY∗A†hΣ∗APY∗(ΔS ,ΔL)). For S ∈
Ω∗,L ∈ T ∗ with ‖S‖∞ = γ and ‖L‖2 = 1, we have already showed that

gγ
(
PY∗A†hΣ∗APY∗(S,L)

)
≥ α− βmax

{
ξ(T ∗)

γ
, 2γμ(Ω∗)

}

≥ 2α

3
=

2α

3
gγ(ΔS ,ΔL),

where we have used (D.7) and ν < 1
2 in the last inequality. Therefore, we obtain

max

{
‖ΔS‖∞

γ
, ‖ΔL‖2

}
= gγ(ΔS ,ΔL)

≤ 3

2α
gγ

(
PY∗A†hΣ∗APY∗(S,L)

)
≤ 3

2α
(λn + 2m‖En‖2/ψ1)

≤ 3

α
λn,
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which establishes the estimation error bound. Further, due to additional con-
straints, we must have

S̄ ∈ Ω∗ and L̄ ∈ T ∗.

Hence if the minimum nonzero singular value of L∗, i.e., σ, satisfies

σ >
3

α
λn,

we have L̄ � 0. Besides, since for a symmetric matrix A, we have ‖A‖2 ≤
‖A‖∞ ≤ deg(A)‖A‖∞, which implies

‖R̄−R∗‖2 ≤ ‖ΔS‖2 + ‖ΔL‖2

≤ 3

α
(dγ + 1)λn.

Hence if the minimum eigenvalue of R∗ = (ΣY )
−1 satisfies

1

ψ2
>

3

α
(dγ + 1)λn,

we have R̄ � 0. These results combining with those proved in Step 1 show that
solutions to optimizations problems (2.5), (D.1) and (D.2) are the same. Finally,
using the assumption that

θ >
3γ

α
λn,

we obtain model selection consistency

sign(Ŝ) = sign(S∗)

as claimed.
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