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Abstract: We study asymptotically minimax predictive distributions in
infinite sequence models. First, we discuss the connection between pre-
diction in an infinite sequence model and prediction in a function model.
Second, we construct an asymptotically minimax predictive distribution
for the setting in which the parameter space is a known ellipsoid. We show
that the Bayesian predictive distribution based on the Gaussian prior dis-
tribution is asymptotically minimax in the ellipsoid. Third, we construct an
asymptotically minimax predictive distribution for any Sobolev ellipsoid.
We show that the Bayesian predictive distribution based on the product
of Stein’s priors is asymptotically minimax for any Sobolev ellipsoid. Fi-
nally, we present an efficient sampling method from the proposed Bayesian
predictive distribution.
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1. Introduction

We consider prediction in an infinite sequence model. The current observation
is a random sequence X = (X1, X2, . . .) given by

Xi = θi + εWi for i ∈ N, (1)
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where θ = (θ1, θ2, . . .) is an unknown sequence in l2 := {θ :
∑∞

i=1 θ
2
i < ∞} and

W = (W1,W2, . . .) is a random sequence distributed according to ⊗∞
i=1 N (0, 1)

on (R∞,R∞). Here R∞ is a product σ-field of the Borel σ-field R on the Eu-
clidean space R. Based on the current observation X, we estimate the distribu-
tion of a future observation Y = (Y1, Y2, . . .) given by

Yi = θi + ε̃W̃i for i ∈ N, (2)

where W̃ = (W̃1, W̃2, . . .) is distributed according to ⊗∞
i=1 N (0, 1). We denote

the true distribution of X with θ by Pθ and the true distribution of Y with θ
by Qθ. For simplicity, we assume that W and W̃ are independent.

Prediction in an infinite sequence model is shown to be equivalent to the
following prediction in a function model. Consider that we observe a random
function X(·) given by

X(·) = F (·) + εW (·) in L2[0, 1], (3)

where L2[0, 1] is the L2-space on [0, 1] with the Lebesgue measure, F (·) : [0, 1] →
R is an unknown absolutely continuous function of which the derivative is in
L2[0, 1], ε is a known constant, and W (·) follows the standard Wiener measure
on L2[0, 1]. Based on the current observation X(·), we estimate the distribution
of a random function Y (·) given by

Y (·) = F (·) + ε̃W̃ (·) in L2[0, 1], (4)

where ε̃ is a known constant, and W̃ (·) follows the standard Wiener measure
on L2[0, 1]. The details are provided in Section 2. Xu and Liang [19] established
the connection between prediction of a function on equispaced grids and pre-
diction in a high-dimensional sequence model, using the asymptotics in which
the dimension of the parameter grows to infinity according to the growth of the
grid size. Our study is motivated by Xu and Liang [19] and is its generalization
to the settings in which the parameter θ is infinite-dimensional.

Using the above equivalence, we discuss the performance of a predictive dis-
tribution Q̂(·; ·) of Y based on X in an infinite sequence model. Let A be the
whole set of probability measures on (R∞,R∞) and let D be the decision space

{Q̂ : R∞ → A}. We use the Kullback–Leibler loss as a loss function: for all
Q ∈ A and all θ ∈ l2, if Qθ is absolutely continuous with respect to Q, then

l(θ,Q) :=

∫
log

dQθ

dQ
(y)dQθ(y),

and otherwise l(θ,Q) = ∞. The risk of a predictive distribution Q̂(·; ·) ∈ D in
the case that the true distributions of X and Y are Pθ and Qθ, respectively, is
denoted by

R(θ, Q̂) :=

∫
l(θ, Q̂(·;x))dPθ(x).
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We construct an asymptotically minimax predictive distribution Q̂∗ ∈ D that
satisfies

lim
ε→0

[
sup

θ∈Θ(a,B)

R(θ, Q̂∗)

/
inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂)

]
= 1,

where Θ(a,B) := {θ ∈ l2 :
∑∞

i=1 a
2
i θ

2
i ≤ B} with a known non-zero and non-

decreasing divergent sequence a = (a1, a2, . . .) and with a known constant B.
Note that for any ε > 0, the minimax risk is bounded above by (1/2ε̃2)(B/a21) <
∞. Further, note that using the above equivalence between the infinite sequence
model and the function model, the parameter restriction in the infinite sequence
model that θ ∈ Θ(a,B) corresponds to the restriction that the corresponding
parameter in the function model is smooth; B represents the volume of the
parameter space, and the growth rate of a represents the smoothness of the
functions.

The constructed predictive distribution is the Bayesian predictive distribution
based on the Gaussian distribution. For a prior distribution Π of θ, the Bayesian
predictive distribution QΠ based on Π is obtained by averaging Qθ with respect
to the posterior distribution based on Π. Our construction is a generalization of
the result in Xu and Liang [19] to infinite-dimensional settings. The details are
provided in Section 3.

Further, we discuss adaptivity to the sequence a and B. In applications, since
we do not know the true values of a and B, it is desirable to construct a pre-
dictive distribution without using a and B that is asymptotically minimax in
any ellipsoid in the class. Such a predictive distribution is called an asymp-
totically minimax adaptive predictive distribution in the class. In the present
paper, we focus on an asymptotically minimax adaptive predictive distribu-
tion in the simplified Sobolev class {ΘSobolev(α,B) : α > 0, B > 0}, where
ΘSobolev(α,B) := {θ ∈ l2 :

∑
i∈N

i2αθ2i ≤ B}.
Our construction of the asymptotically minimax adaptive predictive distribu-

tion is based on Stein’s prior and the division of the parameter into blocks. The
proof of the adaptivity relies on a new oracle inequality related to the Bayesian
predictive distribution based on Stein’s prior; see Subsection 4.2. Stein’s prior

on R
n is an improper prior whose density is

(∑n
i=1 θ

2
i

)(2−n)/n
. It is known

that the Bayesian predictive distribution based on that prior has a smaller
Kullback–Leibler risk than that based on the uniform prior in the finite dimen-
sional Gaussian settings; see Komaki [9] and George, Liang and Xu [8]. The
division of the parameter into blocks is widely used for the construction of the
asymptotically minimax adaptive estimator; see Efromovich and Pinsker [7],
Cai, Low and Zhao [4], and Cavalier and Tsybakov [5]. The details are provided
in Section 4.

The remainder of the paper is organized as follows. In Section 5, we provide
an efficient sampling method for the proposed asymptotically minimax adaptive
distribution and provide numerical experiments with a fixed ε. In Section 6, we
conclude the paper.
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2. Equivalence between predictions in infinite sequence models and
predictions in function models

In this section, we provide an equivalence between prediction in a function
model and prediction in an infinite sequence model. The proof consists of the
two steps. First, we provide a connection between predictions in a function
model and predictions in the submodel of an infinite sequence model. Second,
we extend predictions in the submodel to predictions in the infinite sequence
model.

The detailed description of prediction in a function model is as follows. Let
HF := {F (·) ∈ L2[0, 1] : F (0) = 0, Ḟ (·) ∈ L2[0, 1]}, where Ḟ denotes the
derivative of F . Let 〈·, ·〉L2 be the inner product of L2[0, 1]. Let AF be the
whole set of probability distributions on (L2[0, 1],BF), where BF is the Borel σ-
field of HF. lF(F,Q) denotes the Kullback–Leibler loss of Q ∈ AF in the setting
that the true parameter function is F (·).

Let C : L2[0, 1] → L2[0, 1] be the covariance operator of W : for any x(·) ∈
L2[0, 1], C(x(·))(·) =

∫ 1

0
(· ∧ t)x(t)dt. By Mercer’s theorem, there exists a non-

negative monotone decreasing sequence {λi}∞i=1 and an orthonormal basis
{ei(·)}∞i=1 in L2[0, 1] such that

C(x(·))(·) =
∞∑
i=1

λi〈x(·), ei(·)〉L2ei(·) in L2[0, 1].

Explicitly, λi is 1/{π(i− 1/2)}2 and ei(·) is
√
2 sin((i− 1/2)π·) for i ∈ N.

The detailed description of prediction in the sub-model of an infinite sequence
model is as follows. Let SD be {x ∈ R

∞ :
∑∞

i=1 xi

√
λiei(·) converges in L2[0, 1]}.

Note that SD is a measurable set with respect to (R∞,R∞), because g(x) :=∑∞
i xi

√
λiei(·) is the pointwise L2[0, 1]-limit of gn(x) :=

∑n
i=1 xi

√
λiei(·) and

we use Theorem 4.2.2. in Dudley [6]. Let AD be the whole set of probability
distributions on (SD,BD), where BD is the relative σ-field of R∞.

The following theorem states that the Kullback–Leibler loss in the function
model is equivalent to that in the submodel of the infinite sequence model.

Theorem 2.1. For every Q ∈ AF and every F ∈ HF, there exist Q̃ ∈ AD and
θ ∈ l2 such that

lF(F,Q) = l(θ, Q̃).

Conversely, for every Q̃ ∈ AD and every θ ∈ l2, there exist Q ∈ AF and F ∈ HF

such that

l(θ, Q̃) = lF(F,Q).

Proof. We construct pairs of a measurable one-to-one map Φ : L2[0, 1] → SD

and a measurable one-to-one map Ψ : SD → L2[0, 1].
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Let Φ be defined by

Φ(x(·)) :=

⎛⎜⎝〈x(·), λ−1/2
1 e1(·)〉L2

〈x(·), λ−1/2
2 e2(·)〉L2

· · ·

⎞⎟⎠ .

Φ is well-defined as a map from L2[0, 1] to SD because for x(·) and y(·) in L2[0, 1]

such that x(·) = y(·), we have 〈x(·), λ−1/2
i ei(·)〉L2 = 〈y(·), λ−1/2

i ei(·)〉L2 , and

because for x(·) ∈ L2[0, 1], we have
∑∞

i=1〈x(·), λ
−1/2
i ei(·)〉L2λ

1/2
i ei(·) ∈ L2[0, 1].

We show that Φ is one-to-one, onto, and measurable. Φ is one-to-one because
if Φ(x(·)) = Φ(y(·)), then we have 〈x(·), ei(·)〉L2 = 〈y(·), ei(·)〉L2 for all i ∈ N.
Φ is onto because if x ∈ SD, x(·) :=

∑∞
i=1 xi

√
λiei(·) satisfies that Φ(x(·)) = x.

Φ is measurable because Φ is continuous with respect to the norm || · ||L2 of
L2[0, 1] and ρ, and because R∞ is equal to the Borel σ-field with respect to
ρ(x, y) :=

∑∞
i=1 2

−i|xi − yi| ∧ 1. Φ is continuous, because we have

ρ(Φ(x(·)),Φ(y(·))) =
∞∑
i=1

(λ
−1/2
i /2i)|〈x(·), ei(·)〉L2 − 〈y(·), ei(·)〉L2 | ∧ 1.

Further, the restriction of Φ to HF is a one-to-one and onto map from HF to l2.
Let Ψ : SD → L2[0, 1] be defined by Ψ(x) :=

∑∞
i=1 xi

√
λiei(·). Ψ is the inverse

of Φ. Thus, Ψ is one-to-one, onto, and measurable.
Since the Kullback–Leibler divergence is unchanged under a measurable one-

to-one mapping, the proof is completed.

Remark 2.2. Mandelbaum [11] constructed the connection between estimation
in an infinite sequence model and estimation in a function model. Our connection
is its extension to prediction. In fact, the map Φ is used in Mandelbaum [11].

The following theorem justifies focusing on prediction in (R∞,R∞) instead
of prediction in (SD,BD).

Theorem 2.3. For every θ ∈ l2 and Q ∈ A, there exists Q̃ ∈ AD such that

l(θ, Q̃) ≤ l(θ,Q).

In particular, for any subset Θ of l2,

inf
Q̂∈D

sup
θ∈Θ

R(θ, Q̂) = inf
Q̂∈DD

sup
θ∈Θ

R(θ, Q̂),

where DD := {Q̂ : R∞ → AD}.
Proof. Note that Qθ(SD) = 1 by the Karhunen–Loève theorem. For Q ∈ A such

that Q(SD) = 0, l(θ,Q) = ∞ and then for any Q̃ ∈ AD, l(θ, Q̃) < l(θ,Q). For
Q ∈ A such that Q(SD) > 0,

l(θ,Q) = l(θ, Q̃)− logQ(SD) ≥ l(θ, Q̃),

where Q̃ is the restriction of Q to SD.
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3. Asymptotically minimax predictive distribution

In this section, we construct an asymptotically minimax predictive distribution
for the setting in which the parameter space is an ellipsoid Θ(a,B) = {θ ∈ l2 :∑∞

i=1 a
2
i θ

2
i ≤ B} with a known sequence a = (a1, a2, . . .) and with a known

constant B. Further, we provide the asymptotically minimax predictive distri-
butions in two well-known ellipsoids; a Sobolev and an exponential ellipsoids.

3.1. Principal theorem of Section 3

We construct an asymptotically minimax predictive distribution in Theorem
3.1.

We introduce notations used in the principal theorem. For an infinite sequence
τ = (τ1, τ2, . . .), let Gτ be ⊗∞

i=1 N (0, τ2i ) with variance τ2 = (τ21 , τ
2
2 , . . .). Then,

the posterior distribution Gτ (·|X) based on Gτ is

Gτ (·|X = x) =
∞
⊗
i=1

N
(

1/ε2

1/ε2 + 1/τ2i
xi,

1

1/ε2 + 1/τ2i

)
Pθ-a.s.. (5)

The Bayesian predictive distribution QGτ (·|X) based on Gτ is

QGτ (·|X = x) =
∞
⊗
i=1

N
(

1/ε2

1/ε2 + 1/τ2i
xi,

1

1/ε2 + 1/τ2i
+ ε̃2

)
Pθ-a.s.. (6)

For the derivations of (5) and (6), see Theorem 3.2 in Zhao [21]. Let v2ε and v2ε,ε̃
be defined by

v2ε,ε̃ :=
1

1/ε2 + 1/ε̃2
and v2ε := ε2, (7)

respectively. Let τ∗(ε, ε̃) = (τ∗1 (ε, ε̃), τ
∗
2 (ε, ε̃), . . .) be the infinite sequence of

which the i-th coordinate for i ∈ N is defined by

(τ∗i (ε, ε̃))
2
=

1

2

[
(v2ε − v2ε,ε̃)

√
1 +

4

2λ(ε, ε̃)a2i (v
2
ε − v2ε,ε̃)

− (v2ε + v2ε,ε̃)

]
+

, (8)

where [t]+ = max{t, 0}, and λ(ε, ε̃) is determined by

∞∑
i=1

a2i (τ
∗
i (ε, ε̃))

2
= B.

Let T (ε, ε̃) be the number defined by

T (ε, ε̃) := sup{i : τ∗i (ε, ε̃) is non-zero} = sup

{
i :

1

λ(ε, ε̃)a2i
> 2ε̃2

}
. (9)

The following is the principal theorem of this section.
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Theorem 3.1. Let d(ε) be �1/ε2
. Assume that 0 < a1 ≤ a2 ≤ . . . ↗ ∞. If

1/ε̃ = O(1/ε) as ε → 0 and log(1/ε2)
∑d(ε)

i=1 a4i (τ
∗
i (ε, ε̃))

4
= o(1) as ε → 0, then

lim
ε→0

⎡⎣{ inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂)

}/ T (ε,ε̃)∑
i=1

1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)⎤⎦ = 1.

Further, the Bayesian predictive distribution based on Gτ=τ∗(ε,ε̃) is asymptoti-
cally minimax:

sup
θ∈Θ(a,B)

R(θ,QGτ=τ∗(ε,ε̃)
) = (1 + o(1)) inf

Q̂∈D
sup

θ∈Θ(a,B)

R(θ, Q̂)

as ε → 0.

The proof is provided in the next subsection.

3.2. Proof of the principal theorem of Section 3

The proof of Theorem 3.1 requires five lemmas. Because the parameter is infinite-
dimensional, we need Lemmas 3.2 and 3.5 in addition to Theorem 4.2 in Xu and
Liang [19].

The first lemma provides the explicit form of the Kullback–Leibler risk of the
Bayesian predictive distribution QGτ . The proof is provided in Appendix A.

Lemma 3.2. If θ ∈ l2 and τ ∈ l2, then QGτ (·|X) and Qθ are mutually absolutely
continuous given X = x Pθ-a.s. and the Kullback–Leibler risk R(θ,QGτ ) of the
Bayesian predictive distribution QGτ is given by

R(θ,QGτ ) =

∞∑
i=1

{
1

2
log

(
1 + τ2i /v

2
ε,ε̃

1 + τ2i /v
2
ε

)
+

1

2

v2ε,ε̃ + θ2i
v2ε,ε̃ + τ2i

− 1

2

v2ε + θ2i
v2ε + τ2i

}
. (10)

The second lemma provides the Bayesian predictive distribution that is min-
imax among the sub class of D. The proof is provided in Appendix A.

Lemma 3.3. Assume that 0 < a1 ≤ a2 ≤ · · · ↗ ∞. Then, for any ε > 0 and
any ε̃ > 0, T (ε, ε̃) is finite and λ(ε, ε̃) is uniquely determined. Further,

inf
τ∈l2

sup
θ∈Θ(a,B)

R(θ,QGτ ) = sup
θ∈Θ(a,B)

inf
τ∈l2

R(θ,QGτ )

= sup
θ∈Θ(a,B)

R(θ,QGτ=τ∗(ε,ε̃)
)

=

T (ε,ε̃)∑
i=1

1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)
.

The third lemma provides the upper bound of the minimax risk.
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Lemma 3.4. Assume that 0 < a1 ≤ a2 ≤ · · · ↗ ∞. Then, for any ε > 0 and
any ε̃ > 0,

inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂) ≤
T (ε,ε̃)∑
i=1

1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)
.

Proof. Since the class {QGτ (·|·) : τ ∈ l2} is included in D, the result follows
from Lemma 3.3.

We introduce the notations for providing the lower bound of the minimax
risk. These notations are also used in Lemma 4.2. Fix an arbitrary positive in-

teger d. Let θ(d) be (θ1, . . . , θd). Let x(d) be (x1, . . . , xd). Let P
(d)

θ(d) and Q
(d)

θ(d)

be ⊗d
i=1 N (θi, ε

2) and ⊗d
i=1 N (θi, ε̃

2), respectively. Let Θ(d)(a,B) be the d-
dimensional parameter space defined by

Θ(d)(a,B) :=

{
θ(d) = (θ1, . . . , θd) :

d∑
i=1

a2i θ
2
i ≤ B

}
.

Let Rd(θ
(d), Q̂(d)(·; ·)) be the d-dimensional Kullback–Leibler risk

Rd(θ
(d), Q̂(d)) :=

∫ ∫
log

dQ
(d)

θ(d)

dQ̂(d)(·;X(d) = x(d))
(y(d))dQ

(d)

θ(d)(y
(d))dP

(d)

θ(d)(x
(d))

of predictive distribution Q̂(d) on (Rd,Rd). Let Rd(Θ
(d)(a,B)) be the minimax

risk
Rd(Θ

(d)(a,B)) := inf
Q̂(d)∈D(d)

sup
θ(d)∈Θ(d)(a,B)

Rd(θ
(d), Q̂(d)),

where D(d) is {Rd → A(d)} with the whole set A(d) of probability distributions
on (Rd,Rd).

The fourth lemma shows that the minimax risk in the infinite sequence model
is bounded below by the minimax risk in the finite dimensional sequence model.
The proof is provided in Appendix A.

Lemma 3.5. Let d be any positive integer. Then, for any ε > 0 and any ε̃ > 0,

inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂) ≥ Rd(Θ
(d)(a,B)).

The fifth lemma provides the asymptotic minimax risk in a high-dimensional
sequence model. It is due to Xu and Liang [19].

Lemma 3.6 (Theorem 4.2 in Xu and Liang [19]). Let τ∗(ε, ε̃) be defined by
(8). Let T (ε, ε̃) be defined by (9). Let d(ε) be �1/ε2
 where �x
 := max{n ∈ Z :
n ≤ x}. Assume that 0 < a1 ≤ a2 ≤ · · · ↗ ∞. If 1/ε̃ = O(1/ε) as ε → 0 and

log(1/ε2)
∑d(ε)

i=1 a4i (τ
∗
i (ε, ε̃))

4
= o(1) as ε → 0, then

lim
ε→0

⎡⎣Rd(ε)(Θ
(d(ε))(a,B))

/ T (ε,ε̃)∑
i=1

1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)⎤⎦ = 1.
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Based on these lemmas, we present the proof of Theorem 3.1.

Proof of Theorem 3.1. From Lemma 3.4,

inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂) ≤
T (ε,ε̃)∑
i=1

1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)
.

From Lemma 3.5 with d = �1/ε2
 and Lemma 3.6,

inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂) ≥ (1− o(1))

T (ε,ε̃)∑
i=1

1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)
.

This completes the proof.

3.3. Examples of asymptotically minimax predictive distributions

In this subsection, we provide the asymptotically minimax Kullback–Leibler
risks and the asymptotically minimax predictive distributions in the case that
Θ(a,B) is a Sobolev ellipsoid and in the case that it is an exponential ellipsoid.

3.3.1. The Sobolev ellipsoid

The simplified Sobolev ellipsoid is ΘSobolev(α,B) = {θ ∈ l2 :
∑∞

i=1 i
2αθ2i ≤ B}

with α > 0 and B > 0. We set ε̃ = γε for γ > 0. This setting is a slight gener-
alization of Section 5 of Xu and Liang [19], in which the asymptotic minimax
Kullback–Leibler risk with γ = 1 is obtained.

We expand T := T (ε, ε̃) and τ∗(ε, ε̃). From the definition of T , we have
2λ(ε, ε̃) = 1

T 2αε̃2 (1 + o(1)). Thus, we have

2B =
ε2T 2α+1

γ2 + 1

[∫ 1

0

x2α
√
1 + 4γ2(γ2 + 1)x−2αdx− 2γ2 + 1

2α+ 1

]
(1 + o(1)),

where we use the convergence of the Riemann sum
∑T

i=1 r(i/T )1/T with the

function r(x) :=
√
x4α + 4γ2(γ2 + 1)x2α. Then,

T (ε, ε̃) =

(
B

ε2

)1/(2α+1)
[

2(γ2 + 1)∫ 1

0
x2α

√
1 + 4γ2(γ2 + 1)x−2αdx− 2γ2+1

2α+1

]1/(2α+1)

× (1 + o(1)) (11)

and

(τ∗i (ε, ε̃))
2
=

ε2

2

⎡⎣ 1

γ2 + 1

√
1 + 4γ2(γ2 + 1)

(
i

T

)−2α

− 2γ2 + 1

γ2 + 1

⎤⎦
+

(1 + o(1)).
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Fig 1. Convergence constant limε→0 infQ̂∈D supθ∈ΘSobolev(α,B) 2ε
−2/(2α+1)R(θ, Q̂) with α =

1 and B = 1: The red line denotes the convergence constant where A is the whole set of
probability distributions and the black line denotes the convergence constant where A is the
whole set of plug-in predictive distributions.

Thus, we obtain the asymptotically minimax risk

inf
Q̂∈D

sup
θ∈Θ(α,B)

R(θ, Q̂)

=

T∑
i=1

1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)

= T

T∑
i=1

1

2
log

⎛⎜⎝1 +
1

γ2 + 2γ2(γ2+1)√
1+4γ2(γ2+1)(i/N)−2α−(2γ2+1)

⎞⎟⎠ 1

T

=
T

2

∫ 1

0

log

⎛⎜⎝1 +
1

γ2 + 2γ2(γ2+1)√
1+4γ2(γ2+1)x−2α−(2γ2+1)

⎞⎟⎠dx(1 + o(1))

=

(
B

ε2

)1/(2α+1)

P∗(1 + o(1)), (12)

where

P∗ =
1

2

[
2(γ2 + 1)∫ 1

0
x2α

√
1 + 4γ2(γ2 + 1)x−2αdx− 2γ2+1

2α+1

]1/(2α+1)

×
∫ 1

0

log

⎛⎜⎝1 +
1

γ2 + 2γ2(γ2+1)√
1+4γ2(γ2+1)x−2α−(2γ2+1)

⎞⎟⎠ dx.
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We compare the Kullback–Leibler risk of the asymptotically minimax pre-
dictive distribution with the Kullback–Leibler risk of the plug-in predictive dis-
tribution that is asymptotically minimax among all plug-in predictive distribu-
tions. The latter is obtained using Pinsker’s asymptotically minimax theorem
for estimation (see Pinsker [14]). We call the former and the latter risks the
predictive and the estimative asymptotically minimax risks, respectively. The
orders of ε−2 and B in the predictive asymptotic minimax risk are both the
1/(2α+1)-th power. These orders are the same as in the estimative asymptoti-
cally minimax risk. However, the convergence constant P∗ and the convergence
constant in the estimative asymptotically minimax risk are different. Note that
the convergence constant in the estimative asymptotically minimax risk is the

Pinsker constant (2α + 1)
1

2α+1

(
α

α+1

)2α(2α+1)

multiplied by 1/(2γ2). Figure 1

shows that the convergence constant P∗ becomes smaller than the convergence
constant in the estimative asymptotically minimax risk as γ−1 increases. Xu
and Liang [19] also pointed out this phenomenon when γ = 1.

3.3.2. The exponential ellipsoid

The exponential ellipsoid is Θexp(α,B) = {θ ∈ l2 :
∑∞

i=1 e
2αiθ2i ≤ B}, with

α > 0 and B > 0. We set ε̃ = γε for γ > 0.

We expand T := T (ε, ε̃) and τ∗(ε, ε̃). From the definition of T , we have
2λ(ε, ε̃) = 1

e2αT ε̃2
(1 + o(1)). Thus,

2B = Ne2αT
ε2

(γ2 + 1)
r(α, γ)(1 + o(1)),

where r(α, γ) is a bounded term with respect to N . Then,

T (ε, ε̃) =
1

α
log(ε−1) + o(log(ε−1))

and

(τ∗i (ε, ε̃))
2
=

ε2

2(γ2 + 1)

[√
1 + 4γ2(γ2 + 1)e−2α(i−N) − (2γ2 + 1)

]
+

(1 + o(1)).

Thus, we obtain the asymptotically minimax risk

inf
Q̂∈D

sup
θ∈Θexp(α,B)

R(θ, Q̂)

=
1

2

T∑
i=1

log

⎛⎜⎝1 +
1

γ2 + 2γ2(γ2+1)√
1+4γ2(γ2+1)e−2α(i−T )−(2γ2+1)

⎞⎟⎠ (1 + o(1))

∼ log(ε−1). (13)
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We compare the predictive asymptotically minimax risk with the estimative
asymptotically minimax risk in the exponential ellipsoid. From (13),

lim
ε→0

{
inf
Q̂∈D

sup
θ∈Θexp(α,B)

R(θ, Q̂)

/
log(ε−1)

}
≤ log(1 + 1/γ2)

2α
.

From Pinsker’s asymptotically minimax theorem,

lim
ε→0

{
inf
θ̂

sup
θ∈Θexp(α,B)

R
(
θ,Qθ̂

)/
log(ε−1)

}
=

1

2γ2α
.

Thus, for any γ > 0,

lim
ε→0

[
inf
Q̂∈D

sup
θ∈Θexp(α,B)

R(θ, Q̂)

/
log(ε−1)

]

< lim
ε→0

[
inf
θ̂

sup
θ∈Θexp(α,B)

R(θ,Qθ̂)

/
log(ε−1)

]
.

In an exponential ellipsoid, the order of ε in the predictive asymptotically mini-
max risk is the same as that in the estimative asymptotically minimax risk. The
convergence constant in the predictive asymptotically minimax risk is strictly
smaller than that in the estimative asymptotically minimax risk.

Remark 3.7. There are differences between the asymptotically minimax risks
in the Sobolev and the exponential ellipsoids. The constant B has the same or-
der in the asymptotically minimax risk as that of ε−2 when the parameter space
is the Sobolev ellipsoid. In contrast, the constant B disappears in the asymp-
totically minimax risk when the parameter space is the exponential ellipsoid.

4. Asymptotically minimax adaptive predictive distribution

In this section, we show that the blockwise Stein predictive distribution is
asymptotically minimax adaptive on the family of Sobolev ellipsoids. Recall
that the Sobolev ellipsoid is ΘSobolev(α,B) = {θ ∈ l2 :

∑∞
i=1 i

2αθ2i ≤ B} with
α > 0 and B > 0.

4.1. Principal theorem of Section 4

For the principal theorem, we introduce a blockwise Stein predictive distribution
and a weakly geometric blocks system.

A blockwise Stein predictive distribution for a set of blocks is constructed
as follows. Let d be any positive integer. We divide {1, . . . , d} into J blocks:
{1, · · · , d} = ∪J

j=1 Bj . We denote the number of elements in each block Bj by

bj . Corresponding to the division into the blocks B(d) := {Bj}Jj=1, we divide
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θ(d) into θB1 = (θ1, . . . , θb1), · · · , and θBJ
= (θ∑J−1

j=1 bj+1, . . . , θd). In the same

manner, we divide X(d) into XB1 , · · · , and XBJ
. Let h

(d)
B(d) be the blockwise

Stein prior with the set of blocks B(d) defined by

h
(d)
B(d)(θ

(d)) :=

⎛⎝ ∏
j∈{1,...J}:bj>2

||θBj ||2−bj

⎞⎠ ,

where || · || is the square norm. We define the blockwise Stein predictive distri-
bution with the set of blocks B(d) as

Q
h
(d)

B(d)

(·|X) :=

(∫
⊗d

i=1N (θi, ε̃
2)h

(d)
B(d)(θ

(d)|X(d))dθ(d)
)
⊗
(

∞
⊗

i=d+1
N (0, ε̃2)

)
,

(14)

where h
(d)
B(d)(θ

(d)|X(d)) is the posterior density of h
(d)
B(d)(θ

(d)). In regard to es-

timation, Brown and Zhao [3] discussed the behavior of the Bayes estimator
based on the blockwise Stein prior.

The weakly geometric blocks (WGB) system is introduced as follows. The

WGB system B∗
ε := {B∗

ε,j}
J(ε)
j=1 with cardinalities {b∗ε,j}

J(ε)
j=1 is the division of

{1, . . . , d(ε)}, where d(ε) = �1/ε2
. It is defined by

b∗ε,1 = �ρ−1
ε �,

b∗ε,2 = �b∗ε,1(1 + ρε)
,
· · ·

b∗ε,J(ε)−1 = �b∗ε,1(1 + ρε)
J(ε)−2
,

b∗ε,J(ε) = d(ε)−
J(ε)−1∑
j=1

b∗ε,j , (15)

where ρε = (log(1/ε))−1 and J(ε) = min{m : b∗ε,1 +
∑m

j=2�b∗ε,1(1 + ρε)
j−1
 ≥

d(ε)}. The WGB system has been used for the construction of an asymptotically
minimax adaptive estimator; see Cavalier and Tsybakov [5] and Tsybakov [16].

The following is the principal theorem. Let d(ε) be �1/ε2
. Let B∗
ε be the

WGB system defined by (15) with cardinalities {b∗ε,j}
J(ε)
j=1 . Let Q

h
(d(ε))

B∗
ε

be the

blockwise Stein predictive distribution with the WGB system B∗
ε defined by

(14).

Theorem 4.1. If ε̃ = γε for some γ > 0, then for any α > 0 and for any
B > 0,

lim
ε→0

[
sup

θ∈ΘSobolev(α,B)

R

(
θ,Q

h
(d(ε))

B∗
ε

)/
inf
Q̂∈D

sup
θ∈ΘSobolev(α,B)

R(θ, Q̂)

]
= 1.
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The proof is provided in Subsection 4.3. An inequality related to the Bayesian
predictive distribution based on Stein’s prior that we will use in the proof of
Theorem 4.1 will be shown in Subsection 4.2. In Subsection 4.3, we introduce
several lemmas and provide the proof of Theorem 4.1.

4.2. Oracle inequality of the Bayesian predictive distribution based
on Stein’s prior

Before considering the proof of Theorem 4.1, we show an oracle inequality related
to Stein’s prior for d > 2 that is useful outside of the proof of Theorem 4.1. Recall
that the d-dimensional Kullback–Leibler risk Rd(θ

(d), Q̂(d)) of the predictive

distribution Q̂(d) on (Rd,Rd) is defined by

Rd(θ
(d), Q̂(d)) =

∫ ∫
log

dQ
(d)

θ(d)

dQ̂(d)(·;X(d) = x(d))
(y(d))dQ

(d)

θ(d)(x
(d))dP

(d)

θ(d)(y
(d))

where P
(d)

θ(d) and Q
(d)

θ(d) are ⊗d
i=1N (θi, ε

2) and ⊗d
i=1N (θi, ε̃

2), respectively. For a

positive integer d > 2, let Q
(d)

h(d) be the Bayesian predictive distribution on R
d

based on the d-dimensional Stein’s prior h(d)(θ(d)) = ||θ(d)||2−d.

Lemma 4.2. Let d be any positive integer such that d > 2. For any θ(d) ∈ R
d,

Rd(θ
(d), Q

(d)

h(d)) ≤ log

(
v2ε
v2ε,ε̃

)
+

d

2
log

(
1 + (||θ(d)||2/d)/v2ε,ε̃
1 + (||θ(d)||2/d)/v2ε

)
. (16)

Remark 4.3. We call inequality (16) an oracle inequality of Stein’s prior for
the following reason. By the same calculation in (21) in the proof of Lemma 3.3,
the second term on the right hand side of inequality (16) is the oracle Kullback–
Leibler risk, that is, the minimum of the Kullback–Leibler risk in the case that
the action space is{

⊗d
i=1N

(
(1/ε2)

(1/ε2 + 1/τ2)
Xi, 1/(1/ε

2 + 1/τ2) + ε̃2
)

: τ2 ∈ [0,∞)

}
,

and in the case that we are permitted to use the value of the true parameter
θ(d). Therefore, Lemma 4.2 tells us that the Kullback–Leibler risk of the d-
dimensional Bayesian predictive distribution based on Stein’s prior is bounded
above by a constant independent of d plus the oracle Kullback–Leibler risk.

Proof of Lemma 4.2. First,

Rd(θ
(d), Q

(d)

u(d))−Rd(θ
(d), Q

(d)

h(d))

=
1

2

∫ v2
ε

v2
ε,ε̃

1

v2

{
Ev||θ(d) − θ̂

(d)

u(d)(X
(d))||2 − Ev||θ(d) − θ̂

(d)

h(d)(X
(d))||2

}
dv,
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where Q
(d)

u(d) is the Bayesian predictive distribution based on the uniform prior

u(d)(θ(d)) := 1, and θ̂
(d)

u(d) and θ̂
(d)

h(d) are the Bayes estimators based on the uniform

prior u(d) and based on Stein’s prior h(d), respectively. Here Ev is the expectation
of X(d) with respect to the d-dimensional Gaussian distribution with mean θ(d)

and covariance matrix vId. For the proof of the identity, see Brown, George and
Xu [2].

Second,

Ev||θ(d) − θ̂
(d)

h(d)(X
(d))||2 ≤ Ev||θ(d) − θ̂

(d)
JS (X

(d))||2 ≤ 2v +
dv||θ(d)||2

dv + ||θ(d)||2 ,

where θ̂
(d)
JS is the James–Stein estimator. For the first inequality, see Kubokawa

[10]. For the second inequality, see e.g. Theorem 7.42 in Wasserman [17]. Thus,
we have

Rd(θ
(d),Q

d)

u(d))−Rd(θ
(d), Q

(d)

h(d))

≥ 1

2

∫ v2
ε

v2
ε,ε̃

d

v
dv − 1

2

∫ v2
ε

v2
ε,ε̃

1

v2

{
2v +

dv||θ(d)||2
dv + ||θ(d)||2

}
dv

=
d

2
log

(
v2ε
v2ε,ε̃

)
− 1

2

∫ v2
ε

v2
ε,ε̃

1

v2

{
2v +

dv||θ(d)||2
dv + ||θ(d)||2

}
dv.

Since

Rd(θ
(d), Q

(d)

u(d)) =
d

2
log

(
v2ε
v2ε,ε̃

)
,

it follows that

Rd(θ
(d), Q

(d)

h(d)) ≤
1

2

∫ v2
ε

v2
ε,ε̃

1

v2

{
2v +

dv||θ(d)||2
dv + ||θ(d)||2

}
dv

= log

(
v2ε
v2ε,ε̃

)
+

d

2
log

(
1 + (||θ(d)||2/d)/v2ε,ε̃
1 + (||θ(d)||2/d)/v2ε

)
.

Here, we use

d

v2
v||θ(d)||2

dv + ||θ(d)||2 = d

(
1

v
− 1

v + ||θ(d)||2/d

)
.

Remark 4.4. As a corollary of Lemma 4.2, we show that the Bayesian predic-
tive distribution based on Stein’s prior is asymptotically minimax adaptive in
the family of L2-balls {ΘL2(d,B) : B > 0}. The L2-ball is ΘL2(d,B) = {θ ∈
l2 :

∑d
i=1 θ

2
i ≤ B, θd+1 = θd+2 = . . . = 0}. Note that another type of an asymp-

totically minimax adaptive predictive distribution in the family of L2-balls has
been investigated by Xu and Zhou [20].
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Lemma 4.5. Let d(ε) be �1/ε2
. If ε̃ = γε for some γ > 0, then for any
B > 0, the blockwise Stein predictive distribution Q

h
(d(ε))
Sε

with the single block

Sε = {{1, . . . , d(ε)}} on R
∞ satisfies

lim
ε→∞

[
sup

θ∈ΘL2
(d(ε),B)

R
(
θ,Q

h
(d(ε))
Sε

)/
inf
Q̂∈D

sup
θ∈ΘL2

(d(ε),B)

R(θ, Q̂)

]
= 1.

Proof. From Lemma 4.2,

lim
ε→0

⎡⎢⎣ supθ∈ΘL2
(d(ε),B) R

(
θ,Q

h
(d(ε))
Sε

)
d(ε)

⎤⎥⎦
≤ lim

ε→0

[
1

d(ε)
log

(
v2ε
v2ε,ε̃

)]
+

1

2
lim
ε→0

[
sup

θ∈ΘL2
(d(ε),B)

log

(
1 + (||θ(d)||2/d)/v2ε,ε̃
1 + (||θ(d)||2/d)/v2ε

)]
.

Note that

sup
θ∈ΘL2

(d(ε),B)

log

(
1 + (||θ(d)||2/d)/v2ε,ε̃
1 + (||θ(d)||2/d)/v2ε

)
= log

(
1 + (B/d)/v2ε,ε̃
1 + (B/d)/v2ε

)
.

Thus, we have

lim
ε→0

[
1

d(ε)
sup

θ∈ΘL2
(d(ε),B)

R
(
θ,Q

h
(d(ε))
Sε

)]
=

1

2
log

(
1 +

B

γ2(B + 1)

)
.

Since from Theorem 4.2 in Xu and Liang [19] we have

lim
ε→0

[
1

d(ε)
inf
Q̂∈D

sup
θ∈ΘL2

(d(ε),B)

R(θ, Q̂)

]
=

1

2
log

(
1 +

B

γ2(B + 1)

)
,

the proof is complete.

4.3. Proof of the principal theorem of Section 4

In this subsection, we provide the proof of Theorem 4.1. The proof consists of
the following two steps. First, in Lemma 4.7, we examine the properties of the
blockwise Stein predictive distribution with a set of blocks. The proof of Lemma
4.7 requires Lemma 4.6. Second, we show that the blockwise Stein predictive
distribution with the weakly geometric blocks system is asymptotically minimax
adaptive on the family of Sobolev ellipsoids, using Lemma 4.7 and the property
of the WGB system (Lemma 4.8).

For the proof, we introduce two subspaces of the decision space. For a given
set of blocks B(d) = {Bj}Jj=1, let GBW(B(d)) be

{X → QGτ (·|X) : τ is equal to (τ (d), 0, 0, . . .) with τ (d) ∈ TBW},
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where TBW = {τ (d) : for b ∈ {1, . . . , J}, τi is constant for i ∈ Bb} and let
Gmon(B(d)) be

{X → QGτ (·|X) : τ is equal to (τ (d), 0, 0, . . .) with τ (d) ∈ Tmon},

where Tmon = {τ (d) : τ1 ≥ τ2 ≥ · · · ≥ τd ≥ 0}.
Although the decision space GBW(B(d)) is included in the decision space

Gmon(B(d)), the following lemma states that if the growth rate of the numbers
in each block in B(d) is controlled, then the infimum of the Kullback–Leibler
risk among Gmon(B(d)) is bounded by a constant plus a constant multiple of the
infimum of the Kullback–Leibler risk among GBW(B(d)). The proof is provided
in Appendix B.

Lemma 4.6. Let d be any positive integer. Let B(d) = {Bj}Jj=1 be a set of
blocks whose cardinalities satisfy

max
1≤j≤J−1

bj+1

bj
≤ 1 + η

for some η > 0. Then, for any θ ∈ l2,

inf
Q̂∈GBW(B(d))

R(θ, Q̂) ≤ (1 + η) inf
Q̂∈Gmon(B(d))

R(θ, Q̂) +
b1
2
log

(
v2ε
v2ε,ε̃

)
.

The following lemma states the relationship between the Kullback–Leibler
risk of the blockwise Stein predictive distribution and that of the predictive
distribution in Gmon(B(d)). The proof is provided in Appendix B.

Lemma 4.7. Let d be any positive integer. Let B(d) = {Bj}Jj=1 be a set of
blocks whose cardinalities satisfy

max
1≤j≤J−1

bj+1

bj
≤ 1 + η

for some η > 0. Let Q
h
(d)

B(d)

be the blockwise Stein predictive distribution with the

set of blocks B(d) defined by (14). Then, for any θ ∈ l2,

R

(
θ,Q

h
(d)

B(d)

)
≤ (1+η) inf

Q̂∈Gmon(B(d))
R(θ, Q̂)+

(
J +

b1
2

)
log

(
v2ε
v2ε,ε̃

)
. (17)

The following lemma states that the WBG system satisfies the assumption
in Lemmas 4.6 and 4.7. The proof is due to Tsybakov [16].

Lemma 4.8 (e.g., Lemma 3.12 in Tsybakov [16]). Let d(ε) be �1/ε2
. Let B∗
ε =

{B∗
ε,j}

J(ε)
j=1 be the WGB system defined by (15) with cardinalities {b∗ε,j}

J(ε)
j=1 . Then,

there exist 0 < ε0 < 1 and C0 > 0 such that

J(ε) ≤ C0 log
2(1/vε) for any ε ∈ (0, ε0)

and

max
1≤i≤J(ε)−1

b∗ε,i+1

b∗ε,i
≤ 1 + 3ρε for any ε ∈ (0, ε0).
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Based on these lemmas, we provide the proof of Theorem 4.1.

Proof of Theorem 4.1. First, since the WGB system B∗
ε satisfies the assumption

in Lemma 4.7, it follows from Lemma 4.7 that for 0 < ε < ε0,

sup
θ∈ΘSobolev(α,B)

R

(
θ,Q

h
(d(ε))

B∗
ε

)
≤(1 + 3ρε) sup

θ∈ΘSobolev(α,B)

inf
Q̂∈Gmon(B∗

ε )
R(θ, Q̂)

+ log

(
v2ε
v2ε,ε̃

){
C0 log

2(1/vε) +
ρ−1
ε + 1

2

}
.

Second, we show that the asymptotically minimax predictive distribution
QGτ=τ∗(ε,ε̃)

in Theorem 3.1 is also characterized as follows: for a sufficiently
small ε > 0,

sup
θ∈ΘSobolev(α,B)

inf
Q̂∈Gmon(B∗

ε )
R(θ, Q̂) = sup

θ∈ΘSobolev(α,B)

R(θ,QGτ=τ∗(ε,ε̃)
).

It suffices to show that the Bayesian predictive distribution QGτ=τ∗(ε,ε̃)
is in-

cluded in Gmon(B∗
ε) for a sufficiently small ε > 0. This is proved as follows.

Recall that T (ε, ε̃) defined by (9) is the maximal index of which τ∗i (ε, ε̃) de-
fined by (8) is non-zero. From the expansion of T (ε, ε̃) given in (11), for a

sufficiently small ε > 0, for i > Aε−2/(2α+1) with some constant A, (τ∗i (ε, ε̃))
2

vanishes. Since ε−2/(2α+1) < ε−2 for ε < 1, the Bayesian predictive distribution
QGτ=τ∗(ε,ε̃)

is included in Gmon(B∗
ε) for a sufficiently small ε > 0.

Combining the first argument with the second argument yields

sup
θ∈ΘSobolev(α,B)

R

(
θ,Q

h
(d(ε))

B∗
ε

)
≤ (1 + 3ρε) sup

θ∈ΘSobolev(α,B)

R(θ,QGτ=τ∗(ε,ε̃)
)

+ C0 log

(
v2ε
v2ε,ε̃

)
log2(1/vε) + o(1)

= (1 + 3ρε)

(
B

ε2

)1/(2α+1)

P∗

×
(
1 +

C0 log(v
2
ε/v

2
ε,ε̃)

P∗ ε2/(2α+1)B−1/(2α+1) log2(1/vε)

)
+ o(1)

= P∗
(
B

ε2

)1/(2α+1)

(1 + o(1)).

This completes the proof.

5. Numerical experiments

In Subsection 5.1, we provide an exact sampling method for the blockwise Stein
predictive distribution. In Subsection 5.2, we provide two numerical experiments
concerning the performance of that predictive distribution.
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5.1. Exact sampling from the blockwise Stein predictive distribution

We provide an exact sampling method from the posterior distribution based
on Stein prior h(d)(θ(d)) := ||θ(d)||2−d on R

d. Owing to the block structure, it
suffices to provide an exact sampling method from the posterior distribution
based on Stein’s prior.

We use the following mixture representation of Stein’s prior:

h(d)(θ(d)) = c(d)

∫ ∞

0

1

(2πt)d/2
e−

||θ(d)||2
2t dt,

where c(d) is a constant depending only on d. Thus, as for the posterior distri-
bution of h(d), we have

h(d)(θ(d)|x(d)) =

∫ ∞

0

π(θ(d)|t, x(d))f(t|x(d))dt,

where

π(θ(d)|t, x(d)) :=
1{

2π
(

ε2

1+ε2/t

)}d/2
exp

⎧⎨⎩−
∑d

i=1(θi − xi/(1 + ε2/t))2

2
(

ε2

1+ε2/t

)
⎫⎬⎭

and

f(t|x(d)) :=
exp

{
−d

2 log(ε
2 + t)− ||x(d)||2

2(ε2+t)

}
∫∞
0

exp
{
−d

2 log(ε
2 + t̃)− ||x(d)||2

2(ε2+t̃)

}
dt̃

.

Here π(θ(d)|t, x(d)) is the probability density function of the normal distribution.
Under the transformation t → κ := ε2/(ε2 + t), the distribution f(κ|x(d)) of κ
is a truncated Gamma distribution:

f(κ|x(d)) = 1(0,1](κ)
κ(d/2−1)−1 exp{− ||x(d)||2

2ε2 κ}∫ 1

0
κ̃(d/2−1)−1 exp{− ||x(d)||2

2ε2 κ̃}dκ̃
.

Therefore, we obtain an exact sampling from the posterior distribution based
on Stein’s prior by sampling the normal distribution and the truncated Gamma
distribution. For the sampling from the truncated Gamma distribution, we use
the acceptance-rejection algorithm for truncated Gamma distributions based on
the mixture of beta distributions; see Philippe [13].

5.2. Comparison with a fixed variance

Though we proved the asymptotic optimality of the blockwise Stein predictive
distribution with the WGB system, it does not follow that the blockwise Stein
predictive distribution behaves well with a fixed variance ε.
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In this subsection, we examine the behavior with a fixed ε of the blockwise
Stein predictive distribution with the WGB system compared to the plugin pre-
dictive distribution with the Bayes estimator based on the blockwise Stein prior
and the asymptotically minimax predictive distribution in the Sobolev ellipsoid
ΘSobolev(α,B) given in Theorem 3.1. In this subsection, we call the asymptot-
ically minimax predictive distribution in the Sobolev ellipsoid ΘSobolev(α,B)
given in Theorem 3.1 the Pinsker-type predictive distribution with α and B.

For the comparison, we consider the 6 predictive settings with ε = 0.05:

• In the first setting, θi = i−6 for i ∈ N and γ = 1;
• In the second setting, θi = i−6 for i ∈ N and γ = 1/3;
• In the third setting, θi = i−6 for i ∈ N and γ = 1/10;
• In the fourth setting, θi = i−1.5 for i ∈ N and γ = 1;
• In the fifth setting, θi = i−1.5 for i ∈ N and γ = 1/3;
• In the sixth setting, θi = i−1.5 for i ∈ N and γ = 1/10.

Let d(ε) = �1/ε2
 = 399.
In each setting, we obtain 1000 samples of y(d(ε)) distributed according to the

blockwise Stein predictive distribution with the WGB system up to the d(ε)-th
order using the sampling method described in Subsection 5.1, and we construct
the coordinate-wise 80%-predictive interval of y(d(ε)) using 1000 samples. In
each setting, we use the Pinsker-type predictive distribution with α and B such
that

∑∞
i=1 i

2αθ2i ≤ B: we use α = 2 and B = 3 in the firth, second, and third
settings. We use α = 0.75 and B = 3 in the fourth, fifth, and sixth settings.

In each setting, we obtain 5000 samples from the true distribution of y and
calculate the means of the coordinate-wise mean squared errors normalized by
ε̃2, and then calculate the means and the standard deviations of the counts of
the samples included in the predictive intervals.

Tables 1 and 2 show that the Pinsker-type predictive distribution (abbre-
viated by Pinsker) has the smallest mean squared error and has the sharpest
predictive interval. It is because the Pinsker-type predictive distribution uses
α and B. The blockwise Stein predictive distribution (abbreviated by Bayes
with WGBStein) and the plugin predictive distribution with the Bayes estima-
tor based on the blockwise Stein prior (abbreviated by Plugin with WGBStein)
have nearly the same performance in the mean squared error. The blockwise
Stein predictive distribution has a wider predictive interval than the plugin pre-
dictive distribution. Its predictive interval has a smaller variance than that of
the plugin predictive distribution in all settings. In the next paragraph, we con-
sider the reason for this phenomenon by using the transformation of the infinite
sequence model to the function model discussed in Section 2.

Using the function representation of the infinite sequence model discussed in
Section 2, we examine the behavior of the predictive distributions in the second
and fifth settings. Figure 2 shows the mean path and the predictive intervals of
predictive distributions at t ∈ {i/1000}1000i=1 and the values of the true function
at t ∈ {i/1000}1000i=1 . Figure 2 (a), Figure 2 (b), Figure 2 (c), and Figure 2 (d)
represent the Pinsker-type predictive distribution and the true function in the
second setting, the blockwise Stein predictive distribution and the plugin predic-
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Table 1

Mean square error: The smallest value in each setting is underlined.

Setting number Bayes with WGBStein Plugin with WGBStein Pinsker
First 1.11 1.11 1.03

Second 1.89 1.89 1.12
Third 8.54 8.52 1.85
Fourth 1.08 1.08 1.04
Fifth 1.89 1.89 1.50
Sixth 21.3 21.3 11.0

Table 2

Mean of the average percentages of the coverage (standard deviation): The value nearest to
80% is underlined.

Setting number Bayes with WGBStein Plugin with WGBStein Pinsker
First 82.4 (4.53×10−2) 78.6 (5.28×10−2) 79.6 (4.03×10−2)

Second 91.1 (8.08×10−2) 71.4 (14.9×10−2) 79.7 (4.56×10−2)
Third 98.9 (5.72×10−2) 45.8 (29.8×10−2) 80.2 (5.06×10−2)
Fourth 82.3 (3.04×10−2) 78.4 (6.11×10−2) 79.8 (3.44×10−2)
Fifth 91.6 (7.66×10−2) 71.0 (14.6×10−2) 80.6 (8.21×10−2)
Sixth 97.1 (13.9×10−2) 52.9 (26.9×10−2) 83.5 (11.3×10−2)

Fig 2. The true function corrsponding to θ (solid black line), the mean paths (solid lines)
and the pointwise 80% predictive intervals (dashed lines) of the predictive distributions.

tive distribution in the second setting, the Pinsker-type predictive distribution
and the true function in the fourth setting, and the blockwise Stein predic-
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tive distribution and the plugin predictive distribution in the fourth setting,
respectively. The solid line represents the true function and the mean paths.
The dashed line represents the pointwise 80% predictive intervals. The black,
green, blue, and red lines correspond to the true function, the Pinsker-type pre-
dictive distribution, the blockwise Stein predictive distribution, and the plugin
predictive distribution, respectively.

The mean paths of the blockwise Stein predictive distribution and the plugin
predictive distributions are more distant from the true function than that of the
Pinsker-type predictive distribution, corresponding to the results in Table 1.
The predictive intervals of the blockwise Stein predictive distribution are wider
than these of the other predictive distributions, corresponding to the results in
Table 2. Though the blockwise Stein predictive distribution has a mean path
that is more distant from the true function than the Pinsker-type predictive
distribution, it has a wider predictive interval and captures future observations.
In contrast, although the plugin predictive distribution has nearly the same
mean path as the blockwise Stein predictive distribution does, it has a narrow
predictive interval and does not capture future observations.

6. Discussions and Conclusions

In the paper, we have considered asymptotically minimax Bayesian predic-
tive distributions in an infinite sequence model. First, we have provided the
connection between prediction in a function model and prediction in an infi-
nite sequence model. Second, we have constructed an asymptotically minimax
Bayesian predictive distribution for the setting in which the parameter space is a
known ellipsoid. Third, using the product of Stein’s priors based on the division
of the parameter into blocks, we have constructed an asymptotically minimax
adaptive Bayesian predictive distribution in the family of Sobolev ellipsoids.

We established the fundamental results of prediction in the infinite-dimen-
sional model using the asymptotics as ε → 0. The approach was motivated by
Xu and Liang [19]. Since it is not always appropriate to use asymptotics in
applications, the next step is to provide the result for a fixed ε.

We discussed the asymptotic minimaxity and the adaptivity for the ellip-
soidal parameter space. There are many other types of parameter space in high-
dimensional and nonparametric models; for example, Mukherjee and Johnstone
[12] discussed the asymptotically minimax prediction in high-dimensional Gaus-
sian sequence model under sparsity. For future work, we should focus on the
asymptotically minimax adaptive predictive distributions in other parameter
spaces.

Appendix A: Proofs of Lemmas in Section 2

Proof of Lemma 3.2. The proof is similar to that of Lemmas 5.1 and 6.1 in
Belitser and Ghosal [1]. We denote the expectation of X and Y with respect to
Pθ and Qθ by EX,Y |θ.
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First, we show that QGτ and Qθ are mutually absolutely continuous given
X = x Pθ-a.s. if θ ∈ l2 and τ ∈ l2. From Kakutani’s theorem (pp. 150–151 in
Williams [18]), QGτ and Qθ are mutually absolutely continuous given X = x
Pθ-a.s. if and only if

0 <

∞∏
i=1

∫ √√√√dN
(

1/ε2

1/ε2+1/τ2
i
xi,

1
1/ε2+1/τ2

i
+ ε̃2

)
dyi

dN (θi, ε̃2)

dyi
dyi Pθ-a.s.. (18)

Since the right hand side of (18) is the limit of the product of

p∏
i=1

{
1− (1/(1/ε2 + 1/τ2i ))

2

2ε̃2 + (1/(1/ε2 + 1/τ2i ))

}1/2

(19)

and
p∏

i=1

exp

⎧⎪⎨⎪⎩−

(
θi − 1/ε2

1/ε2+1/τ2
i
xi

)2
4
(
2ε̃2 + 1

1/ε2+1/τ2
i

)
⎫⎪⎬⎪⎭ (20)

as p → ∞, it suffices to show that both (19) and (20) converge to non-zero
constants. Quantity (19) converges to a non-zero constant because the product∏

i=1(1 − ai) with {ai > 0}∞i=1 converges to a non-zero constant provided that∑
i=1 ai converges, and because

∞∑
i=1

(1/(1/ε2 + 1/τ2i ))
2

2ε̃2 + (1/(1/ε2 + 1/τ2i ))
≤

∞∑
i=1

1

1/ε2 + 1/τ2i
≤

∞∑
i=1

τ2i < ∞.

Quantity (20) converges to a non-zero constant because

1

4

∞∑
i=1

⎧⎪⎨⎪⎩
(
θi − 1/ε2

1/ε2+1/τ2
i
xi

)2
(2ε̃2 + 1/(1/ε2 + 1/τ2i ))

⎫⎪⎬⎪⎭ ≤ 1

8ε̃2

∞∑
i=1

θ2i +
1

8ε̃2ε2

∞∑
i=1

τ2i (xi − θi)
2

+
1

4ε̃2ε2

( ∞∑
i=1

θ2i

)1/2( ∞∑
i=1

τ2i (xi − θi)
2

)1/2

.

Thus, QGτ and Qθ are mutually absolutely continuous given X = x Pθ-a.s..
Second, we show that R(θ,QGτ ) is given by (10). Let π(d) : R∞ → R

d be

the finite dimensional projection π(d)(x) = (x1, . . . , xd). Let Q
(d)

θ(d) and Q
(d)
Gτ

be the induced probability measures of Qθ and QGτ by the finite-dimensional
projection π(d), respectively. From Kakutani’s theorem, we have

R(θ,QGτ ) = EX,Y |θ[lim log(dQ
(d)

θ(d)/dQ
(d)
Gτ

)].

Then, it suffices to show that the almost sure convergence in the right hand side
is also the convergence in the expectation. Here,

log(dQ
(d)

θ(d)/dQ
(d)
Gτ

) = Sd+
d∑

i=1

[
1

2

v2ε,ε̃ + θ2i
v2ε,ε̃ + τ2i

− 1

2

v2ε + θ2i
v2ε + τ2i

+
1

2
log

(
1 + τ2i /v

2
ε,ε̃

1 + τ2i /v
2
ε

)]
,
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where Sd is

Sd :=

d∑
i=1

⎡⎢⎣− (Yi − θi)
2

2ε̃2
+

(
Yi − 1/ε2

1/ε2+1/τ2
i
Xi

)2
2(ε̃2 + 1/(1/ε2 + 1/τ2i ))

− 1

2

v2ε,ε̃ + θ2i
v2ε,ε̃ + τ2i

+
1

2

v2ε + θ2i
v2ε + τ2i

⎤⎥⎦ .

Here Sd is a zero-mean martingale such that supd EX,Y |θ[S
2
d ] < ∞; From the

martingale convergence theorem (p. 111 in Williams [18]), Sd converges to S∞ :=
limSd, Pθ-a.s. and EX,Y |θ[Sd − S∞]2 → 0. Since EX,Y |θ[Sd] → EX,Y |θ[S∞] = 0,
equality (10) follows.

Proof of Lemma 3.3. First, the finiteness of T (ε, ε̃) is derived from the assump-

tion for a = (a1, a2, . . .). λ(ε, ε̃) is uniquely determined because
∑∞

i=1a
2
i (τ

∗
i (ε, ε̃))

2

is continuous and strictly decreasing with respect to λ. Note that τ∗(ε, ε̃) is also
a function with respect to λ(ε, ε̃).

Second, we show that

sup
θ∈Θ(a,B)

R(θ,QGτ=τ∗(ε,ε̃)
) ≥ sup

θ∈Θ(a,B)

R(θ,QGτ=θ
).

Since the function

ri(z) :=
1

2
log

(
1 + z2/v2ε,ε̃
1 + z2/v2ε

)
+

1

2

v2ε,ε̃ + θ2i
v2ε,ε̃ + z2

− 1

2

v2ε + θ2i
v2ε + z2

has a minimum at z = θi, for θ ∈ l2,

inf
τ∈l2

R(θ,QGτ ) =

[ ∞∑
i=1

1

2
log

(
1 + θ2i /v

2
ε,ε̃

1 + θ2i /v
2
ε

)]
. (21)

Since the minimax risk is greater than the maximin risk,

sup
θ∈Θ(a,B)

R(θ,QGτ=τ∗(ε,ε̃)
) ≥ inf

τ∈l2
sup

θ∈Θ(a,B)

R(θ,QGτ )

≥ sup
θ∈Θ(a,B)

inf
τ∈l2

R(θ,QGτ )

= sup
θ∈Θ(a,B)

R(θ,QGτ=θ
). (22)

Finally, we show that

sup
θ∈Θ(a,B)

R(θ,QGτ=θ
) ≥ sup

θ∈Θ(a,B)

R(θ,QGτ=τ∗(ε,ε̃)
).

Substituting τ = τ∗(ε, ε̃) into (10) for any θ ∈ Θ(a,B) yields

T (ε,ε̃)∑
i=1

{
1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃)

2/v2ε)

)}
−R(θ,QGτ=τ∗(ε,ε̃)

)
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=
1

2

∞∑
i=1

{
v2ε + θ2i

v2ε + (τ∗i (ε, ε̃))
2 −

v2ε,ε̃ + θ2i

v2ε,ε̃ + (τ∗i (ε, ε̃))
2

}

=
1

2

∞∑
i=1

{
1

v2ε + (τ∗i (ε, ε̃))
2 − 1

v2ε,ε̃ + (τ∗i (ε, ε̃))
2

}(
θ2i − (τ∗i (ε, ε̃))

2
)

=
1

2

∞∑
i=1

v2ε,ε̃ − v2ε

(v2ε + (τ∗i (ε, ε̃))
2
)(v2ε,ε̃ + (τ∗i (ε, ε̃))

2
)
(θ2i − (τ∗i (ε, ε̃))

2
)

=

∞∑
i=1

1

2
{2λ(ε, ε̃)a2i }

{
(τ∗i (ε, ε̃))− θ2i

}
≥ 0

with equality if θ = τ∗(ε, ε̃). Thus,

T (ε,ε̃)∑
i=1

{
1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)}
= sup

θ∈Θ(a,B)

R(θ,QGτ=τ∗(ε,ε̃)
).

Since

sup
θ∈Θ(a,B)

R(θ,QGτ=θ
) ≥ R(τ∗(ε, ε̃), QGτ=τ∗(ε,ε̃)

)

=

T (ε,ε̃)∑
i=1

{
1

2
log

(
1 + (τ∗i (ε, ε̃))

2/v2ε,ε̃
1 + (τ∗i (ε, ε̃))

2/v2ε

)}
,

it follows that

sup
θ∈Θ(a,B)

R(θ,QGτ=θ
) ≥ sup

θ∈Θ(a,B)

R(θ,QGτ=τ∗(ε,ε̃)
).

Proof of Lemma 3.5. First, note that the following equivalence holds:

Qθ � Q̂(·;X) for all θ ∈ l2 if and only if Q0 � Q̂(·;X),

for Pθ-almost all X. This is because two Gaussian measures Qθ and Q0 are
mutually absolutely continuous if and only if θ ∈ l2.

Second, from the above equivalence, we have the following lower bound of
the minimax risk: for any d ∈ N,

inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂)

= inf
Q̂∈D:

Q0�Q̂(·;·)

sup
θ∈Θ(a,B)

R(θ, Q̂)

≥ inf
Q̂∈D:

Q0�Q̂(·;·)

sup
θ(d)∈Θ(d)(a,B):
θd+i=0 for i∈N

R(θ, Q̂)

= inf
Q̂∈D:

Q0�Q̂(·;·)

sup
θ(d)∈Θ(d)(a,B):
θd+i=0 for i∈N

EX,Y |(θ(d),0,...)

[
log

dQ(θ(d),0,...)

dQ̂(·;X = x)
(y)

]
,

where we denote θ with θi = 0 for i ≥ d+ 1 by (θ(d), 0, . . .).
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Third, we further bound the previous lower bound. Hereafter, we fix d ∈ N. To
do this, we consider the decomposition of the density dQ(θ(d),0,...)/dQ̂(·;X = x)

with respect to Q̂(·;X = x) as follows. Let π(d) : R∞ → R
d be the projec-

tion π(d)(x) = (x1, . . . , xd). The projection π(d) induces a marginal probabil-

ity measure Q̂(d)(·;X = x) on (Rd,Rd) and a conditional probability measure

Q̂(·|π(d)(Y );X = x) on (R∞,R∞) such that for any measurable set A ∈ R∞,

Q̂(A;X = x) =

∫
Q̂(A|π(d)(Y ) = y(d);X = x)Q̂(d)(dy(d);X = x).

In accordance with the decomposition of Q̂(·;X = x) into two probability

measures Q̂(d)(·;X = x) and Q̂(·|π(d)(Y );X = x), we decompose the density

dQ(θ(d),0,...)/dQ̂(·;X = x) with respect to Q̂(·;X = x) as

dQ(θ(d),0,...)

dQ̂(·;X = x)
(y) =

dQ
(d)

θ(d)

dQ̂(d)(·;X = x)
(y(d))

dQ(θ(d),0,...)(·|π(d)(Y ) = y(d))

dQ̂(·|π(d)(Y ) = y(d);X = x)
(y)

for almost all y. See p.119 in Pollard [15] for the decomposition. From the
decomposition of the density and from Jensen’s inequality, for θ(d) ∈ Θ(d)(a,B)

and for Q̂ ∈ D such that Q0 � Q̂(·;X), we have

EX,Y |(θ(d),0,...)

[
log

dQ(θ(d),0,...)

dQ̂(·;X = x)
(y)

]

= EX,Y |(θ(d),0,...)

[
log

dQ
(d)

θ(d)

dQ̂(d)(·;X = x)
(y(d)) + log

dQ(θ(d),0,...)(·|π(d)(Y ) = y(d))

dQ̂(·|π(d)(Y ) = y(d);X = x)

]

≥ EX,Y |(θ(d),0,...)

[
log

dQ
(d)

θ(d)

dQ̂(d)(·;X = x)
(y(d))

]
.

We denote the probability measure obtained by taking the conditional expecta-
tion of Q̂(d)(·;X = x) conditioned by π(d)(X) under P(θ(d),0,...) by

Q̂(d)(·;π(d)(X) = x(d)), because it does not depend on θ(d) given π(d)(X) = x(d).

By the definition of Q̂(d)(·;π(d)(X) = x(d)),

1 = EX,Y |(θ(d),0,...)

[
dQ̂(d)(·;X = x)

dQ̂(d)(·;π(d)(X) = x(d))

∣∣∣∣π(d)(X) = x(d)

]
P

(d)

θ(d) -a.s..

By Jensen’s inequality and by the above equality,

EX,Y |(θ(d),0,...)

[
− log

dQ̂(d)(·;X = x)

dQ̂(d)(·;π(d)(X) = x(d))

]

≥ − log EX,Y |(θ(d),0,...)

[
dQ̂(d)(·;X = x)

dQ̂(d)(·;π(d)(X) = x(d))

]
= 0.
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Thus,

EX,Y |(θ(d),0,...)

[
log

dQ
(d)

θ(d)

dQ̂(d)(·;X = x)
(y(d))

]

= EX,Y |(θ(d),0,...)

[
log

dQ
(d)

θ(d)

dQ̂(d)(·;π(d)(X) = x(d))
(y(d))

]

+ EX,Y |(θ(d),0,...)

[
log

dQ̂(d)(·;π(d)(X) = x(d))

dQ̂(d)(·;X = x)
(y(d))

]

≥ Eπ(d)(X),π(d)(Y )|θ(d)

[
log

dQ
(d)

θ(d)

dQ̂(d)(·;π(d)(X) = x(d))
(y(d))

]
,

where Eπ(d)(X),π(n)(Y )|θ(d) is the expectation of π(d)(X) and π(d)(Y ) with respect

to P
(d)

θ(d) and Q
(d)

θ(d) . Hence,

inf
Q̂∈D

sup
θ∈Θ(a,B)

R(θ, Q̂)

≥ inf
Q̂(d)∈D(d)

sup
θ(d)∈Θ(d)(a,B)

Eπ(d)(X),π(d)(Y )|θ(d)

[
log

dQθ(d)

dQ̂(d)(·;π(d)(X) = x(d))

]
.

Appendix B: Proofs of Lemmas in Section 4

Proof of Lemma 4.7. From Lemma 3.2, the Kullback–Leibler risk of Q
h
(d)

B(d)

is

given by

R

(
θ,Q

h
(d)

B(d)

)
=

J∑
j=1

Rbj

(
θBj , Q

(bj)

h(bj)

)
+

∞∑
i=d+1

θ2i
ε̃2

,

where for j ∈ {1, . . . , J}, Q(bj)

h(bj)
(·|XBj ) is the Bayesian predictive distribution

on R
bj based on Stein’s prior h(bj)(θBj ). For the block Bj with bj > 2, inequality

(16) holds. For the block Bj with bj ≥ 2, the inequality

bj
2
log

(
1 + (||θBj ||2/bj)/v2ε,ε̃
1 + (||θBj ||2/bj)/v2ε

)
≤ log

(
v2ε
v2ε,ε̃

)

holds because the left hand side in the above inequality is monotone increasing
with respect to ||θBj ||. Thus,

R(θ,Q
h
(d)

B(d)

) ≤ J log

(
v2ε
v2ε,ε̃

)
+

J∑
i=1

bi
2
log

(
1 + (||θBi ||2/bi)/v2ε,ε̃
1 + (||θBi ||2/bi)/v2ε

)
+

∞∑
i=d+1

θ2i
ε̃2

.
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From the same calculation as (21) in Lemma 3.3,

inf
Q̂∈GBW(B(d))

R(θ, Q̂) =

J∑
i=1

bi
2
log

(
1 + (||θBi ||2/bi)/v2ε,ε̃
1 + (||θBi ||2/bi)/v2ε

)
+

∞∑
i=d+1

θ2i
ε̃2

.

Thus,

R

(
θ,Q

h
(d)

B(d)

)
≤ J log

(
v2ε
v2ε,ε̃

)
+ inf

Q̂∈GBW(B(d))
R(θ, Q̂). (23)

Combining inequality (23) with Lemma 4.6 yields (17).

Proof of Lemma 4.6. It suffices to show that for any τ (d) ∈ Tmon, there exists
τ̄ (d) ∈ TBW such that

Rd

(
θ(d), Q

(d)
G

τ̄(d)

)
≤ (1 + η)Rd(θ

(d), Q
(d)
G

τ(d)
) +

b1
2
log

(
v2ε
v2ε,ε̃

)
, (24)

where Q
(d)
G

τ(d)
and Q

(d)
G

τ̄(d)
are Bayesian predictive distributions on R

d based on

Gτ (d) := ⊗d
i=1N (0, τ2i ) and Gτ̄ (d) := ⊗d

i=1N (0, τ̄2i ), respectively.
For any τ (d) ∈ Tmon, we define τ̄ (d) = (τ̄1, . . . , τ̄d) as

τ̄i =

⎧⎪⎪⎨⎪⎪⎩
τ1 for i ∈ B1,
τb1+1 for i ∈ B2,
· · ·
τb1+···+bJ−1+1 for i ∈ BJ .

(25)

For j ∈ {1, . . . , J} and for i ∈ Bj , let τ(j) be τ̄i because τ̄i does not change in
the same block Bj . Then,

Rd

(
θ(d), Q

(d)
G

τ̄(d)

)
=

d∑
i=1

[
1

2
log

(
1 + τ̄2i /v

2
ε,ε̃

1 + τ̄2i /v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ̄
2
i

(v2ε,ε̃ + τ̄2i )(v
2
ε + τ̄2i )

]

+

d∑
i=1

[
1

2

(v2ε − v2ε,ε̃)θ
2
i

(v2ε,ε̃ + τ̄2i )(v
2
ε + τ̄2i )

]
. (26)

From the inequality that τi ≤ τ̄i for i ∈ {1, . . . , d}, the second term in (26) is
bounded above as follows:

d∑
i=1

[
1

2

(v2ε − v2ε,ε̃)θ
2
i

(v2ε,ε̃ + τ̄2i )(v
2
ε + τ̄2i )

]
≤

d∑
i=1

[
1

2

(v2ε − v2ε,ε̃)θ
2
i

(v2ε,ε̃ + τ2i )(v
2
ε + τ2i )

]
.

Thus,

Rd

(
θ(d), Q

(d)
G

τ̄(d)

)
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≤
d∑

i=1

[
1

2
log

(
1 + τ̄2i /v

2
ε,ε̃

1 + τ̄2i /v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ̄
2
i

(v2ε,ε̃ + τ̄2i )(v
2
ε + τ̄2i )

]

+

d∑
i=1

[
1

2

(v2ε − v2ε,ε̃)θ
2
i

(v2ε,ε̃ + τ2i )(v
2
ε + τ2i )

]
. (27)

For the first term on the right hand side of (27), from the definition of τ̄ (d),

d∑
i=1

[
1

2
log

(
1 + τ̄2i /v

2
ε,ε̃

1 + τ̄2i /v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ̄
2
i

(v2ε,ε̃ + τ̄2i )(v
2
ε + τ̄2i )

]

=

J∑
j=1

∑
m∈Bj

[
1

2
log

(
1 + τ2(j)/v

2
ε,ε̃

1 + τ2(j)/v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
(j)

(v2ε,ε̃ + τ2(j))(v
2
ε + τ2(j))

]
. (28)

Note that the function f(x) defined by

f(x) = log

(
1 + x/v2ε,ε̃
1 + x/v2ε

)
−

(v2ε − v2ε,ε̃)x

(v2ε + x)(v2ε,ε̃ + x)

is monotone increasing with respect to x ∈ [0,∞) and then f(x) ≤ log(v2ε/v
2
ε,ε̃)

because
f ′(x) = (v2ε − v2ε,ε̃)(v

2
ε + v2ε,ε̃)

x

(x+ v2ε)(x+ v2ε,ε̃)
≥ 0.

Since f(x) ≤ log(v2ε/v
2
ε,ε̃) for x ∈ [0,∞),

∑
m∈B1

[
1

2
log

(
1 + τ2(1)/v

2
ε,ε̃

1 + τ2(1)/v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
(1)

(v2ε,ε̃ + τ2(1))(v
2
ε + τ2(1))

]
≤ b1

2
log

(
v2ε
v2ε,ε̃

)
.

Thus, the first term in (28) is bounded as follows:

J∑
j=1

∑
m∈Bj

[
1

2
log

(
1 + τ2(j)/v

2
ε,ε̃

1 + τ2(j)/v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
(j)

(v2ε,ε̃ + τ2(j))(v
2
ε + τ2(j))

]

≤ b1
2
log

(
v2ε
v2ε,ε̃

)

+

J∑
j=2

∑
m∈Bj

[
1

2
log

(
1 + τ2(j)/v

2
ε,ε̃

1 + τ2(j)/v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
(j)

(v2ε,ε̃ + τ2(j))(v
2
ε + τ2(j))

]

=
b1
2
log

(
v2ε
v2ε,ε̃

)

+

J∑
j=2

Bj

[
1

2
log

(
1 + τ2(j)/v

2
ε,ε̃

1 + τ2(j)/v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
(j)

(v2ε,ε̃ + τ2(j))(v
2
ε + τ2(j))

]
. (29)
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From the assumption on the cardinalities of the blocks and from the inequality
that f(τ(j)) ≤ f(τi) for i ∈ Bj−1,

J∑
j=2

Bj

[
1

2
log

(
1 + τ2(j)/v

2
ε,ε̃

1 + τ2(j)/v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
(j)

(v2ε,ε̃ + τ2(j))(v
2
ε + τ2(j))

]

≤ (1 + η)

J∑
j=2

Bj−1

[
1

2
log

(
1 + τ2(j)/v

2
ε,ε̃

1 + τ2(j)/v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
(j)

(v2ε,ε̃ + τ2(j))(v
2
ε + τ2(j))

]

≤ (1 + η)

J∑
j=2

∑
m∈Bj−1

[
1

2
log

(
1 + τ2m/v2ε,ε̃
1 + τ2m/v2ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
m

(v2ε,ε̃ + τ2m)(v2ε + τ2m)

]

= (1 + η)

d∑
i=1

[
1

2
log

(
1 + τ2i /v

2
ε,ε̃

1 + τ2i /v
2
ε

)
− 1

2

(v2ε − v2ε,ε̃)τ
2
i

(v2ε,ε̃ + τ2i )(v
2
ε + τ2i )

]
. (30)

From (27), (29), and (30), we obtain (24).
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