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Abstract: A new class of rank statistics is proposed to assess that the
copula of a multivariate population is radially symmetric. The proposed test
statistics are weighted L2 functional distances between a nonparametric
estimator of the characteristic function that one can associate to a copula
and its complex conjugate. It will be shown that these statistics behave
asymptotically as degenerate V-statistics of order four and that the limit
distributions have expressions in terms of weighted sums of independent
chi-square random variables. A suitably adapted and asymptotically valid
multiplier bootstrap procedure is proposed for the computation of p-values.
One advantage of the proposed approach is that unlike methods based
on the empirical copula, the partial derivatives of the copula need not be
estimated. The good properties of the tests in finite samples are shown
via simulations. In particular, the superiority of the proposed tests over
competing ones based on the empirical copula investigated by [6] in the
bivariate case is clearly demonstrated.
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1. Introduction

A random vector X = (X1, . . . , Xd) is said to be symmetric about a point
μ = (μ1, . . . , μd) ∈ R

d if X − μ and μ − X have the same distribution. In
particular when μ = (0, . . . , 0), this is called central symmetry in standard
books like [5]. Of interest in this work is the relationship that exists between
this notion of multivariate symmetry and the copula that can be extracted from
the distribution of a random vector. The starting point is that when the marginal
distributions of X are continuous, Sklar’s Theorem ensures that there exists a
unique copula C : [0, 1]d → [0, 1] such that for all x = (x1, . . . , xd) ∈ R

d,

P(X ≤ x) = C {P(X1 ≤ x1), . . . ,P(Xd ≤ xd)} . (1)
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Of course, the symmetry of X around μ entails the symmetry of X� around μ�

for each � ∈ {1, . . . , d}. In addition, it also entails the so-called radial symmetry
of C. In other words, the radial symmetry of C means that U ∼ C and 1d −U
have the same distribution, where 1d = (1, . . . , 1) ∈ R

d. Hence, X is symmetric
about μ if and only if X1, . . . , Xd are marginally symmetric and the copula C
of X is radially symmetric; for more details, see [8].

From a model-building perspective using copulas, it may be of interest to
check if the dependence structure of a random vector is radially symmetric.
In other words, it is a good idea to test the radial symmetry hypothesis before
trying to fit a specific copula model to multivariate observations. It is only in the
case of its non rejection that the use of a family of radially symmetric copulas
would be justified, e.g. the well-known Normal and Student copulas, or more
generally the models in the elliptical class. However, if the null hypothesis of
radial symmetry is rejected, one would have to seek for radially asymmetric
models, e.g. the skew-elliptical, extreme-value or chi-square copulas.

Letting Uj = Fj(Xj) for j ∈ {1, . . . , d}, the radial symmetry of U is equiva-
lent to the equality in distribution of U and 1d −U. This can be conveniently
expressed in terms of the random vector

W = U− 1

2
1d =

(
F1(X1)−

1

2
, . . . , Fd(Xd)−

1

2

)
(2)

that takes value in [−1/2, 1/2]d. Namely, the interest in this work is to test for
the central symmetry of W, i.e.

H0 : W
d
= −W against H1 : W

d

�= −W. (3)

Tests of radial symmetry based on empirical copulas have recently been pro-
posed by [2] and [6] in the special case when d = 2; see also [15] for the defini-
tion of measures of bivariate radial asymmetry. Essentially, these authors adopt
a distribution-oriented perspective based on the comparison of nonparametric
estimators of the copulas of (U1, U2) and (1− U1, 1− U2), respectively.

As noted by [13], one can derive powerful and easy-to-implement tests by
using the characteristic function associated to C. The latter arises as a natural
version of the usual multivariate characteristic function. To be more specific, let
ψC be the characteristic function of W, i.e. for i2 = −1 and t ∈ Rd,

ψC(t) = E(ei tW
�
).

Under the null hypothesis of radial symmetry described in (3), it is clear that
ψC(t) = ψC(−t) for all t ∈ R

d. Using the identity eix = cosx + i sinx, it can
be seen to be equivalent to LC(t) = 0 for all t ∈ R

d, where

LC(t) = E
{
sin
(
tW�)} . (4)

In fact, as noted e.g. by [7], H0 holds if and only if LC(t) = 0 for each t ∈ R
d,

so that the null and alternative hypotheses of interest can be reformulated as

H0 : LC(t) = 0 ∀t ∈ R
d and H1 : LC(t) �= 0 for some t ∈ R

d.
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From a practical point-of-view, it will be seen in this work that this characteri-
zation of radial symmetry has many advantages:

(i) nice and easy-to-implement formulas are available for test statistics based
on weighted L2-functionals of LC ;

(ii) p-values can be computed from the multiplier bootstrap adapted to V-
statistics and avoids the task of estimating the partial derivatives of the
copula usually necessary when dealing with empirical copulas;

(iii) in the bivariate case, the tests based on these statistics are more powerful
than the only available tests yet, namely those three investigated by [6].

The paper is organized as follows. Section 2 introduces the new class of test
statistics and provides explicit formulas for their computation. Section 3 derives
the asymptotic behavior of these test statistics under the null hypothesis of
radial symmetry. Section 4 describes and validates a resampling procedure based
on the multiplier bootstrap adapted to the context of rank-based V-statistics;
the consistency of the tests against general radially asymmetric alternatives is
established as well. In Section 2, the efficiency of the tests in terms of size and
power is investigated with the help of Monte–Carlo simulations and the results
are compared to the test statistics studied by [6] in the bivariate case. All the
proofs are relegated to Appendix A and some complementary computations are
to be found in Appendix B.

2. Test statistics

Let X1, . . . ,Xn, where Xj = (Xj1, . . . , Xjd), be independent copies of a random
vector X = (X1, . . . , Xd) ∼ F . In the sequel, it is assumed that the marginal
distributions F1, . . . , Fd are continuous, so that there is a unique copula C that
satisfies (1). Usually, the marginal distributions are unknown, in which case the
vector W defined in (2) is not observable. For that reason, one has to rely on

the vectors of pseudo-observations Ŵ1, . . . ,Ŵn, where for each j ∈ {1, . . . , n},

Ŵj =

(
F̂1(Xj1)−

1

2
, . . . , F̂d(Xjd)−

1

2

)
,

with F̂� being the �-th re-scaled marginal empirical distribution function, i.e.

F̂�(x) =
1

n+ 1

n∑
k=1

I (Xk� ≤ x) .

An empirical version of LC based on its definition in Equation (4) is given by

Ln(t) =
1

n

n∑
j=1

sin
(
tŴ�

j

)
.

For some weight function ω : Rd → R, a test statistic for radial symmetry is

Rn,ω = n

∫
Rd

{Ln(t)}2 ω(t) dt. (5)
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As will be seen later, it is usually assumed that ω is strictly positive, except
maybe on a subset of Rd of Lebesgue measure zero. This requirement ensures
that a test based on Rn,ω is consistent against all alternatives to H0.

An explicit and useful formula for Rn,ω arises easily upon defining for a,b ∈
R

d the function

Bω(a,b) =

∫
Rd

sin(t a�) sin(t b�)ω(t) dt. (6)

It is then a routine exercise to show that

Rn,ω =
1

n

n∑
j,j′=1

Bω

(
Ŵj ,Ŵj′

)
.

It is usual in characteristic-function testing to assume that ω is a probability
density. The next lemma provides a formula for Bω in that case.

Lemma 1. If ω is a probability density on R
d, then

Bω(a,b) = {Aω (a− b)−Aω (a+ b)} /2, (7)

where Aω is the real part of the characteristic function of ω, i.e.

Aω(a) =

∫
Rd

cos(t a�)ω(t) dt.

It is worth noting that Aω = Aω̃, where the function ω̃(t) = {ω(t)+ω(−t)}/2 is
radially symmetric in the sense that ω̃(t) = ω̃(−t) for all t ∈ Rd; therefore, Bω =
Bω̃. Hence, it may be assumed without loss of generality that ω in Lemma 1 is
a radially symmetric density around (0, . . . , 0) ∈ R

d.

Example 1. A special case of Lemma 1 occurs when ω is a product of densities
that are symmetric around zero, i.e. ω(t) = g1(t1)× · · ·× gd(td), where for each
� ∈ {1, . . . , d}, g�(−x) = g�(x) for all x ∈ R. Since in this situation, the charac-
teristic function of ω factorizes into the product of the marginal characteristic
functions, one has for a = (a1, . . . , ad) and b = (b1, . . . , bd) that

Bω(a,b) =
1

2

{
d∏

�=1

α�(a� − b�)−
d∏

�=1

α�(a� + b�)

}
,

where α�(a) =
∫
R
cos(x a) g�(x) dx. In order to accomplish some sort of smooth-

ing, one can substitute g�(t) with g�(t/σ) for some σ > 0, so that

Bω(a,b) ∝
d∏

�=1

α� {σ(a� − b�)} −
d∏

�=1

α� {σ(a� + b�)} . (8)

Example 2. Suppose that ω is the density of a standardized bivariate elliptical
distribution. In that case, for some ϕω : R+ → R

+ and some positive-definite
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correlation matrix R, the characteristic function of ω is real and of the form
Aω(a) = ϕω(aR a�), where a = (a1, . . . , ad). By considering ω(t/σ) instead
of ω(t), where σ > 0 is a real-valued smoothing parameter, the characteristic
function becomes Aω(a) = σ2 ϕω(σ

2 aR a�) and then

Bω(a,b) ∝ ϕω

{
σ2(a− b)R (a− b)�

}
− ϕω

{
σ2(a+ b)R (a+ b)�

}
.

One recovers the standard Normal distribution when ϕω(x) = e−x/2, and then

Bω(a,b) ∝ φR {σ(a− b)} − φR {σ(a+ b)} , (9)

where φR is the d-variate standard Normal density with correlation matrix R.

3. Asymptotic behavior of Rn,ω under radial symmetry

The large-sample behavior of Rn,ω under the null hypothesis of radial symmetry
is derived in this section. It will first be shown that Rn,ω is asymptotically
equivalent to a V-statistic of degree four. The reader is referred to the excellent
monograph by [10] for further details on the theory of U- and V-statistics.

Before stating the result, define for w1 = (w11, . . . , w1d) ∈ [−1/2, 1/2]d, w2 =
(w21, . . . , w2d) ∈ [−1/2, 1/2]d and t ∈ R

d the function

Λt(w1,w2) = sin(tw�
1 ) +

d∑
�=1

{
I(w2� ≤ w1�)− w1� −

1

2

}
t� cos(tw

�
1 ). (10)

Also, let Φω be such that

12Φω(w1,w2,w3,w4)

=

∫
Rd

{Λt(w1,w2) + Λt(w2,w1)} {Λt(w3,w4) + Λt(w4,w3)}ω(t) dt

+

∫
Rd

{Λt(w1,w3) + Λt(w3,w1)} {Λt(w2,w4) + Λt(w4,w2)}ω(t) dt

+

∫
Rd

{Λt(w1,w4) + Λt(w4,w1)} {Λt(w2,w3) + Λt(w3,w2)}ω(t) dt.

Proposition 1. Suppose that X1, . . . ,Xn are i.i.d. from a multivariate distribu-
tion function having continuous marginal distributions and whose unique copula
C is radially symmetric. Then as long as the weight function ω is integrable and
satisfies

∫
Rd(t1 + · · ·+ td)

4 ω(t) dt < ∞,

Rn,ω =
1

n3

n∑
j,j′,k,k′=1

Φω (Wj ,Wj′ ,Wk,Wk′) + oP(1),

where for U1, . . . ,Un i.i.d. C, Wj = Uj − 1d/2 for each j ∈ {1, . . . , n}.
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One can now invoke results in the theory of V-statistics to obtain an asymptotic
representation for Rn,ω. Before stating it, define the bivariate degenerate kernel

Ψω(w1,w2) =

∫
Rd

λt(w1)λt(w2)ω(t) dt,

where λt(w) = EW {Λt(w,W) + Λt(W,w)}. Under the null hypothesis of ra-

dial symmetry, one has W
d
= −W and then one can show from the definition

of Λt in Equation (10) that

λt(w) = sin(tw�) +
d∑

�=1

EW

{(
I(w� ≤ W�)−

1

2

)
t� cos(tW

�)

}
. (11)

Proposition 2. Under the conditions of Proposition 1,

Rn,ω =
1

n

n∑
j,j′=1

Ψω (Wj ,Wj′) + oP(1). (12)

As a consequence, Rn,ω converges in distribution to a random variable having
representation

Rω = EW {Ψω(W,W)}+
∞∑
j=1

κj

(
Z2
j − 1

)
, (13)

where {Zj}∞j=1 is a sequence of i.i.d. N(0, 1) random variables and {κj}∞j=1 are
the eigenvalues of η 
→ EW{Ψω(w,W) η(W)}.

4. Computation of p-values

4.1. Multiplier versions of the test statistics

The asymptotic representation of the test statistic Rn,ω under the null hypoth-
esis, as described in Equation (13) of Proposition 2, can hardly be used for the
computation of p-values. On one part, this representation depends on eigenval-
ues that are difficult to compute, and on another part, the latter depend on
a radially symmetric copula C that is not specified under the null hypothesis.
For these reasons, it will rather be representation (12) that will be exploited in
conjunction with a nonparametric approach based on the multiplier bootstrap.
This resampling method is described in details in a general empirical process
context by [19] and [9]. Versions suitably adapted to U- and V-statistics are
considered by [3] in the i.i.d. case and by [11] under serial dependence.

Proposition 2 has established that Rn,ω is asymptotically equivalent to a
first-order degenerate V-statistic. One can therefore, at least in principle, adapt
results on the multiplier bootstrap of degenerate U and V-statistics that one
can find in [3]. To this end, start with independent multiplier random variables
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ξ1, . . . , ξn, where for each j ∈ {1, . . . , n}, E(ξj) = Var(ξj) = 1. In view of the
asymptotic representation in Equation (12) and recalling that Ψω(w1,w2) =∫
Rd λt(w1)λt(w2)ω(t) dt, with λt defined in Equation (11), a multiplier version
of Rn,ω would be given by

R̂′
n,ω =

1

n

n∑
j,j′=1

Δj Δj′ Ψω (Wj ,Wj′) ,

where Δj = (ξj/ξ̄) − 1 and ξ̄ = (ξ1 + · · · + ξn)/n. However, since the random
vectors W1, . . . ,Wn are unobservable, the latter will be replaced, in a rather

natural way, by Ŵ1, . . . ,Ŵn in the above expression. Moreover, the computa-
tion of λt, and at the same time of Ψω, involves an expectation with respect to
the unspecified distribution of W under the null hypothesis. For that reason,
Ψω will be estimated by

Ψ̂ω(w1,w2) =

∫
Rd

λ̂t(w1) λ̂t(w2)ω(t) dt,

where

λ̂t(w) = sin(tw�) +
d∑

�=1

{
1

n

n∑
k=1

(
I(w� ≤ Ŵk�)−

1

2

)
t� cos(tŴ

�
k )

}
.

The proposed multiplier version of Rn,ω is then

R̂n,ω =
1

n

n∑
j,j′=1

Δj Δj′ Ψ̂ω

(
Ŵj ,Ŵj′

)
.

4.2. Asymptotic validity of the multiplier bootstrap and consistency
of the tests

The following result characterizes the asymptotic behavior of R̂n,ω conditional
on the data, both under H0 and under fixed alternatives.

Proposition 3. Let P
� be the probability measure conditional on X1, . . . ,Xn

i.i.d. F whose marginal distributions F1, . . . , Fd are continuous and whose unique
copula is C. If ω is integrable and satisfies

∫
Rd(t1 + · · ·+ td)

4 ω(t) dt < ∞, then

sup
r∈R+

∣∣∣P�
(
R̂n,ω ≤ r

)
− P

(
R̃ω ≤ r

)∣∣∣ P−→ 0,

where R̃ω has the same limit as the first-order degenerate V-statistic

R̃n,ω =
1

n

n∑
j,j′=1

Ψ̃ω(Wj ,Wj′) =
1

n

n∑
j,j′=1

∫
Rd

λ̃t(Wj) λ̃t(Wj′)ω(t) dt,
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with Wj = (F1(Xj1)− 1/2, . . . , Fd(Xjd)− 1/2) for each j ∈ {1, . . . , n} and for
W = U− 1d/2 with U ∼ C,

λ̃t(w) = sin(tw�) +
d∑

�=1

EW

{(
I(w� ≤ W�)−

1

2

)
t� cos(tW

�)

}
.

Note that under H0, λ̃t = λt. Hence, a consequence of Proposition 3 is that the
asymptotic distribution of R̂n,ω matches that of Rn,ω stated in Proposition 2.

In other words, R̂n,ω replicates Rn,ω properly under the null hypothesis as n
goes to infinity. Another consequence of the result is the consistency of the
test based on Rn,ω. On one hand, since R̃ω has a non-degenerate distribution,

R̂n,ω = OP(1), while under the assumption that the set {t ∈ R
d : ω(t) = 0}

has Lebesgue measure zero and since LC vanishes on R
d if and only if H0 holds

true, Rn,ω/n converges in probability to a positive constant. Thus, Rn,ω goes to
infinity under general alternatives to H0, so the test based on Rn,ω is consistent.

In practice, one proceeds a large number M of times to obtain asymptotically

valid replicates R̂
(1)
n,ω, . . . , R̂

(M)
n,ω of Rn,ω. Considering M independent vectors

Δ(1), . . . ,Δ(M) of standardized multipliers, where Δ(m) = (Δ
(m)
1 , . . . ,Δ

(m)
n )

for each m ∈ {1, . . . ,M}, one can write

R̂(m)
n,ω =

1

n
Δ(m) Dω (Δ(m))�,

where the entries of Dω ∈ R
n×n are (Dω)jj′ = Ψ̂ω(Ŵj ,Ŵj′). Since Dω needs

to be computed only once from the data, these multiplier bootstrap replicates
obtain very quickly. An approximate and asymptotically valid p-value for the
test of radial symmetry based on Rn,ω is then

P̂Vω =
1

M

M∑
m=1

I

(
R̂(m)

n,ω > Rn,ω

)
.

4.3. Implementation issues

An easy-to-implement procedure for the computation of Dω will be derived in
this section. To this end, the following lemma will prove useful as it provides an
expression for Ψ̂ω in terms of Bω and some of its partial derivatives.

Lemma 2. For Bω given in equation (6), define for �, �′ ∈ {1, . . . , d} the partial

derivatives B
[�]
ω (a,b) = ∂Bω(a,b)/∂a� and B

[�,�′]
ω (a,b) = ∂2Bω(a,b)/∂a� ∂b�′ .

For I(a, b) = I(a ≤ b)− 1/2, one has

Ψ̂ω(w1,w2) = Bω(w1,w2)

+

d∑
�=1

{
1

n

n∑
k=1

I(w2�, Ŵk�)B
[�]
ω (Ŵk,w1)

}
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+

d∑
�=1

{
1

n

n∑
k=1

I(w1�, Ŵk�)B
[�]
ω (Ŵk,w2)

}

+

d∑
�,�′=1

⎧⎨⎩ 1

n2

n∑
k,k′=1

I(w1�, Ŵk�) I(w2�′ , Ŵk′�′)B
[�,�′]
ω (Ŵk,Ŵk′)

⎫⎬⎭ .

Lemma 2 can now be exploited in order to derive a compact formula for the
computation of Dω based on products of matrices. To this end, define D0 ∈
R

n×n whose entries are (D0)jj′ = Bω(Ŵj ,Ŵj′), and D1, . . . , Dd ∈ R
n×n such

that (D�)jj′ = B
[�]
ω (Ŵj ,Ŵj′). Also define D11, . . . , Ddd such that (D��′)jj′ =

B
[�,�′]
ω (Ŵj ,Ŵj′). Finally, letting I1, . . . , Id ∈ R

n×n be such that (I�)jj′ =

I(Ŵj�, Ŵj′�) for each � ∈ {1, . . . , d}, one can show that

Dω = D0 +
1

n

d∑
�=1

{
I� D� + (I� D�)

�}+ 1

n2

d∑
�,�′=1

I� D��′ I
�
�′ .

Explicit formulas for the computation of the partial derivatives of Bω when the
weight functions are those considered in Examples 1–2 are given in Appendix B.

5. Investigation of the size and power of the tests

5.1. The bivariate case

The aim of the section is to study the sampling properties of the tests of bivariate
radial symmetry based on Rn,ω when ω is the product of standard Normal,
double-exponential and double-gamma densities. The computation of Bω is then
based on formula (8) in the special case when α1 = α2 = α. For the three above-
mentioned densities, one has respectively

α(a) ∝ e−a2/2, α(a) ∝ 1

a2 + 4
and α(a) ∝ 4− a2

(a2 + 4)2
.

The case when ω is the standard bivariate Normal density with R12 = R21 = .5
has also been considered; the formula for the computation of Bω is given in
equation (9). It is clear that these weight functions are integrable and satisfy
the requirement

∫
Rd(t1+t2)

4 ω(t) d t < ∞. In the sequel, these test statistics are
noted respectively RN

n , R
DE
n , RDG

n and RBN
n . The formulas for the computation

of their multiplier versions are given in Appendix B.1 and Appendix B.2. The
multiplier variables ξ1, . . . , ξn are taken to be i.i.d. exponential with mean one.
The number of bootstrap replicates has been set toM = 1 000 and the estimated
probabilities of rejection are based on 1 000 Monte–Carlo repetitions.

A first step is to investigate how well the multiplier method succeeds in the
replication of the distribution of the test statistics under the null hypothesis
for small and moderate sample sizes. To this end, the bivariate one-parameter
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Table 1

Families of radially symmetric bivariate copulas

Family Cθ(u1, u2) Θ

Frank −1

θ
ln

{
1 +

(
e−θu1 − 1

) (
e−θu2 − 1

)
e−θ − 1

}
R \ {0}

Normal

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞
ϕθ(x1, x2) dx2 dx1 (−1, 1)

Plackett
ζθ(u1, u2)−

√
{ζθ(u1, u2)}2 − 4θ(θ − 1)u1u2

2(θ − 1)
[0,∞)

Student

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞
ϕν,θ(x1, x2) dx2 dx1 (−1, 1)

1 Φ and tν are the univariate cdf’s, respectively, of the standard normal and Student
with ν degrees of freedom

2 ϕθ and ϕν,θ are the bivariate densities, respectively, of the standard normal and Student
with ν degrees of freedom

3 ζθ(u1, u2) = 1 + (θ − 1)(u1 + u2)

Frank, Normal, Plackett and Student (with ν = 4 degrees of freedom) families
of radially symmetric copulas have been considered. Their expressions are given
in Table 1; more details on these models can be found in the monographs by
[12] and [16]. The value of the parameter for each model has been chosen in
such a way that Kendall’s measure of association takes values in {.25, .50, .75}.
Recall that for a given copula C, Kendall’s tau is defined by

τ(C) = 4

∫
[0,1]2

C(u, v) dC(u, v)− 1.

The simulation results are reported in Table 2 for sample sizes n ∈ {125, 250}
and where the value of the smoothing parameter σ lies in {.5, 1, 3, 5, 7}.

Generally speaking, all the tests are quite good at keeping their 5% nominal
level when n = 250. The only notable exception is for σ = .5 when C is either the
Normal or the Student copula with a high level of dependence, i.e. τ(C) = .75.
A similar phenomenon, though less marked, occurs when σ = 7. Experiments
not shown here indicate that this issue is resolved when the sample size increases
to n = 500. When n = 125, the tests are conservative, especially for high values
of τ(C). This behavior is typical of methods based on the multiplier bootstrap.

In order to study the power of the tests based on RN
n , R

DE
n , RDG

n and RBN
n ,

the radially asymmetric Gumbel, Clayton, chi-square and skew-Student copulas
have been considered. The Gumbel and Clayton models are described in stan-
dard books like [12] and [16]. A special case of the bivariate skew-Student copula
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Table 2

Percentages of rejection, as estimated from 1 000 replicates, for the tests based on RN
n ,

RDE
n , RDG

n and RBN
n under the bivariate Frank (Fr), Normal (N), Plackett (P�) and

Student (T4) copulas; upper panel: n = 125; bottom panel: n = 250

Test τ(C) = .25 τ(C) = .50 τ(C) = .75
stat σ Fr N P� T4 Fr N P� T4 Fr N P� T4

RN
n

.5 2.8 2.6 3.3 2.4 3.2 1.5 1.9 0.8 0.3 0.0 0.1 0.0
1 5.3 5.2 4.3 5.2 4.3 4.0 3.1 3.8 4.6 2.2 2.1 2.7
3 4.9 5.0 2.9 3.6 4.0 4.2 3.1 4.9 2.7 3.3 1.7 1.6
5 4.0 4.6 3.8 3.2 2.9 3.9 2.5 2.9 1.0 1.9 0.9 1.0
7 2.0 2.5 2.2 2.1 1.4 1.9 2.4 2.2 0.6 1.0 0.6 0.7

RDE
n

.5 3.0 2.7 1.5 1.9 1.5 1.5 0.6 1.1 0.0 0.0 0.0 0.0
1 5.1 3.4 3.9 3.7 4.8 3.7 3.8 4.6 4.1 2.0 2.2 1.3
3 4.0 3.9 3.7 5.1 3.4 3.4 3.7 4.3 2.6 2.3 1.3 1.7
5 3.8 3.7 4.6 3.5 3.2 4.2 4.1 3.5 1.6 2.3 1.1 1.9
7 3.9 3.1 3.3 3.4 2.8 3.0 1.7 2.0 1.4 1.9 0.9 1.1

RDG
n

.5 4.1 4.5 3.4 2.9 4.7 3.6 2.7 2.4 1.6 0.5 0.9 0.4
1 4.3 3.7 5.8 4.9 6.0 4.6 4.8 4.7 4.1 2.0 2.9 1.4
3 3.1 4.2 4.3 4.6 4.2 3.8 3.0 4.4 1.6 1.4 1.3 2.5
5 2.5 3.9 4.4 4.0 2.4 2.9 2.4 3.1 1.3 0.8 1.2 2.3
7 1.3 1.8 2.0 2.4 1.0 1.5 1.5 1.7 0.4 0.8 0.3 0.4

RBN
n

.5 3.7 3.4 4.2 4.2 2.1 1.8 2.1 2.7 0.0 0.0 0.0 0.0
1 4.3 4.9 5.7 4.3 4.0 3.5 3.9 3.6 1.1 1.6 0.5 1.0
3 3.8 4.4 3.6 4.4 4.1 3.4 4.9 4.2 1.7 2.1 1.8 1.1
5 3.1 3.9 3.7 3.1 3.5 3.0 3.0 4.0 2.5 2.3 2.8 2.2
7 2.1 2.7 1.7 1.6 2.1 2.0 3.3 1.6 2.1 2.3 2.2 1.5

RN
n

.5 4.5 4.9 3.8 3.8 6.1 4.4 3.5 3.7 5.9 1.9 1.6 0.8
1 5.7 5.2 5.5 4.0 5.4 3.4 4.0 4.0 5.0 4.4 3.4 3.4
3 5.2 5.0 3.8 5.1 4.2 4.7 3.8 4.7 3.9 4.5 2.8 2.7
5 5.2 3.7 3.7 3.3 4.1 4.8 4.1 4.2 2.7 1.8 3.0 1.3
7 2.9 4.2 3.3 3.7 3.2 3.7 2.5 2.7 2.6 2.7 1.6 2.3

RDE
n

.5 5.0 3.0 4.3 3.1 6.5 3.7 4.5 2.9 1.8 0.1 0.4 0.5
1 5.7 5.8 4.5 5.6 3.7 4.7 4.3 5.8 4.2 3.4 2.2 3.3
3 4.7 4.0 5.8 4.9 5.3 5.5 4.0 5.4 3.8 2.9 3.3 4.0
5 4.2 4.0 4.9 3.8 4.6 4.2 3.3 3.8 3.7 3.0 2.4 2.3
7 4.1 3.5 3.7 4.1 3.7 3.3 3.0 3.2 1.6 1.9 2.1 2.9

RDG
n

.5 4.3 3.5 5.1 4.6 5.8 4.5 4.7 4.0 5.8 3.5 3.0 2.7
1 6.1 4.4 4.0 3.8 5.3 5.2 4.5 4.8 5.6 3.6 2.3 4.3
3 5.7 4.9 4.3 4.6 5.4 4.1 3.5 5.5 3.2 3.8 3.4 2.0
5 3.8 3.6 4.4 4.9 3.2 3.5 4.4 3.8 2.1 3.0 2.1 2.6
7 3.3 2.6 2.1 2.4 2.2 2.9 2.7 3.0 1.4 2.2 1.6 1.1

RBN
n

.5 4.2 5.2 4.8 5.7 2.9 4.4 3.6 4.3 1.5 0.3 0.7 0.2
1 6.1 4.5 4.3 4.2 4.7 3.8 5.8 4.8 1.8 2.8 2.4 1.5
3 4.6 3.5 4.8 4.0 3.2 3.3 5.0 4.1 2.6 2.7 2.8 2.7
5 3.5 3.5 3.3 3.9 4.1 4.1 4.5 4.7 2.8 3.8 3.5 2.2
7 3.0 3.8 2.0 3.2 3.8 3.5 3.1 3.0 3.0 3.0 2.4 3.0
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with ν degrees of freedom as defined by [4] is the dependence structure of

(X1, X2) =

√
ν

Y
(Z1, Z2) + (γ1, γ2)

ν

Y
,

where (Z1, Z2) is standard bivariate Normal with correlation θ and Y is a
chi-square random variable with ν degrees of freedom that is independent of
(Z1, Z2). The radially symmetric Student copula occurs when γ1 = γ2 = 0,
while otherwise, the construction yields a radially asymmetric copula. In the
current simulation study, (γ1, γ2) = (1, 1) and ν = 4. The multivariate chi-
square copula family was introduced by [1] in the context of spatial statistics
and formally investigated by [14]. A particular case is the centered bivariate
chi-square copula defined as the dependence structure of (Z2

1 , Z
2
2 ). Scatterplots

of n = 10 000 simulated pairs from these four copulas are provided in Fig-
ure 1; the corresponding plots of LC(t1, t2) as a function of t1 ∈ [−40, 40] when
t2 ∈ {10, 20, 30} are given in Figure 2.

Figure 3 reports the power of the tests based on RN
n , R

DE
n , RDG

n and RBN
n as a

function of the smoothing parameter σ ∈ [.5, 7], both when n = 125 and n = 250.
Three levels of dependence have been considered, namely τ(C) ∈ {.25, .50, .75}.
An overall look at these curves leads to the conclusion that for the tests based
on RN

n , RDE
n and RDG

n , the best choice seems to be σ = 1 under the four
alternatives, whatever the value of τ(C). Things are a little less clear for the
test based on RBN

n , since in that case the influence of σ on the power is less
obvious. Nevertheless, σ = 5 seems to be an appropriate choice.

5.2. Comparisons with the tests of bivariate radial symmetry of [6]

Now the power of RN
n , R

DE
n and RDG

n when σ = 1, and of RBN
n when σ = 5, will

be compared to the procedures based on the empirical copula investigated by
[6]. Letting Ûj1 = F̂1(Xj1) and Ûj2 = F̂2(Xj2), define the empirical copulas

Cn(u1, u2) =
1

n

n∑
j=1

I

(
Ûj1 ≤ u1, Ûj2 ≤ u2

)
,

Dn(u1, u2) =
1

n

n∑
j=1

I

(
1− Ûj1 ≤ u1, 1− Ûj2 ≤ u2

)
.

Three statistics based on functional distances between Cn and Dn were inves-
tigated by [6]. In the sequel, only the statistic that has been identified by [6] as
the most powerful will be considered, namely the Cramér–von Mises statistic

Sn = n

∫
[0,1]2

{Cn(u1, u2)−Dn(u1, u2)}2 dCn(u1, u2)

=

n∑
k=1

{
Cn

(
Ûk1, Ûk2

)
−Dn

(
Ûk1, Ûk2

)}2

.
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Fig 1. Scatterplots of n = 10 000 simulated pairs from the radially asymmetric Gumbel,
Clayton, chi-square and skew-Student bivariate copulas for three levels of dependence

The computation of p-values is based on the multiplier method adapted to
empirical copulas [see 17, for instance] and requires the estimation of the partial
derivatives of C. Full details are given in Appendix B.3. The simulation results
are reported in Table 3, where the power obtained by [6] under the Gumbel,
Clayton and Skew-Student when n ∈ {250, 500} is given as well (see line S�

n).
It can first be seen that the results of [6], obtained with M = 250 multiplier

bootstrap replicates, are accurately reproduced here withM = 1 000. Otherwise,
some expected conclusions can be made, namely that the power of each test
increases with the sample size, as a consequence of their consistency. Note also
that the power of the tests is smaller under Gumbel alternatives, since as noted
by [6], the radial asymmetry is quite weak for the members of this family; this
conclusion can also be reached upon looking at Figures 1–2. Under the Gumbel,
Clayton and chi-square alternatives, the power generally increases with the level
of dependence, while an inverse relationship occurs under the skew-Student
copula. These results are in accordance with the scatterplots in Figure 1 and
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Fig 2. Curves of LC(t1, 10) (in blue), LC(t1, 20) (in black) and LC(t1, 30) (in red) as a
function of t1 ∈ [−40, 40] for the radially asymmetric Gumbel, Clayton, chi-square and skew-
Student bivariate copulas for three levels of dependence

can also be understood in the light of the curves of LC given in Figure 2.

The test based on RBN
n is always much less powerful than the three other

characteristic function tests based on RN
n , R

DE
n and RDG

n , the performance of
these three statistics being quite similar. Now comparing the newly introduced
tests with that based on Sn, the following comments can be made:

(i) Under Gumbel, chi-square and skew-Student alternatives, the performance
of RN

n , R
DE
n and RDG

n is clearly better than that of Sn;
(ii) Under Clayton alternatives, the power of RN

n , R
DE
n and RDG

n is very similar
to that of Sn;

The above conclusions hold both for n = 125 and n = 250. Hence, overall,
one could warmly recommend the use of the characteristic function tests with
a product weight function and a smoothing parameter set to σ = 1.
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Fig 3. Power of the tests based on RN
n (line), RDE

n (dashed line), RDG
n (dotted lime) and RBN

n
(dots) as a function of the smoothing parameter σ ∈ [.5, 7] for the radially asymmetric Gum-
bel, Clayton, chi-square and skew-Student bivariate copulas for three levels of dependence;
blue curves: n = 125; black curves: n = 250

5.3. A deeper investigation on the bivariate Normal weight function

The test statistic RBN
n based on the bivariate Normal density with ρ = .5 is sys-

tematically less powerful than its competitors. However, this family of weight
functions offers an additional flexibility by allowing to select an optimal value
of ρ� ∈ (−1, 1). Since RBN

n = RN
n when ρ = 0, the power of the test when

using ρ� cannot be less than that of the test based on the product of Normal
densities.

In order to investigate the influence of ρ on the power of the test based on
RBN

n , a complementary simulation study has been conducted under the same
twelve models of asymmetric copulas. The results are presented in Figure 4
when n = 125 (in blue) and n = 250 (in black); the value of the smoothing
parameter has been set to σ = 5. Overall, the influence of ρ seems to de-
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Table 3

Percentages of rejection, as estimated from 1 000 replicates, for the tests based on RN
n ,

RDE
n , RDG

n (σ = 1), RBN
n (σ = 5) and Sn under the bivariate Gumbel (Gu), Clayton (C�),

chi-square (χ2) and skew-Student (ST4) copulas; upper panel: n = 125; middle panel:
n = 250; bottom panel: n = 500

Test τ(C) = .25 τ(C) = .50 τ(C) = .75
stat Gu C� χ2 ST4 Gu C� χ2 ST4 Gu C� χ2 ST4

RN
n 18.7 47.0 41.3 94.9 28.2 86.6 81.5 68.4 26.7 97.0 85.9 31.5

RDE
n 16.8 47.3 39.6 95.1 28.5 88.1 80.5 68.8 23.3 94.3 79.7 26.0

RDG
n 18.0 43.5 38.9 93.9 30.1 86.6 79.2 68.7 25.4 95.7 79.5 30.4

RBN
n 6.3 17.7 11.0 69.3 14.3 64.1 48.1 41.4 18.7 91.5 69.3 21.0

Sn 10.2 45.2 23.5 88.5 17.3 87.0 62.4 53.4 7.7 93.1 65.2 12.4

RN
n 29.4 78.6 70.2 100 57.1 99.7 98.7 95.1 57.1 100 98.2 69.5

RDE
n 31.9 78.4 68.0 99.9 55.2 99.7 97.5 96.1 53.9 99.9 98.9 70.5

RDG
n 30.0 75.6 68.6 100 56.6 99.1 98.4 95.2 54.0 100 98.0 67.7

RBN
n 15.0 42.0 34.2 96.9 34.5 96.0 86.9 79.6 43.1 100 96.8 54.8

Sn 22.3 74.6 53.2 99.8 43.7 99.1 95.8 91.6 37.3 99.9 97.1 50.3
S�
n 19.2 72.3 —- 100 42.9 99.5 —- 92.9 36.4 100 —- 49.0

RN
n 57.2 97.0 94.1 100 83.3 100 100 100 89.0 100 100 95.4

RDE
n 58.7 97.7 94.2 100 86.0 100 100 99.9 86.5 100 100 94.4

RDG
n 54.7 97.2 95.3 100 85.7 100 100 100 84.9 100 100 94.0

RBN
n 30.7 81.2 68.2 100 67.4 100 100 98.6 81.3 100 100 90.0

Sn 45.1 95.8 88.4 100 79.9 100 100 99.9 79.7 100 100 90.6
S�
n 46.5 94.9 —- 100 76.3 100 —- 99.9 78.7 100 —- 89.1

pend heavily on the kind of alternatives at hand, preventing from a general
recommendation on a universal value to be chosen. Nevertheless, the advan-
tage of taking a value of ρ different from zero is more obvious when τ(C)
takes high values. While a negative value for ρ would clearly be a bad deci-
sion in that case, taking ρ > 0 significantly improves the power, especially when
n = 125.

This little investigation opens the door to a more formal study on the optimal
choice of a weight function. Noting that the bivariate Normal weight function
can be written in terms of the density cθ of the Normal copula as
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Fig 4. Power of the test based on RBN
n as a function of ρ ∈ (−1, 1) for the radially asym-

metric Gumbel, Clayton, chi-square and skew-Student bivariate copulas for three levels of
dependence; blue curve: n = 125; black curve: n = 250

ω(t) = cNρ

{
Φ

(
t1
σ

)
,Φ

(
t2
σ

)}
φ

(
t1
σ

)
φ

(
t2
σ

)
,

one could consider a general family of weight functions of the form

ω(t) = cθ

{
G

(
t1
σ

)
, G

(
t2
σ

)}
g

(
t1
σ

)
g

(
t2
σ

)
,

where cθ is some copula density and G is a cdf on R whose associated density
g = G′ is symmetric around zero. This would allow for a lot of flexibility, as one
could choose among many copula families, levels of dependence as controlled by
θ, and smoothing parameters σ > 0. However, it raises at the same time the
issue of basing this choice on a formal criteria, which even in the domain of
standard characteristic function tests, remains an open question.
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5.4. Performance of the tests in higher dimensions

This section reports the results of an investigation on the size and power of the
characteristic function statistic Sn,ω when d ∈ {3, 5} and the weight function
is based on a product of Normal densities. The copula models that have been
considered under H0 are the Normal and Student with ν = 4 degrees of freedom.
Radially asymmetric alternatives have been generated from the multivariate
skew-Student copula with ν degrees of freedom. The latter is a straightforward
extension of the model already introduced in the bivariate case, namely the
dependence structure of

X =

√
ν

Y
Z+ γ

ν

Y
,

where Z = (Z1, . . . , Zd) is standard multivariate Normal with correlation ma-
trix R, Y is a chi-square random variable with ν degrees of freedom that is
independent of Z and γ ∈ R

d controls the degree of asymmetry. In the sequel,
γ = (1, . . . , 1) and ν = 4. In addition, the multivariate centered chi-square cop-
ula defined as the dependence structure of (Z2

1 , . . . , Z
2
d) has been considered.

For each of these four models, the correlation matrix R has been taken equicor-
related, i.e. Rjj′ = θ for each j �= j′ ∈ {1, . . . , d}. The value of θ for each
model has been selected in order that the pairwise Kendall’s tau τ is in the set
{.25, .50, .75}. The results are to be found in Table 4.

One can first say that the tests are generally good at keeping their 5% nominal
level under the null hypothesis when n = 250, while they are rather conservative
when n = 125; this is particularly true when τ = .75. This behavior was also
observed in the bivariate case. Globally, the tests are very good at distinguishing
departures from H0. In particular, the chi-square alternatives are always well
detected, the power of the tests being at its best when τ = .50. Under the
skew-Student alternatives, the probabilities of rejection are also good, but this
time they are inversely proportional to the value of τ . For a given alternative,
the power of the tests tend to be higher when d = 5 compared to d = 3. Finally
note that the best choice for the smoothing parameter is σ ∈ {.5, 1}.

Appendix A: Proofs

A.1. Proof of Lemma 1

Making use of the product-to-sum trigonometric identity, i.e.

2 sin

(
d∑

�=1

x�

)
sin

(
d∑

�=1

y�

)
= cos

{
d∑

�=1

(x� − y�)

}
− cos

{
d∑

�=1

(x� + y�)

}
,

one deduces from the definition of Bω in Equation (6) that

2Bω(a,b) =

∫
Rd

cos
{
t(a− b)�

}
ω(t) dt−

∫
Rd

cos
{
t(a+ b)�

}
ω(t) dt

= Aω(a− b)−Aω(a+ b),
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Table 4

Percentages of rejection, as estimated from 1 000 replicates, for the test based on RN
n under

the d-variate Normal (N), Student (T4), chi-square (χ2) and skew-Student (ST4) copulas;
upper panel: n = 125; bottom panel: n = 250

d = 3 d = 5
Copula τ σ = .5 σ = 1 σ = 3 σ = .5 σ = 1 σ = 3

.25 2.6 6.0 3.0 3.0 3.6 0.8
N .50 3.5 5.0 2.5 5.1 5.1 1.8

.75 1.0 3.1 1.7 1.6 2.9 1.4

.25 3.2 3.2 2.3 1.6 1.8 0.9
T4 .50 2.6 2.5 2.2 3.3 3.7 1.7

.75 0.5 2.8 1.4 1.2 2.8 1.2

.25 65.7 67.7 49.3 90.8 91.8 66.2
χ2 .50 96.6 93.8 80.4 99.8 98.3 85.1

.75 92.6 89.1 60.2 97.0 91.7 65.0

.25 99.9 99.9 97.8 100.0 100.0 99.9
ST4 .50 83.5 85.5 58.4 93.4 92.6 59.3

.75 22.6 43.4 14.1 52.9 46.8 10.7

.25 3.9 3.8 4.6 4.2 4.5 2.6
N .50 6.5 4.0 3.5 5.0 4.7 3.0

.75 2.4 3.3 3.6 2.5 3.7 1.8

.25 3.9 3.9 4.1 3.8 3.0 3.2
T4 .50 2.9 3.0 3.9 3.6 4.7 2.3

.75 2.4 3.2 2.5 3.8 3.0 1.5

.25 94.3 94.6 85.5 99.9 100.0 97.9
χ2 .50 100.0 99.9 98.5 100.0 100.0 99.8

.75 100.0 99.8 96.9 99.9 99.9 99.4

.25 100.0 100.0 100.0 100.0 100.0 100.0
ST4 .50 99.3 98.6 93.4 99.8 99.9 96.9

.75 80.7 77.8 45.8 87.8 83.6 38.9

where Aω is the real part of the characteristic function of ω.

A.2. Proof of Proposition 1

By the mean-value Theorem, one has for each j ∈ {1, . . . , n} that

sin(tŴ�
j ) = sin(tW�

j ) +

d∑
�=1

t� cos(tW
�
j )
(
Ŵj� −Wj�

)
+Anj(t),

where for W̃j = δŴj + (1− δ)Wj for some δ ∈ [0, 1],
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Anj(t) = −1

2
sin(tW̃�

j )

{
d∑

�=1

t�

(
Ŵj� −Wj�

)}2

. (14)

Upon noting that for each � ∈ {1, . . . , d},

Ŵj� =
1

n

n∑
k=1

{
I (Wk� ≤ Wj�)−

1

2

}
,

one can write for Δn(t) =
∑n

j=1 Anj(t)/
√
n that

Ln(t) =
1

n

n∑
j=1

{
sin(tW�

j ) +

d∑
�=1

t� cos(tW
�
j )
(
Ŵj� −Wj�

)
+Anj(t)

}

=
1

n2

n∑
j,k=1

{
sin(tW�

j ) +
d∑

�=1

(
I(Wk� ≤ Wj�)−Wj� −

1

2

)
t� cos(tW

�
j )

}

+
1√
n
Δn(t).

Hence, in view of the definition of Λt,

Ln(t) =
1

n2

n∑
j,k=1

Λt(Wj ,Wk) +
1√
n
Δn(t).

One then has

Rn,ω =

∫
Rd

⎧⎨⎩ 1

n3/2

n∑
j,k=1

Λt(Wj ,Wk) + Δn(t)

⎫⎬⎭
2

ω(t) dt

= Vn,ω +Δn1,ω + 2Δn2,ω,

where

Vn,ω =
1

n3

n∑
j,j′,k,k′=1

∫
Rd

Λt(Wj ,Wk) Λt(Wj′ ,Wk′)ω(t) dt,

Δn1,ω =

∫
Rd

{Δn(t)}2 ω(t) dt,

Δn2,ω =

∫
Rd

1

n3/2

n∑
j,k=1

Λt(Wj ,Wk)Δn(t)ω(t) dt.

At this point, it is worth noting that from the Cauchy–Schwarz inequality,

Δn2,ω ≤

⎧⎪⎨⎪⎩
∫
Rd

⎛⎝ 1

n3/2

n∑
j,k=1

Λt(Wj ,Wk)

⎞⎠2

ω(t) dt

⎫⎪⎬⎪⎭
1/2(∫

Rd

{Δn(t)}2 ω(t) dt
)1/2

=
√

Vn,ω Δn1,ω.

Proposition 2 establishes the convergence in distribution of Vn,ω, so that Vn,ω =
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OP(1). It then remains to show that Δn1,ω = oP(1) in order to conclude that
Rn,ω = Vn,ω + oP(1). To this end, one deduces from Equation (14) that

|Anj(t)| ≤
1

2

{
d∑

�=1

t�

(
Ŵj� −Wj�

)}2

.

Since for each � ∈ {1, . . . , d}, Ŵj� −Wj� = F̂�(Xj�)− F�(Xj�) and
√
n{F̂�(x)−

F�(x)} converges uniformly in x ∈ R to a brownian bridge (see [18], for instance),

max
1≤j≤n

|Anj(t)| = (t1 + · · ·+ td)
2
OP(n

−1).

One can then conclude that

|Δn(t)| ≤
1√
n

n∑
j=1

|Anj(t)| ≤
√
n max

1≤j≤n
|Anj(t)| = (t1 + · · ·+ td)

2
OP(n

−1/2).

In view of the assumption
∫
Rd(t1 + · · ·+ td)

4 ω(t) dt < ∞, one deduces

Δn1,ω = OP(n
−1)

∫
Rd

(t1 + · · ·+ td)
4
ω(t) dt = oP(1).

Finally, simple calculations allow to show that

Vn,ω =
1

n3

n∑
j,j′,k,k′=1

Φω (Wj ,Wj′ ,Wk,Wk′) ,

where Φω is the symmetrization of∫
Rd

Λt(w1,w2) Λt(w3,w4)ω(t) dt.

A.3. Proof of Proposition 2

The proof consists in showing that

R̃n,ω = Rn,ω − 1

n

n∑
j,j′=1

Ψω(Wj ,Wj′) = oP(1).

First observe that R̃n,ω is a V-statistic of order four with symmetric kernel

hω(w1,w2,w3,w4) = Φω(w1,w2,w3,w4)−
1

6

∑
1≤�<�′≤4

Ψω(w�,w�′)

From Theorem 1, p. 183 in [10], one has

R̃n,ω =
1

n2
U (1)
n,ω +

(
n− 1

n2

)
U (2)
n,ω +

(n− 1)(n− 2)

n2
U (3)
n,ω
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+
(n− 1)(n− 2)(n− 3)

n2
U (4)
n,ω,

where for each j ∈ {1, . . . , 4}, U
(j)
n,ω is a U-statistic of degree j whose sym-

metric kernel is based on hω. Upon noting that |Λt(w1,w2) + Λt(w2,w1)| ≤
2 (1 + |t1|+ · · ·+ |td|), the fact that

∫
Rd(t1 + · · ·+ td)

4ω(t) d t < ∞ entails

Φω(w1,w2,w3,w4) ≤
3

144

∫
Rd

{2 (1 + |t1|+ · · ·+ |td|)}4 ω(t) d t < ∞.

It follows that hω is bounded, since Ψω(w1,w2) = E{Φω(w1,w2,W3,W4)}. As
a consequence, U

(1)
n,ω and U

(2)
n,ω converge in distribution, so that

R̃n,ω = U (3)
n,ω + nU (4)

n,ω + oP(1). (15)

In equation (15), U
(3)
n,ω is the U-statistic with kernel

2 {hω(w1,w1,w2,w3) + hω(w2,w2,w1,w3) + hω(w3,w3,w1,w2)} .

From Theorem 3, p. 122 of [10], U
(3)
n,ω converges almost surely to

2E{hω(W1,W1,W2,W3)+hω(W2,W2,W1,W3)+hω(W3,W3,W1,W2)}
= 6E{hω(W1,W1,W2,W3)}.

By a simple computation, one obtains E{hω(W1,W1,W2,W3)} = 0 and one

may conclude that U
(3)
n,ω converges almost surely to zero. Next, note that U

(4)
n,ω

in (15) is the U-statistic with first-order degenerate kernel hω. Hence, from
Corollary 1, p. 83 in [10],

U (4)
n,ω =

(
n

2

)−1 ∑
1≤j<j′≤n

6h(2)
ω (Wj ,Wj′) + oP(1),

where h
(2)
ω (w1,w2) = E{hω(w1,w2,W3,W4)} = 0; hence U

(4)
n,ω = oP(1). One

can then conclude that R̃n,ω = oP(1), or similarly that

Rn,ω =
1

n

n∑
j,j′=1

Ψω (Wj ,Wj′) + oP(1).

Since Ψω has a first-order degeneracy and the fact that Φω is bounded entails
E[{Ψω(W1,W2)}2] < ∞, the limit distribution in (13) is a consequence of
Corollary 1, p. 83 in [10].

A.4. Proof of Proposition 3

First note that

R̂n,ω =
1

n

n∑
j,j′=1

Δj Δj′

∫
Rd

λ̂t(Ŵj) λ̂t(Ŵj′)ω(t) d t
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=

∫
Rd

⎧⎨⎩ 1√
n

n∑
j=1

Δj λ̂t(Wj)

⎫⎬⎭
2

ω(t) d t.

From there, one can write

R̂n,ω =

∫
Rd

⎡⎣ 1√
n

n∑
j=1

Δj λ̃t(Wj) +
1√
n

n∑
j=1

Δj

{
λ̂t(Ŵj)− λ̃t(Wj)

}⎤⎦2

ω(t) dt

= R̃n,ω + Δ̂n1,ω + 2 Δ̂n2,ω,

where

R̃n,ω =

∫
Rd

⎧⎨⎩ 1√
n

n∑
j=1

Δj λ̃t(Wj)

⎫⎬⎭
2

ω(t) dt,

Δ̂n1,ω =

∫
Rd

⎧⎨⎩ 1√
n

n∑
j=1

Δj

{
λ̂t(Ŵj)− λ̃t(Wj)

}⎫⎬⎭
2

ω(t) dt,

Δ̂n2,ω =

∫
Rd

⎧⎨⎩ 1√
n

n∑
j=1

Δj λ̃t(Wj)

⎫⎬⎭
⎧⎨⎩ 1√

n

n∑
j=1

Δj

{
λ̂t(Ŵj)− λ̃t(Wj)

}⎫⎬⎭ω(t) dt.

It will be shown that Δ̂n1,ω = oP�(1), which will also entail that Δ̂n2,ω = oP�(1),

in view of that fact that Δ̂n2,ω ≤
√

R̃n,ωΔ̂n1,ω, from the Cauchy–Schwarz in-

equality. To this end, note that

Δ̂n1,ω =

∫
Rd

{
d∑

�=0

Ẑn�(t)

}2

ω(t) dt,

where

Ẑn0(t) =
1√
n

n∑
j=1

Δj

{
sin(tŴ�

j )− sin(tW�
j )
}

and for each � ∈ {1, . . . , d},

Ẑn�(t) =
1√
n

n∑
j=1

Δj

[
1

n

n∑
k=1

(
I

(
Ŵj� ≤ Ŵk�

)
− 1

2

)
t� cos(tŴ

�
k )

−EW

{(
I

(
Ŵj� ≤ W�

)
− 1

2

)
t� cos(tW

�)

}]
.

In the sequel, it will be shown that for each � ∈ {0, . . . , d},∫
Rd

{
Ẑn�(t)

}2

ω(t) d t = oP�(1).
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By the Cauchy–Schwarz inequality, this will entail Δ̂n1,ω = oP�(1). By the mean-

value Theorem, one has for W̃�
j = δŴj + (1− δ)Wj for some δ ∈ [0, 1] that

sin(tŴ�
j )− sin(tW�

j ) = cos(tW̃�
j )

{
d∑

�=1

t�

(
Ŵj� −Wj�

)}
.

Letting Var�(·) be the variance conditional on the data, one has in view of the
fact that Var(Δj) ≈ 1 that

Var�
{
Ẑn0(t)

}
≈ 1

n

n∑
j=1

cos2(tW̃�
j )

{
d∑

�=1

t�

(
Ŵj� −Wj�

)}2

≤ 1

n

n∑
j=1

{
d∑

�=1

t�

(
Ŵj� −Wj�

)}2

≤ max
1≤j≤n

{
d∑

�=1

t�

(
Ŵj� −Wj�

)}2

= OP(n
−1)(t1 + · · ·+ td)

2,

the last equality being a consequence of the fact that for each � ∈ {1, . . . , d},

max
1≤j≤n

∣∣∣Ŵj� −Wj�

∣∣∣ = OP(n
−1/2).

It follows that {Ẑn0(t)}2 = oP�(1)(t1 + · · ·+ td)
2, so that∫

Rd

{
Ẑn0(t)

}2

ω(t) d t = oP�(1)

∫
Rd

(t1 + · · ·+ td)
2 ω(t) d t = oP�(1).

Next, making use of the fact that I(Ŵj� ≤ Ŵk�) = I(Wj� ≤ Wk�), one has for
each � ∈ {1, . . . , d} that

Var�
{
Ẑn�(t)

}
≈ 1

n

n∑
j=1

[
1

n

n∑
k=1

(
I (Wj� ≤ Wk�)−

1

2

)
t� cos(tŴ

�
k )

−EW

{(
I

(
Ŵj� ≤ W�

)
− 1

2

)
t� cos(tW

�)

}]2
≤ t2� max

1≤j≤n

[
1

n

n∑
k=1

(
I (Wj� ≤ Wk�)−

1

2

)
cos(tŴ�

k )

−EW

{(
I

(
Ŵj� ≤ W�

)
− 1

2

)
cos(tW�)

}]2
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= t2� max
1≤j≤n

[
1

n

n∑
k=1

(
I (Wj� ≤ Wk�)−

1

2

)
cos(tW�

k )

−EW

{(
I (Wj� ≤ W�)−

1

2

)
cos(tW�)

}
− 1

n

n∑
k=1

(
I (Wj� ≤ Wk�)−

1

2

)
sin(tW̃�

k )

{
d∑

�=1

t�

(
Ŵk� −Wk�

)}

+EW

{(
I (Wj� ≤ W�)− I

(
Ŵj� ≤ W�

))
cos(tW�)

}]2
≤ t2� max

1≤j≤n

[∣∣∣∣∣ 1n
n∑

k=1

(
I (Wj� ≤ Wk�)−

1

2

)
cos(tW�

k )

−EW

{(
I (Wj� ≤ W�)−

1

2

)
cos(tW�)

}∣∣∣∣
+

∣∣∣∣∣ 1n
n∑

k=1

(
I (Wj�≤Wk�)−

1

2

)
sin(tW̃�

k )

{
d∑

�=1

t�

(
Ŵk�−Wk�

)}∣∣∣∣∣
+
∣∣∣EW

{(
I (Wj� ≤ W�)− I

(
Ŵj� ≤ W�

))
cos(tW�)

}∣∣∣]2 .
The first summand into the brackets of the righthand side of the last equation is
oP(1), uniformly in Wj�. The second summand is bounded above by (|t1|+ · · ·+
|td|)OP(n

−1/2), while the third summand is OP(n
−1/2). One can then conclude

that Var�{Ẑn�(t)} = t2�(|t1| + · · · + |td| + 1)2 OP(n
−1), so that {Ẑn�(t)}2 =

oP�(1) t2�(|t1|+ · · ·+ |td|+ 1)2. As a consequence,∫
Rd

{
Ẑn�(t)

}2

ω(t) d t = oP�(1)

∫
Rd

t2� (|t1|+ · · ·+ |td|+ 1)
2
ω(t) d t = oP�(1).

It follows that Δ̂n1,ω = oP�(1), and consequently, Δ̂n2,ω = oP�(1). Hence, R̂n,ω =

R̃n,ω + oP�(1), where

R̃n,ω =
1

n

n∑
j,j′=1

Δj Δj′ Ψ̃ω(Wj ,Wj′).

Invoking Theorem 3.4 in [3], one can finally conclude that

sup
r∈R+

∣∣∣P�
(
R̂n,ω ≤ r

)
− P

(
R̃ω ≤ r

)∣∣∣ P−→ 0.

A.5. Proof of Lemma 2

First define ht(w) = sin(tw�) and h
[�]
t (w) = ∂ht(w)/∂w� = t� cos(tw

�) for
each � ∈ {1, . . . , d}. With this notation, one can write

λ̂t(w) = ht(w) +

d∑
�=1

{
1

n

n∑
k=1

I
(
w�, Ŵk�

)
h
[�]
t (Ŵ�

k )

}
.
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Integrating λ̂t(w1) λ̂t(w2) with respect to ω yields

Ψ̂ω(w1,w2) =

∫
Rd

ht(w1)ht(w2)ω(t) dt

+

d∑
�=1

{
1

n

n∑
k=1

I(w2�, Ŵk�)

∫
Rd

h
[�]
t (Ŵk)ht(w1)ω(t) dt

}

+
d∑

�=1

{
1

n

n∑
k=1

I(w1�, Ŵk�)

∫
Rd

h
[�]
t (Ŵk)ht(w2)ω(t) dt

}

+

d∑
�,�′=1

{
1

n2

n∑
k,k′=1

I(w1�, Ŵk�) I(w2�′ , Ŵk′�′)

×
∫
Rd

h
[�]
t (Ŵk)h

[�′]
t (Ŵk′)ω(t) dt

}
.

The first expression on the righthand side is∫
Rd

ht(w1)ht(w2)ω(t) dt = Bω(w1,w2).

For the second and third summand, one has for w ∈ [−1/2, 1/2]d that∫
Rd

h
[�]
t (Ŵk)ht(w)ω(t) dt =

∂

∂Ŵk�

∫
Rd

ht(Ŵk)ht(w)ω(t) dt

=
∂

∂Ŵk�

Bω(Ŵk,w)

= B[�]
ω (Ŵk,w),

while for the fourth summand,∫
Rd

h
[�]
t (Ŵk)h

[�′]
t (Ŵk′)ω(t) dt =

∂2

∂Ŵk� ∂Ŵk′�′

∫
Rd

ht(Ŵk)ht(Ŵk′)ω(t) dt

=
∂2

∂Ŵk� ∂Ŵk′�′
Bω(Ŵk,Ŵk′)

= B[�,�′]
ω (Ŵk,Ŵk′).

Collecting the four expressions yields the announced formula.

Appendix B: Complementary computations

B.1. Example 1 continued

When ω(t) = g1(t1/σ) × · · · × gd(td/σ), the form of Bω has been derived in
Example 1 in terms of the characteristic functions α1, . . . , αd. Now let α′

� and
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α′′
� be the first two derivatives of α� and define

Q(a) =

d∏
�=1

α�(a�).

By straightforward computations, one can show that

B[k]
ω (a,b)=σ

{
α′
k {σ(ak − bk)}

αk {σ(ak − bk)}
Q {σ(a− b)} − α′

k {σ(ak + bk)}
αk {σ(ak + bk)}

Q {σ(a+ b)}
}
.

Also,

B[k,k]
ω (a,b) = −σ2

{
α′′
k {σ(ak − bk)}

αk {σ(ak − bk)}
Q {σ(a− b)}

+
α′′
k {σ(ak + bk)}

αk {σ(ak + bk)}
Q {σ(a+ b)}

}
,

while for k �= k′,

B[k,k′]
ω (a,b) = −σ2 α′

k {σ(ak − bk)}
αk {σ(ak − bk)}

α′
k′ {σ(ak′ − bk′)}

αk′ {σ(ak′ − bk′)} Q {σ(a− b)}

−σ2 α′
k {σ(ak + bk)}

αk {σ(ak + bk)}
α′
k′ {σ(ak′ + bk′)}

αk′ {σ(ak′ + bk′)} Q {σ(a+ b)} .

In the case of the standard Normal density, one can show that

α′(a)

α(a)
= −a and

α′′(a)

α(a)
= a2 − 1.

For the double-exponential density,

α′(a)

α(a)
= − 2a

a2 + 4
and

α′′(a)

α(a)
=

2(3a2 − 4)

(a2 + 4)2
,

while for the double-Gamma density,

α′(a)

α(a)
=

−2a(a2 − 12)

a4 − 16
and

α′′(a)

α(a)
=

6(a4 − 24a2 + 16)

(a2 − 4)(a2 + 4)2
.

B.2. Example 2 continued

When d = 2 and ω is the bivariate Normal density φρ with correlation coefficient
ρ ∈ (−1, 1), formula (9) entails that Bω(a,b) = φρ{σ(a− b)} − φρ{σ(a+ b)}.
Before giving the partial derivatives of Bω, note that

φ[1]
ρ (x1, x2) =

(
ρx2 − x1

1− ρ2

)
φρ(x1, x2),
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φ[1,1]
ρ (x1, x2) =

{(
ρx2 − x1

1− ρ2

)2

− 1

1− ρ2

}
φρ(x1, x2),

φ[1,2]
ρ (x1, x2) =

{
ρ

1− ρ2
+

(
ρx2 − x1

1− ρ2

)(
ρx1 − x2

1− ρ2

)}
φρ(x1, x2).

With this notation, one can show that

B[1]
ω (a,b) = σ

{
φ[1]
ρ (a− b)− φ[1]

ρ (a+ b)
}

and B
[2]
ω (a,b) = B

[1]
ω (aπ,bπ), where aπ = (a2, a1) and bπ = (b2, b1). Also,

B[1,1]
ω (a,b) = −σ2

{
φ[1,1]
ρ (a− b) + φ[1,1]

ρ (a+ b)
}

and B
[2,2]
ω (a,b) = B

[1,3]
ω (aπ,bπ). Finally,

B[1,2]
ω (a,b) = B[2,1]

ω (a,b) = −σ2
{
φ[1,2]
ρ (a− b) + φ[1,2]

ρ (a+ b)
}
.

B.3. Details on a test of bivariate radial symmetry of [6]

Defining A ∈ R
n×n such that for each j, k ∈ {1, . . . , n},

Ajk = I

(
Ûj1 ≤ Ûk1, Ûj2 ≤ Ûk2

)
− I

(
1− Ûj1 ≤ Ûk1, 1− Ûj2 ≤ Ûk2

)
,

one can write for 1 = (1, . . . , 1) ∈ R
n,

Sn =

n∑
k=1

⎛⎝ 1

n

n∑
j=1

Ajk

⎞⎠2

=
1

n2

n∑
k=1

n∑
j,j′=1

Ajk Aj′k

=
1

n2

n∑
j,j′=1

(
AA�)

jj′

=
1

n2
1AA� 1�.

It was shown by [6] that Sn converges in distribution under H0 to a random
variable having representation

S =

∫
[0,1]2

{E(u1, u2)}2 dC(u1, u2),

where in terms of a C-Brownian sheet BC on [0, 1]2 and for Ċ1(u1, u2) =
∂C(u1, u2)/∂u1 and Ċ2(u1, u2) = ∂C(u1, u2)/∂u2,

E(u1, u2) = B̃C(u1, u2) + Ċ1(u1, u2) B̃C(u1, 1) + Ċ2(u1, u2) B̃C(1, u2),
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where B̃C(u1, u2) = BC(u1, u2)− BC(1− u1, 1− u2). Letting

B̂C(u1, u2) =
1√
n

n∑
j=1

Δj

{
I

(
Ûj1 ≤ u1, Ûj2 ≤ u2

)
− I

(
Ûj1 > 1− u1, Ûj2 > 1− u2

)}
,

the multiplier version of E is given by

Ê(u1, u2) = B̂C(u1, u2) + Ċ1n(u1, u2) B̂C(u1, 1) + Ċ2n(u1, u2) B̂C(1, u2).

In the last expression,

Ċ1n(u1, u2) =
Cn (u1 + �n, u2)− Cn (u1 − �n, u2)

2 �n

is an estimator of the partial derivative Ċ1 in term of �n ∈ (0, 1/2); Ċ2 is
estimated similarly. Note that as recommended by [6], one uses �n = 3/

√
n

when n = 125, �n = 2/
√
n when n = 250 and �n = 1/

√
n when n = 500

for the simulation results that are reported. The multiplier version of Sn is
given by

Ŝn =

∫
[0,1]2

{
Ê(u1, u2)

}2

dCn(u1, u2) =
1

n

n∑
k=1

{
Ê

(
Ûk1, Ûk2

)}2

.

Now define Ã ∈ R
n×n such that for each j, k ∈ {1, . . . , n},

Ãjk = I

(
Ûj1 ≤ Ûk1, Ûj2 ≤ Ûk2

)
− I

(
Ûj1 > 1− Ûk1, Ûj2 > 1− Ûk2

)
+ Ċ1n

(
Ûk1, Ûk2

){
I

(
Ûj1 ≤ Ûk1

)
− I

(
Ûj1 > 1− Ûk1

)}
+ Ċ2n

(
Ûk1, Ûk2

){
I

(
Ûj2 ≤ Ûk2

)
− I

(
Ûj2 > 1− Ûk2

)}
.

With this notation, one can write

Ŝn =
1

n

n∑
k=1

⎛⎝ 1√
n

n∑
j=1

Δj Ãjk

⎞⎠2

=
1

n2

n∑
j,j′=1

Δj Δj′

(
n∑

k=1

Ãjk Ãj′k

)

=
1

n2

n∑
j,j′=1

Δj Δj′

(
Ã Ã�

)
jj′

=
1

n2
Δ
(
Ã Ã�

)
Δ�.
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