
Electronic Journal of Statistics
Vol. 11 (2017) 1827–1857
ISSN: 1935-7524
DOI: 10.1214/17-EJS1268

Finite sample bounds for expected

number of false rejections under

martingale dependence with

applications to FDR∗

Julia Benditkis and Arnold Janssen

Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
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Abstract: Much effort has been made to improve the famous step up pro-
cedure of Benjamini and Hochberg given by linear critical values iα

n
. It

is pointed out by Gavrilov, Benjamini and Sarkar that step down multi-
ple testing procedures based on the critical values βi = iα

n+1−i(1−α)
still

control the false discovery rate (FDR) at the upper bound α under basic
independence assumptions. Since that result is no longer true for step up
procedures and for step down procedures, if the p-values are dependent, a
big discussion about the corresponding FDR starts in the literature. The
present paper establishes finite sample formulas and bounds for the FDR
and the expected number of false rejections for multiple testing procedures
using critical values βi under martingale and reverse martingale depen-
dence models. It is pointed out that martingale methods are natural tools
for the treatment of local FDR estimators which are closely connected to
the present coefficients βi. The martingale approach also yields new results
and further inside for the special basic independence model.
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1. Introduction

Multiple tests are nowadays well established procedures for judging high dimen-
sional data. The famous Benjamini and Hochberg [2] step up multiple testing
procedure given by linear critical values controls the false discovery rate FDR
for various dependence models. The FDR is the expectation of the ratio of the
number of false rejections and the total number of rejected hypotheses. The
linear step up procedure is frequently applied in practice as an FDR-controlling
procedure. Gavrilov et al. [11] pointed out that linear critical values can be
substituted by

βi =
iα

n+ 1− i(1− α)
, i � n, (1.1)

for step down (SD) procedures and the FDR control (i.e. FDR� α) remains
true for the basic independence model of the underlying p-values. Note that the
present critical values βi are closely related to critical values given by the asymp-
totic optimal rejection curve (i.e., the critical values (1.1) differ from the ones
that are based on the asymptotic optimal rejection curve by additional summand
1 in denominator) which is obtained by Finner et al. [8]. In the asymptotic set
up they derived step up procedures with asymptotic FDR control under various
conditions. However, step up multiple testing procedures given by the βi’s do
not control the FDR by the desired level α at finite sample size, see for instance
Dickhaus [7], Gontscharuk [12].

The intension of the present paper is twofold.

• We like to calculate the FDR of step down and step up procedures more
precisely using martingale and reverse martingale arguments. Here we get
also new results under the basic independence model.

• On the other hand we can extend the results for dependent p-values which
are martingale or reverse martingale dependent. As application finite sam-
ple FDR formulas for step down and step up procedures based on (1.1)
are derived. We refer to the Appendix for a collection of examples of mar-
tingale models.

Sarkar [19] proposed exact formulas for the FDR of step up multiple testing
procedures and for some upper bound of the FDR of step down multiple testing
procedures.

Martingale arguments were earlier used in Storey et al. [23], Pena et al. [17],
Heesen and Janssen [14] for step up and in Benditkis [1] for step down multiple
testing procedures.
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This paper is organized as follows. Below the basic notations are introduced.
Section 2 presents our results for step down procedures. A counterexample,
Example 4, motivates to study specific dependence concepts which allow FDR
control, namely our martingale dependence model. The FDR formula, see (1.7)
below, consists of two terms. In particular, it relies on the expected number of
false rejections which is studied in Sections 2.1 and 2.2. Note that the results of
Lemma 6 motivate naturally the consideration of martingale methods. Section
2.3 is devoted to the FDR control under dependence which extends the results of
Gavrilov et al. [11]. Within the class of step down procedures the first coefficient
β1 is often responsible for the quality of the multiple testing procedure. In
Section 2.4 we propose an improvement of the power of SD procedures due to
an increase of first critical values without a loss of FDR control.

Step up procedures corresponding to the β’s from (1.1) are studied in Sections
4 and 5. We obtain the lower bound for the present FDR which can be greater
than α. A couple of examples for martingale models can be found in Appendix.
The proofs and additional material are collected in the Section 6.

Basics. Let us consider a multiple testing problem, which consists of n null
hypotheses H1, ..., Hn with associated p-values pi, i = 1, ..., n. Assume that all
p-values arise from the same experiment given by one data set, where each pi can
be used for testing the traditional null Hi. The p-values vector p = (p1, ..., pn) ∈
[0, 1]n is a random variable based on an unknown distribution P. Recall that
simultaneous inference can be established by so called multiple testing procedure
φ = φ(p), φ = (φ1, ..., φn) : [0, 1]

n → {0, 1}n, which rejects the null Hi iff, i.e. if
and only if, φi(p) = 1 holds. The set of hypotheses can be divided in the disjoint
union I0

⋃
I1 = {1, ..., n} of unknown portions of true null I0 and false null I1,

respectively. We denote the number of true null by n0 = |I0| and the number of
false ones by n1 = |I1| = n − n0, where n0 > 0 is assumed. Widely used single
threshold multiple testing procedures can be represented as

φτ = (I(p1 � τ), ..., I(pn � τ))

via the indicator function I(·), where τ ∈ [0, 1] is a random critical boundary
variable. Thus all null hypotheses with related p-values that are not larger than
the threshold τ have to be rejected. Let p1:n � p2:n � · · · � pn:n denote the
ordered values of the p-values p.

Definition 1. Let α1 � α2 � · · · � αn be a deterministic sequence of critical
values. Set for convenience max{∅} = 0.

(a) The step down (SD) critical boundary variable is given by

τSD = max{αi : pj:n � αj , for all j � i}. (1.2)

(b) The step up (SU) critical boundary variable is given by

τSU = max{αi : pi:n � αi}. (1.3)

(c) The appertaining multiple testing procedure φSD = φτSD
and φSU = φτSU

are called step down (SD) procedure, step up (SU) procedure, respectively.
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Let F̂n denote the empirical distribution function of the p-values and let

V = V (τ) =
∑
i∈I0

I(pi � τ), S = S(τ) =
∑
i∈I1

I(pi � τ) and R = R(τ) =
n∑

i=1

I(pi �

τ) = nF̂n(τ) be the number V of false rejections w.r.t. τ , the number S of true
rejections and the number R of all rejections, respectively. The False Discovery
Rate (FDR) of a procedure with critical boundary variable τ is defined as

FDR = E

[
V (τ)

R(τ)

]
,

with the convention 0
0 = 0. The FDR is often chosen as an error rate control

criterion. There is another useful equivalent description of step down procedures.

Remark 2. Introduce the random variable

σ := min{αi : pi:n > αi} ∧ αn, with the convention min{∅} = 1, (1.4)

where a ∧ b = min(a, b) denotes the minimum of two real numbers a and b.
Then we have τSD � σ but the step down procedures φSD = φσ coincide and

FDR = E

[
V (τSD)
R(τSD)

]
= E

[
V (σ)
R(σ)

]
holds. The reason for this is that no p-value falls

in the interval (τSD, σ] and R(τSD) = R(σ) is valid.

There is much interest in multiple testing procedures such that the FDR
is controlled by a prespecified acceptable level α ∈ (0, 1), i.e. to bound the
expectation of the portion of false rejections. The well-known so called Benjamini
and Hochberg procedures with linear critical values αi = α i

n lead to the FDR
bound

FDR � α
n0

n

for SD and SU procedures under positive dependence, more precisely under
positive regression dependence on a subset (PRDS). There are several proposals
to exhaust the FDR more accurate by α by an enlarged choice of critical values.
A proper choice for SD procedures are αi

0 < αi � βi =
iα

n+ 1− i(1− α)
, 1 � i � n,

α0 = α1, β0 = β1,

(1.5)

which allow the control FDR � α under the basic independence assumption of
the p-values, see Gavrilov et al. [11]. Note that the first critical value of the
Benjamini and Hochberg procedure α

n is larger than β1 for each α > 0 and we

have βi >
iα
n for α < 0.5 and i � 2. For i = 1, ..., n, βi = g−1

α

(
i
n

)
are inverse

values of

gα(t) =
n+ 1

n
fα(t) =

n+ 1

n

t

t(1− α) + α
, (1.6)

where gα is related to the asymptotic optimal rejection curve fα, see Finner et
al. [8]. It is known that SU procedures given by βi do not control the FDR for
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the independence model in general, see Gontscharuk [12], Heesen and Janssen
[14]. If the p-values are dependent then the FDR control of the SD procedures
based on βi, i � n, cannot be guaranteed in general (see Example 4 of Section
2).

Gavrilov et al. [11], Theorem 1A, propose to reduce the critical values βi in
order to get FDR control of SD procedures under positive regression dependence
on a subset. Unfortunately, the procedure based on these new reduced critical
values may be too conservative. Below we keep the critical values αi, i � n, of
(1.5) and introduce dependence assumptions for the p-values which insure the
FDR-control for the underlying SD procedures.

The main idea of this paper can be outlined as follows. The FDR of SD and
SU procedures based on the critical values βi equals

FDR =
α

n+ 1
E

[
V

βR

]
+

1− α

n+ 1
E [V ] , (1.7)

for more details we refer to Benditkis [1]. A monotonicity argument implies the
next Lemma.

Lemma 3. Consider an SD or SU procedure with critical values (αi)i given by
(1.5). Then

(a) FDR � α
n+1E

[
V
βR

]
+ 1−α

n+1E [V ].

(b) The conditions

E

[
V

βR

]
� n0 and (1.8)

E [V ] � α

1− α
(n1 + 1) (1.9)

ensure the FDR control, i.e. FDR� α.

Whereas the FDR is hard to bound under dependence, the inequality (1.8)
is known under PRDS and equality holds under reverse martingale structure
(including the basic independence model), see Heesen and Janssen [14] for SU
procedure. Then it remains to bound the expected number of false rejections
E [V ], which is at least possible for SD procedures under certain martingale
dependence assumptions. In the following we always use a general assumption,
that the p-values for the true null (Hi)i∈I0 fulfil

E

[∑
i∈I0

I(pi ∈ [0, t])

]
� n0t for all t ∈ [0, 1), (1.10)

which can be interpreted as “stochastically larger” condition compared with the
uniform distribution in the mean for I0. Thereby, I(·) is the indicator function.

Now, we define the basic independence assumptions (BIA) that are often used
in the FDR-control-framework.
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(BIA) We say that p-values fulfil the basic independence model if the vectors
of p-values (pi)i∈I0

and (pi)i∈I1
are independent, and each dependence

structure is allowed for the “false” p-values, i.e. for (pi)i∈I1
. Under true

null hypotheses the p-values (pi)i∈I0
are independent and stochastically

larger (or equal) compared to the uniform distribution on [0, 1], i.e.,
P (pi � x) � x for all x ∈ [0, 1] and i ∈ I0.
If in addition all p-values are i.i.d. uniformly distributed on [0, 1] for
i ∈ I0 then we talk about the BIA model with uniform true p-values.

2. Results for step down procedures

In this section we consider a step down procedure with critical values βi, i � n,
from (1.1). It is well known that this procedure controls the FDR if the p-
values fulfil the basic independence assumptions (BIA) (cf. Gavrilov et al. [11]).
However, in practice the independence of the single tests corresponding to the
present p-values are rare.

For general dependent p-values the FDR of the SD procedure may exceed the
level α. The next counter example motivates the consideration of special kinds
of dependence in order to establish FDR control.

Example 4. For n = 3, n0 = 2, n1 = 1, I0 = {2, 3} and α = 1
4 consider

the SD procedure with critical values βi = iα
n+1−i(1−α) . Consider the vector of

p-values (0, U1, U2) with true p-values defined as follows

U1 is uniformly distributed on (0, 1).

U2 = (U1 + β2) I (U1 � β2) + (U1 − β2) I (U1 ∈ (β2, 2β2)) + U1I (U1 � 2β2) .

For such p-values we get

FDR =
2

3
P (U1 � 2β2) =

4β2

3
=

4

15
>

1

4
.

We will start with the expected number of false rejections (ENFR), which
was earlier studied by Finner and Roters [10] and Scheer [20].

2.1. Control of the expected number of false rejections E [V ]

The present martingale approach relies on the empirical distribution function
F̂n of the p-values and on the adapted stochastic process

t �→ α̂n(t) =
t

1− t

1− F̂n(t)

F̂n(t) +
1
n

, t ∈ T,w.r.t. the filtration

FT
t = σ{I(pi � s), s � t, s, i � n}, t ∈ T, of the p-values.

(2.1)

Thereby, T ⊂ [0, 1) is a parameter space with 0 ∈ T. The value α̂(t) is frequently
used as a conservative estimator for the FDR on the constant critical boundary
value τ = t. Storey et al. [22] use a similar estimator for the FDR(t) of SU
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procedures if the p-values are independent. A similar estimator is also used by
Benjamini, Krieger and Yekutieli [3], Heesen and Janssen [15] and Heesen [13].
It is easy to see that for βi, i � n, we get from (1.5)

α̂n(βi) � α iff R(βi) � i− 1, (2.2)

α̂n(βi) = α iff R(βi) = i− 1, (2.3)

since

α̂n(βi) = α

(
i

n+ 1− i

)(
n−R(βi)

R(βi) + 1

)
.

The consequences of these useful relations are summarized.

Lemma 5. Consider the critical values (βi)i�n and the critical boundary value
σ from (1.4). Then we have

(a) σ = min{βi : α̂n(βi) � α, i � n} ∧ βn.
(b) Moreover τSD � σ and α̂n(σ) = αI(R(σ) < n) hold.
(c) The random variable σ is a stopping time w.r.t. the filtration

(
FT

t

)
t∈T

of

the p-values with time domain T = {0, β1, ..., βn}.
It is quite obvious that the maximum coefficients βi, i � n, of the α’s in (1.5)

and the extreme p-values pi = 0, i ∈ I1, for all false null are least favourable for
bounding E [V ] . First, we focus on the βi−based SD procedure. An important
role plays the process

Mt = MI0(t) =
∑
i∈I0

I(pi � t)− t

1− t
, t ∈ T. (2.4)

Lemma 6. Let pi = 0 for all i ∈ I1. For the critical values (βi)i�n from
(1.1) we have

E [V (τSD)] � α

1− α
(n1 + 1) iff E [MI0(σ)] � α(n+ 1)P (R(τSD) = n).

The probability P (R(τSD) = n) is typically very small. Note that we will
show below by martingale arguments that E [MI0(τSD)] � 0, which implies the
crucial condition (1.9).

Next, we introduce a dependence assumption which allows the control of
expected number of false rejection of the SD procedure with critical values
βi, i � n.

(D1) Let T ⊂ [0, 1) be a set with 0 ∈ T . We say that p-values p1, ..., pn are
FT = (Ft)t∈T − (super-) martingale dependent on a subset J if the

stochastic process M(t) = MJ(t) =
∑
i∈J

(
I(pi�t)−t

1−t

)
, t ∈ T, is a FT−

(super-)martingale.

Note that the super-martingale model (D1) includes BIA if J = I0. This is well
known, see Shorack and Wellner [21] (p. 133), Benditkis [1]. Some examples of
martingale dependent random variables can be found in a separate Appendix.
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Recall that the general condition (1.10) implies E [MI0(0)] = 0, which is
always assumed.

Now, we formulate the main result of this subsection under the super-martin-
gale assumption, which will be applied to our equality (1.7).

Theorem 7. Consider the SD multiple testing procedure with critical values βi,
i � n, given in (1.5). Suppose that the super-martingale assumption (D1) holds
with J = I0 and T = {0, β1, ..., βn}.We get

E [V (τSD)] � α

1− α
(E [S(τSD)] + 1) � α

1− α
(n1 + 1).

The next remark shows that under (D1) we can assume that the p-values
which belong to true null are stochastically larger compared with the uniform
distribution on (0, 1) (cf. Heesen and Janssen [14], Benditkis [1]). Let U(0, 1)
denote the uniform distribution on the unit interval.

Remark 8. Let (pi)i�n fulfil the martingale assumption (D1) for J = I0 on
T ⊂ [0, 1) and let π : I0 → I0 be some random permutation of the index-set I0
which is independent of (pi)i�n.

(a) If

MI0(t) =
∑
i∈I0

I(pi � t)− t

1− t
is a FT −martingale,

then the random variable Yi = pπ(i), i ∈ I0, is U(0, 1)-distributed.
(b) If (pi)i∈I0

fulfil the super-martingale assumption (D1) for J = I0 on T ⊂
[0, 1], then Yi, i ∈ I0, are stochastically larger compared with U(0, 1).

(c) As long as the boundary critical value τ only depends on the order statis-
tics, the multiple testing procedure φτ remains unchanged if (pi)i�n is

substituted by
(
(pπ(i))i∈I0 , (pi)i∈I1

)
.

(d) It can be shown that under (D1) the (super-)martingale assumption also
holds under the filtration given by the exchangeable

(
(Yi)i∈I0

, (pi)i∈I1

)
.

Note that the exchangeability of the pπ(i), i ∈ I0, is only needed in the
proofs in connection with the PRDS assumption introduced in Section 2.3.

Proof of (a) and (b). Firstly, note that the random variables Yi, i ∈ I0 are ex-
changeable, since σ is an independent uniformly distributed permutation. This
implies

E [I(Yi � t)] = E

⎡
⎣ 1

n0

∑
j∈I0

I(Yj � t)

⎤
⎦ = E

⎡
⎣ 1

n0

∑
j∈I0

I(pj � t)

⎤
⎦ . (2.5)

Moreover, we get

E

⎡
⎣ 1

n0

∑
j∈I0

I(Yj � t)

⎤
⎦ =

(1− t)

n0
E [MI0(t)] + t � t. (2.6)



Finite sample bounds for ENFR with applications to FDR 1835

2.2. Consequences under Dirac-Martingale configurations

In this subsection we consider the following assumptions

(i) Martingale dependence assumption (D1) holds with J = I0 and T =
{0, β1, ..., βn},

(ii) pi = 0 a.s. for all i ∈ I1.

Structures that fulfil the assumptions (i) and (ii) are called Dirac martingale
configurations DM(n1). The part (a) of the next lemma proposes exact formulas
for ENFR for step down procedures with critical values βi. Part (b) derives a
lower bound for ENFR if the (pi)i∈I1 are by accident uniformly distributed
which is another example for extreme ordering compared with (ii).

It is quite obvious that the Dirac-Martingale configuration is the least
favourable for the ENFR of under (D1). Note that in addition the Dirac-uniform
configuration is least favourable for the FDR of SU procedure given by βi (1.5)
if n0 is fixed (for instance Benjamini and Yekutielli [5]).

Lemma 9 (Some exact formulas for the ENFR). Suppose that the martingale
assumption (i) hold. Let τSD be the critical boundary value, which corresponds
to critical values βi.
(a) Assume additionally (ii) then

E1 := EDM(n1) [V (τSD)] =
α

1− α
(n1 +1)− α

1− α
(n+1)PDM(n1)(V (τSD)=n0).

(2.7)

(b) Let (p1, ..., pn) be exchangeable and martingale dependent on I1,i.e., MI1(t) =(
S(t)−n1t

1−t

)
t∈T

is an FT−martingale. Then, each pi, i � n, is uniformly dis-

tributed and

E2 := EU(0,1) [V (τSD)] =
α

1− α

n0

n
− α

1− α

(n+ 1)n0

n
PU(0,1)(R(τSD) = n).

(2.8)

(c) If P (pi � t) � t for all i ∈ I1 and all t ∈ [0, 1] then

E2 � E [V (τSD)] � E1.

2.3. Control of the FDR

As mentioned in Lemma 3 the control (1.9) of the ENFR is not enough for the

FDR control. We have to bound E

[
V (τSD)
τSD

]
by n0. To do this we need further

assumptions.

(D2) The p-values are said to be positive regression dependent on a subset J
(PRDS) if

x �→ E [f(p1, ..., pn) | pi = x]
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is increasing in x for each i ∈ J and any coordinate-wise increasing, in-
tegrable function f : [0, 1]n → R (cf. Finner et al. [9], Benjamini and
Yekutielli [5].)

Remark 10. The assumption (D2) implies that

x �→ E [g(p1, ..., pn) | pi � x]

is increasing in x for each i ∈ J and any coordinate-wise increasing, integrable
function g : [0, 1]n → R (see Dickhaus [7], Benditkis [1]).

The dependence assumption (D2) is well-known in the FDR-framework. Ben-
jamini and Yekutielli [5] proved that the Benjamini and Hochberg linear step up
procedure controls the FDR under such kind of positive dependence. Gavrilov et
al. [11] have shown that in this case the FDR of the step down procedure using
critical values βi, i � n, may exceed the pre-chosen level α. Theorem 11 proves
the FDR control of that SD procedure under the additional super-martingale
assumption. We collected some examples of dependence structures satisfying the
both conditions in Appendix. For an example of dependence structure which is
PRDS and not martingale dependent we refer to Gavrilov et al. [11] (Subsection
4.1).

Theorem 11. Let (pi)i∈I fulfil the super-martingale assumption (D1) with T =
{0, β1, ..., βm} and the PRDS assumption (D2) on I0. Then we have for βi−based
SD procedure

FDRτSD
= E

[
V (τSD)

R(τSD)

]
� α.

The next lemma is a technical tool for the proof of Theorem 11.

Lemma 12. Let (pi)i�n fulfil (D2) on I0. For the SD procedure based on the
critical values βi, i � n, we have

E

[
V (τSD)

τSD

]
� n0.

Remark 13. (a) Lemma 12 remains true for any random variable τ = τ(p),
which is a non-increasing function of pi, i ∈ I0, and has a finite range of
values {a1, ..., am}, 0 < a1 � a2 � ... � am for some m ∈ N. That means
that

E

[
V (τ)

τ

]
� n0

can be always bounded under PRDS. The exact structure of the random
variable τ is not important. The inequality remains true for SD as well
for SU procedures.

(b) Theorem 11 remains true for any additional FT̃− stopping time τ̃ with

T̃ = {0, β̃1, ..., β̃m}, m ∈ N, 0 � β̃1 � ... � β̃m < 1, which is a non-
increasing function of pi, i ∈ I0 if τ̃ � σ holds.
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The next theorem shows that we can relinquish the PRDS assumption (D2)
under some modification of the assumption (D1).

Theorem 14. Let MI0 be a martingale w.r.t. to the new filtration Ff
T =

σ (I(pi � s), pj , s � t, s ∈ T, i ∈ I0, j ∈ I1) , t ∈ T, with T = {0, β1, ..., βn}. Then,
we get

E

[
V (τSD)

R(τSD)

]
� α

1− α
−

(
E

[
V (τSD)

S(τSD) + 1

]
− E

[
V (τSD)

R(τSD)

])
� α

1− α

for the SD procedure based on βi, i � n.

Observe that the filtrations FT and Ff
T are different. The martingale con-

dition w.r.t. Ff
T holds if MI0 is a martingale conditioned under the outcomes

(pi)i∈I1
, which is weaker than BIA.

Although the presented bound α
1−α is slightly larger than α, the inequality can

get a gain if the ratio V (τSD)
S(τSD)+1 is compared with the false discovery proportion

V (τSD)
R(τSD) .

2.4. Improvement of the power

In this subsection we concentrate on the power of FDR-controlling procedures,

which can be characterized by the value E[S(τ)]
n1

for n1 > 0. Let us consider a
SD procedure with arbitrary critical values αi, i � n, which controls the FDR.
Then we can increase the corresponding critical boundary value τSD and improve
the power of this procedure without loss of the FDR control under the PRDS
assumption. Note that the result seems to be new also for the BIA model.

Lemma 15. Assume the following:

1. the random variables (pi)i∈{1,...,n} satisfy (D2) on I0,

2. (pi)i∈I0
and (pi)i∈I1

are stochastically independent,
3. let each pi, i ∈ I0 be stochastically larger than U(0, 1),
4. the SD procedure using critical values αi, i � n, controls the FDR at level

α under 1.-3.

Then a SD procedure using critical values ci = max(αi, 1 − (1 − α)
1
n ), i � n,

controls the FDR at level α.

Remark 16. (a) The critical value 1− (1−α)
1
n is the smallest critical value

of the SD procedure which was proposed by Benjamini and Liu [4]. The
procedure of Benjamini and Liu controls the FDR under BIA, see Ben-
jamini and Liu [4], and under PRDS assumption, see Sarkar [18].

(b) Due to Lemma 15 we can increase the first critical value of the SD proce-
dure based on the critical values αi, i � n, from (1.5) in order to improve
the power without loss of the FDR control.

(c) The critical values ci = max(βi, 1 − (1 − α)
1
n ) with βi, i � n from (1.5)

are already larger than the critical values proposed by Benjamini and Liu
[4].
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(d) More general results about increased critical values can be found in Ben-
ditkis [1], Chap.4.

To prove Lemma 15 we need the following technical result, that shows some
similarities of PRDS structure and independence.

Lemma 17. Let (bi)i∈I0 be some set of real numbers with bi ∈ [0, 1], i ∈ I0. If
p-values (pi)i�n are PRDS on I0 then

P

( ⋂
i∈I0

{pi > bi}
)

�
∏
i∈I0

P (pi > bi) . (2.9)

If “false” p-values f = (f1, .., fn1) = (pi)i∈I1
are specified then we denote the

conditional expectation by Ef [·] = E [·|(pi)i∈I1 ] .

3. Simulation example

We conducted a simulation study to investigate the FDR level under martingale
dependence of adaptive procedures numerically. Therefore we compare the SD
procedure based on (1.5) with the enlarged critical values by Lemma 15, the
linear Benjamini Hochberg SD and SU procedures, that use the critical values
iα
n , i = 1, ..., n, and the adaptive λ−based Storey’s SU procedure, based on the

critical values λ ∧ i
n̂0(λ)

α with n̂0(λ) = n
1−F̂n(λ)+

1
n

1−λ . The number of tests is set

to n = 100, 500 and 800. The fraction of the true null hypotheses π0 = n0/n
is assumed to be π0 = 1/4, 1/2, 3/4 and (n − 1)/n, respectively, the tuning
parameter λ = 0.8 and the FDR-controlling level α = 0.15. Our computations
are based on L = 10000 replications. We investigate the following configurations,
which is MD and PRDS at the same time.

The random variables X1, ..., Xn are independent, 2-parameter exponentially
distributed with scale parameter λ̃ = 1 and location parameter ϑi � 5, i =
1, ..., n. X0 is independent from each Xi, i = 1, ..., n and X0 is exponential
distributed with scale parameter λ̃ = 1 and location parameter ϑ0 = 5. We
consider the test problem

Hi : ϑi = 5 vs. Hc
i : ϑi < 5. (3.1)

The location parameter ϑi, i ∈ I is generated as

ϑi = 5I(i ∈ I0) + ζiI(i ∈ I1), i ∈ I, with ζi i.i.d. U(0, 0.5).

The p-values are generated in the following way. We define the test statistics

Di = X0 ∧Xi,

and the corresponding p-values by pi = GH0(Di). Thereby, GH0 is the distri-
bution function of the test statistics Di, i = 1, ..., n, under the null hypotheses.
We have

GH0(t) = PH0(X0 ∧Xi � t)



Finite sample bounds for ENFR with applications to FDR 1839

= 1− PH0(Xi > t)P (X0 > t)

= 1− (I(t < 5) + I(5 � t) exp(−(t− 5)))
2

= I(5 � t)(1− exp(−2(t− 5))).

We summarize the results of the aforementioned simulation in the following
table for α = 0.15.

Table 1

Comparison of the FDR for the βi-based-SD procedure with (1.5) (βi-SD), the adaptive
Storeys SU procedure (StSU),the linear SD procedure (BHsd) and the linear SU procedure

(BHsu) under the martingale dependence.

n π0 βi-SD BHsd BHsu StSu

n = 100 99/100 0.0734 0, 0728 0.1417 0.39
3/4 0.093 0.071 0.1148 0.306
1/2 0.103 0.057 0.074 0.212
1/4 0.102 0.033 0.037 0.124

n = 500 499/500 0.0782 0.0781 0.152 0.404
3/4 0.091 0.069 0.108 0.302
1/2 0.105 0.058 0.079 0.216
1/4 0.104 0.033 0.037 0.125

n = 800 799/800 0.074 0.073 0.145 0.395
3/4 0.093 0.072 0.11 0.3
1/2 0.104 0.057 0.074 0.207
1/4 0.103 0.033 0.037 0.125

As we can see from Table 1 the linear SU exhausts the level α = 0.15 well
if almost all hypotheses are true, as in the BIA case. If the portion π0 of the
true nulls is smaller than 3

4 , the βi-SD seems to exhaust the level α better than
the BH SU although a SD procedures are compared with SU ones. The FDR
of the linear SD is smaller than the FDR of the βi-SD for all values of n0(n).
The FDR of the adaptive λ−based procedure of Storey lies above the level α in
most cases, hence, this procedure can not be used for such kind of dependence.
Of course it is known that Storey’s procedure is not robust under dependence.
Further simulations can be found in Benditkis [1].

Remark 18. We can see from Table 1 that the FDR of the βi-SD increases
when π0 decreases down to 1

2 . This phenomenon does not seem to be unusual
for this SD procedure under positive dependence, see for example Gavrilov et al.
[11], p.627, Benditkis [1], pp. 95-97. Note that for π0 = 99

100 the influence of
pi, i ∈ H1, is small which causes relatively small value of R and βR is close
to the stopping rule of the BH SD procedure. However, as π0 decreases down to
1
2 the positive dependence between pi, i ∈ H0, and pi, i ∈ H1, becomes more
influential. We think that stronger positive dependence is here responsible for
the present effect.

4. Results for SU Procedures

It is well known that the FDR of the SU procedures with critical values βi, i � n,
see (1.7), may exceed the prespecified level α. In particular, by Lemma 3.25 of



1840 J. Benditkis and A. Janssen

Gontscharuk [12] the worst case FDR is greater than α in the limit n → ∞. The
reason for this is that E [V (τSU )] may exceed the bound α

1−α (n1+1) under some
Dirac uniform configurations, i.e. there exist values of n0, such that E [V (τSU )] �
α

1−α (n1 + 1), if pi = 0, for all i ∈ I1 and pj , j ∈ I0 are i.i.d. uniformly U(0, 1)
distributed. Below the critical values βi are slightly modified in order to get finite
sample FDR control. Main tools for the proof are reverse martingale arguments
which were already applied by Heesen and Janssen [14] for step up procedures,
which extend results for BIA models. Introduce the reverse filtration

GT
t = σ{(I(pi � s), 1 � i � n, s � t), s, t ∈ T}

given by the p-values.

(R) Let T ⊂ (0, 1] be a set with 1 ∈ T . We say that p-values p1, ..., pn are

GT
t −reverse super-martingale dependent if V (t)

t =

∑
i∈I0

I(pi�t)

t is a
(
GT
t

)
t∈T

-
reverse super-martingale.

Lemma 19. Consider R-super-martingale dependent p-values for an index set
1 ∈ T ⊂ [δ, 1] for some δ > 0. Let τ be any (GT

t )t∈T reverse stopping time with
values τ in T. Then we have

E

[
V (τ)

τ

]
� n0 (4.1)

with equality “=” if the reverse super-martingale is a reverse-martingale.

Remark 20. The inequality (4.1) is also fulfilled under the so called ”depen-
dency control condition”, which was proposed by Blanchard and Roquain [6].
Note that the assumption (R) and the dependency control condition do not im-
ply each other.

Lemma 19 applies to various SU procedures.

Example 21. Consider critical values 0 < a1 � a2 � ... � an < 1 and an index
set T , {a1, a2, ..., an, 1} ⊂ T ⊂ [δ, 1] for some constant 0 < δ � a1.

(a) (SU procedures given by (ai)i.) The variable

τ = max(ai : pi:n � ai) ∨ a1 (4.2)

is a reverse stopping time with τSU ∨ a1 = τ, R(τSU ) = R(τ) and also
V (τSU ) = 0 if τSU �= τ. Thus

E

[
V (τSU )

τSU

]
= E

[
V (τ)

τ

]
� n0. (4.3)

(b) (Truncation of the SU procedure given by (a).) Assume the R-super-martin-
gale condition for T = [η, 1] and 0 < η � a1. Imagine that the statistician
likes to reject

– at most k hypotheses, 1 � k � n, but all Hi with p-values pi � η.
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– Introduce τ0 = max{t ∈ [0, 1] : F̂n(t) � k
n} and the reverse stopping

time

τ̃ = (τ0 ∧ τSU ) ∨ η. (4.4)

Then, the inequality (4.3) holds when τ is replaced by τ̃ . Obviously,
also E [V (τ̃)] � E [V (τ)] follows. In case ai = αi, see (1.5), the condi-
tion E [V (τ)] � α

1−α (n1+1) thus, would imply control for FDRSU (τ)
as well as for FDRSU (τ̃).

Below a finite sample exact SU procedure under the BIA model is presented,
which can be established by numerical methods or Monte Carlo tools. Consider
new coefficients

ai =
iα

n+ 1− iδ
, i � n, 0 � δ < 1− α. (4.5)

Let PBI(n) denote all distributions of p-values at sample size n under the basic
independence BIA regime. Then, the worst case FDR of the SU procedure given
by (4.5) under the parameters (n, δ) is

sup
PBI(n)

FDR(n, δ) = max
0�n1<n

FDRDU(n1)(n, δ) (4.6)

given by a Dirac uniform configuration, where FDRDU(n1)(n, δ) denotes the
step up FDR under DU(n1) with uniformly distributed p-values pi for i ∈ I0.
Recall from Heesen and Janssen [14] that there exists a unique parameter κn =
δ ∈ (0, 1− α) for the coefficients (4.5) with

sup
PBI(n)

FDR(n, κn) = α (4.7)

with larger (smaller) worst case FDR for δ > κn (δ < κn, respectively). The
solution κn can be found by checking the maximum (4.6) of a finite number of
constellations.

The next theorem introduces the asymptotics of the present SU procedures
under the basic independence model.

Theorem 22. Consider a sequence of SU procedures with critical values ai =
ai(δn), 1 � i � n, given by (4.5) with 0 � δn < 1− α.

(a) Under the condition lim sup
n→∞

δn < 1− α we have

lim sup
n→∞

sup
PBI(n)

FDR(n, δn) = α. (4.8)

(b) Assume that δn → δ ∈ (0, 1 − α) and let the portion n0

n � c be limited by
some constant α < c < 1. Then

lim sup
n→∞

sup
PBI(n), n0�cn

FDR(n, δn) =
cx(δ)

1− c+ cx(δ)
< α, (4.9)

where x(δ) =
((cα+δ(1−c)−1)2−4(1−c)cαδ)

1/2−cα−δ(1−c)+1

2cδ .
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Remark 23. Theorem 22 together with the finite sample adjusted SU procedures
at parameter κn, see (4.7), can be viewed as a finite sample contribution to the
program of Finner et al. [8], who got the asymptotically optimal rejection curve
for SU procedures.

5. Finite sample results for SU procedures using critical values of
Gavrilov et al.

Consider below a SU procedure using critical values βi =
iα

n+1−i(1−α) , i � n. As

mentioned above, this SU procedure may exceed the FDR level α under some
Dirac uniform configurations (cf. Gontscharuk [12], Heesen and Janssen [14]).

Fig 1. The FDR under Dirac uniform configuration, as function of n0, 1 � n0 � n, of SU
(blue line), SD (green line) and SD with improved by Lemma 15 first critical value (magenta
line) for Dirac uniform configuration of the procedures based on the set of critical values
βi, i � n with n = 50, α = 0.1.

Remark 24. Note that Figure 1 relies on the exact formula that is based on
Bolshev’s recursion (Shorack and Wellner [21]) and Monte Carlo simulations
are not required. We refer to Gontscharuk ([12], p.44) for more details.

As we can see from the Figure 1, the FDR of the SU procedure may be larger
than prechosen level α in contrast to the SD procedure based on the same critical
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values βi, i � n. The next theorem gives an explanation in terms of the ENFR.
The range n0 ∈ [10, 50] covers the most important region where the inequality
of the Theorem 25 works.

Theorem 25. Let (pi)i∈I0 fulfil the reverse martingale dependence assumption

(R) and pj = 0 whenever j ∈ I1. For f(n) = 2α(n+1)2

n+3 we get for SU procedure
based on the critical values (1.1)

(a) E [V (τSU )] � α
1−α (n1 + 1) for all n0 � f(n),

(b) FDRτSU
� α for all n0 � f(n).

Moreover, we have “>” in (a) and (b) if n0 > f(n).

In the concrete situation of Figure 1 we observe f(50) = 9.8, which is visible
in the first graphic.

Remark 26. As supplement the following lower FDRτSU
bound can obtained

for small n0 which is not covered by Theorem 25. Under the Dirac uniform
assumptions we have

n0

n

(
1

1 + 1
α

(
n0

n (1− α) + 1
n

)) � FDRτSU
� n0

n
,

where n0

n is a universal upper FDR bound. Note that for large n and n0 << n the

value
(
n0

n

)−1
FDR is close to 1 which is here much higher than for the standard

BH procedures, where the ration is just α. We obtain that the slope at 0 becomes
maximal as n → ∞.

Proof of Remark 26. The upper bound holds since V �→ V
n1+V � n0

n is increas-
ing. The lower bound is given by the inequality E [V ] � n0βn1 and (1.7).

6. The proofs and technical results

The proof of Lemma 3 is obvious.

Proof of Lemma 5. (a) Firstly, consider the case {βi : pi:n > βi, i � n} �= ∅
and define j∗ = min{i : pi:n > βi, i � n}. Then, we get σ = βj∗ due to the
definition of σ. This implies

βj∗ < pj∗:n and βi � pi:n for all i � j∗ − 1.

Consequently we get

pj∗−1 � βj∗−1 < βj∗ < pj∗:n,

which implies R(βj∗−1) = R(βj∗) = j∗ − 1. Due to (2.3) we get

j∗ = min{i : α̂n(βi) = α, i � n},
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which completes the proof for this case. The case {βi : pi:n > βi, i � n} = ∅ is
obvious since α̂(t) = 0 if F̂n(t) = 1.

The first statement of (b) is obvious and coincides with Remark 2. If there is
any index i � n with R(βi) = i− 1, then α̂n(σ) = α due to (2.2) and (a).
Otherwise we have α̂n(βi) < α for all i � n and R(σ) = R(βn) = n holds. This
implies α̂n(σ) = 0. Consequently, we get α̂n(σ) = αI(R(σ) < n).

The part (c) is obvious.

Since τSD is not a stopping time w.r.t. FT we will turn to the critical bound-
ary σ in order to apply Lemma 5.

Proof of Lemma 6 and Theorem 7. Firstly, note that we have V (σ) = V (τSD),
as well as S(σ) = S(τSD). Due to Lemma 5 (b) we have α̂n(σ) = αI(R(σ) < n).
Further, we obtain

(1− α̂n(σ))(R(σ) + 1) = MI0(σ) +
S(σ)− n1σ

1− σ
+ 1 (6.1)

by (2.1) and (2.4) which is a fundamental equation connection between α̂(·) and
MI0(·).

In case S(σ) = n1 of Lemma 6 we have

(1− α)V (σ) = MI0(σ) + α(n1 + 1)− α(n+ 1)I(V (σ) = n0), (6.2)

which implies the equivalence in Lemma 6.
Under the conditions of Theorem 7 we have E [MI0(σ)] � 0 by the optional

sampling Theorem of stopped super-martingales. Thus, the fact that we have
S(σ)−n1σ

1−σ � S(σ) implies

(1− α)E [V (τSD)] = (1− α)E [V (σ)] � E [MI0(σ)] + αE [S(σ) + 1] � α(n1 + 1)
(6.3)

due to (6.1) and Remark 2.

Proof of Lemma 9. (a) Consider again the equality (6.2). If expectations are
taken, the optional sampling theorem applies to MI0(σ), which proves the result
by Lemma 5 (a).

(b) Analogous to the case (a) we have

(1− α)(V (σ) + S(σ) + 1) + α(n+ 1)I(R(σ) = n) = MI0(σ) +MI1(σ) + 1,
(6.4)

thereby MI1(t) =

∑
i∈I1

I(pi�t)−n1t

1−t is a FT
t −martingale. Equality (6.4) implies

(1− α)E [V (σ) + S(σ)] = α− α(n+ 1)P (R(σ) = n) (6.5)

by taking the expectation E and applying the Optional Sampling Theorem.
The equality E [S(σ)] = n1

n0
E [V (σ)] (which follows from the assumption that
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all p-values are identically distributed) completes the proof of part (b) of this
lemma.

(c) The proof follows immediately from the observation that under martin-
gale dependence the critical boundary value τSD, and, consequently, V (τSD),
becomes maximal under assumptions of part (a) and minimal under assumptions
of part (b).

Remark 27. 1. The proof of the next Lemma 12 uses the technique which
was proposed by Finner and Roters [9] for the proof of FDR-control of
Benjamini and Hochberg procedure under PRDS.

2. As long as we are concerned with the super-martingale assumption (D1) we
may assume w.l.o.g. that (pi)i∈I0

are identically distributed and stochasti-
cally larger than U(0, 1), c.f. Remark 8. These technical tools are only used
for the subsequent proofs of Sections 2.2 - 2.4 in connection with PRDS.
The reference to Remark 8 is not cited again in each step of the proofs.

Proof of Lemma 12. Let us define β0 = 0 for technical reasons and denote
(Uj)j�n0 := (pi)i∈I0 . Firstly, note that τSD = βR holds obviously. Thereby,
R = R(τSD) is the number of rejections of the SD procedure with deterministic
critical values βi, i � n. We obtain the following sequence of (in)equalities:

E

[
V (τSD)

τSD

]
=

n0∑
j=1

E

[
I(Uj � βR)

βR

]
(6.6)

=

n0∑
j=1

n∑
i=1

E

[
I(Uj � βi)

βi
I(βR = βi)

]
(6.7)

=

n0∑
j=1

n∑
i=1

E

[
I(Uj � βi)

βi
(I(βR � βi)− I(βR � βi−1))

]
(6.8)

=

n0∑
j=1

n∑
i=1

P (Uj � βi)

βi
E

[
I(Uj � βi) (I(βR � βi)− I(βR � βi−1))

P (Uj � βi)

]
(6.9)

�
n0∑
j=1

n∑
i=1

(E [I(βR(p) � βi)|Uj � βi]− E [I(βR(p) � βi−1)|Uj � βi]) (6.10)

�
n0∑
j=1

n∑
i=1

(E [I(βR � βi)|Uj � βi]− E [I(βR � βi−1)|Uj � βi−1]) (6.11)

=

n0∑
j=1

E [I(βR � βn)|Uj � βn] = n0. (6.12)

The inequality in (6.10) is valid since U1, ..., Un0 are stochastically greater than
U(0, 1). Obviously, the inequality in (6.11) holds because the present function
x �→ I(βR(p) � βi−1 | Ui � x) is increasing in x for all i ∈ {1, ..., n0} and since
U1, ..., Un0 are assumed to be PRDS. Consequently, using the telescoping sum
we obtain the first equality in (6.12). The proof is completed because βR(p) � βn

by definition of βR = τSD.
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Proof of Theorem 11. Combining Lemma 3, Theorem 7 and Lemma 12 yields
the statement.

To prove Theorem 14 we need the following technical result. For the sake of
simplicity we use the designation M = MI0 .

Lemma 28. Under the assumptions of Theorem 14

E

[
M(σ)

S(σ) + 1

]
� 0.

Proof of Lemma 28. First, note that the process βi �→ S(βi) is always Ff
T -

measurable. If we put M = MI0 then

E

[
M(σ)

S(σ) + 1

]
= E

[
n∑

i=1

M(βi)

S(βi) + 1
I(σ = βi)

]

= E

[
n∑

i=1

M(βi)

S(βi) + 1
(I(σ � βi)− I(σ � βi−1))

]

=

n∑
i=1

(
E

[
M(βi)

S(βi) + 1
I(σ � βi)

]
− E

[
E

[
M(βi)

S(βi) + 1
I(σ � βi−1)|Ff

βi−1

]])
.

(6.13)

Since σ is a Ff
T -stopping time, S(βi) is a measurable w.r.t. Ff

βi−1
and using

martingale property E

[
M(βi)|Ff

βi−1

]
= M(βi−1) we get

E

[
E

[
M(βi)

S(βi) + 1
I(σ � βi−1)|Ff

βi−1

]]
= E

[
M(βi−1)

S(βi) + 1
I(σ � βi−1)

]
.

Define β0 = 0. Now, we can continue the chain of equalities (6.13) as follows.

n∑
i=1

(
E

[
M(βi)

S(βi) + 1
I(σ � βi)

]
− E

[
M(βi−1)

S(βi−1) + 1
I(σ � βi−1)

])

+

n∑
i=1

(
E

[
M(βi−1)

S(βi−1) + 1
I(σ � βi−1)

]
− E

[
M(βi−1)

S(βi) + 1
I(σ � βi−1)

]) (6.14)

=

n∑
i=1

(
E

[
S(βi)− S(βi−1)

(S(βi−1) + 1)(S(βi + 1))
Ef [M(βi−1)I(σ � βi−1))]

])
(6.15)

because the first term in (6.14) is equal to zero due to the telescoping sum since
E [M(βn)] = 0. Now, we will show that

E [M(βi−1)I(σ � βi−1))] � 0 (6.16)

for all i � n. Indeed, we have

E [M(βi−1)I(σ � βi−1))] = −E [M(βi−1)I(σ > βi−1))] . (6.17)
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Further, by the definition of σ we know that α̂n(t) � α for all t � σ, t ∈ T .

Hence, due to (2.2) we get I(σ > βi−1)) =
i−1∏
j=0

I (R(βj) � j − 1). On the other

hand, we can conclude from the definition of the process MI0 that
I (R(βj) � j − 1) = I (M(βj) � c(j)). Thereby, constants cj , j � i − 1, are

defined as cj =
j−1−S(βj)−n0βj

1−βj
. Consequently, (6.16) is equivalent to

E

⎡
⎣M(βi−1)

i−1∏
j=0

I (M(βj) � c(j)))

⎤
⎦ � 0, (6.18)

which follows immediately from the following Lemma 29 (by setting X =

M(βi−1) and A =
i−2∏
j=0

I(M(βj) � c(j))) and Lemma 30.

Lemma 29. Let X be a random variable and A be a measurable set and c ∈ R

be some constant. The inequality E [IAX] � 0 implies E [IAXI(X > c)] � 0.

Proof of Lemma 29. The case c � 0 is obvious. If c < 0 we get

0 � E [IAX] = E [IAXI(X > c)] + E [IAXI(X � c)] � E [IAXI(X > c)] ,

which implies the proof of this lemma.

Lemma 30. Under the assumptions of Theorem 14 we have

E

⎡
⎣M(βi−1)

i−2∏
j=0

I(M(βj) � c(j))

⎤
⎦ � 0 for i � 2. (6.19)

Proof of Lemma 30. The proof is based on induction. Firstly, we define now
k := i− 1.

Let k = 2 then (6.19) is equivalent to

E [M(β2)I(M(β1) � c(1))] � 0,

which is true due to the following chain of equalities.

E [M(β2)I(M(β1) � c(1))] = E

[
E

[
M(β2)I(M(β1) � c(1))|Ff

β1

]]
= E

[
I(M(β1) � c(1))E

[
M(β2)|Ff

β1

]]
= E [M(β1)I(M(β1) � c(1))] .

(6.20)

The two last equalities in (6.20) are valid due to the measurability of M(β1)

w.r.t. Ff
β1

and martingale property E

[
M(β2)|Ff

β1

]
= M(β1).

Assume that

E

⎡
⎣M(βk)

k−1∏
j=0

I(M(βj) � c(j))

⎤
⎦ � 0 (6.21)
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holds for k � 2. Then we prove that

E

⎡
⎣M(βk+1)

k∏
j=0

I(M(βj) � c(j))

⎤
⎦ � 0

is also true. We have

E

⎡
⎣M(βk+1)

k∏
j=0

I(M(βj) � c(j))

⎤
⎦

= E

⎡
⎣E

⎡
⎣M(βk+1)

k∏
j=0

I(M(βj) � c(j))|Ff
βk

⎤
⎦
⎤
⎦

= E

⎡
⎣M(βk)

k∏
j=0

I(M(βj) � c(j))

⎤
⎦

= E

⎡
⎣
⎛
⎝M(βk)

k−1∏
j=0

I(M(βj) � c(j))

⎞
⎠ I(M(βk) � c(k))

⎤
⎦ � 0.

The last inequality follows from (6.21) and Lemma 29.

Now, we are able to prove Theorem 14.

Proof of Theorem 14. Let us remind (6.1), which implies

(1− α)V (σ) � MI0(σ) + α(S(σ) + 1). (6.22)

Dividing by S(σ) + 1 yields

(1− α)
V (σ)

S(σ) + 1
� MI0(σ)

S(σ) + 1
+ α.

Taking the expectation E [·] and using Lemma 28 deliver the result.

Proof of Lemma 17. W.l.o.g. let us assume that I0 = {1, ..., n}. For any other
subset I0 the proof works in the same way. First, we show the inequality

E

[
n∏

i=2

I(pi > bi) | p1 > b1

]
� E

[
n∏

i=2

I(pi > bi) | p1 � b1

]
. (6.23)

To do this let F denote the marginal distribution function of p1. Here, define

f(u) = E

[
n∏

i=2

I(pi > bi)|p1 = u

]
, then we have

E

[
n∏

i=2

I(pi > bi)I(p1 > b1)

]
=

1∫
b1

f(u)dF (u)
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and

E

[
n∏

i=2

I(pi > bi)I(p1 � b1)

]
=

b1∫
0

f(u)dF (u).

Then (6.23) is equivalent to

1∫
b1

f(u)dF (u)

1− F (b1)
�

b1∫
0

f(u)dF (u)

F (b1)
. (6.24)

From the mean value theorem for Riemann-Stieltjes integrals we can deduce
that there exist some values ξ1 and ξ2 with

ξ1 =

1∫
b1

f(u)dF (u)

1− F (b1)
, inf

t∈(b1,1)
f(t) � ξ1 � sup

t∈(b1,1)

f(t),

ξ2 =

b1∫
0

f(u)dF (u)

F (b1)
, inf

t∈(0,b1)
f(t) � ξ2 � sup

t∈(0,b1)

f(t).

(6.25)

Since f is an increasing function of u, (6.25) yields ξ1 � ξ2, hence we get (6.24).
Further, we obtain

P (p1 > b1, p2 > b2, ..., pn > bn) = E

[
n∏

i=1

I(pi > bi)

]
(6.26)

= P (p1 > b1)E

[
n∏

i=2

I(pi > bi) | p1 > b1

]
� P (p1 > b1)E

[
n∏

i=2

I(pi > bi)

]
(6.27)

= P (p1 > b1)P (

n⋂
i=2

(pi > bi)) � ... �
n∏

i=1

P (pi > bi). (6.28)

The inequality in (6.27) holds due to the PRDS-assumption since according to
the law of total probability we have

E

[
n∏

i=2

I(pi > bi)

]
= E

[
n∏

i=2

I(pi > bi) | p1 > b1

]
−

P (p1 � b1)

(
E

[
n∏

i=2

I(pi > bi) | p1 > b1

]
− E

[
n∏

i=2

I(pi > bi) | p1 � b1

])
︸ ︷︷ ︸

�0 due to (6.23)

.

(6.29)
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For the two following proofs we define the p-values, which belong to the
true null by (Ui)i∈{1,...,n0} = (pj)j∈I0

. Now, we are able to prove Lemma 15 by
conditioning under the portion f belonging to the false null.

Proof of Lemma 15. Consider an arbitrary FDR-controlling SD procedure that
uses critical values αi, i � n. Let j∗ := max{i : fj � 1− (1−α)

1
n for all j � i}

and consider two possible cases.

1. Let j∗ = 0. In this case we have under PRDS assumption

Ef

[
V

R
I(V > 0)

]
� Ef [I(V > 0)] = P (U1:n0 � 1− (1− α)

1
n )

= 1− P (

n0⋂
i=1

{Ui > 1− (1− α)
1
n }) � α,

where the last inequality is valid due to Lemma 17.
2. Let j∗ > 0. Define the vector f∗

0 = (0, ..., 0, fj∗+1, ..., fn1), where the j∗

first coordinates are replaced by 0. We get

Ef

[
V

R
I(V > 0)

]
� Ef

[
V

j∗ + V

]
= Ef∗

0

[
V (τSD)

R(τSD)

]
� α. (6.30)

Thereby, τSD is the critical boundary value corresponding to the SD pro-
cedure with critical values αi, i � n.

Proof of Lemma 19. The optional stopping theorem for reverse martingales im-
plies

E

[
V (τ)

τ

]
� V (1)

1
= n0. (6.31)

In the case of reverse martingales we have an equality.

It is quite obvious that the variables (4.2) and (4.4) are stopping times and
Lemma 19 can be applied.

The proof of Theorem 22 requires some preparations. Consider a wider class
of rejection curves given by positive parameters b and α, δ � 0 and

g(t) =
tb

δt+ α
, 0 � t � 1, b > δ + α. (6.32)

Note that the condition g(1) > 1 is necessary for proper SU procedures with
critical values

ai := g−1

(
i

n

)
=

αi

nb− iδ
. (6.33)

By the choice b = n+1
n and δ = 1− α the coefficients βi are included. Thus we

arrive at the following equation for the FDR of (6.33)

FDR = E

[
V

R

]
=

α

nb
E

[
V

aR

]
+

δ

nb
E [V ] (6.34)



Finite sample bounds for ENFR with applications to FDR 1851

for each multiple testing procedure. In contrast to SD procedures the term

E

[
V
aR

]
can be bounded under the R-super-martingale condition, cf. Heesen and

Janssen [14].

Remark 31. Consider SU procedures for parameters (δ, b, α) under R-super-
martingale models with fixed portion n1 < n of false p-values.

(a) The R-martingale models are least favourable for bounding E

[
V
aR

]
.

(b) Consider two settings (pi)i�n and (qi)i�n of R-martingale models. If pi �
qi holds for all i ∈ I1 then Ep [V ] � Eq [V ] and FDRp � FDRq holds.

(c) Under BIA with uniformly distributed p-values under the null, as well as
under the reverse martingale dependence (R), we have:

(i) The Dirac uniform configuration DU(n1) is least favourable for E [V ]
and FDR.

(ii) Suppose that α
b or δ

b increases. Then the coefficients ai increase and
the FDR and E [V ] do not decrease.

Proof of Theorem 22. (a) Proposition 4.1 of Heesen and Janssen [14] establishes
the asymptotic lower bound:

sup
PBI(n)

FDR(n, δn) � min
i�n

nai
i

=
nα

n+ 1− δn
→ α

as n → ∞. To obtain the upper bound we can first exclude all coefficients δn = 0,
which correspond to a Benjamini and Hochberg procedure with level nα

n+1 . Fix
some value γ with lim sup

n→∞
δn < γ < 1 − α and introduce the rejection curve

gγ(t) =
t

γt+α . For all δn < γ the FDR(n, δn) of the ai’s can now be compared

with the FDR of the SU procedure with critical values g−1
γ

(
i
n

)
. By (6.34) and

Remark (31) we have for each regime

FDR(n, δn) � FDRn(g
−1
γ )

using obvious notations. The worst case asymptotics is given by Theorem 5.1 of
Heesen and Janssen [14]

lim sup
n→∞

sup
BI(n)

FDRn(g
−1
γ ) = K,

where

K = sup

{
x

1− x

1− gγ(x)

gγ(x)
: 0 < x � g−1

γ (1)

}
= α.

(b) Similarly as above the FDR(n, δn) is bounded below and above by the FDR
of SU given by rejection curves. Choose constants 0 < γ1 < δ < γ2 < 1 − α
and b > 1 and consider δn ∈ (γ1, γ2) and large n with n+1

n � b. Introduce

gγ2(t) =
t

γ2t+α and gγ1,b(t) =
tb

γ1t+α . Again we have

FDRn(gγ1,b) � FDR(n, δn) � FDRn(gγ2).
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Let x(γ2) ∈ (0, 1) denote the unique solution of the equation

gγ2(x) = (1− c) + xc. (6.35)

If we repeat the proof of Proposition 5.1 of Heesen and Janssen [14] we have

lim sup
n→∞

FDRn(gγ2) = sup{ x

1− x

1− gγ2(x)

gγ2(x)
: x(γ2) � x � g−1

γ2
(1)}

which is equal to cx(γ2)
(1−c)+cx(γ2)

. Similarly, a lower bound of (4.9) is cx(γ1,b)
(1−c)+cx(γ1,b)

with solution x(γ1, b) ∈ (0, 1) of (6.35). If now γ1 ↑ δ, γ2 ↓ δ and b ↓ δ, the bounds

turn to the value cx(δ)
1−c+cx(δ) given by the solution x(δ) ∈ (0, 1) of (6.35).

Proof of Theorem 25. Define the process
(
M̃(t)

)
t∈T

=
(

V (t)
t − n0

)
t∈T

, which

is, obviously, a centered reverse martingale w.r.t GT
t due to the reverse martin-

gale assumption. Now, we remind that for the step-wise procedure using critical
values (βi)i�n the following equality is valid by (6.2):

(1− α)V (τSU ) = M̃(τSU )
τ

1− τ
− α(n+ 1)I (V (τSU ) = n0) + α(n1 + 1)

under the Dirac distribution of “false” p-values (pi)i∈I1 . Thus, we have to show

E

[
M̃(τSU )

τSU

1− τSU

]
� α(n+ 1)P (V (τSU )) for n0 � f(n)

to prove the part (a). First note, that because of V (τSU ) = V (τSU ∨ β1) it is
enough to prove the statement of this theorem for the reverse stopping time
τ̃SU = τSU ∨ β1, where τ̃SU ∈ {β1, ..., βn}. Fix an ε = ε(n) > 0 with βn + ε < 1
and define a fictive additional coefficient βn+1 = βn + ε. Then, we have

E

[
M̃(τ̃SU )

τ̃SU

1− τ̃SU

]
=

n∑
i=1

E

[
M̃(βi)

βi

1− βi
I(τ̃SU = βi)

]
(6.36)

=

n∑
i=1

E

[
M̃(βi)

βi

1− βi
I(τ̃SU � βi)− M̃(βi)

βi

1− βi
I(τ̃SU � βi+1)

]
. (6.37)

Consider the term E

[
M̃(βi)

βi

1−βi
I(τ̃SU � βi+1)

]
. Since τ̃SU is a reverse stopping

time w.r.t. filtration GT
t the value I(τ̃SU � βi+1) is Gβi+1−measurable. Further,

using the reverse martingale property of M̃(t) we get

E

[
M̃(βi)

βi

1− βi
I(τ̃SU � βi+1)

]
=

βi

1− βi
E

[
I(τ̃SU � βi+1)E

[
M̃(βi)|Gβi+1

]]
=

βi

1− βi
E

[
I(τ̃SU � βi+1)M̃(βi+1)

]
.
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Consequently, continuing the chain of equalities (6.36)-(6.37) we get

E

[
M̃(τ̃SU )

τ̃SU

1− τ̃SU

]

=

n∑
i=1

(
βi

1− βi
E

[
M̃(βi)I(τ̃SU � βi)

]
− βi

1− βi
E

[
M̃(βi+1)I(τ̃SU � βi+1)

])
(6.38)

=

n∑
i=1

(
βi

1− βi
E

[
M̃(βi)I(τ̃SU � βi)

]
− βi+1

1− βi+1
E

[
M̃(βi+1)I(τ̃SU � βi+1)

])

+

n∑
i=1

((
βi+1

1− βi+1
− βi

1− βi

)
E

[
M̃(βi+1)I(τ̃SU � βi+1)

])

=

n∑
i=1

((
βi+1

1− βi+1
− βi

1− βi

)
E

[
M̃(βi+1)I(τ̃SU � βi+1)

])
.

(6.39)

The first sum in (6.39) vanishes due to telescoping summation and the fact

that E

[
M̃(β1)

]
= 0. Note also that E

[
M̃(βn+1)I(τ̃SU � βn+1)

]
= 0 because

I(τ̃SU � βn+1) = 0. Now, we have to show

n−1∑
i=1

Bi � α(n+ 1)P (V (τ̃SU ) = n0) for n0 � f(n), (6.40)

where

Bi =

(
βi+1

1− βi+1
− βi

1− βi

)
E

[
M̃(βi+1)I(τ̃SU � βi+1)

]
, i � n− 1.

First, note that all Bi are non-negative for all i � n − 1, due to Lemma 29.
Moreover, note that

τ̃SU = βn ⇐⇒ V (βn) = n0

under the Dirac distribution of (pi)i∈I1 and consider the last summand

Bn−1 =

(
βn

1− βn
− βn−1

1− βn−1

)
E

[
M̃(βn)I(τ̃SU � βn)

]
=

(
βn

1− βn
− βn−1

1− βn−1

)
E

[(
n0

βn
− n0

)
I(τ̃SU = βn)

]

=

(
1− βn−1

1− βn−1

1− βn

βn

)
n0P (V (τ̃SU ) = n0)

=
n+ 3

2(n+ 1)
n0P (V (τ̃SU ) = n0) � α(n+ 1)P (V (τ̃SU ) = n0)

if n0 � f(n) = 2α(n+1)2

n+3 . This completes the proof of part (a).
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(b) The second part follows immediately from (a) and from the formula for
FDR of SU procedure based on the set of critical values (βi)i�n under the reverse
martingale model:

FDR =
αn0

n+ 1
+

1− α

n+ 1
E [V ] .

Appendix. Examples of martingale models

The family of (super-)martingales is a rich class of models which is briefly re-
viewed below. In this section we present a couple of examples. Further examples
can be found in Heesen and Janssen [14] and Benditkis [1]. For convenience
let us describe the model in this section by distributions P on [0, 1]n, where
the coordinates (p1, ..., pn) ∈ [0, 1]n represent p-values. We restrict ourselves to
martingale models (

[0, 1]n, P, (FT
t )t∈T

)
. (6.41)

Let MT
I0,I1

denote the set of martingale models P on [0, 1]n for fixed portion
I0 �= ∅, I1 of {1, ..., n} and {0} ⊂ T ⊂ [0, η] for some 0 < η < 1.

Obviously, there is a one to one correspondence between martingales and
reverse martingales via the transformation

p̃i = 1− pi, T̃ = {1− t : t ∈ T}, GT̃
t := σ(I(pi � s), s � t, s, t ∈ T̃ ) (6.42)

of (6.41). Note also that (pi)i∈I0 follow special copula models if each pi, i ∈ I0,
is uniformly distributed on (0, 1).

To warm up consider first some useful elementary examples which will be
combined below.

Example 32. (a) (Marshall and Olkin type dependence (see Marshall and
Olkin [16])) Let X1, ..., Xn be i.i.d. continuous distributed real random
variables and Y be a continuously distributed real random variable inde-
pendent of X1, ..., Xn. Consider Zi := min(Xi, Y ) and Z̃i := max(Xi, Y )
for 1 � i � n. The transformed true p-values pi := H(Zi) and p̃i :=
H̃(Zi), i = 1, ..., n fulfil the martingale property, reverse martingale prop-
erty, respectively. Thereby, H and H̃ are distribution functions of Zi and
Z̃i, i � n.

(b) (Block models) Suppose that the index set

{1, ..., n} =

k∑
j=1

(I0,j + I1,j)

splits in k disjoint portions of I0,j the true and I1,j false null. Let U1, ..., Uk

denote i.i.d uniformly distributed random variables on (0, 1). Suppose that(
(U1, (pi)i∈I1,1), (U2, (pi)i∈I1,2), ..., (Uk, (pi)i∈I1,k)

)
) are independent mar-

tingale models of dimension |I1,j |+1 for j � k. The U ’s can be duplicated
by the definition
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pi = Uj if i ∈ I0,j , I0 =

k∑
j=1

I0,j ,

and we arrive at a martingale model where (pi)
i∈

k∑
j=1

I1,j
are already defined.

Let us summarize further results.

Example 33. (a) MT
I0,I1

is closed under convex combinations.
(b) New martingale models can be produced by stopped martingales via stop-

ping times and the optional switching device, see Heesen and Janssen [14],
p.685.

(c) (Martingales and financial models) Let T ⊂ [0, η], η < 1 be a set with
0 ∈ T . Introduce the price process

Xt : [0, 1)
n → [0,∞), Xt(p1, ..., pn) =

∑
i∈I0

(
I(pi � t)− t

1− t
+K

)
, t ∈ T

on T for some constant K � max( s
1−s ), s ∈ T. Then the process t �→ Xt

can be viewed as a discounted price process for time points t ∈ T. The exis-
tence of martingale measures for (Xt,Ft)t∈T on the domain [0, 1]n is well
studied in mathematical finances, see Shiryaev [24]. When the parameter
set T is finite it turns out that the space of probability measures on [0, 1]n,
making that process to be a martingale, is of infinite dimension.

(d) (Super-martingales) It is well known that the process∑
i∈I0

(
I(pi � t)− t

1− t

)
= Mt +At, t ∈ T (6.43)

admits a Doob-Meyer decomposition given by a (Ft)t∈T martingale t �→ Mt

and a compensator t �→ At which is predictable with A0 = 0. Note that
(6.43) is a supermartingale if t �→ At is non-increasing.
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