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1. Introduction

Consider the following parametric single-index model

Y = g(β�X, θ) + ε, (1.1)

where Y is the scalar response variable, X represents the covariate vector of di-
mension p, β and θ are the parameter vectors of dimensions p and d, respectively
and E(ε|X) = 0. Besides, g(·) is a known link function and the superscript �
denotes transposition. Throughout this paper, we focus on the situation where
some of the response measurements are missing and all of the covariates are ob-
servable completely. For this model, it is assumed that Y is missing at random
(MAR) and δ is the missing indicator for the individual whether Y is observed
(δ = 1) or not (δ = 0). Thus, an incomplete sample {(yi, δi, xi), 1 ≤ i ≤ n} is
obtained. The MAR assumption implies that δ and Y are conditionally inde-
pendent given X, that is,

P (δ = 1|Y,X) = P (δ = 1|X) = π(X),

which is often presumed for statistical analysis in the presence of missing data
and is reasonable in many practical situations, see Little and Rubin [22] for
detail. For the recent literature on the analysis of missing data, see for instance,
Kim and Shao [13].

In practice, it is not uncommon that some of response measurements are
unobservable due to various reasons. The readers can refer to Little and Rubin
[22]. In order to prevent wrong conclusion and to avoid model misspecification,
performing an effective model checking before further statistical analysis is nec-
essary. This is to ascertain whether the real dataset marries the hypothetical
parametric model or not. In recent decade, there are a number of proposals
available in the literature. Among others, Sun et al [28] built two empirical
process-based tests, that is, an imputation-based test and a marginal inverse
probability weighted test, for examining the adequacy of partial linearity of the
model with missing responses at random. With two completed data sets based
on imputation and marginal inverse probability weighted methods, respectively,
Xu and Zhu [32] constructed two empirical process-based tests to check the ad-
equacy of varying coefficient models with missing responses. All of the above
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tests are empirical process-based tests, which rely on the sample averages of
residuals with respect to an index set to construct empirical processes. This
kind of test is also called global smoothing test because it is usually the average
of weighted averages of residuals and average is a kind of overall smoothing. The
superiority of these tests is that the convergence rate of empirical process-based
tests to their weak limits is n−1/2, which is the fastest possible rate the existing
methods can achieve, where n is the sample size. The tests in this class are
usually not asymptotically distribution-free when the dimension of X is larger
than 1, and Monte Carlo approximation such as the bootstrap is required for
critical value determination. Further, such kinds of tests are not very sensitive
to high frequency alternatives. Also, the dimension of X still has a significant
negative impact for their significance level maintenance and power performance
(e.g. Guo et al [6]).

Another class of methods to carry out model checking are local smoothing
tests, which involve nonparametric smoothing methods in estimation. The main
advantage of local smoothing tests is that they are sensitive to high frequency
alternative models. For example, González-Manteiga and Pérez-González [4]
constructed a test that is based on the L2 distance between the nonparametric
and parametric fits with missing response data. Guo et al [7] extended Zheng’s
[33] test to carry out model checking for parametric regressions with missing
responses. Niu et al [25] suggested a misspecification test of the nonparametric
component in a partially linear model with responses missing at random. Li
[21] proposed a lack-of-fit test, which is based on minimum integrated square
distances between the nonparametric and parametric fits and can be regarded
as an extension of the minimum distance test suggested by Koul and Ni [14]
to handle missing responses. Nevertheless, a serious problem causing them not
to be powerful against the alternatives is the typical slow convergence rate
O(n−1/2h−p/4) of the test statistics to their weak limits when p is large. Also,
only the local alternatives that are distinct from the null models at the same rate
O(n−1/2h−p/4) are detectable by these tests. Here p is the dimension of covariate
vectorX and h is the bandwidth in kernel estimation tending to zero at a certain
rate. This class of tests inevitably suffer from the curse of dimensionality since
the multivariate nonparametric estimation must be applied, which leads to the
significance level is hard to maintain and less powerful to detect alternatives
even in the situations with moderate dimensions.

The aforementioned difficulties drive researchers to make various modifica-
tions of the existing testing techniques in order to solve the dimensionality
problem. A commonly used method to construct tests is based on projection
pursuit, which was first proposed by Friedman and Stuetzle [3]. The method
is essentially to find one or a few directions along which the departure can be
easily detected. When all of the responses are available, the amendment for
local smoothing tests include the work by Lavergne and Patilea [16, 17]. For
single-index models, Maistre and Patilea [24] proposed a new kernel smoothing-
based approach to conduct the goodness-of-fit test, where a convergence rate of
nh1/2 is achieved. Lavergne et al [15] considered a kernel smoothing-based test
that smoothes only over the covariates appearing the null hypothesis, which
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mitigated the curse of dimensionality. Maistre et al [23] addressed the issue
of lack-of-fit testing for a parametric quantile regression and they proposed a
test involving one-dimensional kernel smoothing, whose convergence rate is free
of the number of covariates. As for empirical process-based tests when projec-
tion approach is applied, examples include Zhu and An [38], Stute et al [27],
Zhu [37], Escanciano [2], Stute et al [26]. All of the above tests must resort to
Monte Carlo techniques to determine critical values even though some of them
have the limiting null distributions. This way is computationally intensive and
time consuming when all of projections are involved. Xia [31] also proposed a
projection-based test that however has no way to control type I error. Recently,
a dimension reduction adaptive-to-model test was proposed by Guo et al [6].
It is also a local smoothing test, not only enjoying the fastest possible conver-
gence rate O(n−1/2h−1/4) that the existing local smoothing tests can achieve
but also being able to detect the local alternatives at this rate O(n−1/2h−1/4)
as if X were univariate. Further their test can utilize the limiting null distribu-
tion to determine the critical values without the assistance from Monte Carlo
approximation, which significantly reduces the computational burden.

To the best of our knowledge, few research works could be effectively to handle
the curse of dimensionality in goodness-of-fit testing with missing responses. In
the present paper, we intend to incorporate the advantages of Guo et al’s [6]
test into the test we will propose. It is not a trivial combination as we will see
later, the model-adaptation step requires a different approach than that used
in Guo et al [6]. More specifically, in the construction of test statistic, we must
take the missingness into consideration. Such a combination thus makes the
test be adaptive-to-model as well as handle the missingness. For this purpose,
we in Section 2.1 incorporate the missing indicator δ and the function π(X)
to construct the test statistic. To make every step of construction consistently
reduce the curse of dimensionality, we use a semiparametric approach to estimate
the parameters of interest and the function in δ = h(γ�

0 X) + ς and π(X) =
E(δ|X) = E(δ|γ�

0 X), where E(ς|X) = 0, h(·) is an unknown link function
and γ0 is an unknown p-dimensional parameter vector. Further to identify and
estimate the matrix B, the so-called complete case assisted recovery (CCAR) is
adopted in Section 2.2. The model (1.1) is adopted as the hypothetical model
and the alternative model is as follows

Y = m(B�X) + ε, (1.2)

where E(ε|X) = 0, the link function m(·) is unknown and the response Y is
missing at random. B is a p× q orthonormal matrix with q orthogonal columns
where B�B = Iq, 1 ≤ q ≤ p and q is the structural dimension of the matrix
B. When q = p, the above model becomes a purely nonparametric model. This
shows the generality of the model.

Two test statistics will be constructed. Under the null hypothesis, the tests
solely utilize the dimension reduction structure such that the dimensionality
is largely avoided and then the significance level can be well maintained, and
under the alternative hypothesis, they can automatically adapt to the related
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model structure to enjoy the omnibus property. A key step for this is adaptively
estimating the matrix B and its number of columns q such that under the null,
the estimate is consistent to cβ for a constant s and under the alternative to
the general matrix BC for a q × q orthonormal matrix C. To achieve this goal,
the complete case assisted recovery (CCAR) method proposed by Guo et al [5]
and a BIC-type criterion are respectively applied to estimate these two vector
and matrix.

The rest materials of the paper are organized as follows. In Section 2, two tests
are constructed. The CCAR method to estimate the matrix B and the BIC-type
criterion to identify the structural dimension q are also presented in this section.
The asymptotic properties under the null hypothesis, local alternatives and
global alternatives are stated in Section 3. The simulation results are reported
in Section 4 and a real data analysis is reported in Section 5. Some discussions
are given in Section 6. Technical proofs are postponed to the Appendix.

2. Test Statistics Construction

In this section, the following hypotheses of interest are:

H0 : P (E(Y |X) = g(β�
0 X, θ0)) = 1 for some β0 ∈ Rp, θ0 ∈ Rd;

H1 : P (E(Y |X) = g(β�X, θ)) < 1 for any β ∈ Rp, θ ∈ Rd, (2.1)

where g(·) is a known link function whereas m(·) is an unknown link function.

2.1. Test statistics

Denote e = Y − g(β�
0 X, θ0). Thus under the MAR assumption, we have

E(δe|B�X) = E(eE(δ|X,Y )|B�X) = π(X)E(e|B�X) (2.2)

and

E
{ δ

π(X)
e|B�X

}
= E

[
eE

{ δ

π(X)
|X,Y

}
|B�X

]
= E(e|B�X). (2.3)

When the null hypothesis H0 holds, the model (1.2) reduces to the model (1.1)
with q = 1 and B = β̃ = cβ0 for a constant c. Therefore, under H0, we have

E(e|X) = 0 ⇒ E(e|β�
0 X) = E(e|B�X) = 0.

Further, combining (2.2) with (2.3), the following two formulae can be derived

E{δeE(δe|B�X)f(B�X)} = E{E2(δe|B�X)f(B�X)} = 0 (2.4)

and

E
{ δ

π(X)
eE

{ δ

π(X)
e|B�X

}
f(B�X)

}
= E

{
E2

{ δ

π(X)
e|B�X

}
f(B�X)

}
= 0,

(2.5)
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where f(B�X) is the probability density function of B�X. Under the alterna-
tive hypothesis H1, we have

E(e|B�X) = E(Y |B�X)− g(β�
0 X, θ0) = m(B�X)− g(β�

0 X, θ0) �= 0.

Consequently, when H1 holds,

E{δeE(δe|B�X)f(B�X)} > 0

and

E
{ δ

π(X)
eE

{ δ

π(X)
e|B�X

}
f(B�X)

}
> 0.

From the above analysis, the null hypothesis H0 holds if and only if any one of
the two equations (2.4) and (2.5) is zero. When the alternative hypothesis H1

holds, they are both positive. Based on their different performance, the sample
analogues of the left hand sides in these two formulae can then be applied to
construct test statistics.

Let (yi, xi, δi), i = 1, . . . , n be an i.i.d. sample from (Y,X, δ). In order to
construct test statistics, the estimates of E(δe|B�X) and E{ δ

π(X)e|B�X} are

needed. Once an estimate of B̂(q̂) is available, the kernel estimates of these two
quantities can be obtained as follows:

Ê(δe|B̂(q̂)�xi) =
1

n−1

∑n
j �=i δj êjKh{B̂(q̂)�(xi − xj)}

f̂(B̂(q̂)�xi)
,

Ê
{ δ

π(X)
e|B̂(q̂)�xi

}
=

1
n−1

∑n
j �=i

δj
π̂(xj)

êjKh{B̂(q̂)�(xi − xj)}
f̂(B̂(q̂)�xi)

,

where Kh(·) = K(·/h)/hq̂ with K(·) being the q̂-dimensional kernel function, h

being the bandwidth, and êj = yj − g(β̂�xj , θ̂) with α̂ = (β̂, θ̂) being the least
square estimators of α0 = (β0, θ0). The formula is

(β̂�, θ̂�)� = argmin
β,θ

n∑
i=1

δi
π̂(xi)

{
yi − g(β�x, θ)

}2

.

The estimate B̂(q̂) is an sufficient dimension reduction (SDR) estimate of the
matrix B with an estimated structural dimension q̂ of q. Since the estimates of
B and q are critical for our tests, we will specify them in a separate subsection.
The probability density function f(B�X) of B�X can be estimated by

f̂(B̂(q̂)�xi) =
1

n− 1

n∑
j �=i

Kh{B̂(q̂)�(xi − xj)}.

Further, two quadratic conditional moment test statistics are constructed as
follows:

Tn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δiδjKh{B̂(q̂)�(xi − xj)}êiêj , (2.6)
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Vn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π̂(xi)

δj
π̂(xj)

Kh{B̂(q̂)�(xi − xj)}êiêj . (2.7)

In general, the function π(X) is unknown and needs to be estimated. Through-
out our paper, we assume π(X) follows a semi-parametric structure, that is,
δ = h(γ�

0 X) + ς and π(X) = E(δ|X) = E(δ|γ�
0 X), where E(ς|X) = 0, h(·) is

an unknown link function and γ0 is an unknown p-dimensional parameter vec-
tor. Here, we assume that the structural dimension of the central subspace Sδ|X
equals 1 as assumed in Guo et al [5]. It is a semiparametric assumption that
can avoid greatly the curse of dimensionality and is weaker than the assumption
applied in Li and Lu [20] and Zhu et al [34], in which they employed parametric
models for the selection probability P (δ = 1|X).

When a sample {(yi, xi, δi), i = 1, . . . , n} is available, noticing that δ is a
binary variable, we consider obtaining a consistent estimate γ̂ of γ0 via sliced
inverse regression (SIR) as it is very easy to implement. Li [19], Hsing and
Carroll [10], Zhu and Ng [41] showed the

√
n-consistency of the SIR estimate.

A commonly used condition for SIR to work is the linearity condition, that
is, E(X|γ�

0 X = x) is linear in x, here γ0 is a base vector of Sδ|X . Given this

condition, it can be obtained that Span(Σ−1
X ΣE(X|δ)) ⊆ Sδ|X , where ΣX =

Cov(X) ∈ Rp×p and ΣE(X|δ) = Cov{E(X|δ)} ∈ Rp×p. In general case, when the
range of δi, i = 1, . . . , n is divided into H slices, I1, . . . , IH , the SIR estimate is
a weighted sum of local covariances of xi whose concomitant δi lies in each slice.
In binary variable case the number of slices H naturally equals 2, Cov{E(X|δ)}
can be estimated by

Ĉov{E(X|δ)} =

2∑
h=1

p̂h(m̂h − x̄)(m̂h − x̄)�,

where x̄ =
∑n

i=1 xi/n, p̂h is the proportion of δi, i = 1, . . . , n that fall in the
hth slice and m̂h, h = 1, 2 is the sample mean of xi within each slice. Thus, the
eigenvector that is associated with the largest eigenvalues of Σ̂−1

X Ĉov{E(X|δ)}
can be an estimate γ̂, where Σ̂X = n−1

∑n
i=1(xi − x̄)(xi − x̄)�. To be precise,

γ̂ = Σ̂−1
X (x̄obs − x̄miss)

�,

here x̄obs and x̄miss are the sample means of X corresponding to δ = 1 and
δ = 0, respectively. the function π(xi) can be estimated by

π̂(xi) = Ê(δ|xi) =

∑n
j �=i δjK̃h{γ̂�(xi − xj)}∑n
j �=i K̃h{γ̂�(xi − xj)}

, (2.8)

where K̃h(·) = K̃(·/h)/h with K̃(·) being the one-dimensional kernel function
and K̃(·) can be different from K(·) in (2.6).

Remark 1. When the dimension reduction structure is not fully used, Guo et
al. [7] constructed two tests as
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T �
n =

1

n(n− 1)

n∑
i=1

n∑
j �=i

δiδjK�
h(xi − xj)êiêj ,

V �
n =

1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π̂�(xi)

δj
π̂�(xj)

K�
h(xi − xj)êiêj , (2.9)

where K�
h(·) = K�(·/h)/hp with K�(·) being a p-dimensional multivariate kernel

function and

π̂�(xi) =

∑n
l=1 δlK�

h(xi − xl)∑n
l=1 K�

h(xi − xl)
.

Compared our tests in (2.6) and (2.7) with the above, the difference is between
the used covariates xi and B̂(q̂)�xi. Note that the dimension of xi is always p
whereas the dimension of B̂(q̂)�xi automatically adapts to the null and alterna-
tive hypothesis as 1 and q respectively. In other words, the tests under the null
hypothesis only involves one-dimensional covariate and suffers much less from
the curse of dimensionality when we need to estimate relevant functions. While
under the alternative hypothesis, q-dimensional covariate is used so that the tests
can be sensitive to the alternative models. Therefore, to derive the asymptotic
properties of the test statistics under the null hypothesis, the standardizing con-
stant can be n1/2h1/4 rather than n1/2hp/4 that is used for the classical tests in
(2.9). This also helps enhancing the power performance of the tests in (2.6) and
(2.7) because n1/2h1/4 diverges to infinity much faster than n1/2hp/4 such that
our tests can diverge to infinity faster under the alternative hypothesis.

2.2. Identification and estimation of B

In this section, we first specify the estimate of the matrix B under given q and
then study how to identify q consistently. As pointed out by Li [19], even with
complete data, the matrix B is not identifiable since m(B�X) can be rewritten
as m̃(C�B�X) for any q × q orthonormal matrix C. However, identifying BC
for a q× q orthonormal matrix C is sufficient for the problem studied herewith.
See Guo et al. [6] for details. Thus, we will still use B in the lieu of BC without
notational confusion throughout the rest of this paper. Therefore, we can identify
the mean central subspace SE(Y |X) spanned by B through sufficient dimension
reduction (SDR) technique and q is the structural dimension of SE(Y |X). When
there exist responses missing at random, we adopt the methods proposed by Guo
et al. [5], including selection probability assisted recovery (SPAR) and complete
case assisted recovery (CCAR). Since the semiparametric dimension reduction
proposal with CCAR is easy to implement and possesses good performance in
general, we only focus on this with a brief review below.

The semiparametric dimension reduction method with CCAR is a two-stage
method. The main idea of this procedure is: First, obtain an estimate ψ̂ for a
base matrix ψ ∈ Rp×q of SY |X from the CC analysis with, say, sliced inverse
regression (SIR) proposed by Li [19]. Second, impute missing responses through

the conditional distributions of Y given ψ̂�X; Finally, based on the imputed
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data to define a more accurate SIR estimate of ψ, denoted as ψ̂CCAR. To ensure
that SY |X = SE(Y |X) for ε in the model (1.2), we need to assume that ε =

m1(B
�X)ε̃, where m1(·) is an unknown smooth function and ε̃⊥⊥X. A final

estimate of B is B̂ = ψ̂CCAR.
The detailed steps for obtaining an estimate of the base matrix B̂ = ψ̂CCAR

is listed as follows:

Step 1: Obtain an initial base matrix by the SIR estimate ψ̂ for SY |X with the
CC sample.

Step 2: Compute p̂CC
ij as

p̂CC
ij =

δjKh{ψ̂�(xj − xi)}∑n
j=1 δjKh{ψ̂�(xj − xi)}

.

Step 3: Divide the range of Y into S slices, I1, I2 . . . Is . . . , IS and denote p̂CCAR
s ,

s = 1, . . . , S as the proportion of yi falling in the sth slice as

p̂CCAR
s =

1

n

n∑
i,j=1

{
[(1− δi)p̂

CC
ij + δiI(i = j)]I(yj ∈ Is)

}
.

Further, estimate the sample mean of X within each slice, m̂CCAR
s , as

m̂CCAR
s =

1

n

n∑
i,j=1

{
[(1− δi)p̂

CC
ij + δiI(i = j)]I(yj ∈ Is)

}
×xi ×

1

p̂CCAR
s

.

Step 4: Estimate Cov{E(X|Y )} by

Ĉov{E(X|Y )} =

S∑
s=1

p̂CCAR
s (m̂CCAR

s − x̄)(m̂CCAR
s − x̄)�.

Thus, the q eigenvectors corresponding to q largest eigenvalues of the
matrix Σ−1

X Cov{E(X|Y )} can be regarded as B̂, an estimate of the
matrix B.

Under the conditions presented in the Appendix, Guo et al. [5] showed the√
n consistency of B̂ when the structural dimension q is given in advance. See

Guo et al. [5] for more discussions on this method.

2.3. Structural dimension determination

To accommodate the alternative hypothesis, we need to estimate q consistently.
For this purpose, Zhu et al. [40] first introduced an approach of Bayesian infor-
mation criterion (BIC) type. Zhu et al. [35, 36] further considered a modified
BIC-type criterion. Based on their theory, the structural dimension q can be
determined by

q̂ = arg max
l=1,...,p

[
n

2
×

∑l
i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− 2×
√
n× l(l + 1)

2p

]
, (2.10)
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where λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p ≥ 0 are the eigenvalues of Σ−1
X Cov{E(X|Y )}. It is

clear that the first term in the bracket can be regarded as the likelihood ratio
in the classical BIC and the second term is the penalty term with l(l+1)/2 free
parameters.

Proposition 1. Assume the estimate B̂ based on semiparametric dimension
reduction with CCAR is

√
n consistent to the matrix B and under the conditions

in the Appendix, the BIC-type estimate q̂ = q as n → ∞ with a probability going
to one. Therefore, for a q×q orthogonal matrix C, B̂(q̂) is a consistent estimate
of B.

Proposition 1 shows that under the null hypothesis H0 and global alternative
H1, q̂ = 1 or q respectively.

3. Asymptotic Properties

In this section, the limiting null distributions of the statistics Tn in (2.6) and
Vn in (2.7) are derived and the relevant asymptotic properties under local al-
ternative and global alternative hypothesis are also investigated.

3.1. Limiting null distribution

To state the theorems, we first introduce some notations that are useful to define
the limiting variances of the proposed test statistics. Denote

ΣT = 2

∫
K2(u)du ·

∫
π2(x){σ2(β�

0 x)}2p2(β�
0 x)dx,

ΣV = 2

∫
K2(u)du ·

∫ {σ2(β�
0 x)}2p2(β�

0 x)

π2(x)
dx,

with σ2(β�
0 x) = E(e2|β�

0 X = β�
0 x). The function p(·) in ΣV denotes the prob-

ability density function of β�
0 X. In general, ΣT and ΣV are unknown, two

consistent estimates can be defined as

Σ̂T =
2

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq̂
δiδjK2

( B̂(q̂)�(xi − xj)

h

)
ê2i ê

2
j ,

Σ̂V =
2

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq̂

δiδj
π̂2(xi)π̂2(xj)

K2
( B̂(q̂)�(xi − xj)

h

)
ê2i ê

2
j .

The following theorem states the asymptotic properties of the test statistics
Tn and Vn under the null hypothesis H0.

Theorem 1. Suppose that conditions (C1)− (C7) in the Appendix hold. Under
the null hypothesis H0, we have

nh1/2Tn ⇒ N(0,ΣT ) and nh1/2Vn ⇒ N(0,ΣV ),

where ΣT and ΣV can be respectively estimated by Σ̂T and Σ̂V defined above.
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Further, define the scale-invariant standardized version of statistics Tn and
Vn as

Sn =

√
n− 1

n

nh1/2Tn√
Σ̂T

and Un =

√
n− 1

n

nh1/2Vn√
Σ̂V

, (3.1)

respectively.

Corollary 1. Under the null hypothesis H0 and conditions (C1)-(C7) in the
Appendix, we have

Sn ⇒ N(0, 1) and Un ⇒ N(0, 1).

Theorem 1 and Corollary 1 depict the asymptotic normality of the proposed
test statistics under H0. From Theorem 1, it is clear that our tests own the much
faster converging rates, O(n−1h−1/2) in the sense that Tn and Vn multiplying
O(n1h1/2) have weak limits whereas the classical tests T �

n and V �
n in (2.9) need to

multiply O(n1hp/2) to get weak limits. Corollary 1 can be applied to determine
the critical value of our tests. Note that the tests are one-sided due to its nature
at the population level, the null hypothesis H0 can be rejected when Sn >
Z1−α(or Un > Z1−α), where Z1−α is the 1−α quantile of the standard normal
distribution with P (Z ≥ Z1−α) = α.

3.2. Power study

We now investigate the power behaviors of our tests under the local and global
alternatives. The following sequence of alternatives H1n is considered:

H1n : Y = g(β�
0 X, θ0) + Cnm(B�X) + ε (3.2)

where E(ε|X) = 0, E[m2(B�X)] < ∞ and {Cn} is a sequence of constants.
When Cn is a fixed constant, it is the global alternative (1.2); When Cn goes
to zero, it becomes a sequence of local alternatives. Denote α̃ = (β̃, θ̃)� as the
minimizer of the following

α̃ = arg min
(β,θ)�

E{g(β�X, θ)−m(X)}2,

wherem(X) = E(Y |X). For the least squares estimate α̂, we always have α̂−α̃ =
Op(1/

√
n).

We first present the asymptotic property of q̂ determined by (2.10) under the
above local alternatives.

Lemma 1. Assume Conditions (C1)-(C7) in the Appendix hold. Under the
local alternatives (3.2) with Cn = n−1/2h−1/4, we have q̂ = 1 as n → ∞ with a
probability going to one.

Denote α = (β, θ)�. In order to state the following theorem, we first give
some notations:

ġ(X,β0, θ0) = ∂g(α, xj)/∂α
�|α=α0 , Σ1 = E{ġ(X,β0, θ0)ġ(X,β0, θ0)

�},
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μT = E
[
π2(X)f(β�

0 X)
(
m(B�X)

− ġ(X,β0, θ0)
�Σ−1

1 E{ġ(X,β0, θ0)m(B�X)}
)2]

,

μV = E
[
f(β�

0 X)
(
m(B�X)

− ġ(X,β0, θ0)
�Σ−1

1 E{ġ(X,β0, θ0)m(B�X)}
)2]

,

where f(·) denotes the probability density function of β�
0 X.

Theorem 2. Given Conditions (C1)-(C7) in the Appendix, we have the follow-
ing conclusions.

(i) Under the global alternative (1.2) with Cn being fixed, Sn and Vn go to
infinity at the rate of nh1/2:

Sn/(nh
1/2) ⇒ l1 and Un/(nh

1/2) ⇒ l2,

where l1 and l2 are both positive constants.
(ii) Under the local alternatives (3.2) with Cn = n−1/2h−1/4, we have

nh1/2Tn ⇒ N(μT ,ΣT ) and nh1/2Vn ⇒ N(μV ,ΣV ),

Sn ⇒ N(μT /
√
ΣT , 1) and Un ⇒ N(μV /

√
ΣV , 1).

Theorem 2 suggests that under the global alternative hypothesis, the pro-
posed tests are consistent with the asymptotic power 1. Under the local alter-
natives, the tests own better power performance than those proposed by Guo
et al. [7] when the dimension p of covariates is large, even moderate. That can
be ascribed to the convergence rates of the test statistics Tn and Vn to infinity
O(nh1/2) rather than O(nhp/2) in their tests.

It is worth noticing that when an alternative is nonparametric, there are sev-
eral ways to characterize the power of tests. In this paper, we focus on investi-
gating the Pitman-like local alternatives. Theorem 2 indicates that the proposed
tests have asymptotic power 1 for the local alternatives that are distinct from
the null hypothesis at the rate slower than n−1/2h−1/4. Also the tests can still
detect the alternatives converging to the null hypothesis at the rate n−1/2h−1/4.
Further, as the local smoothing tests, the model adaptation properties allow us
to use the normalizing constant that has been used for existing local smoothing
tests with one-dimensional covariate. As the result, the power comes from both
the non-centrality of the residuals and the convergence rate of the test statistics
under the alternative. This enhances the power performance. In this sense, the
rate of convergence partly summarizes the power properties of the tests.

Another issue is about bandwidth selection. It seems natural to us that differ-
ent bandwidths are used when the underlying working dimensions are different.
In fact, we use h = O(n−1/(4+q̂)) in our numerical studies, where q̂ is equal to the
true dimension under either the null or alternative in a probability sense. This is
different, but adaptive to the models under the null and alternative respectively.
Although, in practice, we do not know whether the null is true or not, due to
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this model adaptation, its automatic selection adapts to the unknown value of q
under the null and alternative. Therefore, for practical use, bandwidth selection
does not have problem. For studying the theoretical properties, it is also an is-
sue to discuss which bandwidth is required under the null and alternative as the
convergence rate would be different under these two scenarios. Note that again
due to the model adaptation, the bandwidth is also adaptive to the underlying
model, we then need not to use a unique bandwidth, while need to use different
ones to derive the theoretical results.

Remark 2. We consider a theoretical comparison between Sn and Un. This
comparison is to examine the sensitivity of tests to local alternative hypothesis.
To this end, we compare Tn with Vn that requires an estimate of the probability
π. Theorem 1 indicates that the limiting null variance ΣT of Tn is smaller
than that < ΣV of Vn since 0 < π(x) < 1 and thus suggests that Tn is more
sensitive to alternatives. On the other hand, Theorem 2 shows that under the
alternatives, the test statistic Tn owns a smaller drift term μT than μV that
Vn has. Let DT = μT /

√
ΣT and DV = μV /

√
ΣV . Together with the above two

results we can see that the asymptotic powers of Tn and Vn are 1−Φ(z1−α/2−DT )
and 1 − Φ(z1−α/2 − DV ), respectively when we consider the local alternatives

with Cn = n−1/2h−1/4. Here, Φ(·) is the cumulative probability function of the
standard normal distribution and z1−α/2 is the 1−α/2 quantile of the standard
normal distribution. When the response is missing at random, since μT < μV

and ΣT < ΣV , we cannot obtain a one-side inequality between DT and DT for
all local alternative models. Thus, theoretically, no one can be superior to the
other in general, while different alternatives would be in favor of different test.
From the power study in the simulations, Sn seems to work better.

Remark 3. The preliminarily unreported simulation results based on Sn and
Un in (3.1) show that the empirical sizes tend to be slightly larger than the sig-
nificance level. Empirically, we implement the size-adjusted versions as follows:

S̃n =
Sn

1 + 4n−4/5
and Ũn =

Un

1 + 3n−4/5
. (3.3)

The size-adjustment constants are carefully selected through intensive Monte
Carlo simulations and the above values are recommended. It is worth noticing
that the size-adjustment values are both asymptotically negligible when n → ∞
since S̃n − Sn and Ũn − Un tend to zero at the rate of order n−4/5 as n → ∞.
After such an adjustment, the tests can much better control type I errors and
enhance powers than those without size-adjustment.

4. Simulation studies

In this section, two simulation studies are carried out to check the theory and in-
vestigate the finite-sample performance of the proposed test statistics. Through-
out this section, the adjusted test statistics S̃n and Ũn in (3.3) are applied to
conduct the simulations. The objective of the first study is to examine and
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compare the performance of the two proposed tests. The effects of different
distributions of the error, the correlation between the components of X and
nonlinearity under the null hypothesis on the performance of our new tests are
considered in this study. The power comparison is presented when the test de-
noted as QCC

n proposed by Guo et al (2016) [6] is applied by using the complete
case data in the datasets. The second study is used to check the usefulness of
the dimension reduction technique to overcome the curse of dimensionality. We
intend to see how much improvement the proposed tests can achieve compared
with the tests T �

n , V
�
n in (2.9) proposed by Guo et al [7]. The q = p alternative

models without dimension reduction structures are also discussed in this study
to examine the effectiveness of model-adaptation, although an extra estimation
of q = p is needed.

Study 1: The data are generated from the following models:

H11 : Y = β�X + a(β�X)2 + ε,

H12 : Y = β�X + a exp(β�X − 0.8) + ε,

H13 : Y = 0.25(β�X)2 − 3a cos(0.3πβ�X + 1) + ε,

where p = 8, q = 1, β = (1, . . . , 1)�/
√
p. The covariate vectorX =(X1, . . . , Xp)

�

and the error ε are independent. Two types of the covariates and two kinds of
errors are considered. The covariate vectors Xi = (X1i, . . . , Xpi)

� are generated
from a multivariate normal distribution N(0,ΣX

1 ) or N(0,ΣX
2 ) with ΣX

1 = Ip×p

and ΣX
2 = (0.2|j−l|)p×p, where Ip is a p × p identity matrix. The εi’s come

from standard normal distribution N(0, 1) and double exponential distribution
DE(0,

√
3/2) with probability density function f(x) =

√
3/3 exp(−2

√
3|x|/3).

Assume that the covariate vectors Xi are completely observed and some of the
responses Yi are missing at random. The response indicator variable δi follow
the Bernoulli distribution with the probability π(x). The following two missing
mechanisms πk(x), k = 1, 2 are adopted:

• Case 1: π1(x) = P (δ = 1|X = x) = 1/
{
1 + exp

[
− (0.2γ�

1 x+ 1.2)
]}

;

• Case 2: π2(x) = P (δ = 1|X = x) = 0.7 + 0.25(|γ�
1 x − 1| + |γ�

1 x − 2|) if
|γ�

1 x− 1|+ |γ�
1 x− 2| ≤ 1.5 and 0.7 otherwise,

where γ1 = (1, . . . , 1︸ ︷︷ ︸
p/2

, 0, . . . , 0)�/
√
p/2. For these two probability selection func-

tions, the non-missing proportions are roughly 78% and 76%, respectively. Here,
we set a = 0, 0.2, . . . , 1.0 where a = 0 corresponds to the null hypotheses and
a �= 0 to the alternative hypotheses. To be specific, for H11 and H12, the cor-
responding null hypotheses are both H10 : Y = β�X + ε; For H13, the corre-
sponding null hypothesis is H̃10 : Y = 0.25(β�X)2 + ε. For H11 and H12, the
models under the null hypothesis are linear and the alternative models are both
single-index. The hypothetical model against H13 is nonlinear and under H13,
the alternative model is a high frequency alternative. We will check whether the
newly proposed tests are effective for all kinds of models or not.
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To compute the proposed tests, we need to choose the kernel function K(·)
in (2.6) and (2.7) and the kernel function K̃(·) in (2.8) for estimating π(x).
Also we need to select the corresponding bandwidth h and h̃. Throughout the
simulations, unless otherwise specified, the q̂-dimensional kernel function K(·)
is taken to be K(u) = K(u1, . . . , uq̂) = K1(u1) · . . . · Kq̂(uq̂) with Kl(ul) =
15/16(1 − u2

l )
2, l = 1, . . . , q̂ if |ul| ≤ 1 and 0, otherwise and the bandwidth

h = 1.2n−1/(q̂+4) is recommended through intensive computation. The one-
dimensional kernel function K̃(·) is selected as K̃(ν) = 15/16(1− ν2)2 if |ν| ≤ 1
and 0, otherwise and h̃ = 1.2n−1/5. Our limited empirical experience shows that
the proposed tests are not very sensitive to the choices of kernel function and
bandwidth. In the CCAR method to estimate the matrix B, the number of slices
S is set to be 10. The significance level is set to be α = 0.05 and two sample
sizes n = 100 and 200 are conducted. the replication time of experiment is 5000.

Table 1 tabulates the empirical sizes and powers of the proposed tests S̃n and
Ũn against the alternatives H11, H12 with different values of a. Here, ε ∼ N(0, 1)
and two kinds of covariate vectors X are considered. Based on this table, we can
have the following observations. First, for every combination of the covariate X
and the sample size we conduct, the tests S̃n and Ũn have comparable empirical
sizes, which are all very close to the pre-specified significance level α = 0.05.
Second, the simulated powers of the two tests become higher with increasing
of the parameter a and the tests are more powerful against the alternatives
with larger sample size. Compared with the two tests S̃n and Ũn, we can see
that in most cases, S̃n is superior to Ũn: S̃n has higher simulated powers than
Ũn. Third, under the same alternative hypothesis, the effect of the correlation
between the components of X on the empirical sizes and simulated powers is
not very significant and the simulation results are all acceptable.

Table 2 displays the simulation results under models H11 and H12 for a =
0, . . . , 1 at the significance level α = 0.05. Unlike the above table, here ε ∼
DE(0,

√
3/2) is set. Combining Table 1 and Table 2, we can see that the dis-

tribution of random error makes no significant influence, which indicates the
robustness of the proposed tests against error distributions. The other similar
conclusions to those in Table 1 can be made based on Table 2 and thus we omit
them.

To see the gain of efficiency the proposed tests have compared with the test
that only uses complete case data in the datasets, we report the results when
the test QCC

n proposed by Guo et al [6] is applied. The powers comparison of
the three tests S̃n, Ũn, Q

CC
n for the null hypothesis H10 : Y = β�X + ε against

the alternative H12 with n = 100, ε ∼ N(0, 1) are presented in Figure 1. From
this figure, we can see that the powers of these three tests are all reasonable and
acceptable. To be specific, S̃n shows the the best performance among the three
tests and has uniformly higher powers than QCC

n . The powers of Ũn and QCC
n

are comparable: when a is small, Ũn performs better; whereas a is large, QCC
n

is the winner.
Figure 2 reports the empirical sizes and powers for the nonlinear null model

under H̃10 : Y = 0.25(β�X)2 + ε against the high frequency alternative H13

with n = 100 and ε ∼ N(0, 1). Under this nonlinear null hypothesis, the tests
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Table 1

Empirical sizes and powers of S̃n and Ũn for H10 v.s. H11 and H12 at the significance level
α = 0.05 with p = 8, ε ∼ N(0, 1).

X a
Case 1 Case 2

n = 100 n = 200 n = 100 n = 200

S̃n Ũn S̃n Ũn S̃n Ũn S̃n Ũn

H11 X ∼ N(0,ΣX
1 ) 0 0.052 0.050 0.047 0.045 0.055 0.051 0.050 0.048

0.2 0.142 0.125 0.296 0.283 0.126 0.113 0.292 0.286
0.4 0.434 0.353 0.884 0.789 0.407 0.350 0.885 0.802
0.6 0.678 0.558 0.983 0.888 0.664 0.552 0.981 0.903
0.8 0.826 0.664 0.994 0.911 0.797 0.670 0.994 0.927
1.0 0.886 0.731 0.997 0.917 0.866 0.717 0.998 0.933

X ∼ N(0,ΣX
2 ) 0 0.050 0.047 0.054 0.050 0.050 0.048 0.054 0.053

0.2 0.228 0.195 0.556 0.499 0.223 0.196 0.532 0.502
0.4 0.660 0.527 0.984 0.866 0.637 0.532 0.981 0.909
0.6 0.834 0.664 0.998 0.904 0.804 0.677 0.997 0.928
0.8 0.902 0.728 0.999 0.917 0.879 0.742 0.998 0.939
1.0 0.932 0.755 1.000 0.928 0.916 0.766 0.999 0.947

H12 X ∼ N(0,ΣX
1 ) 0 0.047 0.045 0.054 0.053 0.048 0.046 0.055 0.054

0.2 0.102 0.093 0.173 0.172 0.100 0.093 0.170 0.165
0.4 0.290 0.252 0.624 0.563 0.284 0.249 0.618 0.578
0.6 0.620 0.520 0.959 0.865 0.599 0.508 0.954 0.875
0.8 0.857 0.707 0.999 0.923 0.853 0.733 0.997 0.942
1.0 0.963 0.811 1.000 0.943 0.953 0.827 1.000 0.953

X ∼ N(0,ΣX
2 ) 0 0.053 0.047 0.051 0.047 0.051 0.049 0.050 0.053

0.2 0.120 0.110 0.226 0.221 0.120 0.110 0.233 0.223
0.4 0.402 0.330 0.791 0.704 0.390 0.334 0.779 0.718
0.6 0.735 0.594 0.991 0.885 0.726 0.621 0.987 0.917
0.8 0.922 0.761 0.998 0.922 0.908 0.775 0.999 0.949
1.0 0.980 0.815 1.000 0.940 0.974 0.845 1.000 0.955

S̃n and Ũn can maintain the empirical sizes reasonably well. From this figure,
we can see that for the cosine alternative H13, the proposed tests show good
power performance and the simulated power curves for them have both popular
sigmoidal shapes. The test S̃n outperforms Ũn. It seems that having an estimate
of π in the test Ũn slightly deteriorates its power performance although in theory,
it is not affected.

Study 2: Consider the following models:

H21 : Y = β�
1 X + a cos(0.3πβ�

2 X + 0.5) + ε,

H22 : Y = β�
1 X + a

{
0.2 log(β�

2 X) + 1
}
+ ε,

H23 : Y = X1 + a
{
(0.1X2)

2 − cos(0.25πX3) + |0.1X4|
}
+ ε,

H24 : Y = X1 + a
{
0.8 exp(0.2X2) +X3X4

}
+ ε,

H25 : Y = β�
1 X + 2.5a(0.3β�

2 X + 0.5)3 + ε,

where p = 4, β1 = (1, . . . , 1︸ ︷︷ ︸
p/2

, 0, . . . , 0)�/
√
p/2 and β2 = (0, . . . , 0︸ ︷︷ ︸

p/2

, 1, . . . , 1)�/

√
p/2. Here, we set a = 0, 0.2, . . . , 1.0 where a = 0 corresponds to the null
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Table 2

Empirical sizes and powers of S̃n and Ũn for H10 v.s. H11 and H12 at the significance level

α = 0.05 with p = 8, ε ∼ DE(0,
√

3
2
).

X a
Case 1 Case 2

n = 100 n = 200 n = 100 n = 200

S̃n Ũn S̃n Ũn S̃n Ũn S̃n Ũn

H11 X ∼ N(0,ΣX
1 ) 0 0.050 0.047 0.054 0.053 0.045 0.045 0.050 0.053

0.2 0.097 0.089 0.195 0.200 0.097 0.096 0.183 0.185
0.4 0.303 0.273 0.708 0.645 0.292 0.257 0.686 0.633
0.6 0.541 0.440 0.927 0.842 0.517 0.433 0.916 0.843
0.8 0.689 0.569 0.976 0.891 0.671 0.558 0.972 0.901
1.0 0.795 0.652 0.990 0.892 0.777 0.649 0.986 0.921

X ∼ N(0,ΣX
2 ) 0 0.049 0.046 0.054 0.050 0.053 0.054 0.052 0.053

0.2 0.164 0.144 0.377 0.357 0.148 0.137 0.363 0.353
0.4 0.506 0.413 0.927 0.817 0.478 0.418 0.922 0.840
0.6 0.722 0.578 0.982 0.876 0.700 0.588 0.981 0.916
0.8 0.824 0.643 0.996 0.901 0.805 0.686 0.993 0.924
1.0 0.879 0.712 1.000 0.905 0.863 0.725 0.996 0.934

H12 X ∼ N(0,ΣX
1 ) 0 0.049 0.047 0.051 0.046 0.047 0.047 0.054 0.054

0.2 0.080 0.073 0.130 0.126 0.081 0.076 0.129 0.128
0.4 0.199 0.185 0.446 0.421 0.199 0.189 0.438 0.411
0.6 0.451 0.387 0.832 0.761 0.420 0.368 0.815 0.748
0.8 0.678 0.582 0.976 0.894 0.657 0.566 0.973 0.905
1.0 0.849 0.719 0.997 0.937 0.850 0.731 0.998 0.945

X ∼ N(0,ΣX
2 ) 0 0.051 0.046 0.053 0.053 0.047 0.046 0.052 0.054

0.2 0.103 0.093 0.167 0.171 0.093 0.090 0.160 0.160
0.4 0.287 0.256 0.603 0.554 0.278 0.250 0.578 0.547
0.6 0.563 0.470 0.926 0.832 0.551 0.484 0.923 0.851
0.8 0.795 0.658 0.997 0.904 0.773 0.669 0.995 0.929
1.0 0.917 0.759 1.000 0.926 0.908 0.776 1.000 0.946

hypothesis and a �= 0 to the alternative hypotheses. That is, for H21, H22 and
H25, the corresponding null hypotheses are all H20 : Y = β�

1 X+ε; For H23 and
H24, the corresponding null hypotheses are both H̃20 : Y = X1+ε. Thus, for the
alternative modelsH21, H22 andH25 with a �= 0, q = 2 and B = (β1, β2). Denote
β�
i , i = 1, . . . , p to be the unit vector, in which the i-th element is 1. As for the

alternative H23 and H24 with a �= 0, B = (β�
1 , β

�
2 , β

�
3 , β

�
4) and q = p = 4. In

other words, H23 and H24 are alternative models without dimension reduction
structure and are used to check the performance of the model-adaptive tests
even when an extra estimate q̂ for the dimension p is involved. The model
H21 is high frequent whereas the others are not. In this simulation study, the
covariate vector X and the random error ε are independent. X comes from
multivariate normal distribution N(0, Ip) where Ip is the p-dimensional identity
matrix. Two types of the random errors are conducted: one is ε ∼ N(0, 1) and
the other is ε ∼ exp(1) − 1, where exp(1) denotes the exponential distribution
with the parameter λ = 1. The second simulation study is used to examine
the impact from dimensionality on both the proposed tests S̃n, Ṽn and the tests
T �
n , V

�
n in (2.9) proposed by Guo et al [7]. The p-dimensional kernel function

K�(·) in T �
n , V

�
n is chosen as K�(u) = K�(u1, . . . , up) = K�

1(u1) · . . . · K�
p(up)

with K�
l (ul) = 15/16(1 − u2

l )
2, l = 1, . . . , p if |ul| ≤ 1 and 0, otherwise. The
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Fig 1. Empirical sizes and powers of S̃n, Ũn and QCC
n for H10 v.s. H13 at the significance

level α = 0.05 with n = 100, ε ∼ N(0, 1). In four plots, the solid line, the dash line and the
dotted-dash line are for S̃n, Ũn and QCC

n respectively.

corresponding bandwidth h� = 1.25n−1/6 is applied. Here, the covariate vector
X is completely observed and the response Y is missing at random. We consider
the following two missing mechanisms similarly as before:

• Case 3: π3(x) = P (δ = 1|X = x) = 1.5− 0.12(|γ�
2 x− 1|+ |γ�

2 x− 0.5|) if
|γ�

2 x− 1|+ |γ�
2 x− 0.5| ≤ 1.5 and 0.75 otherwise;

• Case 4: π4(x) = P (δ = 1|X = x) = 0.78 for all of X = x,

where γ2 = (1, . . . , 1)�/
√
p. The average non-missing rates corresponding to the

above two cases are approximately 84% and 78%. The significance level α = 0.05
and the sample size n = 100 are adopted. Every simulation result is the average
of 5000 replications.

The effects of missing mechanisms and the distributions of random errors
on simulation results are considered. The corresponding empirical sizes and
simulated powers are presented in Table 3 for n = 100, p = 4, q = 2 at the
significance level α = 0.05.
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Fig 2. Empirical sizes and powers of S̃n and Ũn for H̃10 v.s. H13 at the significance level
α = 0.05 with n = 100, ε ∼ N(0, 1). In four plots, the solid line and the dash line are for S̃n

and Ũn, respectively.

Based on Table 3, we can observe that for all the cases we conduct, the
empirical type I errors of the proposed tests S̃n, Ũn can be under control which
are close to the significance level. However, the tests T �

n and V �
n tend to be

conservative although the sizes are still acceptable. All of the tests are generally
sensitive to the alternatives in the sense that, as a increases, the simulated
powers would also increase. Also, they are robust to various distributions of
random errors. For Case 3 and Case 4, when there is more than one direction
under the alternative hypothesis, the test S̃n is still more powerful than Ũn,
which conforms to the results in Study 1. Compared the proposed tests with
T �
n and V �

n , it is obvious that the proposed tests are more powerful to detect
the alternative models even in the cases with p = 4 although the proposed tests
have a seemingly unnecessary estimate of q = p. These results indicate that
the normalizing constant in the proposed tests S̃n, Ũn play an useful role to
enhance the power performance as we claimed in Section 1. Also the tests are
not significantly affected by the dimension of the covariate vector X and the
tests T �

n , V
�
n have relatively poor powers caused by the dimensionality problem.
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Table 3

Empirical sizes and powers of S̃n, Ũn, T �
n and V �

n for H20 v.s. H21 and H22 at the
significance level α = 0.05 with X ∼ N(0, I4), p = 4, q = 2, n = 100.

ε a
Case 3 Case 4

S̃n Ũn T �
n V �

n S̃n Ũn T �
n V �

n

H21 ε ∼ N(0, 1) 0 0.046 0.049 0.042 0.041 0.043 0.046 0.042 0.042
0.2 0.097 0.093 0.055 0.054 0.095 0.091 0.053 0.053
0.4 0.269 0.239 0.065 0.064 0.266 0.252 0.058 0.057
0.6 0.555 0.496 0.116 0.114 0.537 0.500 0.101 0.099
0.8 0.821 0.725 0.191 0.190 0.810 0.745 0.156 0.155
1.0 0.949 0.848 0.296 0.296 0.935 0.860 0.257 0.256

ε ∼ exp(1)− 1 0 0.052 0.053 0.040 0.042 0.053 0.054 0.042 0.043
0.2 0.076 0.069 0.054 0.053 0.066 0.065 0.052 0.053
0.4 0.236 0.213 0.055 0.055 0.229 0.212 0.054 0.053
0.6 0.610 0.537 0.072 0.071 0.571 0.531 0.063 0.066
0.8 0.897 0.795 0.185 0.183 0.877 0.802 0.142 0.144
1.0 0.988 0.885 0.401 0.402 0.980 0.909 0.336 0.335

H22 ε ∼ N(0, 1) 0 0.049 0.051 0.042 0.041 0.049 0.048 0.044 0.043
0.2 0.113 0.112 0.058 0.057 0.125 0.122 0.055 0.054
0.4 0.417 0.393 0.071 0.072 0.415 0.387 0.073 0.074
0.6 0.794 0.733 0.150 0.150 0.784 0.740 0.135 0.135
0.8 0.960 0.885 0.275 0.274 0.956 0.905 0.248 0.247
1.0 0.997 0.934 0.412 0.415 0.995 0.949 0.377 0.383

ε ∼ exp(1)− 1 0 0.053 0.054 0.047 0.049 0.055 0.054 0.044 0.045
0.2 0.086 0.085 0.053 0.052 0.087 0.088 0.051 0.052
0.4 0.430 0.403 0.054 0.054 0.427 0.413 0.054 0.055
0.6 0.875 0.808 0.117 0.115 0.876 0.828 0.107 0.108
0.8 0.994 0.928 0.323 0.325 0.993 0.944 0.296 0.297
1.0 1.000 0.948 0.565 0.561 1.000 0.960 0.524 0.523

Table 4 shows the empirical sizes and powers under H̃20 : Y = X1+ε against
the alternative models H23 and H24 without dimension reduction structures. In
this case, p = q = 4. We consider one case with n = 100. From this table, it
can be seen that the proposed tests can maintain the significance level and the
empirical sizes of T �

n and V �
n are also reasonable. As to the power performance,

it is clear that the proposed tests S̃n, Ũn are the winners compared with T �
n , V

�
n

and even for the purely nonparametric regression model with p = q, the power
is still higher because of using the standardizing constant nh1/2 rather than the
nhp/2 that diverges to infinity slower.

In order to see the impact from dimensionality increasing in the covariate
vector X, a more in-depth analysis with the alternative H25 is considered. Fig-
ure 3 presents the simulated power curves with p increasing from 2 to 4. Here,
n = 100, q = 2, ε ∼ N(0, 1) and the significance level is α = 0.05. From this
figure, we can see that the proposed tests S̃n, Ũn are almost not affected by
the increase of dimension p whereas the powers of T �

n , V
�
n drop rapidly when

the dimension p increases from 2 to 4, even this increase is not very significant.
Whatever p = 4 or p = 2, the proposed tests have advantage.

In summary, the above simulation studies indicate that the adjusted tests S̃n

and Ũn can control the type I error very well and is more powerful than the tests
T �
n and V �

n . Meanwhile, the proposed tests can avoid the curse of dimensionality
to a great extent. The test S̃n is more recommendable.
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Table 4

Empirical sizes and powers of S̃n, Ũn T �
n and V �

n for H̃20 v.s. H23 and H24 at the
significance level α = 0.05 with X ∼ N(0, I4), p = q = 4, n = 100.

ε a
Case 3 Case 4

S̃n Ũn T �
n V �

n S̃n Ũn T �
n V �

n

H23 ε ∼ N(0, 1) 0 0.048 0.049 0.044 0.043 0.044 0.049 0.045 0.044
0.2 0.128 0.118 0.053 0.052 0.113 0.109 0.051 0.051
0.4 0.363 0.329 0.073 0.072 0.360 0.336 0.064 0.063
0.6 0.718 0.632 0.141 0.139 0.684 0.621 0.119 0.118
0.8 0.929 0.814 0.235 0.227 0.913 0.833 0.201 0.202
1.0 0.989 0.893 0.354 0.353 0.985 0.911 0.317 0.318

ε ∼ exp(1)− 1 0 0.052 0.053 0.045 0.043 0.054 0.055 0.043 0.043
0.2 0.159 0.149 0.080 0.080 0.152 0.150 0.081 0.081
0.4 0.399 0.371 0.138 0.138 0.382 0.364 0.128 0.129
0.6 0.674 0.610 0.227 0.226 0.665 0.614 0.210 0.208
0.8 0.869 0.790 0.322 0.321 0.849 0.794 0.309 0.307
1.0 0.960 0.879 0.427 0.426 0.948 0.884 0.403 0.403

H24 ε ∼ N(0, 1) 0 0.048 0.045 0.044 0.045 0.055 0.054 0.045 0.045
0.2 0.161 0.147 0.052 0.051 0.152 0.149 0.052 0.052
0.4 0.498 0.444 0.081 0.082 0.478 0.438 0.084 0.083
0.6 0.791 0.702 0.166 0.168 0.785 0.716 0.147 0.146
0.8 0.929 0.830 0.268 0.268 0.916 0.844 0.251 0.254
1.0 0.975 0.877 0.396 0.395 0.968 0.900 0.357 0.357

ε ∼ exp(1)− 1 0 0.050 0.052 0.046 0.043 0.054 0.053 0.046 0.045
0.2 0.125 0.117 0.052 0.051 0.121 0.112 0.052 0.053
0.4 0.514 0.460 0.054 0.053 0.488 0.448 0.055 0.054
0.6 0.857 0.759 0.143 0.143 0.843 0.764 0.129 0.129
0.8 0.961 0.870 0.318 0.319 0.955 0.874 0.294 0.294
1.0 0.982 0.891 0.529 0.531 0.983 0.907 0.492 0.491

5. A real data example

We now apply the proposed tests S̃n and Ũn to a real data set collected from an
AIDS clinical trial to compare two treatment effects. The HIV positive patients
in this study were randomly divided into four groups to receive antiretroviral
regimen: (i) 600mg of zidovudine; (ii) 400mg of didanosine; (iii) 600mg of zidovu-
dine plus 400 mg of didanosine and (iv) 600 mg of zidovudine plus 2.25 mg of
zalcitabine. A more detailed description of this dataset can be found in Hammer
et al. [9]. Several researchers have made use of this data set to illustrate their
dimension reduction estimation methods with missing responses and further to
compare the treatment effects of the first therapy (say (i)) and the other three
therapies (say (ii)-(iv)), including Ding and Wang [1], Guo et al [5] and Hu et
al [11]. Recently, Niu et al [25] analyzed this data set to check nonparametric
component for partial linear regression model with missing responses at random
and they made a conclusion that it is proper to fit this data set with a linear
regression model.

In this dataset, there are 746 male patients who had not received antiretro-
viral therapy before the clinical trial. Further, based on the way of therapy, we
divide our dataset into two subsets: the first dataset is 179 male patients receiv-
ing the first therapy and the second dataset is 567 patients receiving the other
three therapies. Due to death and dropout, 199 patients in the first subset and
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Fig 3. Empirical sizes and powers of S̃n, Ũn, T �
n and V �

n for H20 v.s. H25 at the significance
level α = 0.05 with n = 100, ε ∼ N(0, 1). In four plots, the solid line, the dash line, the
dash-dotted line and the dotted line are for S̃n, Ũn, T �

n and V �
n respectively.

74 patients in the second subset have missing response values. For each dataset,
the response variable Y is CD4 cell counts at 96±5 weeks post therapy and the
six covariates X = (X1, . . . , X6)

� are age (X1), weight (X2), CD4 cell counts at
baseline (X3), CD4 cell counts at 20±5 weeks (X4), CD8 cell counts at baseline
(X5) and CD8 cell counts at 20 ± 5 weeks (X6). Let the indicator variable T
denote the types of receiving therapies, with T = 0 for the first therapy and
T = 1 otherwise. All of the indicators and covariates are observed.

Of primary interest is to test whether the data can be fitted by linear regres-
sion models: for the first dataset with T = 0

H10 : E(Y |X) = β10 + β�
1 X for some β10 ∈ R and β1 ∈ R6,

H11 : E(Y |X) = m(B�
1 X) �= β10 + β�

1 X for any β10 ∈ R and β1 ∈ R6 (5.1)

and for the second dataset with T = 1

H20 : E(Y |X) = β20 + β�
2 X for some β20 ∈ R and β2 ∈ R6,
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Fig 4. Scatter plots for CD4 counts at 96± 5 weeks (Y) versus a). β̂1X for the first dataset

T = 0 with complete observations; b). β̂2X for the second dataset T = 1 with complete
observations.

H21 : E(Y |X) = m(B�
2 X) �= β20 + β�

2 X for any β20 ∈ R and β2 ∈ R6. (5.2)

The same kernel function and bandwidth as those in the simulation section
are adopted. With the proposed tests, we can obtain that for the first dataset,
β̂10 = 47.900 and β̂1 = (−0.901,−0.845, 0.531, 0.483,−0.003,−0.020)�. The
adjusted tests S̃n and Ũn take the values of -0.484 and -0.492 respectively and
the corresponding p-values are 0.686 and 0.689. For the second dataset with
T = 1, β̂20 = −80.076 and β̂2 = (0.329, 0.938, 0.180, 0.771, 0.031,−0.057)�. The
test statistic S̃n and Ũn take values of 1.339 and 1.348 respectively with the
corresponding p-values 0.090 and 0.089. All of these results indicate that the
two datasets can be fitted by linear regression models.

To further compare the treatment effects for the two kinds of therapies, we
first draw the scatter plots of the response Y versus β̂1X with complete obser-
vations for the first dataset and β̂2X with complete cases for the second dataset
respectively. Figure 4 contains these two plots a) and (b) showing the linear pat-
terns. Let the difference of the two subsets as Δ = E(Y |T = 1)− E(Y |T = 0).
Based on the linear regression models, the estimator of Δ is 81.428, and the
standard error obtained by the bootstrap approximation is 21.719.

6. Discussions

In this paper, two dimension reduction adaptive-to-model tests are proposed
to implement model checking for parametric single-index models with miss-
ing responses at random. A significant advantage of the two tests is that the
tests multiplying a normalizing constant O(nh1/2) can converges to its weak
limit, which is much faster than the typical convergence rate O(nhp/2) for lo-
cal smoothing tests, especially when the dimension p is large. Therefore, they



1514 C. Niu and L. Zhu

can greatly avoid the curse of dimensionality, control type-I errors very well
and have higher powers. Also, they can adapt to models under the null and
alternative hypothesis automatically via estimating the structural dimension q
that is a model selection step. This shows that the performance of the proposed
procedure relies on a first-step model selection followed by a specification test.
A relevant comment was given in Leeb and Pötscher [18]. A thorough study on
hypothesis testing is deserved in the future.

Appendix. Proofs of theorems

The following conditions are asssumed for proving the theorems in Section 3.

(C1) g(β�x, θ) is a Borel measurable function on Rp for each θ and a twice
continuously differentiable real function on a compact subset of θ ∈ Θ for
each x ∈ Rp. The matrix Σ1 = E{ġ(X,β0, θ0)ġ(X,β0, θ0)

�} is nonsingular
where ġ(·) denotes the gradient of the function g(·) over (β, θ)�.

(C2) The density function fβ(z) of β�X on support of C exists and has two

bounded derivatives for all β : |β̃ − β| < δ where δ > 0 and satisfies

0 < inf
β�x∈C

f(z) < sup
β�x∈C

f(z) < 1.

(C3) π(x) has bounded partial derivatives up to order 2 almost surely and
infx π(x) > 0. Assume π(X) follows a semi-parametric structure, that is,
δ = h(γ�

0 X) + ς and π(X) = E(δ|X) = E(δ|γ�
0 X), where E(ς|X) = 0,

h(·) is an unknown link function and γ0 is an unknown p-dimensional
parameter vector.

(C4) Under the null hypothesis and local alternative hypothesis, nh2 → ∞;
Under the global alternative hypothesis, nhq → ∞.

(C5) The kernel function K(·) is a spherically symmetric density function with a
bounded derivative and all of the moments of K(·) exist and∫
UU�K(U)dU = I. The bandwidth satisfies 1/nh2 → 0 and h → 0.

(C6) supE(ε4|X = x) < ∞, E|X|4 < ∞ and E|Y |4 < ∞.
(C7) Let l(ψ�x) is the density of ψ�x, l(ψ�x) = P (δ = 1|ψ�X = ψ�x), which

is assumed to be bounded away from zero and above. The three functions
l1(ψ

�x) = E(I(Y ∈ Is)|ψ�X), l2(ψ
�x) = π(ψ�x)l(ψ�x), l3(ψ

�x) =
l1(ψ

�x)l2(ψ
�x)l2(ψ

�x) are defined on a compact support and
infψ�x l2(ψ

�x) > 0. π(ψ�x), l1(ψ
�x), l2(ψ

�x) and l3(ψ
�x) have bounded

partial derivatives to order 2.
(C8) The estimate B̂ based on semiparametric dimension reduction with CCAR

is
√
n consistent to the matrix B.

Remark 4. Conditions (C1) and (C6) are necessary for the asymptotic nor-
mality of the least-squares estimator. Condition (C2) and (C8) are applied for
guarantee the asymptotic normality of our test statistic. Condition (C3) is a
common assumption in missing data analysis, just as Guo et al [7] mentioned.
Conditions (C4) and (C5) are the common requisite for the kernel density es-
timation problem. Condition (C7) is wildly assumed in many papers, which is
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related to the smoothness of the response density function and regression curves.
See e.g. Zhu and Fang [39] and Guo et al. [5].

The following lemmas are used to prove the theorems in Section 3. We first
give the proof of Lemma 1.

Proof of Lemma 1. We first consider the base estimate ψ̂ in the CC analysis.
Following Ding and Wang [1], in the following proof, without loss of generality,
we assume that X has mean 0 and identity convariance matrix.

For the CC analysis, define Λ =
∑S

s=1 psmsm
�
s , where ps = P (δY ∈ Is),

ms = E(δX|δY ∈ Is). Further denote Λ̂ =
∑S

s=1 p̂sm̂sm̂
T
s , where p̂s =

n−1
∑n

i=1 I(δiyi ∈ Is), m̂s = n−1
∑n

i=1 I(δiyi ∈ Is)δixi/p̂s. Note that

Λ̂−Λ =

S∑
s=1

[
(p̂s − ps)msm

�
s + ps(m̂s −ms)m

�
s + psms(m̂s −ms)

�
]
+ op(Hn),

here, Hn =
∑S

s=1[(p̂s − ps)msm
�
s + ps(m̂s −ms)m

�
s + psms(m̂s −ms)

�]. Since
m̂s = n−1

∑n
i=1 I(δiyi ∈ Is)δiXi/p̂s, it is sufficient to study the convergence rate

of p̂s to ps and n−1
∑n

i=1 I(δiyi ∈ Is)δixi to E(δXI(δY ∈ Is)). In the following,
we only study the convergence rate of p̂s to ps. The other one can be proven
similarly.

To check the distance of p̂s and P (δY ∈ Is) under the local alternative model
and null model, respectively, denote the corresponding response under the null
hypothesis (1.1) and the local alternative (3.2) as Y and Yn. Note that

1

n

n∑
i=1

I(δiyin ∈ Is)− P (δY ∈ Is)

=
1

n

n∑
i=1

I(δiyin ∈ Is)− P (δYn ∈ Is) + P (δYn ∈ Is)− P (δY ∈ Is)

= Op(
1√
n
) + P ((δY + Cnδm(B�X)) ∈ Is)− P (δY ∈ Is)

= Op(
1√
n
) +Op(Cn) = Op(Cn).

Similarly, we have m̂s−ms = Op(Cn). Thus, we can finally get Λ̂−Λ = Op(Cn),

which implies that ψ̂ − ψ = Op(Cn). Under the local alternative (3.2), denote
the relative notations as follows:

ĥ(ψ̂�x) =
1

n

n∑
j=1

δjKh(ψ̂
�(xj − x)),

Ĥ(ψ̂�x) =
1

n

n∑
j=1

δjKh(ψ̂
�(xj − x))I(yjn ∈ Is),

m̂CC(ψ̂�x) =

∑n
j=1 δjKh(ψ̂

�(xj − x))I(yjn ∈ Is)∑n
j=1 δjKh(ψ̂�(xj − x))

,

here ψ̂ is the base of SY |X in CC analysis.
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Recall that

p̂CCAR
s =

1

n

n∑
i,j=1

{
[(1− δi)p̂

CC
ij + δiI(i = j)]I(yjn ∈ Is)

}
,

where

p̂CC
ij =

δjKh{ψ̂�(xj − xi)}∑n
j=1 δjKh{ψ̂�(xj − xi)}

.

Thus,

p̂CCAR
s =

1

n

n∑
i=1

{
δiI(yin ∈ Is) + (1− δi)m̂

CC(ψ̂�xi)
}

=
1

n

n∑
i=1

{
δiI(yin ∈ Is) + (1− δi)

Ĥ(ψ̂�xi)

ĥ(ψ̂�xi)

}
=

1

n

n∑
i=1

(1− δi)
H(ψ̂�xi)−H(ψ�xi)

h(ψ�xi)

− 1

n

n∑
i=1

(1− δi)
H(ψ̂�xi)[h(ψ̂

�xi)− h(ψ�xi)]

h2(ψ�xi)

+
1

n

n∑
i=1

(1− δi)
Ĥ(ψ�xi)−H(ψ�xi)

h(ψ�xi)

− 1

n

n∑
i=1

(1− δi)
H(ψ̂�xi)[ĥ(ψ

�xi)− h(ψ�xi)]

h2(ψ�xi)

+
1

n

n∑
i=1

[δiI(yin ∈ Is) + (1− δi)m
CC(ψ�xi)]

=: D1 −D2 +D3 −D4 +D5. (A.1)

As for the term D1, we have

D1 =
1

n

n∑
i=1

(1− δi)
Ḣ(ψ̃�xi)(ψ̂ − ψ)�xi

h(ψ�xi)
= Op(Cn), (A.2)

where Ḣ(t) = ∂H/∂t. Similarly, we can obtain that D2 = Op(Cn), D3 =
Op(1/

√
n) and D4 = Op(1/

√
n). Further note that

D5 − P (Y ∈ Is) = D5 − P (Yn ∈ Is) + P (Yn ∈ Is)− P (Y ∈ Is)

= Op(
1√
n
) + P ((Y + Cnm(B�X)) ∈ Is)− P (Y ∈ Is)

= Op(
1√
n
) +Op(Cn). (A.3)
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Based on the above analysis for the formulae (A.1), (A.2) and (A.3), when
Cn = n−1/2h−1/4, we have

p̂CCAR
s − P (Y ∈ Is) = Op(Cn).

Similarly, we can obtain that m̂CCAR
s −mCCAR

s = Op(Cn), where mCCAR
s =

E(X|Yn ∈ Is). Further, Ĉov{E(X|Yn)} − Cov{E(X|Y )} = Op(Cn). Conse-
quently, the convergence rate for eigenvalues of Σ−1

X Cov{E(X|Yn)} satisfies

λ̂i − λi = Op(Cn), where λi, i = 1, . . . , p are eigenvalues for Σ−1
X Cov{E(X|Y )}

under the null hypothesis.
Now we turn to prove the consistency of BIC criterion-based estimate when

CCAR is adopted. Invoking the definition in (2.10), denote

G(l) =
n

2
×

∑l
i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− 2×
√
n× l(l + 1)

2p
.

When l > 1,

G(l)−G(1) =
√
n
l(l + 1)− 2

p
− n

∑l
i=2{log(λ̂i + 1)− λ̂i}

2
∑p

i=1{log(λ̂i + 1)− λ̂i}

=
√
n

[
l(l + 1)− 2

p
−

√
n
∑l

i=2{log(λ̂i + 1)− λ̂i}
2
∑p

i=1{log(λ̂i + 1)− λ̂i}

]
.

Note that log(λ̂i + 1)− λ̂i = −λ̂2
i /2 + op(λ̂

2
i ) and λi = 0 for any l > 1. We can

further get that
∑l

i=2{log(λ̂i+1)−λ̂i} = Op(C
2
n) and

∑p
i=1{log(λ̂i+1)−λ̂i → d

in probability where d is a negative constant. When Cn = n−1/2h−1/4, it is not
difficult to see that

√
n

l∑
i=2

{log(λ̂i + 1)− λ̂i} = (nh)−1/2 → 0.

For any l > 1, l(l + 1) > 2 holds. Therefore P (G(1) > G(l)) → 1, which
completes our proof. �
Lemma 2. Under the null hypothesis and conditions (C1)-(C7) in the Ap-
pendix, we have

Wn1 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)�(xi − xj)}eiM(xj) = Op(1/
√
n),

Wn2 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)�(xi − xj)}M(xi)M(xj)
�

= E
{
M(X)M(X)�f(β�

0 X)
}
+ op(1),

Wn3 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δiδjKh{B̂(q̂)�(xi − xj)}eiM(xj) = Op(1/
√
n),
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Wn4 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δiδjKh{B̂(q̂)�(xi − xj)}M(xi)M(xj)
�

= E
{
π2(X)M(X)M(X)�f(β�

0 X)
}
+ op(1).

where M(·) is continuously differentiable and E(M2(Xl)|B�X) ≤ b(B�X) for
Xl ∈ Rp and E[b(B�X)] < ∞.

This can be obtained following the same argument as Guo et al [6], so we
omit the details.

Lemma 3. Suppose the conditions (C1)-(C7) in the Appendix hold and under
the local alternatives (3.2), we have

√
n(α̂− α0) = Cn

√
nΣ−1

1 E{ġ(X,β0, θ0)m(B�X)}

+
Σ−1

1√
n

n∑
i=1

δiġ(X, β̃, θ̃)(yi − g(β̃�xi, θ̃))

π(xi)
+ op(1),

where ġ(X,β0, θ0)= ∂g(α, xj)/∂α
�|α=α0 and Σ1 =E{ġ(X,β0, θ0)ġ(X,β0, θ0)

�}.
The above Lemma can be similarly obtained based on Lemma 4.2 in Van

Keilegom et al [29] and Lemma 3 in Guo et al [7], so we omit the detailed proof
here.

In the following, we give the proof of Theorem 1.

Proof of Theorem 1. We first prove the asymptotic properties for Vn in (2.7).
Denote Kh{B̂(q̂)ij} = Kh{B̂(q̂)�(xi − xj)}. For Vn, noting the symmetry of
Kh(·), it can be decomposed as three parts,

Vn =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}êiêj

− 2

n(n− 1)

n∑
i=1

n∑
j �=i

δiδj(π̂(xi)− π(xi))

π̂(xj)π̂(xi)π(xi)
Kh{B̂(q̂)ij}êiêj

− 1

n(n− 1)

n∑
i=1

n∑
j �=i

δiδj(π̂(xi)− π(xi))(π̂(xj)− π(xj))

π̂(xj)π̂(xi)π(xi)π(xj)
Kh{B̂(q̂)ij}êiêj

=: Vn1 − 2Vn2 − Vn3. (A.4)

Below we analyze the term Vn1 first. Let α = (β, θ)� and it can be divided
as

Vn1 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}eiej

− 2

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}ei
∂g(α, xj)

∂α� (α̂− α0)
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+ (α̂− α0)
� 1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

×Kh{B̂(q̂)ij}
∂g(α, xi)

∂α

∂g(α, xj)

∂α� (α̂− α0) + op(V
�
n1)

=: Vn11 − 2Vn12 + Vn13 + op(V
�
n1), (A.5)

where V �
n1 denotes the term Vn11 − 2Vn12 + Vn13. As for the term Vn11, we can

make the decomposition as follows:

Vn11 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh(Bij)eiej

+
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

(
Kh{B̂(q̂)ij} − Kh(Bij)

)
eiej

=: Vn11,1 + Vn11,2. (A.6)

Since the dimension of B�X is assumed to be fixed, the term Vn11,1 is an
U-statistic. Note that under the null hypothesis H0, we have β0 is the true
parameter, q = 1 and q̂ → 1. By some tedious calculations and according to
Theorem 1 of Hall [8], we can easy to derive the asymptotic normality:

nh1/2Vn11,1 → N(0,ΣV ), (A.7)

here ΣV = 2
∫
K2(u)du ·

∫
π−2(x)p2(β�

0 x){σ2(β�
0 x)}2dx with σ2(β�

0 x) =
E(e2|β�

0 X = β�
0 x). The function p(·) in ΣV denotes the probability density

function. Turn to the term Vn11,2 in (A.6) and an application of Taylor expan-
sion yields

Vn11,2 = V �
n11,2 + op(V

�
n11,2),

where

V �
n11,2 =

h

hq̂

1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

1

h
K′(

Bij

h
)(xi − xj)

�eiej ·
B̂(q̂)−B

h
.

Notice that the kernel function K(·) is spherical symmetric, the following term

1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

1

h
K′(

Bij

h
)(xi − xj)

�eiej

can be regarded as an U-statistic. Further,

E
{ δi
π(xi)

δj
π(xj)

K′(
Bij

h
)(xi − xj)

�eiej |xi, yi

}
= E

{
E
[ δi
π(xi)

δj
π(xj)

K′(
Bij

h
)(xi − xj)

�eiej |xi, yi, xj

]
|xi, yi

}
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= E
{
K′(

Bij

h
)(xi − xj)

�eiE[ej |xj ]|xi, yi

}
= 0.

Therefore, the above U-statistic is degenerate. Together with ‖B̂(q̂) − B‖2 =
Op(1/

√
n) and nh2 → 0, similarly as the proof of the term Vn11,1 above, we can

derive
nh1/2V �

n11,2 = op(1). (A.8)

Based on the formulae (A.6), (A.7) and (A.8), we have

nh1/2Vn11 → N(0,ΣV ).

Turn to the term Vn12 in (A.5), together with α̂−α = Op(1/
√
n) and based on

the Lemma 2, we can obtain that Vn12 = Op(1/n). Further, nh
1/2Vn12 = op(1).

Now we consider the term Vn13 in (A.5). Recalling the Lemma 2, we have

1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}
∂g(α, xi)

∂α

∂g(α, xj)

∂α� = Op(1).

Further,

nh1/2V13 = nh1/2 ·Op(
1√
n
) ·Op(1) ·Op(

1√
n
) = Op(h

1/2) = op(1).

Through the above analysis, we can conclude that

nh1/2Vn1 → N(0,ΣV ). (A.9)

As for the term Vn2 in (A.4), similarly to the proof for Vn1, the key part in
Vn2 is Vn2,1, which is

Vn2,1 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δiδj{π̂(xi)− π(xi)}
π̂(xj)π̂(xi)π(xi)

Kh(Bij)eiej .

In order to prove nh1/2Vn2 = op(1), it is enough to prove that nh1/2Vn2,1 =
op(1). Since E(Vn2,1) = 0 and under H0, q̂ → 1, the variance of Vn2,1 can be
computed as

Var(Vn2,1) =
1

n2(n− 1)2h2

n∑
i=1

n∑
j �=i

n∑
k=1

n∑
l �=k

×E
{δiδjδkδl(π̂(xj)− π(xj))(π̂(xl)− π(xl))

π̂(xi)π̂(xj)π(xj)π̂(xk)π̂(xl)π(xl)

×K
(B�(xi − xj)

h

)
K
(B�(xk − xl)

h

)
eiejekel

}
As to the above formula, only the terms with i = k, j = l and i = l, j = k are
not zero. When i = k, j = l, we have the following term in Var(Vn2,1) as follows:

Var(Vn2,1)1
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=
1

n2(n− 1)2h2

n∑
i=1

n∑
j �=i

E
[δiδj(π̂(xj)− π(xj))

2

π̂2(xi)π̂2(xj)π2(xj)
K2

(B�(xi − xj)

h

)
e2i e

2
j

]
.

Further notice that

E
[δiδj(π̂(xj)− π(xj))

2

π̂2(xi)π̂2(xj)π2(xj)
K2

(B�(xi − xj)

h

)
e2i e

2
j )
]

= E
[ (π̂(xj)− π(xj))

2

π(xi)π3(xj)
K2

(B�(xi − xj)

h

)
σ2(xi)σ

2(xj)
]
+ o(1)

= E
[ (π̂(xj)− π(xj))

2

π(xi)π3(xj)
K2

(B�(xi − xj)

h

)
× sup

x
(π̂(x)− π(x))2

]
≤ E1/2

[σ4(xi)σ
4(xj)

π2(xi)π6(xj)
K4

(B�(xi − xj)

h

)]
× E1/2[sup

x
(π̂(x)− π(x))4]

=
[
h

∫
K4(u)du ·

∫
(σ4(x))2p2(x)π−8(x)dx

]1/2
×O(

ln(n)

nh
) = o(h)

The last formula applies the fact E[supx(π̂(x)− π(x))] = O(
√

ln(n)/nhq̂) with
q̂ → 1 and it needs the condition that nh3/2 → ∞. Therefore, we have
Var(Vn2,1)1 = o(n−2h−1). Similarly, denote the term i = l, j = k in Var(Vn2,1)
as Var(Vn2,1)2 and we can also derive that Var(Vn2,1)2 = o(n−2h−1). At last,
Vn2,1 = o(n−1h−1/2) and it is also true for the term Vn2. Consequently,

nh1/2Vn2 = nh1/2 · o(n−1h−1/2) = op(1). (A.10)

Similarly, we can get that
nh1/2Vn3 = op(1). (A.11)

Combining the formulae (A.4), (A.9), (A.10) and (A.11) together, we have

nh1/2Vn → N(0,ΣV ).

In general, ΣV is unknown, an estimate for it can be defined as

Σ̂V =
2

n(n− 1)

n∑
i=1

n∑
j �=i

1

hq̂

δiδj
π̂2(xi)π̂2(xj)

K2
( B̂(q̂)�(xi − xj)

h

)
ê2i ê

2
j .

The consistency of Σ̂V can be proved similarly as the proof for Theorem 1 in
Guo et al [6] via U-statistic theory. We omit it here.

Similarly, the asymptotic properties for Tn can be concluded. Thus, the proof
for Theorem 1 is finished. �
Proof of Theorem 2. We first consider the asymptotic properties of Tn and
Vn under the global alternative (1.2). Under this alternative, from White [30],
we can obtain that α̂ − α̃ = Op(1/

√
n). However, α̂ is different from the true

value α0 = (β0, θ0) under the null hypothesis H0. Denote Δ(xi) = m(B�xi) −
g(β̃�xi, θ̃), thus êi = εi+Δ(xi)− [g(β̂�xi, θ̂)− g(β̃�xi, θ̃)]. According to the U-
statistic theory, it is not difficult to obtain that Tn ⇒ E{π2(X)Δ2(X)f(B�X)}
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and Vn ⇒ E{Δ2(X)f(B�X)}. Similarly, we can also prove that in probability
Σ̂T and Σ̂V converge to positive values which are different from ΣT and ΣV ,
respectively. Therefore, it is obvious that nh1/2Tn ⇒ ∞, nh1/2Vn ⇒ ∞ and
Sn/(nh

1/2) → Constant > 0, Un/(nh
1/2) → Constant > 0, which completes the

proof of the global alternative situation.
First, denote

V̄n =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)�(xi − xj)}êiêj .

Similar as the proof in Theorem 1, it is not difficult to show

Vn = V̄n + op(V̄n). (A.12)

Under the local alternative (3.2), we have êi = [Cnm(B�xi)+εi]− [g(β̂�xi, θ̂)−
g(β�

0 xi, θ0)]. Let Kh{B̂(q̂)ij} = Kh{B̂(q̂)�(xi − xj)}. As for the term V̄n, we
have the following expansion

V̄n =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

×Kh{B̂(q̂)ij}[Cnm(B�xi) + εi][Cnm(B�xj) + εj ]

− 2

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

×Kh{B̂(q̂)ij}[Cnm(B�xi) + εi]
∂g(α, xj)

∂α� (α̂− α0)

+ (α̂− α0)
� 1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

×Kh{B̂(q̂)ij}
∂g(α, xi)

∂α

∂g(α, xj)

∂α� (α̂− α0) + op(V̄
�
n )

=: V̄n1 − V̄n2 + V̄n3 + op(V̄
�
n ), (A.13)

where V̄ �
n = V̄n1 − V̄n2 + V̄n3.

As for the term V̄n1 in (A.13),

V̄n1 =
1

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}εiεj

+
2Cn

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}εim(B�xj)

+
C2

n

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}m(B�xi)m(B�xj)

=: V̄n1,1 + CnV̄n1,2 + C2
nV̄n1,3.
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Similarly as the proof for Vn11 in (A.5), we can obtain that

nh1/2V̄n1,1 ⇒ N(0,ΣV ).

Based on the Lemma 2, we have

V̄n1,2 = Op(1/
√
n)

V̄n1,3 = E[m2(B�X)f(β�
0 X)] + op(1).

Consequently, when Cn = n−1/2h−1/4,

nh1/2V̄n1 ⇒ N(E[m2(B�X)f(β�
0 X)],ΣV ). (A.14)

For the term V̄n2 in (A.13), we have

V̄n2 =
2

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}εi
∂g(α, xj)

∂α� (α̂− α0)

+
2Cn

n(n− 1)

n∑
i=1

n∑
j �=i

δi
π(xi)

δj
π(xj)

Kh{B̂(q̂)ij}m(B�xi)
∂g(α, xj)

∂α� (α̂− α0)

=: V̄n2,1(α̂− α0) + CnV̄
�
n2,2(α̂− α0).

Based on the Lemma 2, we have V̄n2,1 = Op(1/
√
n) and

V̄n2,2 = 2E{m(B�X)ġ(X,β0, θ0)f(β
�X)}+ op(1),

where ġ(X,β0, θ0) = ∂g(α, xj)/∂α
�|α=α0 and f(·) denotes the probability den-

sity function of β�
0 X. Recall Lemma 3 and when Cn = n−1/2h−1/4, we have

nh1/2V̄n2

= nh1/2
[
Op(n

−1/2)Op(Cn)

+ 2C2
nE

�{m(B�X)ġ(X,β0, θ0)f(β
�X)}Σ−1

1 E{ġ(X,β0, θ0)m(B�X)}
]

= 2E�{m(B�X)ġ(X,β0, θ0)f(β
�X)}Σ−1

1 E{ġ(X,β0, θ0)m(B�X)}+ op(1).
(A.15)

Turn to the term V̄n3 in (A.13), it is not difficult to conclude that

V̄n3 = (α̂− α0)
�E{ġ(X,β0, θ0)ġ(X,β0, θ0)

�f(β�X)}(α̂− α0) + op(C
2
n)

= C2
nE

�{ġ(X,β0, θ0)m(B�X)}Σ−1
1 E{ġ(X,β0, θ0)ġ(X,β0, θ0)

�f(β�X)}
× Σ−1

1 E�{ġ(X,β0, θ0)m(B�X)}+ op(C
2
n).

Further, when Cn = n−1/2h−1/4,

nh1/2V̄n3 = E�{ġ(X,β0, θ0)m(B�X)}Σ−1
1 E{ġ(X,β0, θ0)ġ(X,β0, θ0)

�f(β�X)}
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× Σ−1
1 E�{ġ(X,β0, θ0)m(B�X)}+ op(1). (A.16)

Combining the formulae (6), (A.14), (A.15), (A.12) and (A.16), we have

nh1/2Vn ⇒ N(μV ,ΣV ),

where

μV = E[m2(B�X)f(β�
0 X)]

− 2E�{m(B�X)ġ(X,β0, θ0)f(β
�X)}Σ−1

1 E{ġ(X,β0, θ0)m(B�X)}
+ E�{ġ(X,β0, θ0)m(B�X)}Σ−1

1 E{ġ(X,β0, θ0)ġ(X,β0, θ0)
�f(β�X)}

× Σ−1
1 E�{ġ(X,β0, θ0)m(B�X)}

= E
[(

m(B�X)− ġ(X,β0, θ0)
�Σ−1

1 E{ġ(X,β0, θ0)m(B�X)}
)2

f(β�
0 X)

]
.

At the same time, Σ̂V is still a consistent estimate of ΣV . Similarly, the
asymptotic properties for the test statistic Tn can be also proved and we omit
them here. The proof for Theorem 2 is finished. �
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