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1. Introduction

Rapid expansion of capacity in the automatic data acquisition has made a pro-
found impact on statistics and machine learning, as it brings data of unprece-
dented size and complexity. These data are generally called as the massive data
or big data [28]. Massive data bring new opportunities of discovering subtle pop-
ulation patterns and heterogeneities which are believed to embody rich values
and are impossible to be found in relatively small data sets. They, however,
simultaneously lead to a series of challenges such as the storage bottleneck,
efficient computation, and so on [32].

To handle the aforementioned challenges, some divide and conquer strategies
were suggested and widely used in statistical and machine learning communities
[17, 7, 14, 30, 29, 1, 26, 15, 4]. These approaches firstly decompose a massive
data set into m data blocks, then run some specified learning algorithm on each
data block independently to get a local estimate f̂j , j = 1, . . . ,m and finally
transmit the m local estimates into one machine to synthesize a global estimate
f̄ , which is expected to model the structure of original massive data. A practical
and exclusive synthesizing method is the average mixture (AVM) [17, 14, 30, 29,

15], i.e., f̄ = 1
m

∑m
j=1 f̂j .
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In practice, divide and conquer strategies have many applicable scenarios.
We show the following three situations as motivating examples. The first one
focuses on using limited primary memory to handle a massive data set. In this
situation, the divide and conquer strategy is regarded as a two-stage procedure.
In the first stage, it reads the whole data set sequentially block by block with
manageable sample size and derives a local estimate based on each block. In the
second stage, it synthesizes local estimates to build up a global estimate [14].
The second motivating example refers to using distributed data management
systems to tackle massive data. In this situation, distributed data management
systems (e.g., Hadoop) are designed by some divide and conquer strategies.
They can load the whole data set into the systems and tackle computational
tasks separably and automatically. Guha et al. [10] have developed an integrated
programing environment of R and Hadoop (called RHIPE) for expedient and
efficient statistical computing. The third example is the massive data privacy. In
this situation, it divides a massive data set into several small pieces and combines
the estimates derived from these pieces for keeping the data privacy [7, 4].

For nonparametric regression, the average mixture has been shown to be ef-
ficient and feasible for global modeling methods such as conditional maximum
entropy model [17], kernel ridge regression [29, 15, 4], kernel-based gradient de-
scent [16] and kernel-based spectral algorithms [3, 11]. Compared with these
global modeling methods, local average regression (LAR) [12, 8, 25], such as
the Nadaraya-Watson kernel (NWK) and k nearest neighbor (KNN) estimates,
which is by definition a learning scheme that averages outputs whose corre-
sponding inputs satisfy certain localization assumptions, is recognized in the
literature [12] to possess lower computational burden and therefore, is widely
used in image processing [24], recommendation system [2] and financial engi-
neering [13]. A natural idea to use LAR on massive data is to combine it with
the average mixture strategy to produce a new learning scheme called average
mixture local average regression (AVM-LAR), just as [29] did for the kernel
ridge regression.

Our first purpose is to analyze the performance of AVM-LAR. We show that
AVM-LAR can achieve the optimal learning rate of LAR on the whole data
set under some strong restrictions on m, the number of data blocks. We prove
that these restrictions cannot be essentially relaxed, which makes AVM-LAR
feasible only for small m. Therefore, different from the AVM version of the
global modeling in the literature [29, 15, 3, 4, 11, 16], AVM-LAR does not
bring essential improvements over LAR, since we must pay much attention to
determine an appropriate m.

Our second purpose is to pursue other divide and conquer strategies to equip
LAR efficiently. In particular, we provide two concrete variants of AVM-LAR in
this paper. The first variant is motivated by the difference between KNN and
NWK, since the range of m to guarantee the optimal learning rate of AVM-
KNN is much larger than AVM-NWK in our simulation studies. We attribute
the reason to the data dependent property of localization parameter of KNN.
Therefore, we slightly modify AVM-LAR by adopting a data dependent local-
ization parameters of each data block. We establish optimal learning rates of
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this variant under mild restriction on m and verify its feasibility by numerical
simulations. The second variant is based on the definitions of AVM and LAR.
It follows from the definition of LAR that the predicted value of a new input
depends on samples near the input. If there are no such samples in a specified
data block, then this data block doesn’t affect the prediction of LAR. However,
AVM averages local estimates directly, neglecting the concrete value of a spec-
ified local estimate, which usually leads to an inaccurate prediction. Based on
this observation, we propose another variant of AVM-LAR by distinguishing
whether a specified data block affects the prediction. We provide the optimal
learning rate of this variant without any restriction on m and also present the
experimental verifications.

To complete the above missions, the rest of paper is organized as follows.
In Section 2, we present optimal learning rates of LAR and AVM-LAR and
analyze the pros and cons of AVM-LAR. In Section 3, we propose two new
modified AVM-LARs to improve the performance of AVM-LAR. A set of simu-
lation studies to support the correctness of our assertions are given in Section 4.
In Section 5, we prove all the theorems detailedly. In Section 6, we present the
conclusion and some useful remarks.

2. Divide and conquer local average regression

In this section, after introducing some basic concepts of LAR, we present optimal
learning rates of LAR. Then we derive optimal learning rates of AVM-LAR and
analyze its pros and cons.

2.1. Local average regression

Let DN = {(Xi, Yi)}Ni=1 be the data set where Xi ∈ X ⊆ R
d is a explanatory

variable and Yi ∈ [−M,M ] is the real-valued response for some 0 < M <
∞. We always assume X is a compact set. Suppose that samples are drawn
independently according to an unknown joint distribution ρ over X × [−M,M ].

The main aim of nonparametric regression is to construct a function f̂ : X →
[−M,M ] that can describe future responses based on new inputs. The quality

of the estimate f̂ is measured in terms of the mean-squared prediction error
E{f̂(X)−Y }2, which is minimized by the so-called regression function fρ(x) =
E {Y |X = x}.

LAR, as one of the most widely used nonparametric regression approaches,
constructs an estimate formed as

f̂DN ,h(x) =

N∑
i=1

Wh,Xi(x)Yi, (2.1)

where the localization weightWh,Xi satisfiesWh,Xi(x)> 0 and
∑N

i=1 Wh,Xi(x)=
1. Here, h > 0 is the so-called localization parameter reflecting the extent of
localization. Its value may depend on the data and the query point x. Generally
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speaking, Wh,Xi(x) is small if Xi is far from x. Two widely used examples of
LAR are the Nadaraya-Watson kernel (NWK) and k nearest neighbor (KNN)
estimates.

Example 2.1. (NWK estimate) Let K : X → R+ be a kernel function [12],
and h > 0 be its localization parameter. The NWK estimate is defined by

f̂h(x) =

∑N
i=1 K

(
x−Xi

h

)
Yi∑N

i=1 K
(
x−Xi

h

) , (2.2)

and therefore,

Wh,Xi(x) =
K
(
x−Xi

h

)
∑N

i=1 K
(
x−Xi

h

) .
It is worth noting that we use the convention 0

0 = 0 throughout this paper. Two
popular kernel functions are the naive kernel, K(x) = I{‖x‖≤1} and Gaussian

kernel K(x) = exp
(
−‖x‖2

)
, where IA is an indicator function with the feasible

domain A ⊂ X and ‖ · ‖ denotes the Euclidean norm. In the NWK estimate, the
localization parameter depends only on the size of data.

Example 2.2. (KNN estimate) For x ∈ X , let {(X(i)(x), Y(i)(x))}Ni=1 be a
permutation of {(Xi, Yi)}Ni=1 such that

‖x−X(1)(x)‖ ≤ · · · ≤ ‖x−X(N)(x)‖.

Then the KNN estimate is defined by

f̂k(x) =
1

k

k∑
i=1

Y(i)(x). (2.3)

According to (2.1), we have

Wh,Xi(x) =

{
1/k, if Xi ∈ {X(1), . . . , X(k)},
0, otherwise.

Here we denote the weight of KNN as Wh,Xi instead of Wk,Xi for the sake of
unity and h = ‖x−X(k)(x)‖ depends on the distribution of data and the query
point x.

2.2. Optimal learning rate of LAR

The weakly universal consistency and optimal learning rates of some specified
examples of LAR have been justified by [21, 22, 23] and summarized in [12].
In particular, Theorem 4.1 in [12] presented a sufficient condition to guarantee
the weakly universal consistency of LAR. Theorem 5.2 and 6.2 in [12] deduced
optimal learning rates of NWK and KNN. The aim of this subsection is to
present some sufficient conditions to guarantee optimal learning rates of general
LAR.



Divide and conquer LAR 1331

Generally, it is impossible to obtain a nontrivial rate of convergence result
for arbitrary learning algorithm without imposing strong restrictions on ρ [12,
Theorem 3.1], even when the output is bounded, i.e., Y ∈ [−M,M ] almost
surely. A large portion of statistical learning theory [6, 20, 31, 18, 19] proceeds
under the assumption that fρ is in a known set possessing some regularity. For
r, c0 > 0, let Fc0,r = {f |f : X → Y , |f(x) − f(x′)| ≤ c0‖x − x′‖r, ∀x, x′ ∈ X}.
We suppose in this paper that fρ ∈ Fc0,r, since this prior assumption has been
employed in [12, 25, 29]. In this way, we present a baseline of our analysis in the
following proposition, in terms of providing optimal learning rates for LAR un-
der some mild conditions on the weights {Wh,Xi(x)}Ni=1. Throughout the paper,
we assume that h is data-independent for the sake of brevity. Similar results of
data-dependent parameter can be derived by using the similar approach as that
in the proof of Theorem 3.1 in Section 5.

Proposition 2.1. Let f̂DN ,h be defined by (2.1) and the localization weight

Wh,Xi satisfy Wh,Xi(x) > 0 and
∑N

i=1 Wh,Xi(x) = 1. Assume further that:
(A) there exists a positive number c1 such that

E

{
N∑
i=1

W 2
h,Xi

(X)

}
≤ c1

Nhd
;

(B) there exists a positive number c2 such that

E

{
N∑
i=1

Wh,Xi(X)I{‖X−Xi‖>h}

}
≤ c2√

Nhd
.

If h ∼ N−1/(2r+d), then there exist constants C0 and C1 depending only on d,
r, c0, c1 and c2 such that

C0N
−2r/(2r+d) ≤ sup

fρ∈Fc0,r
E{‖f̂DN ,h − fρ‖2ρ} ≤ C1N

−2r/(2r+d) (2.4)

where ‖f‖ρ = (
∫
X |f(x)|2dρX)1/2 and ρX is the marginal distribution of ρ.

Proposition 2.1 presents sufficient conditions of the localization weights to
ensure the optimal learning rate of LAR. There are totally four constraints
of the localization weight Wh,Xi(·). The first one is the averaging constraint∑N

i=1 Wh,Xi(x) = 1, for all Xi, x ∈ X . It essentially reflects the word average
in LAR. The second one is the non-negative constraint. We regard it as a mild
constraint as it holds for all the widely used LAR such as NWK and KNN.
The third constraint is condition (A), which devotes to controlling the scope
of the weights. It aims at avoiding the extreme case that there is a very large
weight near 1 and others are almost 0. The last constraint is condition (B),
which implies the localization property of LAR.

Proposition 2.1 is a direct generalization of Theorems 4.1, 5.2 and 6.2 in
[12] and is important for our analysis, since it provides a sanity-check that an
efficient AVM-LAR estimate should possess the similar learning rate as (2.4).
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Furthermore, equipping LAR with some specified divide and conquer strategies
may yield a new LAR estimate (such as Algorithm 3 in this paper). Thus,
Proposition 2.1 provides a theoretical tool to derive optimal learning rates for
this type of algorithms.

2.3. AVM-LAR

The AVM-LAR estimate, which is a marriage of the classical AVM strategy
[17, 30, 29] and LAR, can be formulated in the following Algorithm 1.

Algorithm 1 AVM-LAR

Initialization: Let DN = {(Xi, Yi)}Ni=1 be a data set of size N , m be the number of data
blocks, and h be the localization parameter.
Output: The global estimate fh.
Division: Randomly divide DN into m data blocks D1, D2, . . . , Dm such that DN =
m⋃

j=1
Dj , Di ∩Dj = ∅, i �= j and |D1| = · · · = |Dm| = n = N/m.

Local processing: For j = 1, 2, . . . ,m, implement LAR on the data block Dj to get the
jth local estimate

fj,h(x) =
∑

(Xi,Yi)∈Dj

WXi,h(x)Yi.

Synthesization: Obtain a global estimate defined by

fh =
1

m

m∑
j=1

fj,h. (2.5)

In the following Theorem 2.1, we show that this simple generalization of LAR
achieves the optimal learning rate with a condition concerning m. We also show
that this condition is essential.

Theorem 2.1. Let fh be defined by (2.5) and hDj be the mesh norm of the
data block Dj defined by hDj := max

X∈X
min

Xi∈Dj

‖X −Xi‖. Suppose that

(C) for all D1, . . . , Dm, there exists a positive number c3 such that

E

⎧⎨
⎩

∑
(Xi,Yi)∈Dj

W 2
h,Xi

(X)

⎫⎬
⎭ ≤ c3

nhd
;

(D) for all D1, . . . , Dm, there holds almost surely

WXi,hI{‖x−Xi‖>h} = 0.

If h ∼ N−1/(2r+d), and the event {hDj ≤ h for all Dj} holds with probability
δ ∈ (0, 1), then there exists a constant C2 depending only on d, r,M, c0 and c3
such that

C0N
−2r/(2r+d) ≤ sup

fρ∈Fc0,r
E{‖fh − fρ‖2ρ} ≤ C2N

−2r/(2r+d) (2.6)
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holds with confidence δ. Otherwise, for arbitrary h ≥ 1
2 (n + 2)−1/d, with confi-

dence at least 1− δ, there exists a distribution ρ such that

sup
fρ∈Fc0,r

E{‖fh − fρ‖2ρ} ≥ M2{(2h)−d − 2}
3n

. (2.7)

Remark 2.1. We formulate our condition in a probability way in order to high-
light the importance of the event {hDj ≤ h for all Dj}, although the probability
that the event holds can be derived directly, as shown in (2.8) below. In particu-
lar, as exhibited in simulations in Section 4, the mentioned event plays a crucial
role in controlling m in AVM-LAR.

The assertions in Theorem 2.1 can be divided into two parts. The first one
is the positive assertion, showing that if some conditions on the weights and
an extra constraint {hDj ≤ h for all Dj} are imposed, then the AVM-LAR
estimate (2.5) possesses the same learning rate as that in (2.4) by taking the
same localization parameter h (ignoring constants). Thus, the average mixture
doesn’t degrade the learning performance of LAR.

We then explain the conditions of Theorem 2.1 and compare them with those
of Proposition 2.1. To get an error estimate like (2.6), it can be found in the
proof that (D) can be relaxed to the following condition (D∗).

(D∗) For all D1, . . . , Dm, there exists a positive number c4 such that

E

⎧⎨
⎩

∑
(Xi,Yi)∈Dj

Wh,Xi(X)I{‖X−Xi‖>h}

⎫⎬
⎭ ≤ c4√

Nhd
.

Condition (C) is the same as condition (A) by noting that there are only n
samples in each Dj . Condition (D∗) is stronger than condition (B) as there are

totally n samples in Dj but the localization bound is c4/(
√
Nhd). However, we

should point out that such a restriction is also mild, since in almost all widely
used LAR, the localization bound either is 0 (see NWK with naive kernel, and
KNN) or decreases exponentially (such as NWK with Gaussian kernel). All the
above methods satisfy conditions (C) and (D∗). The most important restriction
in Theorem 2.1 is the requirement that the event {hDj ≤ h for all Dj} holds.
Since P{hDj ≤ h for all Dj} = 1 −mP{hD1 > h}, and it can be found in [12,
Lemma 6.4] that P{hD1 > h} ≤ c

nhd , we have P{hDj ≤ h for all Dj} ≥ 1− m
nhd .

When h ∼ N−1/(2r+d) = (mn)−1/(2r+d), we have

P{hDj ≤ h for all Dj} ≥ 1− c′
m(2r+2d)/(2r+d)

n2r/(2r+d)
. (2.8)

The above quantity is small when m is large, which means that the probability
that the event {hDj ≤ h for all Dj} holds is very small. Noticing [12, Problem
2.4], it is easy to prove that the above probability estimate is essential in the
sense that for the uniform distribution, the equality holds for some constant c′.

Once the event {hDj ≤ h for all Dj} does not hold, our theorem drives

to a negative direction, saying that for any h ≥ 1
2 (n + 2)−1/d, the learning

rate of AVM-LAR isn’t faster than 1
nhd . It follows from Theorem 2.1 that the
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best localization parameter to guarantee the optimal learning rate satisfies h ∼
N−1/(2r+d). The condition h ≥ 1

2 (n+ 2)−1/d implies that if the best parameter

is selected, then m should satisfy m ≤ O(N2r/(2r+d)). Under this condition,
from (2.7), we have

sup
fρ∈Fc0,r

E{‖fh − fρ‖2ρ} ≥ C

nhd
.

This means, if we select h ∼ N−1/(2r+d) and m ≤ O(N2r/(2r+d)), then the
learning rate of AVM-LAR is essentially slower than that in (2.4). If we select
a smaller h, then the above inequality yields the similar conclusion. If we se-
lect a larger h, however, the approximation error (see the proof of Proposition
2.1) is O(h2r) which is larger than the learning rate in (2.4). In short, if the
event {hDj ≤ h for all Dj} does not hold, then the average mixture essentially
degrades the learning performance of LAR for all selection of h.

In the previous studies on implementing average mixture on some global
modeling strategies such as the kernel ridge regression [29, 15] and kernel-based
spectral algorithms [3, 11], the range ofm to guarantee the optimal learning rates
depends only onN , the capacity of the corresponding reproducing kernel Hilbert
space and the regularity of the regression function. Our results in Theorem 3.2
shows that LAR involves an event {hDj ≤ h for all Dj} which may not hold
even when m is a constant. This phenomenon makes AVM-LAR fairly instable
and urges us to develop stable divide and conquer strategies for LAR.

3. Modified AVM-LAR

In this section, we propose two stable variants of AVM-LAR in the sense that
they achieve the optimal learning rates under mild conditions.

3.1. AVM-LAR with data-dependent parameters

The event {hDj ≤ h for all Dj} essentially implies that for arbitrary x, there is
at least one sample in the ball Bh(x) := {x′ ∈ R

d : ‖x−x′‖ ≤ h}. This condition
holds automatically for KNN since h = ‖x−X(k)(x)‖. However, for NWK and
other local average methods (e.g., partition estimation [12]), this condition has a
high probability to be broken down. Motivated by KNN, it is natural to select a
localization parameter h to ensure the event {hDj ≤ h for all Dj}. Therefore, we
propose a variant of AVM-LAR with data-dependent parameters in Algorithm
2.

Compared with AVM-LAR in Algorithm 1, the only difference of Algorithm
2 is the division step, where we select the localization parameter to be larger
than all hDj , j = 1, . . . ,m. The following Theorem 3.1 states the theoretical
merit of AVM-LAR with data-dependent localization parameters.

Theorem 3.1. Let r < d/2 and f̂h̃ be defined by (3.1). Assume (C) and (D∗)
hold for arbitrary h > 0. Suppose

h̃ = max{m−1/(2r+d) max
j

{hd/(2r+d)
Dj

},max
j

{hDj}}, (3.2)
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Algorithm 2 AVM-LAR with data-dependent parameters

Initialization: Let DN = {(Xi, Yi)}Ni=1 be a data set of size N and m be the number of
data blocks.
Output: The global estimate f̂h̃.

Division: Randomly divide DN into m data blocks D1, D2, . . . , Dm such that DN =
m⋃

j=1
Dj , Di ∩Dj = ∅, i �= j and |D1| = · · · = |Dm| = n = N/m. Compute the mesh norms

hD1 , . . . , hDm , and select h̃ ≥ hDj
, j = 1, 2, . . . ,m.

Local processing: For any j = 1, 2, . . . ,m, implement LAR with the localization param-
eter h̃ for the data block Dj to get the jth local estimate

fj,h̃(x) =
∑

(Xi,Yi)∈Dj

WXi,h̃
(x)Yi.

Synthesization: Transmit m local estimates fj,h̃ to a machine, getting a global estimate

defined by

f̂h̃ =
1

m

m∑
j=1

fj,h̃. (3.1)

and m ≤
(

c20(2r+d)+8d(c3+2c24)M
2

4r(c20+2)

)d/(2r)
N2r/(2r+d), then there exists a constant

C3 depending only on c0, c3, c4, r, d and M such that

C0N
−2r/(2r+d) ≤ sup

fρ∈Fc0,r
E{‖f̂h̃ − fρ‖2ρ} ≤ C3N

−2r/(2r+d). (3.3)

Theorem 3.1 shows that if the localization parameter is selected elaborately,
then AVM-LAR can achieve the optimal learning rate under mild conditions
concerning m. It should be noted that there is an additional restriction on the
smoothness degree, r < d/2. We highlight that this condition cannot be re-
moved. In fact, without this condition, (3.3) may not hold for some marginal
distribution ρX . For example, let d = 1, it can be deduced from [12, Prob-
lem 6.1] that there exists a ρX such that (3.3) doesn’t hold. However, if we
don’t aim at deriving a distribution free result, we can remove this condition
by using the technique in [12, Problem 6.7]. Actually, if there exist ε0 > 0, a
nonnegative function g such that for all x ∈ X , and 0 < ε ≤ ε0 there holds
ρX(Bε(x)) > g(x)εd, and

∫
X

1
g2/d(x)

dρX < ∞, then (3.3) holds for arbitrary r

and d. It is obvious that the uniform distribution satisfies the above conditions.
In this case, Theorem 3.1 exhibits an advantage of Algorithm 2 over the average
mixture versions of some global modeling strategies in terms that it requires
larger range of m to guarantee the optimal learning rate, since the largest m for
AVM versions of spectral algorithms [3, 11] and kernel ridge regression [29, 15, 4]

are O(m− 2r−d
2r+d ) when r > d/2. We encourage the readers to compare our results

with results in [29, 15, 3, 11, 4].
Instead of imposing a restriction on hDj , Theorem 3.1 states that after us-

ing the data-dependent parameter h̃, AVM-LAR doesn’t degrade the learn-
ing performance of LAR for a wide range of m. We declare that the derived
bound of m cannot be improved further. Indeed, Our proof in Section 5 shows
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that the bias of AVM-LAR is bounded by CE{h̃2r}. Under the conditions
of Theorem 3.1, if m ∼ N (2r+ε)/(2r+d), then for arbitrary Dj , there holds
E{hDj} ≤ Cn−1/d = C(N/m)−1/d ≤ CN (d−ε)/(2r+d). Thus, it is easy to check

that E{h̃2r} ≤ CN (−2r+ε)/(2r+d), which implies a learning rate slower than
N−2r/(2r+d).

We conclude this subsection with the sober note: the results in Theorem
3.1 are built upon delicate selection of h̃ in (3.2), requiring the smoothness
information of the regression function and computations of the mesh norm of
each data block. By definition, the mesh norm hDj measures the maximum
distance that any points on X can be from Dj(x) := {x ∈ X : (x, y) ∈ Dj}.
It reflects the denseness of Dj(x) in X . Computing hDj requires at least O(n2)
computational complexity and makes the computational cost of Algorithm 2 be
higher than that of LAR.

3.2. Qualified AVM-LAR

Algorithm 2 provided an intuitive way to improve the performance of AVM-
LAR. However, Algorithm 2 increases the computational complexity of AVM-
LAR, because we have to compute the mesh norm hDj , j = 1, . . . ,m. A natural
question is whether we can avoid this procedure while maintaining the learning
performance. The following Algorithm 3 provides a possible way to answer this
question.

Algorithm 3 Qualified AVM-LAR

Initialization: Let DN = {(Xi, Yi)}Ni=1 be a data set of size N , m be the number of data
blocks, and h be the localization parameter.
Output: The global estimate f̂h.
Division: Randomly divide DN into m data blocks, i.e. DN = ∪m

j=1Dj with Dj ∩Dk = ∅

for k �= j and |D1| = · · · = |Dm| = n.

Qualification: For a test input x, if there exists an Xj
0 ∈ Dj such that |x−Xj

0 | ≤ h, then
we qualify Dj as an active data block for the local estimate. Rewrite all the active data
blocks as T1, . . . , Tm0 .
Local processing : For arbitrary data block Tj , j = 1, . . . ,m0, define

fj,h(x) =
∑

(Xi,Yi)∈Tj

WXi,h(x)Yi.

Synthesization: Transmit m0 local estimates fj,h to a machine, getting a global estimate
defined by

f̂h =
1

m0

m0∑
j=1

fj,h. (3.4)

Comparing with Algorithms 1 and 2, the only difference of Algorithm 3 is the
qualification step which essentially does not need extra computation. In fact,
the qualification and local processing steps can be implemented simultaneously.
It should be further mentioned that the qualification step actually eliminates
the data blocks which have a chance to break down the event {hDj ≤ h for
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all Dj}. We show in the following theorem that the qualified AVM-LAR can
achieve the optimal learning rate of LAR without any restriction on m.

Theorem 3.2. Let f̂h be defined by (3.4). Assume (C) holds and
(E) for all D1, . . . , Dm, there exists a positive number c5 such that

E

{
n∑

i=1

|Wh,Xi(X)|I{‖X−Xi‖>h}

}
≤ c5

m
√
nhd

.

If h ∼ N−1/(2r+d), then there exists a constant C4 depending only on c0, c1, c3, c5,
r, d and M such that

C0N
−2r/(2r+d) ≤ sup

fρ∈Fc0,r
E{‖f̂h − fρ‖2ρ} ≤ C4N

−2r/(2r+d). (3.5)

In Theorem 3.1, we declare that AVM-LAR with data-dependent parameter
does not slow down the learning rate of LAR. However, the bound of m in
Theorem 3.1 depends on the smoothness of the regression function, which is
usually unknown in the real world applications. This makes m be a potential
parameter in AVM-LAR with data-dependent parameter, as we do not know
which m definitely works. However, Theorem 3.2 states that we can avoid this
problem by introducing a qualification step. The theoretical price of such an
improvement is only to use condition (E) to replace condition (D∗). As shown
above, all the widely used LARs such as the partition estimate, NWK with
naive kernel, NWK with Gaussian kernel and KNN satisfy condition (E) (with
a logarithmic term for NWK with Gaussian kernel).

4. Experiments

In this section, we conduct experimental studies on synthetic data sets to demon-
strate the performances of AVM-LAR and its variants.

4.1. Simulation 1

We use a fixed total number of samples N = 10, 000, but assume that the num-
ber of data blocks m (the data block size n = N/m) and dimensionality d are
varied. The simulation results are based on the average values of 20 trials.

We generate data from the following regression models y = gj(x)+ε, j = 1, 2,
where ε is the Gaussian noise N (0, 0.1),

g1(x) =

{
(1− 2x)3+(1 + 6x), 0 < x ≤ 0.5

0 x > 0.5
, (4.1)

and

g2(x) =

{
(1− ‖x‖)5+(1 + 5‖x‖) + 1

5‖x‖2, 0 < ‖x‖ ≤ 1, x ∈ R
5

1
5‖x‖2 ‖x‖ > 1

. (4.2)

Actually g1 and g2 are the so-called Wendland functions [27] with the property
g1, g2 ∈ Fc0,1 for some absolute constant c0 and g1, g2 /∈ Fc1,2 for all 0 <
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c1 < ∞. In simulated N samples, Xi, i = 1, . . . , N, are drawn i.i.d. according
to the uniform distribution on the (hyper-)cube [0, 1]d with d = 1, 5 and Yi =
gj(Xi) + εi, j = 1, 2. We also generate N ′ = 1, 000 test samples (X ′

i, Y
′
i ) with

X ′
i drawn i.i.d. according to the uniform distribution and Y ′

i = gj(X
′
i), j = 1, 2.

We employ three criteria for the comparison purpose. The first criterion is the

global error (GE) with GE:= 1
N ′
∑N ′

i=1(Y
′
i − f̂DN ,h(X

′
i))

2. The second criterion

is the local error (LE) with LE:= min
j=1,...,m

1
N ′
∑N ′

i=1(Y
′
i − fj,h(X

′
i))

2 and the

third one is the average error (AE) satisfying AE:= 1
N ′
∑N ′

i=1(Y
′
i − f̄(X ′

i))
2 with

f̄ = f̄h for Algorithm 1, f̄ = f̂h̃ for Algorithm 2 and f̄ = f̂h for Algorithm 3.
It is easy to see that GE reflects the learning performance of LAR processing
the whole data in one single machine and provides a baseline for our analysis. It
is obvious that GE is independent of m. LE refers to the learning performance
of LAR processing N/m data in one single machine. It provides a lower limit
for the divide and conquer algorithms in the sense that LE must be larger
than AE to show the necessity of synthesization. AE concerns the learning
performance of the divide and conquer algorithm and is the subject in our
experiments.

The aims of Simulation 1 are two folds. The one is to compare the learning
performance between Algorithm 1 and LAR processing the whole data and the
other is to show the outperformance of Algorithms 2 and 3. We employ AVM-
NWK and AVM-KNN for the first purpose and NWK for the second purpose,
since Algorithms 1, 2 and 3 are the same for KNN. The detailed implementation
of NWK and KNN is specified as follows.

• NWK: In Algorithm 1 and Algorithm 3, for each m ∈ {5, 10, . . . , 350},
the localization parameter satisfies h ∼ N− 1

2r+d according to Theorem

2.1 and Theorem 3.2. In Algorithm 2, we set h̃ ∼ max
{maxj{hd/(2r+d)

Dj
}

m2r+d ,

maxj{hDj}
}
according to Theorem 3.1.

• KNN: According to Theorem 2.1, the parameter k is set to k ∼ N
2r

2r+d

m .

However, as k ≥ 1, the range of m should satisfy m ∈ {1, 2, . . . , N 2r
2r+d }.

We use 5-fold cross-validation to provide an appropriate constant in selecting
the localization parameters. The simulation results are reported in the Figures
1, 2 and 3.

As shown in Figure 1, AEs are smaller than LEs, implying that AVM-NWK
outperforms NWK with only one data block. Furthermore, AEs of NWK are
comparable with GEs when m is not too large, which means AVM-NWK does
not degrade the learning performance of NWK with the whole data and verifies
(2.6) in Theorem 3.1. It is also shown in Figure 1 that there exists an m′, the
upper bound of the number of data blocks, to guarantee the optimal learning
rate, larger than which the curve of AE increases dramatically. Moreover, m′

decreases when d increases as shown in (2.8). All these verifies the positive part
of Theorem 3.1.
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Fig 1. The first row shows AEs, LEs and GEs of NWK for different m. The second row shows
the number of inactive machines which satisfy hDj

> h. The vertical axis of the second row
of Figure 1 is the number of inactive data blocks which break down the condition hDj

≤ h.

Before verifying the negative part of Theorem 3.1, we present some explana-
tions for the phenomenon exhibited in Figure 1. If only one data block is utilized,

then it follows from Proposition 2.1 that min
j=1,...,m

E{‖fj,h − fρ‖2ρ} = O(n− 2r
2r+d ),

which is far larger than O(N− 2r
2r+d ) for AVM-NWK due to Theorem 2.1. Thus,

AEs are smaller than LEs. Moreover, Theorem 2.1 shows that AEs are compa-
rable with GE as long as the event {hDj ≤ h for all Dj , j = 1, . . . ,m} holds.
Once this event does not hold, Theorem 3.1 drives a totally different direction
and implies the drawback for AVM-NWK. To verify this assertion, we record
the number of data blocks with hDj > h for different m in the second row of
Figure 1 and use a bar to highlight a crucial m∗, larger than which there exist
inactive data blocks. Figure 1 exhibits m′ ≈ m∗, which is extremely consistent
with the negative part of Theorem 2.1.

Different from AVM-NWK, there is not an upper bound for the number of
data blocks in AVM-KNN to guarantee the comparability between AEs and GE.
The reason is that KNN adapts a data-dependent localization parameter h that
makes the event {hDj ≤ h for all Dj , j = 1, . . . ,m} always holds. This result is
also consistent with the positive part of Theorem 2.1. However, by definition,
the restriction k ≥ 1 in each data block restricts the range of m in AVM-

KNN to be {1, 2, . . . , N 2r
2r+d }, showing a design deficiency. All these numerical
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Fig 2. AEs, LEs and GEs of KNN for different m.

results finish our first purpose in Simulation 1 and verifies the correctness of
Theorem 2.1.

For the second purpose, we denote AE-A1, AE-A2 and AE-A3 as AEs of
Algorithms 1, 2 and 3 respectively and record the values of them with different
m in Figure 3. When m ≤ m′, AE-A1, AE-A2 and AE-A3 have similar values
which are comparable with GE in Figure 1. The reason is the occurrence of the
event {hDj ≤ h for all Dj , j = 1, . . . ,m}. When m increases, the event {hDj > h
for some j} inevitably happens, then Algorithm 1 fails according to the negative
part of Theorem 2.1, making AE-A1 increase dramatically. As Algorithms 2 and
3 are designed to avoid the weakness of Algorithm 1, AE-A2 and AE-A3 are
always smaller than AE-A1 when m > m′, which verifies the correctness of
Theorems 3.1 and 3.2. An interesting phenomenon exhibited in Figure 3 is that
AE-A3 is always smaller than AE-A2. We guess the reason is an inaccurate
computation of the mesh norm since we set h̃ = c · max

i,j∈1,2...,N
‖Xi − Xj‖ and

then use 5-fold cross-validation to select c in Algorithm 2, which only provides
an upper bound of max{hDj : j = 1, 2, . . . ,m}. We believe that the performance
of Algorithm 2 can be improved if the mesh norm is efficiently and accurately
computed.

4.2. Simulation 2

We make use of the same simulation study conducted by [29] for comparing the
learning performance of Algorithms 1, 2, 3 and the divide and conquer kernel
ridge regression (DKRR for short).

We generate data from the regression model y = g3(x) + ε, where g3(x) =
min(x, 1−x), the noise variable ε is normally distributed with mean 0 and vari-
ance σ2 = 1/5, and Xi, i = 1, . . . , N are simulated from the uniform distribution
in [0, 1] independently. In the simulation of [29], DKRR used the kernel func-
tion K(x, x′) = 1+min{x, x′}, and regularization parameter λ = N−2/3 due to
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Fig 3. AE-A1, AE-A2, AE-A3 and GE of the simulation. The curves of AE-A2 and AE-A3
are always below AE-A1’s to illustrate the improved capability of modified AVM-LARs.

g3 ∈ Fc0,1 for some absolute constant c0. We gather N = 10, 000 training sam-
ples, and 1,000 test samples. The parameter selection strategies of Algorithms
1, 2 and 3 is the same as those in Simulation 1.

Fig 4. AEs of Algorithm 1, 2, 3 and DKRR.

In Figure 4, we plot AEs of Algorithms 1, 2, 3 and DKRR. Here m ∈
{23, 24, . . . , 211}. Figure 4 shows that AEs of Algorithms 1, 2, 3 and DKRR
are comparable when m < 256. For larger m, AEs of Algorithms 1, 2 and
DKRR increase dramatically. Differently, AEs of Algorithm 3 are stable. This
phenomenon is consistent with the theoretical assertions in Theorem 3.1, 3.2
and Theorem 1 in [29], showing that the largest m to keep the optimal learning
rates of divide and conquer algorithms are O(N1/3) for DKRR, O(N2/3) for
Algorithm 2 and O(N) for Algorithm 3.
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5. Proofs

5.1. Proof of Proposition 2.1

Let fρ,h(x) =
∑N

i=1 Wh,Xi(x)fρ(Xi). Then, it is obvious that fρ,h(x) =

E∗{f̂DN ,h(x)}, where E∗{·} = E{·|X1, X2, . . . , Xn}. Therefore, we can deduce

E∗{(f̂DN ,h(x)− fρ(x))
2} = E∗{(f̂DN ,h(x)− fρ,h(x))

2}+ (fρ,h(x)− fρ(x))
2.

That is,

E{‖f̂DN ,h − fρ‖2ρ} =

∫
X
E{E∗{(f̂DN ,h(X)− fρ,h(X))2}}dρX

+

∫
X
E{(fρ,h(X)− fρ(X))2}dρX .

The first and second terms are referred to the sample error and approximation
error, respectively. To bound the sample error, noting E∗{Yi} = fρ(Xi), we have

E∗{(f̂DN ,h(x)− fρ,h(x))
2} = E∗

⎧⎨
⎩
(

N∑
i=1

Wh,Xi(x)(Yi − fρ(Xi))

)2
⎫⎬
⎭

≤ E∗

{
N∑
i=1

(Wh,Xi(x)(Yi − fρ(Xi)))
2

}
≤ 4M2

N∑
i=1

W 2
h,Xi

(x).

Therefore we can use (A) to bound the sample error as

E{(f̂DN ,h(X)− fρ,h(X))2} ≤ 4M2E

{
N∑
i=1

W 2
h,Xi

(X)

}
≤ 4c1M

2

Nhd
.

Now, we turn to bound the approximation error. Let Bh(x) be the l2 ball with
center x and radius h, we have

E{(fρ,h(X)− fρ(X))2} = E

⎧⎨
⎩
(

N∑
i=1

Wh,Xi(X)fρ(Xi)− fρ(X)

)2
⎫⎬
⎭

= E

⎧⎨
⎩
(

N∑
i=1

Wh,Xi(X)(fρ(Xi)− fρ(X))

)2
⎫⎬
⎭

= E

⎧⎨
⎩
(

N∑
i=1

Wh,Xi(X)(fρ(Xi)− fρ(X))

)2

I{Bh(X)∩D=∅}

⎫⎬
⎭

+ E

⎧⎨
⎩
(

N∑
i=1

Wh,Xi(X)(fρ(Xi)− fρ(X))

)2

I{Bh(X)∩D �=∅}

⎫⎬
⎭ .
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It follows from [12, Theorem 4.3] and
∑N

i=1 Wh,Xi(X) = 1 that

E

⎧⎨
⎩
(

N∑
i=1

Wh,Xi(X)(fρ(Xi)− fρ(X))

)2

I{Bh(X)∩D=∅}

⎫⎬
⎭ ≤ 16M2

Nhd
.

Furthermore,

E

⎧⎨
⎩
(

N∑
i=1

Wh,Xi(X)(fρ(Xi)− fρ(X))

)2

I{Bh(X)∩D �=∅}

⎫⎬
⎭

≤ E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

‖Xi−X‖≤h

Wh,Xi(X)|fρ(Xi)− fρ(X)|

⎞
⎠

2

I{Bh(X)∩D �=∅}

⎫⎪⎬
⎪⎭

+ E

⎧⎪⎨
⎪⎩
⎛
⎝ ∑

‖Xi−X‖>h

Wh,Xi(X)|fρ(Xi)− fρ(X)|

⎞
⎠

2
⎫⎪⎬
⎪⎭

≤ c20h
2r +

4c22M
2

Nhd
,

where the last inequality is deduced by fρ ∈ Fc0,r, condition (B) and Jensen’s
inequality. In this way, we get

E{‖f̂DN ,h − fρ‖2ρ} ≤ c20h
2r +

4(c1 + c22 + 4)M2

Nhd
.

If we set h =
(

4(c1+c22+4)M2

c20N

)−1/(2r+d)

, then

E{‖f̂DN ,h − fρ‖2ρ} ≤ c
2d/(2r+d)
0 (4(c1 + c22 + 4)M2)2r/(2r+d)N−2r/(2r+d).

This together with [12, Theorem 3.2] finishes the proof of Proposition 2.1.

5.2. Proof of Theorem 2.1

Since E
{
‖fh − fρ‖2ρ

}
= E

{
‖fh −E{fh}+E{fh} − fρ‖2ρ

}
and E{fh} =

E{fj,h} for all j = 1, . . . ,m, we get

E
{
‖fh − fρ‖2ρ

}
=

1

m2
E

⎧⎨
⎩

m∑
j=1

(
‖fj,h −E{fj,h}‖2ρ + ‖E{fj,h} − fρ‖2ρ

)

+ 2

m∑
j=1

∑
k �=j

〈fj,h −E{fj,h}, fk,h −E{fk,h}〉ρ

⎫⎬
⎭

=
1

m
E{‖f1,h −E{f1,h}‖2ρ}+ ‖E{f1,h} − fρ‖2ρ (5.1)
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≤ 2

m
E{‖f1,h − fρ}‖2ρ}+ 2‖E{f1,h} − fρ‖2ρ.

As h ≥ hDj for all 1 ≤ j ≤ m with probability δ, we obtain with confidence
δ that Bh(x) ∩ Dj �= ∅ for all x ∈ X and 1 ≤ j ≤ m. Then, using the same
method as that in the proof of Proposition 2.1, (C) and (D∗) yield that with
confidence δ

E{‖f1,h − fρ}‖2ρ} ≤ c20h
2r +

4(c3 + c24)M
2

nhd
.

Due to Jensen’s inequality, with confidence δ

E
{
‖fh − fρ‖2ρ

}
≤ 2c20h

2r

m
+

8(c3 + c24)M
2

mnhd
+ 2E

{
‖E∗{f1,h} − fρ‖2ρ

}
.

Noting Bh(X) ∩ Dj �= ∅ with confidence δ, the same method as that in the
proof of Proposition 2.1 together with (D∗) yields that with confidence δ

E
{
‖E∗{f1,h} − fρ‖2ρ

}
≤ c20h

2r +
8c24M

2

mnhd
.

Thus,

E
{
‖fh − fρ‖2ρ

}
≤ 16(c3 + c24)M

2

mnhd
+ 3c20h

2r.

This finishes the proof of (2.6) by taking h =
(

16(c3+c24)M
2

3c20nm

)−1/(2r+d)

into ac-

count.
Now, we turn to prove (2.7). According to (5.1), we have

E
{
‖fh − fρ‖2ρ

}
≥ ‖E{f1,h} − fρ‖2ρ

=

∫
X

(
E

{
n∑

i=1

WXi,h(X)fρ(Xi)− fρ(X)

})2

dρX .

Since with confidence 1 − δ, the event {hDj ≤ h for all Dj} does not holds.
Without loss of generality, we assume that h < hD1 holds in a probabilistic
setting. It then follows from the definition of the mesh norm that there exits an
X ∈ X which is not in Bh(Xi), Xi ∈ D1. Define the separation radius of a set
of points S = {ζi}ni=1 ⊂ X via

r
S
:=

1

2
min
j �=k

‖ζj − ζk‖.

The mesh ratio τ
S
:= hS

r
S
≥ 1 provides a measure of how uniformly points in S

are distributed on X . If τ
S
≤ 2, we then call S as the quasi-uniform point set.

Let Ξl = {ξ1, . . . , ξl} be l = �(2h)−d� quasi-uniform points [27] in X . That is

τΞl
=

h
Ξl

r
Ξl

≤ 2. Since hΞl
≥ l−1/d, we have rΞl

≥ 1
2l1/d

≥ h. Then,

E
{
‖fh − fρ‖2ρ

}
= ‖E{f1,h} − fρ‖2ρ
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≥
l∑

k=1

∫
Br

Ξl
(ξk)

(
E

{
n∑

i=1

WXi,h(X)fρ(Xi)− fρ(X)

})2

dρX

holds with confidence 1− δ. If fρ(x) = M , then with confidence 1− δ

E
{
‖fh − fρ‖2ρ

}
≥ M2

l∑
k=1

∫
Br

Ξl
(ξk)

(
E
{
I{D1∩Br

Ξl
(ξk)=∅}

})2
dρX

≥ M2
l∑

k=1

ρX(Br
Ξl
(ξk))P{D1 ∩Br

Ξl
(ξk) = ∅}

= M2
l∑

k=1

ρX(Br
Ξl
(ξk))(1− ρX(Br

Ξl
(ξk)))

n.

Since h ≥ 1
2 (n+ 2)−1/d, we can let ρX be the marginal distribution satisfying

ρX(Br
Ξl
(ξk)) = 1/n, k = 1, 2, . . . , l − 1.

Then with confidence 1− δ

E
{
‖fh − fρ‖2ρ

}
≥ M2

l−1∑
k=1

1

n
(1− 1/n)n ≥ M2((2h)−d − 2)

3n
.

This finishes the proof of Theorem 2.1.

5.3. Proof of Theorem 3.1

Without loss of generality, we assume hD1 = maxj{hDj}. It follows from (5.1)
that

E
{
‖f̂h̃ − fρ‖2ρ

}
≤ 2

m
E{‖f1,h̃ − fρ}‖2ρ}+ 2‖E{f1,h̃} − fρ‖2ρ.

We first bound E{‖f1,h̃ − fρ}‖2ρ}. As h̃ ≥ hD1 almost surely, the same method
as that in the proof of Theorem 2.1 yields that

E{‖f1,h̃ − fρ}‖2ρ} ≤ c20E{h̃2r}+E

{
4M2(c3 + c24)

nh̃d

}
.

To bound ‖E{f1,h̃} − fρ‖2ρ, we use the same method as that in the proof of

Theorem 2.1 again. As h̃ ≥ m−1/(2r+d)h
d/(2r+d)
D1

holds almost surely, it is easy
to deduce that

‖E{f1,h̃} − fρ‖2ρ ≤ E
{
‖E∗{f1,h̃} − fρ‖2ρ

}
≤ c20E{h̃2r}+E

{
8c24M

2

mnh̃d

}

≤ c20m
−2r/(2r+d)E{h2rd/(2r+d)

D1
}+ c20E{h2r

D1
}
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+ 8c24M
2(mn)−1E{md/(2r+d)h

−d2/(2r+d)
D1

}.

Thus

E{‖f̂h̃ − fρ}‖2ρ} ≤ c20m
−2r/(2r+d)E{h2rd/(2r+d)

D1
}+ (c20 + 2)E{h2r

D1
}

+ 8(c3 + 2c24)M
2(mn)−1md/(2r+d)E{h−d2/(2r+d)

D1
}.

To bound E{h2rd/(2r+d)
D1

}, we note that for arbitrary ε > 0, there holds

P{hD1 > ε} = P{max
x∈X

min
Xi∈D1

‖x−Xi‖ > ε} ≤ max
x∈X

E{(1− ρX(Bε(x)))
n}.

Let t1, . . . , tl be the quasi-uniform points of X . Then it follows from [12, P.93]
that P{hD1 > ε} ≤ 1

nεd
. Then, we have

E{h2rd/(2r+d)
D1

} =

∫ ∞

0

P{h2rd/(2r+d)
D1

> ε}dε =
∫ ∞

0

P{hD1 > ε(2r+d)/(2rd)}dε

≤
∫ n−2r/(2r+d)

0

1dε+

∫ ∞

n−2r/(2r+d)

P{hD1 > ε(2r+d)/(2rd)}dε

≤ n−2r/(2r+d) +
1

n

∫ ∞

n−2r/(2r+d)

ε−(2r+d)/(2r)dε

≤ 2r + d

d
n−2r/(2r+d).

To bound E{h2r
D1

}, we can use the above method again and r < d/2 to derive

E{h2r
D1

} ≤ 4rd−1n−2r/d. To bound E{h−d2/(2r+d)
D1

}, we use the fact hD1 ≥ n−1/d

almost surely to obtain E{h−d2/(2r+d)
D1

} ≤ nd/(2r+d). Hence

E{‖f̂h̃ − fρ}‖2ρ}

≤
(
c20(2r + d)

d
+ 8(c3 + 2c24)M

2

)
N−2r/(2r+d) +

4r(c20 + 2)

d
n−2r/d.

Since

m ≤
(
c20(2r + d) + 8d(c3 + 2c24)M

2

4r(c20 + 2)

)d/(2r)

N2r/(2r+d),

we have

E{‖f̂h̃ − fρ}‖2ρ} ≤ 2

(
c20(2r + d)

d
+ 8(c3 + 2c24)M

2

)
N−2r/(2r+d)

which finishes the proof of (3.3).

5.4. Proof of Theorem 3.2

Proof. From the definition, it follows that

f̂h(x) =

m∑
j=1

I{Bh(x)∩Dj �=∅}∑m
j=1 I{Bh(x)∩Dj �=∅}

∑
(Xj

i ,Y
j
i )∈Dj

Wh,Xj
i
(x)Y j

i .
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We then use Proposition 2.1 to consider a new local estimate with

W ∗
h,Xj

i

(x) =
I{Bh(x)∩Dj �=∅}Wh,Xj

i
(x)∑m

j=1 I{Bh(x)∩Dj �=∅}
.

We first prove (A) holds. To this end, we have

E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj

(W ∗
h,Xj

i

(X))2

⎫⎬
⎭

≤ E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i ∈Bh(X)

(W ∗
h,Xj

i

(X))2

⎫⎬
⎭

+E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i /∈Bh(X)

(W ∗
h,Xj

i

(X))2

⎫⎬
⎭ ,

where we define
∑

∅
= 0. To bound the first term in the right part of the above

inequality, it is easy to see that if I{Xj
i ∈Bh(X)} = 1, then I{Bh(X)∩Dj �=∅} = 1,

vice versa. Thus, it follows from (C) that

E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i ∈Bh(X)

(W ∗
h,Xj

i

(X))2

⎫⎬
⎭

=
1

m2
E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i ∈Bh(X)

(Wh,Xj
i
(X))2

⎫⎬
⎭

≤ 1

m
max

1≤j≤m
E

⎧⎨
⎩

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i ∈Bh(X)

(Wh,Xj
i
(X))2

⎫⎬
⎭

≤ 1

m
max

1≤j≤m
E

⎧⎨
⎩

∑
(Xj

i ,Y
j
i )∈Dj

(Wh,Xj
i
(X))2

⎫⎬
⎭ ≤ c3

Nhd

To bound the second term, we have

E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i /∈Bh(X)

(W ∗
h,Xj

i

(X))2

⎫⎬
⎭

= E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i /∈Bh(X)

(
I{Bh(X)∩Dj �=∅}Wh,Xj

i
(X)∑m

j=1 I{Bh(X)∩Dj �=∅}

)2
⎫⎬
⎭

At first, the same method as that in the proof of Proposition 2.1 yields that
E{Bh(X) ∩D = ∅} ≤ 4

Nhd . Therefore, we have
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E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj ,X

j
i /∈Bh(X)

(
I{Bh(X)∩Dj �=∅}Wh,Xj

i
(X)∑m

j=1 I{Bh(X)∩Dj �=∅}

)2
⎫⎬
⎭

≤ 4

Nhd
+m max

1≤j≤m
E

⎧⎨
⎩

∑
(Xj

i ,Y
j
i )∈Dj

(
Wh,Xj

i
(X)I‖X−Xj

i ‖>h

)⎫⎬
⎭

≤ 4 + c3 + c5
Nhd

.

Now, we turn to prove (B) holds. This can be deduced directly by using the
similar method as the last inequality and the condition (E). That is,

E

⎧⎨
⎩

m∑
j=1

∑
(Xj

i ,Y
j
i )∈Dj

|W ∗
h,Xj

i

(X)|I{‖X−Xi‖>h}

⎫⎬
⎭ ≤ c5√

Nhd
.

Then Theorem 3.2 follows from Proposition 2.1.

6. Conclusion

In this paper, we combined the divide and conquer strategy with local average
regression to provide a new method called average-mixture local average regres-
sion (AVM-LAR) to handle the massive data regression problems. We found
that the estimate obtained by AVM-LAR can achieve the minimax learning
rate, but under a fairly strict restriction on m. We then proposed two variants
of AVM-LAR to either relax the restriction or remove it. Theoretical analysis
and simulation studies confirmed our assertions.

We discuss here three interesting topics for future study. Firstly, LAR cannot
handle the high-dimensional data due to the curse of dimensionality [12, 8]. How
to design variants of AVM-LAR to overcome this hurdle can be accommodated
as a desirable research topic. Secondly, we have justified that applying the divide
and conquer strategy on the LARs does not degenerate the order of learning
rate under some conditions. However, we did not show there is no loss in the
constant factor. Discussing the constant factor of the optimal learning rate is an
interesting project. Finally, equipping other nonparametric methods [9, 12, 25]
with the divide and conquer strategy can be taken into consideration for massive
data analysis. For example, Cheng and Shang [5] have discussed that how to
appropriately apply the divide and conquer strategy to the smoothing spline
method.
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