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1. Introduction

1.1. Learning a smooth function on a large graph

There are various problems arising in modern statistics that involve making
inference about a “smooth” function on a large graph. The underlying graph
structure in such problems can have different origins. Sometimes it is given
by the context of the problem. This is typically the case, for instance, in the
problem of making inference on protein interaction networks (e.g. Sharan et al.
(2007)) or in image interpolation problems (Liu et al. (2014)). In other cases the
graph is deduced from the data in a preliminary step, as is the case with simi-
larity graphs in label propagation methods (e.g. Zhu and Ghahramani (2002)).
Moreover, the different problems that arise in applications can have all kinds of
different particular features. For example, the available data can be indexed by
the vertices or by the edges of the graph, or both. Also, in some applications
only partial data are available, for instance only part of the vertices are labeled
(semi-supervised problems). Moreover, both regression problems and classifica-
tion problems arise naturally in different applications.
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Despite all these different aspects, many of these problems and the methods
that have been developed to deal with them have a number of important fea-
tures in common. In many cases the graph is relatively “large” and the function
of interest can be viewed as “smoothly varying” over the graph. Consequently,
most of the proposed methods view the problem as a high-dimensional or non-
parametric estimation problem and employ some regularisation or penalization
technique that takes the geometry of the graph into account and that is thought
to produce an appropriate bias-variance trade-off.

In this paper we set up the mathematical framework that allows us to study
the performance of nonparametric function estimation methods on large graphs.
We do not treat all the variants exhaustively, instead we consider two prototyp-
ical problems: regression, where the function of interest f is a function on the
vertices of the graph that is observed with additive noise, and binary classifica-
tion, where a label 0 or 1 is observed at each vertex and the object of interest is
the “soft label” function f whose value at a vertex v is the probability of seeing
a 1 at v. We assume the underlying graph is “large”, in the sense that it has n
vertices for some “large” n. Our theoretical results deal with the situation that
this number n tends to infinity. Although for finite n the graph has a fixed size
and we essentially just have to estimate a Euclidean vector in R

n, it is useful to
view the problem as high-dimensional or even nonparametric.

Despite the finite structure, it is intuitively clear that the “smoothness” of
f , defined in a suitable manner, will have an impact on the difficulty of the
problem and on the results that can be attained. Indeed, consider the extreme
case of f being a constant function. Then estimating f reduces to estimating a
single real number. In the regression setting, for instance, this means that under
mild conditions the sample mean gives a

√
n-consistent estimator. In the other

extreme case of a completely unrestricted function there is no way of making
any useful inference. At best we can say that in view of the James-Stein effect we
should employ some degree of shrinking or regularisation. However, if no further
assumptions are made, nothing can be said about consistency or rates. We are
interested in the question what we should do in the intermediate situation that
f has some “smoothness” between these two extremes.

Another aspect that will have a crucial impact on the problem, in addition to
the regularity of f , is the geometry of the graph. Indeed, regular grids of different
dimensions are special cases of the graphs we shall consider, and we know from
existing theory that the best attainable rates for estimating a smooth function
on a grid depends on the dimension of the grid. More generally, the geometry
of the graph will influence the complexity of the spaces of “smooth” functions
on the graph, and hence the performance of statistical or learning methods.

1.2. Laplacian regularisation

Several approaches to learning functions on graphs that have been explored in
the literature involve regularisation using the Laplacian matrix associated with
the graph (see, for example, Belkin et al. (2004), Smola and Kondor (2003),
Hein (2006), Ando and Zhang (2007), Zhu et al. (2003), Huang et al. (2011)).
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The graph Laplacian is defined as L = D−A, where A is the adjacency matrix
of the graph and D is the diagonal matrix with the degrees of the vertices on the
diagonal. When viewed as a linear operator, the Laplacian acts on a function f
on the graph as

Lf(i) =
∑
j∼i

(
f(i)− f(j)

)
, (1.1)

where we write i ∼ j if vertices i and j are connected by an edge. Several related
operators are routinely employed as well, for instance, the normalized Laplacian
L̃ = D−1/2LD−1/2. We will continue to work with L in this paper, but much of
the story goes through if L is replaced by such a related operator, after minor
adaptations.

For a function f on the graph the Laplacian norm is given by
∑

j∼i(f(i) −
f(j))2. Clearly, the Laplacian norm of f quantifies how much the function f
varies when moving along the edges of the graph. Therefore, several papers
have proposed regularisation or penalization using this norm, as well as gen-
eralizations involving powers of the Laplacian or other functions, for instance,
exponential ones. See, for example, Belkin et al. (2004) or Smola and Kondor
(2003) and the references therein. There exist only few papers that study theo-
retical aspects of the performance of such methods. We mention, for example,
Belkin et al. (2004), in which a theoretical analysis of a Tikhonov regularisa-
tion method is conducted in terms of algorithmic stability. Johnson and Zhang
(2007) consider sub-sampling schemes for estimating a function on a graph.

The existing papers have different viewpoints than ours and do not study how
the performance depends on (the combination of) graph geometry and function
regularity. Our aim is to develop a framework which makes such a theoretical
study of Laplacian regularisation methods possible and to derive some first
asymptotic results that exhibit methods that perform well from the point of
view of convergence rates and adaptation to regularity.

1.3. Bayesian regularisation

We investigate Bayesian regularisation approaches, where we consider two types
of priors on functions on graphs. The first type performs regularisation using a
power of the Laplacian. This can be seen as the graph analogue of Sobolev norm
regularisation of functions on “ordinary” Euclidean spaces. The second type of
priors uses an exponential function of the Laplacian. This can be viewed as the
analogue of the popular squared exponential prior on functions on Euclidean
space or its extension to manifolds, as studied by Castillo et al. (2014). In
both cases we consider hierarchical priors with the aim of achieving automatic
adaptation to the regularity of the function of interest.

To assess the performance of our Bayes procedures we take an asymptotic
perspective. We let the number of vertices of the graph grow and ask at what
rate the posterior distribution concentrates around the unknown function f
that generates the data. We make two kinds of assumptions. Firstly, we assume
that f has a certain degree of regularity β, defined in suitable manner. The
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smoothness β is not assumed to be known though, we are aiming at deriving
adaptive results.

Secondly, we make an assumption on the asymptotic shape of the graph.
In recent years, various theories of graph limits have been developed. Most
prominent is the concept of the graphon, e.g. Lovász and Szegedy (2006) or the
book of Lovasz (2012). More recently this notion has been extended in various
directions, see, for instance, Borgs et al. (2014) and Chung (2014). However,
the existing approaches are not immediately suited in the situations we have in
mind, which involve graphs that are sparse in nature and are “grid-like” in some
sense. Therefore we take an alternative approach and describe the asymptotic
shape of the graph through a condition on the asymptotic behaviour of the
spectrum of the Laplacian. To be able to derive concrete results we essentially
assume that the smallest eigenvalues λn,i of L satisfy

λ2
n,i �

( i

n

)2/r

(1.2)

for some r ≥ 11. Very roughly speaking, this means that asymptotically, or
“from a distance”, the graph looks like an r-dimensional grid with n vertices.
As we shall see, the actual grids are special cases (see Example 2.1), hence our
results include the usual statements for regression and classification on these
classical design spaces. However, the setting is much more general, since it is
really only the asymptotic shape that matters. For instance, a 2 by n/2 ladder
graph asymptotically also looks like a path graph, and indeed we will see that it
satisfies our assumption for r = 1 as well (Example 2.3). Moreover, the constant
r in (1.2) does not need to be a natural number. We will see, for example, at
least numerically, that there are graphs whose geometry is asymptotically like
that of a grid of non-integer “dimension” r in the sense of condition (1.2).

We stress that we do not assume the existence of a “limiting manifold” for
the graph as n → ∞. We formulate our conditions and results purely in terms
of intrinsic properties of the graph, without first embedding it in an ambient
space. In certain cases in which limiting manifolds do exist (e.g. the regular
grid cases) our type of asymptotics can be seen as “infill asymptotics” (Cressie
(1993)). For a simple illustration, see Example 3.1. However, in applied settings
(see, for instance, Example 2.7) it is typically not clear what a suitable ambient
manifold could be, which is why we choose to avoid this issue altogether.

In the recent paper Hartog and van Zanten (2016) the theoretical results we
present in this paper are investigated numerically and serve as a guideline for the
tuning of practical Bayesian regularisation methods. Several concrete examples
are considered, both for simulated data and for real data problems.

1.4. Organisation

The rest of the paper is organized as follows. In the next section we present
our geometry assumption and give examples of graphs that satisfy it, either

1We write an � bn if 0 < lim inf an/bn ≤ lim sup an/bn < ∞.



Bayesian function estimation on graphs 895

theoretically or numerically. In Section 3 we introduce two families of priors on
functions on graphs. We present theorems that quantify the amount of mass
that the priors put on neighbourhoods of “smooth” functions and quantify the
complexity of the priors in terms of metric entropy. Section 4 contains the proofs
of these general results and in Section 5 they are used to derive theorems about
posterior contraction in nonparametric regression and binary classification. We
end with some concluding remarks in Section 6.

2. Asymptotic geometry assumption on graphs

In this section we formulate our geometry assumption on the underlying graph
and give several examples.

2.1. Graphs, Laplacians and functions on graphs

Let G be a connected, simple (i.e. no loops, multiple edges or weights), undi-
rected graph with n vertices labelled 1, . . . , n. Let A be its adjacency matrix,
i. e. Aij is 1 or 0 according to whether or not there is an edge between vertices
i and j. Let D be the diagonal matrix with element Dii equal to the degree of
vertex i. Let L = D − A be the Laplacian of the graph. We note that strictly
speaking, we will be considering sequences of graphs Gn with Laplacians Ln

and we will let n tend to infinity. However, in order to avoid cluttered notation,
we will omit the subscript n and just write G and L throughout.

A function f on the (vertices of the) graph is simply a function f : {1, . . . , n} →
R. Slightly abusing notation we will write f both for the function and for the
associated vector of function values (f(1), f(2), . . . , f(n)) in R

n. We measure
distances and norms of functions using the norm ‖ · ‖n defined by ‖f‖2n =
n−1

∑n
i=1 f

2(i). The corresponding inner product of two functions f and g is
denoted by

〈f, g〉n =
1

n

n∑
i=1

f(i)g(i).

Again, in our results n will be varying, so when we speak of a function f on the
graph G we are, strictly speaking, considering a sequence of functions fn. Also,
in this case the subscript n will usually be omitted.

The Laplacian L is positive semi-definite and symmetric. It easily follows
from the definition that its smallest eigenvalue is 0 (with eigenvector (1, . . . , 1)).
The fact that G is connected implies that the second smallest eigenvalue, the
so-called algebraic connectivity, is strictly positive (e.g. Cvetković et al. (2010)).
We will denote the Laplacian eigenvalues, ordered my magnitude, by

0 = λn,0 < λn,1 ≤ λn,2 ≤ · · · ≤ λn,n−1.

Again we will usually drop the first index n and just write λi for λn,i. We fix
a corresponding sequence of eigenfunctions ψi, orthonormal with respect to the
inner product 〈·, ·〉n.
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2.2. Asymptotic geometry assumption

As mentioned in the introduction, we will derive results under an asymptotic
shape assumption on the graph, formulated in terms of the Laplacian eigenval-
ues. To motivate the definition we note that the ith eigenvalue of the Laplacian
of an n-point grid of dimension d behaves like (i/n)2/d (see Example 2.1 ahead).
We will work with the following condition.

Condition. We say that the geometry condition is satisfied with parameter
r ≥ 1 if there exist i0 ∈ N, κ ∈ (0, 1] and C1, C2 > 0 such that for all n large
enough,

C1

( i

n

)2/r

≤ λi ≤ C2

( i

n

)2/r

, for all i ∈ {i0, . . . , κn}.

Note that this condition only restricts a positive fraction κ of the Laplacian
eigenvalues, namely the κn smallest ones. Moreover, we don’t need restrictions
on the first finitely many eigenvalues. We remark that if the geometry condition
is fulfilled, then by adapting the constant C1 we can ensure that the lower bound
holds, in fact, for all i ∈ {i0, . . . , n}. To see this, observe that for n large enough
and κn < i ≤ n we have

λi ≥ λ�κn� ≥ C1

(κn�
n

)2/r

≥ C1

(κ
2

)2/r( i

n

)2/r

.

For the indices i < i0 it is useful to note that we have a general lower bound on
the first positive eigenvalue λ1, hence on λ2, . . . , λi0 as well. Indeed, by Theorem
4.2 of Mohar (1991a) we have

λ1 ≥ 4

ndiam(G)
≥ 4

n2
. (2.1)

Note that this bound also implies that our geometry assumption can not hold
with a parameter r < 1, since that would lead to contradictory inequalities for
λi0 .

We first confirm that the geometry condition is satisfied for grids and tori of
different dimensions.

Example 2.1 (Grids). For d ∈ N, a regular d-dimensional grid with n vertices
can be obtained by taking the Cartesian product of d path graphs with n1/d

vertices (provided, of course, that this number is an integer). Using the known
expression for the Laplacian eigenvalues of the path graph and the fact that
the eigenvalues of products of graphs are the sums of the original eigenvalues,
see, for instance, Theorem 3.5 of Mohar (1991b), we get that the Laplacian
eigenvalues of the d-dimensional grid are given by

4

(
sin2

πi1

2n
1
d

+ · · ·+ sin2
πid

2n
1
d

)
� i21 + · · ·+ i2d

n2/d
,
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where ik = 0, 1, 2, . . . , n1/d − 1 for every k = 1, . . . , d. By definition there are
i+ 1 eigenvalues less or equal than the ith smallest eigenvalue λi. Hence, for a
constant c > 0, we have:

i+ 1 =
∑

i21+···+i2d≤c2n2/dλi

1.

The sum on the right gives the number of lattice points in a sphere of radius
R = cn1/d

√
λi in R

d. For our purposes it suffices to use crude upper and lower
bounds for this number. By considering, for instance, the smallest hypercube
containing the sphere and the largest one inscribed in it, it is easily seen that
the number of lattice points is bounded from above and below by a constant
times Rd. We conclude that for the d-dimensional grid we have λi � (i/n)2/d

for every i = 0, . . . , n− 1. In particular, the geometry condition is fulfilled with
parameter r = d.

Example 2.2 (Discrete tori). For graph tori we can follow the same line of rea-
soning as for grids. A d-dimensional torus graph with n vertices can be obtained
as a product of d ring graphs with n1/d vertices. Using the known explicit ex-
pression of the Laplacian eigenvalues of the ring we find that the d-dimensional
torus graph satisfies the geometry conditions with parameter r = d as well.

The following lemma lists a number of operations that can be carried out on
a graph without loosing the geometry condition.

Lemma 2.1. Suppose that G = Gn satisfies the geometry assumption with
parameter r. Then the following graphs satisfy the condition with parameter r
as well:

(i) The cartesian product of G with a connected simple graph H with a finite
number of vertices (independent of n).

(ii) The graph obtained by augmenting G with finitely many edges (independent
of n), provided it is a simple graph.

(iii) The graph obtained from G by deleting finitely many edges (independent
of n), provided it is still connected.

(iv) The graph obtained by augmenting G with finitely many vertices and edges
(independent of n), provided it is a simple connected graph.

Proof. (i). Say H has m vertices and let its Laplacian eigenvalues be denoted by
0 = μ0, . . . , μm. Then the product graph has mn vertices and it has Laplacian
eigenvalues λi+μj , i = 0, . . . , n−1, j = 0, . . . ,m−1 (see Theorem 3.5 of Mohar
(1991b)). In particular, the first n eigenvalues are the same as those of G. Hence,
since G satisfies the geometry condition, so does the product of G and H.

(ii) and (iii). These statements follow from the interlacing formula that asserts
that if G+ e is the graph obtained by adding the edge e to G, then

0 ≤ λ1(G) ≤ λ1(G+ e) ≤ λ2(G) ≤ · · · ≤ λn−1(G) ≤ λn−1(G+ e).

See, for example, Theorem 3.2 of Mohar (1991b) or Theorem 7.1.5 of Cvetković
et al. (2010).
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(iv). Let v and e be a vertex and an edge that we want to connect toG. Denote
Gv a disjoint union of G and v, and by G′ the graph obtained by connecting
edge e to v and an existing vertex of G. By Theorem 3.1 from Mohar (1991b)
we know that the eigenvalues of Gv are 0, 0, λ1(G), λ2(G), . . . , λn−1(G). Using
Theorem 3.2 of Mohar (1991b) we see that 0 = λ0(Gv) = λ0(G

′) and

0 = λ1(Gv) ≤ λ1(G
′) ≤ λ1(G) ≤ λ2(Gv) ≤ · · · ≤ λn−1(G) ≤ λn(G

′).

The result follows from this observation.

Example 2.3 (Ladder graph). A ladder graph with n vertices is the product
of a path graph with n/2 vertices and a path graph with 2 vertices. Hence, by
part (i) of Lemma 2.1 and Example 2.1 it satisfies the geometry condition with
parameter r = 1.

Example 2.4 (Lollipop graph). The so-called lollipop graph Lm,n is obtained
by attaching a path graph with n vertices with an additional edge to a complete
graph with m vertices. If m is constant, i.e. independent of n, then according
to parts (ii) and (iv) of the preceding lemma this graph satisfies the geometry
condition with r = 1.

In the examples considered so far it is possible to verify theoretically that the
geometry condition is fulfilled. In a concrete case in which the given graph is not
of such a tractable type, numerical investigation of the Laplacian eigenvalues
can give an indication as to whether or not the condition is reasonable and
provide the appropriate value of the parameter r. A possible approach is to plot
log λi against log(i/n). If the geometry condition is satisfied with parameter r,
the κ×100% left mosts points in this plot should approximately lie on a straight
line with slope 2/r, except possibly a few on the very left.

Our focus in this paper is not on numerics, but it is illustrative to consider a
few numerical examples in order to get a better idea of the types of graphs that
fit into our framework.

Example 2.5 (Two-dimensional grid, numerically). Figure 1 illustrates the
suggested numerical approach for a two-dimensional, 20× 20 grid. The dashed
line in the left panel is fitted to the left-most 35% of the points in the plot,
discarding the first three points on the left. In accordance with Example 2.1
this line has slope 1.0.

Example 2.6 (Watts-Strogatz ‘small world’ graph). In our second numerical
example we consider a graph obtained as a realization from the well-known
random graph model of Watts and Strogatz (1998). Specifically, we consider in
the first step a ring graph with 200 vertices. In the next step every vertex is
visited and the edges emanating from the vertex are rewired with probability p =
1/4, meaning that with probability 1/4 they are detached from the neighbour of
the current vertex and attached to another vertex, chosen uniformly at random.
In the right panel of Figure 2 a particular realization is shown. Here we have
only kept the largest connected component, which has 175 vertices in this case.
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Fig 1. Plot of log λi against log(i/n) for the 20 × 20 grid. Fitted line has slope 1.0, corre-
sponding to r = 2.0 in the geometry assumption.

Fig 2. Plot of log λi against log(i/n) for the Watts-Strogatz graph in the right panel. Fitted
line has slope 1.42, corresponding to r = 1.4 in the geometry assumption.

On the left we have exactly the same plot as described in the preceding example
for the grid case. The plot indicates that it is not unreasonable to assume that
the geometry condition holds. The value of the parameter r deduced from the
slope of the line equals 1.4 for this graph.

Example 2.7 (Protein interaction graph). In the final example we consider a
graph obtained from the protein interaction graph of baker’s yeast, as described
in detail in Section 8.5 of Kolaczyk (2009). The graph, shown in the right panel
of Figure 3, describes the interactions between proteins involved in the commu-



900 A. Kirichenko and H. van Zanten

Fig 3. Plot of log λi against log(i/n) for the Protein interaction graph in the right panel.
Fitted line has slope 0.94, corresponding to r = 2.1 in the geometry assumption.

nication between a cell and its surroundings. Also for this graph it is true that
with a few exceptions, the points corresponding to the 35% smallest eigenvalues
lie approximately on a straight line. The same procedure as followed in the other
examples gives a value r = 2.1 for the parameter in the geometry assumption.

3. General results on prior concentration

We consider two different priors on functions on graphs. The first corresponds to
regularisation using a power of the Laplacian, the second one uses an exponential
function of the Laplacian. In this section we present two general results which
quantify both the mass that these priors give to shrinking ‖ ·‖n-neighbourhoods
of a fixed function f0, and the complexity of the support of the priors, measured
in terms of metric entropy2. In the next section we will combine these results
with known results from Bayesian nonparametrics theory to deduce convergence
rates and adaptation for nonparametric regression and classification problems
on graphs.

Our results assume that the geometry condition holds for some r ≥ 1. The
mass a prior puts near f0 will depend on the “regularity” of the function, defined
in a suitable manner. Specifically, we will assume it belongs to a Sobolev-type
ball of the form

Hβ(C) =
{
f :

〈
f, (I + (n

2
rL)β)f

〉
n
≤ C2

}
(3.1)

for some β,C > 0 (independent of n). The particular normalisation, which
depends on the geometry parameter r, ensures non-trivial asymptotics. This is

2For ε > 0 and a norm ‖ · ‖ on a set B, we denote by N(ε, B, ‖ · ‖) the minimal number of
balls of ‖ · ‖-radius ε needed to cover B.
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confirmed in Kirichenko and van Zanten (2017), in which minimax lower bounds
are presented which complement the rate results of the present paper.

It is illustrative to consider the assumption in a bit more detail in the simple
case of the path graph. The example shows in particular that we have chosen
the “correct” normalisation in the definition of the smoothness class.

Example 3.1 (Path graph). Consider a path graph G with n vertices, which
we identify with the points i/n in the unit interval, i = 1, . . . , n. As seen in
Example 2.1, this graph satisfies the geometry condition with parameter r = 1.
Hence, in this case the collection of functions Hβ(C) is given by

Hβ(C) =
{
f :

〈
f, (I + (n2L)β)f

〉
n
≤ C2

}
.

To understand when a (sequence of) function(s) belongs to this space, say for
β = 1, let fn be the restriction to the grid {i/n, i = 1, . . . n} of a fixed function
f defined on the whole interval [0, 1]. The assumption that fn ∈ H1(C) then
translates to the requirement that

1

n

∑
i

f2(i/n) + n
∑
i∼j

(f(i/n)− f(j/n))2 ≤ C2.

The first term on the left is a Riemann sum which approximates the integral∫ 1

0
f2(x) dx. If f is differentiable, then for the second term we have, for large n,

n
∑
i∼j

(f(i/n)− f(j/n))2 = n
n−1∑
i=1

(f((i+ 1)/n)− f(i/n))2 ≈ 1

n

∑
i

(f ′(i/n))2,

which is a Riemann sum that approximates the integral
∫ 1

0
(f ′(x))2 dx. Hence

in this particular case the space of functions H1(C) on the graph is the natural
discrete version of the usual Sobolev ball

{
f : [0, 1] → R :

∫ 1

0

(f2(x) + f ′2(x))(x) dx ≤ C2
}
.

Definition (3.1) is a way of describing “β-regular” functions on a general graph
satisfying the geometry condition, without assuming the graph or the function
on it are discretised versions of some “continuous limit”.

The first family of priors we consider penalize the higher order Laplacian
norm of the function of interest. This corresponds to using a Gaussian prior
with a power of the Laplacian as precision matrix (inverse covariance). (We
note that since the Laplacian always has 0 as an eigenvalue, it is not invertible.
We remedy this by adding a small multiple of the identity matrix I to L.)
The larger the power of the Laplacian used, the more “rough” functions on the
graph are penalized. The power is regulated by a hyperparameter α > 0 which
can be seen as describing the “baseline regularity” of the prior. To enlarge the
range of regularities for which we obtain good contraction rates in the statistical
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results, we add a multiplicative hyperparameter which we endow with a suitable
hyperprior. In (3.2) we assume an exact standard exponential distribution, but
inspection of the proof shows that the range of priors for which the result holds
is actually larger. To keep the exposition clean we omit these details.

Theorem 3.2 (Power of the Laplacian). Suppose the geometry assumption
holds for r ≥ 1. Let α > 0 be fixed and assume that f0 ∈ Hβ(C) for some
C > 0 and 0 < β ≤ α+ r/2. Let the random function f on the graph be defined
by

c ∼ Exp(1) (3.2)

f | c ∼ N(0, (((n/c)2/r(L+ n−2I))α+r/2)−1). (3.3)

Then there exists a constant K1 > 0 and for all K2 > 1 there exist Borel
measurable subsets Bn of Rn such that for every sufficiently large n,

P (‖f − f0‖n < εn) ≥ e−K1nε
2
n , (3.4)

P (f /∈ Bn) ≤ e−K2nε
2
n , (3.5)

logN(εn, Bn, ‖ · ‖n) ≤ nε2n, (3.6)

where εn is a multiple of n−β/(2β+r).

Note that in this theorem we obtain the rate n−β/(2β+r) for all β in the range
(0, α+ r/2]. In the statistical results presented in Section 5 this translates into
rate-adaptivity up to regularity level α + r/2. So by putting a prior on the
multiplicative scale we achieve a degree of adaptation, but only up to an upper
bound that is limited by our choice of the hyperparameter α. A possible solution
is to consider other functions of the Laplacian instead of using a power of L in
the prior specification. Here we consider usage of an exponential function of the
Laplacian. We include a “lengthscale” or “bandwidth” hyperparameter that we
endow with a prior as well for added flexibility. This prior can be seen as the
analogue of the prior used in Castillo et al. (2014) in the context of function
estimation on manifolds, which in turn is a generalization of the popular squared
exponential Gaussian prior used for estimation functions on Euclidean domains
(e.g. Rasmussen and Williams (2006)). However, we stress again that we do not
rely on an embedding of our graph in a manifold or the existence of a “limiting
manifold”.

In the next theorem there is indeed no restriction on the range of the smooth-
ness β. We remark however that we obtain an additional logarithmic factor is
the rate. Technically this is a consequence of the larger “complexity” of the
support of this prior.

Theorem 3.3 (Exponential of the Laplacian). Suppose the geometry assump-
tion holds for r ≥ 1. Assume that f0 ∈ Hβ(C) for some C > 0 and β > 0. Let
the random function f on the graph be defined by

c ∼ Exp(1) (3.7)
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f | c ∼ N(0, ne−(n/c)2/rL). (3.8)

Then there exists a constant K1 > 0 and for all K2 > 1 there exist Borel subsets
Bn of Rn such that for every sufficiently large n,

P (‖f − f0‖n < εn) ≥ e−K1nε
2
n , (3.9)

P (f /∈ Bn) ≤ e−K2nε
2
n , (3.10)

logN(ε̃n, Bn, ‖ · ‖n) ≤ nε̃2n, (3.11)

where εn = (n/ log1+r/2 n)−β/(2β+r) and ε̃n = εn log
1/2+r/4 n.

4. Proofs of Theorems 3.2 and 3.3

Recall that we identify functions on the graph with vectors in R
n. In both

cases we have that given c, the random vector f is a centered n-dimensional
Gaussian random vector. We view this as a Gaussian random element in the
space (Rn, ‖ · ‖n). The corresponding RKHS H

c is the entire space R
n, and the

corresponding RKHS-norm is given by

‖h‖2
Hc = hTΣ−1

c h,

where Σc is the covariance matrix of f | c. (See e.g. van der Vaart and van Zanten
(2008b) for the definition and properties of the RKHS.) Recall that the ψi are
the eigenfunctions of L, normalised with respect to the norm ‖ · ‖n. They are
then also eigenfunctions of Σ−1

c in both cases. We denote the corresponding
eigenvalues by μi.

The Gaussian N(0,Σc) admits the series representation

∑
Ziψi/

√
nμi, (4.1)

where Z1, . . . , Zn are standard normal variables. In particular the functions
ψi/

√
nμi form an orthonormal basis of the RKHS H

c. Hence, the ordinary ‖·‖n-
norm and the RKHS-norm of a function h with expansion h =

∑
hiψi are given

by

‖h‖2n =

n−1∑
i=0

h2
i , ‖h‖2

Hc = n

n−1∑
i=0

μih
2
i . (4.2)

We denote the unit ball of the RKHS by H
c
1 = {h ∈ H

c : ‖h‖Hc ≤ 1}.

4.1. Proof of Theorem 3.2

In this case Σ−1
c = ((n/c)2/r(L+n−2I))α+r/2 is the precision matrix of f given

c and the eigenvalues of Σ−1
c are given by

μi =
((n

c

)2/r(
λi +

1

n2

))α+r/2

.
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4.1.1. Proof of (3.4)

By Lemma 5.3 of van der Vaart and van Zanten (2008b), it follows from Lemmas
4.1 and 4.2 ahead that under the conditions of the theorem and for ε = εn =
n−β/(r+2β) and c = cn satisfying

√
nε

(β−α)/β
n ≤ c

(α+r/2)/r
n ≤ 2

√
nε

(β−α)/β
n , we

have
− logP (‖f − f0‖n | c) � ε−r/β

n .

By conditioning, it is then seen that

P (‖f − f0‖n < εn) ≥ e−K0ε
−r/β
n

∫ (2
√
nε(β−α)/β

n )r/(α+r/2)

(
√
nε

(β−α)/β
n )r/(α+r/2)

e−x dx ≥ e−K1ε
−r/β
n ,

for constants K0,K1 > 0.

Lemma 4.1. For n large enough and ε > 0 and ε
√
n/c(α+r/2)/r small enough,

− logP (‖f‖n ≤ ε | c) �
(c(α+r/2)/r

ε
√
n

) r
α

. (4.3)

Proof. By the series representation (4.1) we have P (‖f‖n ≤ ε | c) = P (
∑

Z2
i /

(nμi) ≤ ε2). Recall from Section 2.2 that we can assume without loss of gener-
ality that we have the lower bounds

λi ≥ C1

( 1

n

)2

, 1 ≤ i ≤ i0, (4.4)

λi ≥ C1

( i

n

)2/r

, i > i0. (4.5)

These translate into lower bounds for the μi from which it follows that for ε > 0,

P (‖f‖2n ≤ 2ε2 | c) ≥ P
(∑

i≤i0

Z2
i

nμi
≤ ε2,

∑
i>i0

Z2
i

nμi
≤ ε2

)

≥P
( ∑

1<i≤i0

Z2
i ≤ (Cp

1 c
−2p/rn(2α+2r−2pr)/r)ε2

)
P
(∑

i>i0

Z2
i

i2p/r
≤Cp

1 c
−2p/rnε2

)
,

where we write p = α + r/2. By Corollary 4.3 from Dunker et al. (1998), the
last factor in the last line is bounded form below by

exp
(
− const× (c−p/rε

√
n)−r/α

)
,

provided c−p/rε
√
n is small enough. By the triangle inequality and indepen-

dence, the first factor is bounded from below by
(
P (|Z1| ≤ i

1/2
0 C

p/2
1 c−p/rn(α+r−pr)/rε)

)i0
.

Since r ≥ 1, we have c−p/rn(α+r−pr)/rε = O(c−p/rε
√
n). Hence, for c−p/rε

√
n

small enough the probability is further bounded from below by

const×
(
c−p/rn(α+r−pr)/rε

)i0
.
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Combining the bounds for the separate factors we find that, for c−p/rε
√
n small

enough,

− logP (‖f‖2n ≤ 2ε2 | c) � log
( cp/r

n(α+r−pr)/rε

)
+

( cp/r

ε
√
n

)r/α

.

Since r ≥ 1 the first term on the right is smaller than a constant times the
second one if c−p/rε

√
n is small enough.

Lemma 4.2. Let f ∈ Hβ(C) for β ≤ α + r/2. For ε > 0 such that ε → 0 as
n → ∞ and 1/ε = o(nβ/r) and n large enough,

inf
h∈Hc: ‖h−f‖n≤ε

‖h‖2
Hc � nc−(2α+r)/rε−

2(α−β)+r
β . (4.6)

Proof. We use an expansion f =
∑

fiψi, with ψi the orthonormal eigenfunctions
of the Laplacian. In terms of the coefficients the smoothness assumption reads∑

(1 + n2β/rλβ
i )f

2
i ≤ C2. Now for I to be determined below, consider h =∑

i≤I fiψi. In view of (4.4)–(4.5) we have, for I large enough,

‖h− f‖2n =
∑
i>I

f2
i ≤ C2

1 + n2β/rλβ
I

≤ C2C−β
1 I−2β/r.

Setting I = const× ε−r/β we get ‖h− f‖n ≤ ε. By (4.2), the RKHS-norm of h
satisfies

‖h‖2
Hc = n

∑
i≤I

((n/c)2/r(λi + n−2))α+r/2f2
i

� nc−2p/rC2 + c−2p/rC2n2+2(α−β)/rλp−β
I .

The condition on ε ensures that for the choice of I made above and n large
enough, i0 ≤ I ≤ κn. Hence, by (4.4)–(4.5), ‖h‖2

Hc is bounded by a constant
times the right-hand side of (4.6).

4.1.2. Proof of (3.5) and (3.6)

Define Bn = MnH
cn
1 + εnB1, where B1 is the unit ball of (Rn, ‖ · ‖n), εn =

n−β/(r+2β) again and cn,Mn are the sequences to be determined below. By
Lemma 4.3 we have

logN(2εn, Bn, ‖ · ‖n) ≤ logN(εn/Mn,H
cn
1 , ‖ · ‖n) � cn

( Mn

εn
√
n

) r
p

,

where p = α + r/2 again. For Mn = M
√
nε2n and c

p/r
n = N

√
nε

(β−α)/β
n this is

bounded by a constant times nε2n, which proves (3.6).
It remains to show that for given K2 > 1, the constants M and N can be

chosen such that (3.5) holds. We have

P (f /∈ Bn) ≤
∫ cn

0

P (f /∈ MnH
cn
1 + εnB1 | c)e−c dc+

∫ ∞

cn

e−c dc.
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For c ≤ cn we have the inclusion H
c
1 ⊆ H

cn
1 . Hence, by the Borell–Sudakov

inequality, we have for c ≤ cn that

P (f �∈ Bn | c) ≤ P (f �∈ MnH
c
1 + εnB1 | c)

≤ 1− Φ(Φ−1(P (‖f‖n ≤ εn | c) +Mn))

≤ 1− Φ(Φ−1(P (‖f‖n ≤ εn | cn) +Mn)),

where Φ is the cdf of the standard normal distribution. By Lemma 4.1 the

small ball probability in this expression is for c
p/r
n = N

√
nε

(β−α)/β
n bounded

from below by exp(−Kε
−r/β
n ) for some K > 0. Using the bound Φ−1(y) ≥

−((5/2) log(1/y))1/2 for y ∈ (0, 1/2), it follows that for c ≤ cn,

P (f �∈ Bn | c) ≤ 1− Φ(Mn −K ′ε−r/(2β)
n )

for someK ′ > 0. ForMn a large enough multiple of that ε
−r/(2β)
n this is bounded

by exp(−K2ε
−r/β
n ) = exp(−K2nε

2
n).

Lemma 4.3. For n large enough and c, ε > 0 we have

logN(ε,Hc
1, ‖ · ‖n) � c

( 1

ε
√
n

) r
α+r/2

. (4.7)

Proof. By expanding the RKHS elements in the eigenbasis of the Laplacian and
taking into account the relations (4.2) we see that the problem is to bound the
entropy logN(ε,A, ‖ · ‖), where

A =
{
x ∈ R

n : n
n−1∑
i=0

((n/c)2/r(λi + n−2)α+r/2x2
i ≤ 1

}
.

Using the bounds (4.4)–(4.5), it follows that with p = α + r/2 and R =
cp/rn−(α+r)/r we have the inclusions

A ⊂
{
x ∈ R

n :

n−1∑
i=0

λp
i x

2
i ≤ R2

}

⊂
{
x ∈ R

n :
∑
i≤i0

x2
i ≤ C−p

1 n2pR2,
∑
i>i0

i2p/rx2
i ≤ C−p

1 n2p/rR2
}
.

By using the well-known entropy bounds for balls in R
i0 and ellipsoids in 	2 we

deduce from this that for ε > 0,

logN(2ε,A, ‖ · ‖) � log+

(npR

ε

)
+

(np/rR

ε

)r/p

�
(np/rR

ε

)r/p

.

The proof is completed by recalling the expressions for p and R.

4.2. Proof of Theorem 3.3

In this case the eigenvalues of Σ−1
c are given by

μi = n−1e(n/c)
2/rλi .
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4.2.1. Proof of (3.9)

By Lemma 5.3 of van der Vaart and van Zanten (2008b), it follows from Lemmas
4.4 and 4.5 ahead that under the conditions of the theorem and for ε = εn =
(n/ log1+r/2 n)−β/(r+2β) and nε2/ log1+r/2 n ≤ c ≤ 2nε2/ log1+r/2 n, we have

− logP (‖f − f0‖n ≤ ε | c) � c log1+r/2 c

ε2
+ eKc−2/rε−2/β � nε2.

By conditioning, similar as in the previous case, we find that − logP (‖f−f0‖n ≤
ε) � nε2 as well.

Lemma 4.4. If ε → 0, c is bounded away from 0 and c/ε2 → ∞, then

− logP (‖f‖n ≤ ε | c) � c log1+r/2 c

ε2
.

Proof. Again the series representation of the Gaussian law of f | c gives P (‖f‖n ≤
ε | c) = P (

∑
e−(n/c)2/rλiZ2

i ≤ ε2), where the Zi are independent standard nor-
mal random variables. By the lower bounds (4.4)–(4.5), it follows that

P (‖f‖n ≤ 2ε | c)

≥ P
(∑

i≤i0

e−C1n
(2−2r)/rc−2/r

Z2
i ≤ ε2

)
P
(∑

i≥1

e−C1c
−2/ri2/rZ2

i ≤ ε2
)
.

The first probability in the last line is bounded from below by

(
P (|Z1| < i

−1/2
0 e(1/2)C1n

(2−2r)/rc−2/r

ε)
)i0

.

Since the quantity on the right of the inequality in this probability becomes
arbitrarily small under de conditions of the lemma, this is further bounded
form below by a constant times εi0 exp(i0((1/2)C1n

(2−2r)/rc−2/r)).
For the second probability we use Theorem 6.1 of Li and Shao (2001). This

asserts that if ak > 0 and
∑

ak < ∞, then as ε → 0

P (
∑

aiZ
2
i ≤ ε2) ∼ 1√

4π
∑

( aiγa

1+2aiγa
)2
eε

2γa−(1/2)
∑

log(1+2aiγa), (4.8)

where γa = γa(ε) is uniquely determined, for ε > 0 small enough, by the equa-
tion

ε2 =
∑ ai

1 + 2aiγa
. (4.9)

We apply (4.8) with ai = exp(−C1(i/c)
2/r).

We first determine bounds for γa. Note that in our case the terms in the sum
S on the right of (4.9) are decreasing in i. It follows that we have the bounds

∫ ∞

1

1

eC1(x/c)2/r + 2γa
dx ≤ S ≤

∫ ∞

0

1

eC1(x/c)2/r + 2γa
dx.
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A change of variables shows that the integral on the right equals

cr

2C
r/2
1

∫ ∞

0

tr/2−1

et + 2γa
dt = c

−rΓ(r/2)

4γaC
r/2
1

Lir/2(−2γa),

where Lis(z) denotes the polylogarithm. By Wood (1992),

Lir/2(−2γa)

logr/2 2γa
→ − 1

Γ(r/2 + 1)

as γa → ∞. Hence for large γa, we have the upper bound S ≤ const ×
cγa

−1 logr/2 γa. It is easily seen that we have a lower bound of the same or-
der, so that

ε2 � c logr/2 γa
γa

.

Under our condition that ε2/c → 0 this holds if and only if

γa � c

ε2
logr/2

c

ε2
.

Next we consider the sums appearing on the right of (4.8). To bound∑
log(1 + 2aiγa) ≤

∑
log(1 + 2 exp(−C1(i/c)

2/r)γa) we consider the index
I = c(log γa/C1)

r/2, which is determined such that aIγa = 1. Note that for

m > 0, we have amIγa = am
2/r

I γa = γ1−mr/2

a . We first split up the sum, writing
∑

log(1 + 2aiγa) =
∑
i<I

log(1 + 2aiγa) +
∑
i≥I

log(1 + 2aiγa)

The first sum on the right is bounded by a multiple of I log γa. The second one
we split into blocks of length I. This gives∑

i≥I

log(1 + 2aiγa) ≤ I
∑
m≥1

log(1 + 2γ1−mr/2

a ) � I.

Hence, we have
∑

log(1 + 2aiγa) � c log1+r/2 γa. For the other sum appearing
in (4.8) we have

∑( 2aiγa
1 + 2aiγa

)2

≤
∑ 2aiγa

1 + 2aiγa
= 2γaε

2.

The proof is completed by combining all the bounds we have found.

Lemma 4.5. Suppose that f ∈ Hβ(C) for some β,C > 0. For ε > 0 such that
ε → 0 as n → ∞ and 1/ε = o(nβ/r) and c > 0,

inf
h∈Hc: ‖h−f‖n≤ε

‖h‖2
Hc � eKc−2/rε−2/β

(4.10)

for n large enough, where K > 0 is a constant.

Proof. We use an expansion f =
∑

fiψi, with ψi the orthonormal eigenfunctions
of the Laplacian. We saw in the proof of Lemma 4.2 that if we define h =
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∑
i≤I fiψi for I = const× ε−r/β , then ‖h− f‖n ≤ ε. By (4.2), the RKHS-norm

of h satisfies in this case

‖h‖2
Hc =

∑
i≤I

e(n/c)
2/rλif2

i ≤ C2e(n/c)
2/rλI .

The condition on ε ensures that for the choice of I made above and n large
enough, i0 ≤ I ≤ κn. Hence, by (4.4)–(4.5), ‖h‖2

Hc is bounded by a constant
times the right-hand side of (4.10).

4.2.2. Proof of (3.10)–(3.11)

Define Bn := MnH
cn
1 +εnB1, where εn is as above andMn and cn are determined

below.
For (3.10) we first note again that

P (f /∈ Bn) ≤
∫ cn

0

P (f /∈ MnH
cn
1 + εnB1 | c)e−c dc+

∫ ∞

cn

e−c dc.

Exactly as in the proof of (3.5), the Borell–Sudakov inequality implies that for
c ≤ cn,

P (f �∈ Bn | c) ≤ 1− Φ(Φ−1(P (‖f‖n ≤ εn | cn) +Mn)).

By Lemma 4.4 the small ball probability on the right is lower bounded by

exp
(
−Kcn log

1+r/2 cn
ε2n

)
.

It follows that for c ≤ cn,

P (f �∈ Bn | c) ≤ 1− Φ
(
Mn −K ′

√
cn log

1+r/2 cn
ε2n

)

for some K ′ > 0. For a given K2 > 0, choosing Mn a large multiple of
(cn log

1+r/2(cn/ε
2
n))

1/2 we find that, for large n,

P (f �∈ Bn) ≤ e
−K′′cn log1+r/2 cn

ε2n + e−cn ≤ 2e−cn .

If K2 > 0 is a given constant, then for cn a large enough multiple of nε2n, this
is bounded by exp(−K2nε

2
n).

For these choices of Mn and cn, Lemma 4.6 implies that the entropy satisfies,
for any ε̃n ≥ εn,

logN(2ε̃n, Bn, ‖ · ‖n) ≤ logN(2εn, Bn, ‖ · ‖n) � cn

(
log

Mn

εn

)1+r/2

.

This proves that (3.11) holds for ε̃n = εn log
1/2+r/4 n.

Lemma 4.6. Let ε, c > 0 be such that c logr/2(1/ε) → ∞ as n → ∞. Then for
n large enough,

logN(ε,Hc
1, ‖ · ‖n) � c log1+r/2

(1
ε

)
.
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Proof. We need to bound the metric entropy of the set

A = {x ∈ R
n :

n−1∑
i=0

e(n/c)
2/rλix2

i ≤ 1},

relative to the Euclidean norm ‖ · ‖. Set I = (2/C1)
r/2c logr/2(1/ε). Under the

assumption of the lemma this is larger than i0, hence by (4.4)–(4.5) we have
exp(−(n/c)2/rλI) ≤ ε2. It follows that if for x ∈ A we define the projection xI

by xI = (x1, . . . , xI , 0, 0, . . .), then

‖x− xI‖2 =
∑
i>I

x2
i ≤ e−(n/c)2/rλI

∑
i>I

e(n/c)
2/rλix2

i ≤ ε2.

Moreover, we have ‖xI‖ ≤ 1. By the triangle inequality, it follows that if
the points x1, . . . , xN form an ε-net for the unit ball in R

I , then the points
x̄1, . . . , x̄N in R

n obtained by appending zeros to the xj form a 2ε-net for A.
Hence, N(2ε,A, ‖ · ‖) � ε−I . The proof is completed by recalling the expression
for I.

5. Function estimation on graphs

In this section we translate the general Theorems 3.2 and 3.3 into results about
posterior contraction in nonparametric regression and binary classification prob-
lems on graphs. Since the arguments needed for this translation are very similar
to those in earlier papers, we omit full proofs and just give pointers to the
literature.

5.1. Nonparametric regression

As before we let G be a connected simple undirected graph with vertices 1, 2, . . . ,
n. In the regression case we assume that we have observations Y1, . . . , Yn at the
vertices of the graph, satisfying

Yi = f0(i) + εi, (5.1)

where f0 is the function on G that we want to make inference about and εi are
independent N(0, σ2)-distributed error variables, for some σ > 0. We assume
that the underlying graph satisfies the geometry assumption with some param-
eter r ≥ 1. As prior on the regression function f we then employ one of the
two priors described by (3.2)–(3.3) or (3.7)–(3.8). If σ is unknown, we assume
it belongs to a compact interval [a, b] ⊂ (0,∞) and endow it with a prior with
a positive, continuous density on [a, b], independent of the prior on f .

For a given prior Π, the corresponding posterior distribution on f is denoted
by Π(· |Y1, . . . , Yn). For a sequence of positive numbers εn → 0 we say that the
posterior contracts around f0 at the rate εn if for all large enough M > 0,

Π(f : ‖f − f0‖n ≥ Mεn |Y1, . . . , Yn)
Pf0→ 0
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as n → ∞. Here the convergence is in probability under the law Pf0 correspond-
ing to the data generating model (5.1).

The usual arguments allow us to derive the following statements from The-
orems 3.2 and 3.3. See, for instance, van der Vaart and van Zanten (2008a) or
de Jonge and van Zanten (2013) for details.

Theorem 5.1 (Nonparametric regression). Suppose the geometry assumption
holds for r ≥ 1. Assume that f0 ∈ Hβ(C) for β,C > 0.

(i) (Power of the Laplacian.) If the prior on f is given by (3.2)–(3.3) for
α > 0 and β ≤ α+ r/2, then the posterior contracts around f0 at the rate
n−β/(r+2β).

(ii) (Exponential of the Laplacian.) If the prior on f is given by (3.7)–(3.8),
then the posterior contracts around f0 at the rate n−β/(r+2β) logκ n for
some κ > 0.

Observe that since the priors do not use knowledge of the regularity β of
the regression function, we obtain rate-adaptive results. For the power prior the
range of regularities that we can adapt to is bounded by α+ r/2, where α is the
hyper parameter describing the “baseline regularity” of the prior. In the case of
the exponential prior the range is unbounded. This comes at the modest cost of
having an additional logarithmic factor in the rate.

In Kirichenko and van Zanten (2017) minimax lower bounds are presented
which complement the rate results of the present paper. These show that the
rates obtained are sharp in the present setting (up to a logarithmic factor in
the exponential case). For the regular grid case this is basically also clear from
existing lower bound results, since our setup includes the regular grids (Exam-
ple 2.1) and since our smoothness condition corresponds to ordinary Sobolev
regularity in those cases (Example 3.1).

5.2. Nonparametric classification

We can derive the analogous results in the classification problem in which we as-
sume that the data Y1, . . . , Yn are independent {0, 1}-valued variables, observed
at the vertices of the graph. In this case the goal is to estimate the binary
regression function p0, or “soft label function” on the graph, given by

p0(i) = P0(Yi = 1).

We consider priors on p constructed by first defining a prior on a real-valued
function f by (3.2)–(3.3) or (3.7)–(3.8) and then setting p = Ψ(f), where
Ψ : R → (0, 1) is a suitably chosen link function. We will assume that Ψ is
a strictly increasing, differentiable function onto (0, 1) such that Ψ′/(Ψ(1−Ψ))
is uniformly bounded. Note that for instance the sigmoid, or logistic link Ψ(f) =
1/(1+ exp(−f)) satisfies this condition. Under our conditions the inverse Ψ−1 :
(0, 1) → R is well defined. In this classification setting the regularity condi-
tion will be formulated in terms of Ψ−1(p0). This is natural, since the prior is
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defined in terms of Ψ−1(p) as well. Also in this case we denote the posterior
corresponding to a prior Π by Π(· |Y1, . . . , Yn) and we say that the posterior
contracts around p0 at the rate εn if for all large enough M > 0,

Π(p : ‖p− p0‖n ≥ Mεn |Y1, . . . , Yn)
P0→ 0

as n → ∞.
To derive the following result from Theorems 3.2 and 3.3 we can argue along

the lines of the proof of Theorem 3.2 of van der Vaart and van Zanten (2008a).
Some adaptations are required, since in the present case we have fixed design
points. However, the necessary modifications are straightforward and therefore
omitted.

Theorem 5.2 (Classification). Suppose the geometry assumption holds for r ≥
1. Let Ψ : R → (0, 1) be onto, strictly increasing, differentiable and suppose
that Ψ′/(Ψ(1−Ψ)) is uniformly bounded. Assume that Ψ−1(p0) ∈ Hβ(C) for
β,C > 0.

(i) (Power of the Laplacian.) If the prior on p is given by the law of Ψ(f),
for f given by (3.2)–(3.3) for α > 0 and β ≤ α + r/2, then the posterior
contracts around p0 at the rate n−β/(r+2β).

(ii) (Exponential of the Laplacian.) If the prior on p is given by the law of
Ψ(f), for f given by (3.7)–(3.8), then the posterior contracts around f0 at
the rate n−β/(r+2β) logκ n for some κ > 0.

6. Concluding remarks

We have introduced a framework for studying the performance of methods for
nonparametric function estimation on large graphs. We have proposed assump-
tions on the geometry of the underlying graph and the regularity of the function
formulated in terms of the Laplacian of the graph. Moreover, we have exhibited
nonparametric Bayes methods that achieve good convergence rates and that
adapt to the unknown regularity of the function of interest.

We have purposely focused on the building up a new framework and deriving
a few representative results within that framework and have not yet attempted
to explore every possible extension. As a result, extensions and generalizations
are possible in a variety of directions.

First of all, it is of interest to study other procedures than just the Bayesian
methods with priors (3.2)–(3.3) or (3.7)–(3.8). For instance, empirical Bayes
procedures for choosing the hyperparameter c might computationally be more
favorable than hierarchical Bayes. Studying the performance of such procedures
is possible within the framework of Rousseau and Szabo (2015). In turn, having
results for empirical Bayes will allow us to extend the range of priors on c for
which we can prove that the hierarchical procedures give good results.

Secondly, results on uncertainty quantification would be valuable. Bayes pro-
cedures provide a natural method for quantifying uncertainty through the spread
of the posterior distribution. However, it has become clear that in general the
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question of whether or not Bayesian credible sets can be interpreted as (frequen-
tist) confidence sets is a delicate matter in nonparametric settings (e.g. Szabó
et al. (2015)). It would be desirable to have more insight in this issue in the
graph setting.

On the level of the geometry assumption, several extensions might be of in-
terest. For instance, instead of a single parameter r governing the “dimension”
of the graph it might be interesting to consider frameworks allowing graphs
which are less homogenous. When estimating a function on some sub-region of
a graph, one would expect that the rates should only depend on the local geom-
etry of the graph in that region. It would be of interest to make such statements
mathematically precise and to exhibit procedures with good local properties.
More generally, recent numerical work has shown that Bayesian Laplacian reg-
ularisation can work quite well in practice on graphs that do not satisfy our
geometry assumption, see Hartog and van Zanten (2016). To understand this
theoretically our current mathematical results are too limited.

A final possible generalization that we want to mention is to the setting of
weighted graphs. This is of interest, since in many applications it is natural
to work with weighted graphs to quantify the similarity between vertices. We
expect that with additional work our results can be extended to that setting.
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