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Abstract: Sequential quantile estimation refers to incorporating observa-
tions into quantile estimates in an incremental fashion thus furnishing an
online estimate of one or more quantiles at any given point in time. Se-
quential quantile estimation is also known as online quantile estimation.
This area is relevant to the analysis of data streams and to the one-pass
analysis of massive data sets. Applications include network traffic and la-
tency analysis, real time fraud detection and high frequency trading. We
introduce new techniques for online quantile estimation based on Hermite
series estimators in the settings of static quantile estimation and dynamic
quantile estimation. In the static quantile estimation setting we apply the
existing Gauss-Hermite expansion in a novel manner. In particular, we ex-
ploit the fact that Gauss-Hermite coefficients can be updated in a sequential
manner. To treat dynamic quantile estimation we introduce a novel expan-
sion with an exponentially weighted estimator for the Gauss-Hermite coeffi-
cients which we term the Exponentially Weighted Gauss-Hermite (EWGH)
expansion. These algorithms go beyond existing sequential quantile esti-
mation algorithms in that they allow arbitrary quantiles (as opposed to
pre-specified quantiles) to be estimated at any point in time. In doing so
we provide a solution to online distribution function and online quantile
function estimation on data streams. In particular we derive an analytical
expression for the CDF and prove consistency results for the CDF under
certain conditions. In addition we analyse the associated quantile estimator.
Simulation studies and tests on real data reveal the Gauss-Hermite based
algorithms to be competitive with a leading existing algorithm.
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1. Introduction

Algorithms for elucidating the statistical properties of streams of data in real
time and for the efficient one-pass analysis of massive data sets are becoming
increasingly pertinent. These data are being generated by a number of sources
including the global financial markets, internet applications, sensors embedded
in various devices and data-intensive scientific research endeavours such as the
Large Hadron Collider and the Square Kilometre Array (see [5] for a survey
of the field of Big Data). Ideally such algorithms should be able to process
observations sequentially, without requiring the storage of all observations. In
addition, the time taken to process each observation should not grow with the
number of previous observations. Certain statistical properties naturally lend
themselves to efficient, sequential calculation such as the mean and standard
deviation. Depending on the application, these moments may not be sufficient
however. This may be true for skewed data for example. In addition, if the data
stream being analysed is prone to outliers then more robust statistics may be
required. Quantiles are a natural choice in these settings. Examples of areas
in which sequential quantile estimation is relevant include network traffic and
latency analysis [3], real time fraud detection [2] and high frequency trading (see
[17] for an introduction to sequential algorithms in high frequency trading).
Other conceivable applications of sequential quantile estimation include real
time detection of anomalies and flagging of noteworthy observations, real time
outlier detection and removal, real time provisioning for future demand and load
balancing as well as real time risk estimation.

In many applications of interest one needs to determine whether a particular
value or observation is greater than or less than a certain quantile. In such cases
it is more direct to use the cumulative distribution function. Thus, closely linked
to quantile estimation is distribution function estimation. In this article we pro-
pose new distribution function and quantile estimators based on Hermite series
expansions and study their properties. These results are novel and interesting
in their own right. That said, the particular setting we consider is that of online
estimation and thus existing non-parametric methods are weighed against our
methods in this specific context. In the general context, there are of course a
number of well established non-parametric distribution function and quantile
estimators. The most obvious of these being the sample cumulative distribution
function also known as the empirical distribution function. Let x; ~ f(z) be
i.i.d. random variables drawn from f(z) with cumulative distribution function

The empirical distribution function (EDF) is defined as:

n

Fi(z) = %Zl{xi <z}

i=1

This estimator is consistent in the sense that it converges point-wise to the
true CDF. In fact, it converges uniformly over z (Glivenko-Cantelli theorem). In
addition F} (z) has an asymptotically normal distribution with the standard /n
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rate of convergence. The EDF estimator is unbiased and its mean squared error
is MSE(F)(z)) = w The EDF estimator has however been shown
to be asymptotically inferior (asymptotically deficient) compared to the kernel
distribution function estimator with an appropriately chosen kernel type (in the
MSE sense, see [24] for a precise definition of asymptotic deficiency). In fact the
relative deficiency quickly tends to infinity as the sample size increases [24]. The

kernel distribution function estimator is defined as:

. I [* 1 x; — '
B =3 [ (B as
i=1 Y o0 'n

n

where the kernel function K (x) is a non-negative function that integrates to one
and has mean zero and the bandwidth, h,, > 0, is a smoothing parameter. F’Q(w)
is asymptotically normally distributed. The almost sure uniform convergence of
Fy(x) has also been proved (see [24]).

Closely related to the EDF, the sample quantile is a popular nonparametric
estimator of the corresponding population quantile. Define the values x(y, .. .,
X(n) to be a permutation of x1,...,x, such that x(1) < x(z) < -+ < x(y). Here,
X(4), is known as the ith order statistic. The EDF can be written in terms of
the order statistics as:

F3(:L‘) = %ZI{X@) <z}

i=1

The inverse cumulative distribution function or quantile function is defined
as:

q(p) = inf{x : F(x) > p}. (1)

The p-th quantile can be estimated from the order statistics. In particular
ifp e (%, %] then ¢(p) = x(;), the ith order statistic. The sample quantile
estimator is a function of at most two order statistics and thus may suffer a loss
of efficiency for certain distributions. A natural way to improve efficiency is to
form a weighted average of several order statistics under an appropriate weight
function. Such estimators are called L-estimators. The most popular class of
L-estimators uses a density function (kernel) as its weight function, these are

known as kernel quantile estimators (see [26]). The kernel quantile estimator is

defined as: _
) (1 (s—p
q(p) = 2[71 h—K< A )Xu)ds
i=1Y = " n

It has been shown that under suitable conditions on F(x) and h,, the kernel
quantile estimator is more efficient than the sample quantile estimator in the
MSE sense [10]. Under comparable assumptions to those to prove joint asymp-
totic normality of a set of empirical quantiles, joint asymptotic normality of the
kernel quantile estimator has also been proved [11]. The rate is also provided.
In [26] the asymptotically optimal bandwidth for the kernel quantile estimator
is derived and the corresponding MSE is provided. It is also shown that many
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different variants of the kernel quantile estimator are asymptotically equiva-
lent in the MSE sense. In addition other L-estimators such as Harell-Davis,
Kaigh-Lachenbruch and the Brewer estimators are shown to be asymptotically
equivalent to the kernel quantile estimator above with a gaussian kernel and
certain smoothing parameters. A more modern approach to estimating quan-
tiles based on the Bernstein-Durrmeyer operator is provided in [20]. Like other
L-estimators, the BD estimator constitutes a weighted version of several order
statistics. MSE and MISE consistency results are also provided.

In the context of sequential distribution function and quantile estimation, the
aforementioned estimators have shortcomings. Both the EDF and kernel distri-
bution function estimator only allow sequential estimation of the cumulative
probability at a set of fixed x values (see chapters 4 and 5 of [13] and chapter
7 of [8] for a discussion of recursive kernel estimators). For quantile estimation,
both the sample quantile estimator and L-estimators such as the kernel quan-
tile estimator and the Bernstein-Durrmeyer estimator require the storage and
updating of one or more order statistics (a sorted sequence of all observations
seen so far). Updating the order statistics cannot in general be done in O(1)
time. Moreover, the addition of a new observation would in general change a
number of order statistics. Finally, in the context of sequential quantile estima-
tion on streaming data, non-stationarity cannot be naturally addressed since
these estimators have no means of forgetting previous observations (other than
windowing and resetting).

Approaches specifically to sequential estimator of quantiles have been devel-
oped. Sequential quantile estimation algorithms can be differentiated on whether
they seek to maintain an online estimate of a single quantile or multiple quan-
tiles. They can be further differentiated on whether they are meant to estimate
static quantiles of a stream of data or dynamic quantiles of a stream of data.
In the case of static quantile estimation, online quantile estimates pertain to
all the data observed so far and quantiles of the stream being analysed are
assumed to be fixed. In the dynamic case, quantile estimates pertain to the
current behaviour of the process and it is assumed that quantiles may vary
over time. A number of algorithms have been proposed for sequential quantile
estimation in these settings. In [15] the P? algorithm was proposed which uti-
lizes parabolic interpolation in order to estimate a particular quantile. In [22]
and [23] this algorithm was extended to the simultaneous estimation of several
quantiles. In [18] the P? algorithm was further extended to treat dynamic quan-
tile estimation via exponentially weighted quantile estimators. Algorithms have
also been proposed based on stochastic approximation [25], [28]. This approach
was extended to dynamic quantile estimation in [4] by the introduction of Expo-
nentially Weighted Stochastic Approximation (EWSA). These existing methods
have a major shortcoming however, online estimates can only be obtained for a
particular, pre-selected set of quantiles (e.g. p = 0.5,0.9,0.99 etc.).

In this article we propose new techniques based on Hermite series estimators
to maintain an online estimate of the CDF and the full quantile function in
both the static and dynamic settings and thus yield estimates of the cumula-
tive probability at arbitrary x and estimates of arbitrary quantiles that can be
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updated in constant time (O(1) time). This is the primary advantage of our
suggested approach. Even if our proposed techniques only have comparable ac-
curacy with existing techniques, they would still be valuable. We demonstrate
using simulated and real data, that our techniques may in fact be more accurate.

We begin by reviewing some background related to Hermite polynomials
and the Gauss-Hermite expansion in section 2. In section 3 we introduce a
Gauss-Hermite based estimator for the cumulative distribution function and
discuss a numerical means of obtaining arbitrary quantiles. We then set about
applying this to sequential quantile estimation in the settings of static and dy-
namic quantile estimation. In this article, we make our treatment of static and
dynamic quantile estimation concrete by considering the cases of independent
identically distributed (i.i.d.) data streams and non-identically distributed in-
dependent data streams respectively. Observations are continuous random vari-
ables that are revealed sequentially (i.e. one at a time). The basic algorithm for
the static case is presented in section 4. We then proceed to treat the dynamic
case by introducing an exponentially weighted moving average estimator for the
Gauss-Hermite coeflicients in section 5. In section 6 we investigate the quality
of the Gauss-Hermite CDF and quantile estimators theoretically. We compare
the proposed techniques to a leading existing algorithm for both simulated data
(in section 7) and real data (in section 8). Finally, we conclude in section 9. The
practical consideration of standardising the observations from the data stream
being analysed is treated in appendix A. Useful MISE results for the exponen-
tially weighted Gauss-Hermite expansion are derived in appendix B.

2. Background
2.1. Hermite polynomials

In this section we introduce the Hermite polynomials which will play a central
role in the construction of orthogonal series estimators for probability density
functions. The Hermite polynomials are a classical orthogonal polynomial se-
quence. Following standard notation [27] we define the Hermite polynomials:

k
B g2 A o2
Hk(l‘) = (—1) e W@
which are orthogonal under the weight function e e

/00 emeHk(x)Hl(m)dx = a2k k16, (2)

— 00
The following explicit expression may also be utilised:

R o ) L
Hk(x):k.zzom@x) : (3)
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Finally, some useful inequalities for Hy(z) are as follows [27] (used in [12] for
example):

21y~ [ Hi(@)| e T < calk+1)7V4 2] <a (4)

for some constant ¢, and non-negative a.
- — 2
@ RVD) V2 [ B @) e F <da(k+ 1)V 2l > (5)

for some constant d, and positive a.
In the next section we establish the link between expansions in Hermite poly-
nomials and nonparametric density estimation.

2.2. Gauss-Hermite expansion

A number of probability distribution expansions have been defined in terms
of the Hermite polynomials. These include the Gram Charlier A series, the
Edgeworth series and the Gauss-Hermite expansion. These expansions have been
applied to successfully fit astrophysical data that are nearly Gaussian but with
small, meaningful deviations for example [1]. In this research we focus on one
expansion, termed the Gauss-Hermite expansion following the terminology of
[1]. This expansion has good convergence properties in practice and is robust to
outliers [21]. We define this expansion below:
If f(z) € Ly ice. [70_ f*(x)dz < oo then f(z) can be expressed as follows:

fl@) =" axHp(2)Z (), (6)
k=0

where Z(x) = \/%e’wrz/ 2 is the standard normal probability density function
and -

o= [ 2@ @) 7)
where oy = r@ In what follows, we refer to (6) along with the coefficients
(7) as the Gauss-Hermite expansion. The fact that f(z) can be expanded in this
manner is a consequence of the fact that the normalised Hermite functions:

hi, = (28kl/7)

are an orthonormal basis for Ly (the space of square integrable functions). The
Gauss-Hermite expansion is in fact entirely equivalent to the expansion:

1 2
? e 7 Hi(x),

/()

(®)

ay

dehk:(-r):
k=0

1

—Aag.
V ax
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which is the expansion used to define what is termed the Hermite series estimator
in [29], [12]. We therefore use the descriptions interchangeably. The usefulness
of the Gauss-Hermite form of the expansion (8) is that it makes explicit the
role of the normal distribution. Indeed it is explicit that one would expect near
Gaussian distributions to be well represented with just a few coefficients.

The N + 1 term truncated Gauss-Hermite expansion is defined as:

N
(@) =) arHy(@)Z(x). (9)
k=0

It is noteworthy that the coefficients (7) are such that the Ly distance between
f(z) and fy(x) is minimised i.e. no other choice of a; would lead to a better
approximation of f(x) in the Lo distance sense. This follows from the fact that
f(z) € Ly and the fact that the first N + 1 Hermite functions constitute an
orthonormal basis for a V + 1 dimensional subspace of L. See [7] for a succinct
proof using these facts. At this point, f(x) is an arbitrary function in Lo, it need
not be a probability density function. For the purposes of density estimation
however we will regard f(x) as a probability density function (a non-negative
function that integrates to one) that is also in L.

2.2.1. Truncated Gauss-Hermite expansions and nonparametric density
estimation

In the context of nonparametric density estimation, a natural estimator for the
ay, coefficients is (following from equation (7) and the law of large numbers):

n
ap = —= ZZ(Xi)Hk(xi)a x; ~ f(z), (10)
i=1
i.e. the x;’s are observations from the probability distribution that we wish to
estimate non-parametrically.
The N + 1 term truncated Gauss-Hermite expansion with estimated coeffi-
cients is thus:

N
fn(@) = arHy(2)Z(x). (11)
k=0

Note that this is a biased estimator of f(x). One common measure of the qual-
ity of the estimate of an unknown probability distribution is the mean integrated
squared error (MISE). Let the true probability density function f(z) € Lo. The
mean integrated squared error associated with the truncated Gauss-Hermite
expansion of f(x) is:

< N k-1 =, 2kl

B[ (flo) - f@)dz = E (i — )2 + %

- kzzo VT kgv;rl vt

7, fA(2)da and

where we have made use of Parseval’s identity, Y ;” ) -z a}
k
the definition of ax (7).
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The first term is associated with the error due to using estimates of the
coefficients, a instead of the true, unknown, coefficients aj. This is the inte-
grated variance term. The second term of the MISE is associated with the error
due to truncation. This is the integrated squared bias term. In [12] the MISE
consistency was proved under certain conditions.

A few further comments are in order. In practice, the Gauss-Hermite expan-
sion provides a good fit to a wide variety of probability density functions [21].
For completeness however, the following shortcomings should be noted as they
may be important depending on the application of the Gauss-Hermite estimate
of the density. In principle, for the truncated series, the probability density
function that results may be negative at certain values of x. Also, truncated
Gauss-Hermite expansions should capture nearly Gaussian distributions well in
a relatively small number of coefficients. However, for distributions that differ
greatly from the Gaussian distribution, a large number of coefficients may be
required for a satisfactory fit, even if convergence is guaranteed in principle.

In the next section we define an estimator for the cumulative distribution
function associated with f(x) using the Gauss-Hermite expansion and discuss
numerical means of obtaining quantiles.

3. Estimating quantiles using the Gauss-Hermite expansion
3.1. Cumulative distribution function

In this section we derive an analytical expression for a Gauss-Hermite based
cumulative distribution function estimator. To the best of our knowledge, this
is the first such analytical derivation of a cumulative distribution function es-
timator based on the Gauss-Hermite expansion (i.e. based on Hermite series
estimators). We utilise this expression to numerically obtain quantiles. We have
discussed a number of well-established results on smooth CDF estimators based
on other nonparametric techniques in the introduction.

Before we begin, we recall the definitions of the Gamma functions:

T'(a, z) is the upper incomplete Gamma function defined as:
T'(a,z) = / to et dt,
v(a, ) is the lower incomplete Gamma function defined as:
~v(a,x) = / to= et dt,
0
and I'(a) is the usual Gamma function defined as:
I'(a) :/ t* et dt.
0

Now, utilising (3) and (11) a natural estimator for the cumulative distribution
function associated with f(z) can be obtained as follows:
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For z < 0:
FN(x) = fN(x )dx
N x
= Zak Hy(z")Z(2")da'
k=0 e
N Lk/2] lok—21 x )
— Z&kk' Z '( 1) 2 ' (x/)k—2le—x 2/del
P = (k- 20)! oo
N Lk/2] lok—21 2
= Y #( pp-stgitipry £ L2
P P Nk —20)!
For x >0
En(z) = / P (2)da!
= / i () da! — fn(a')dx
N
= ) [/ Hy(z) d:c—/ Hy(z "da'
k=0 -
N Lk/2] k—2l
o ( 1)2 {/ k—21 7:1:’2/2 /
= Zakk! (z") dx
P P Mk —202r |-
B oo(xl)k 21 z'2/2dx:|
N Lk/2] k—21
~ ( 1) 2 E_ 1
= k I 2 X
kzzoa Z I(k — 20)1v2r
k E 1 2?2
X {[(—1)’“—” +1]T(-1 + 3t 5) I+ 5 +3 7)]
N Lk/2]
= Yk ) HGHEAPEI N
P = (k=202
k1 E 1 2?
k 21 ko4 g kLT
[ l+2+2)+7( l+2+2,2)}
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X (02 S [C)R A b D (-l b E
PDANINED ey I l!(lgle)!\/; : bras)
- ifx >0,
Fn(z)=
a k/2 1) —lkg & —ai- 'T(—l+54+1,
Zk o k"ZL /2] (= T 255
if z <0.
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The expression (12) allows us to directly estimate the cumulative distribution
function without the need to numerically integrate the estimated probability
density function (11).

An alternative estimator for the cumulative distribution function is as follows:

N yselk/2) (D2 3 kg 22
Fy(z) = 1= o rk! 22120 =20/ ifz>0
B N k2] (—1)~tRo ¥ osloip g k1 22y
Zk;:o akk! Zleé J ( ) l!(k*Zl)!\(/E 2- 222 ) lf T < 0

(13)

This expression is derived in the same manner as (12) except that the in-
tegral ffooo fn(a)dz' is replaced with unity. We have found that empirically
this estimator yields more accurate results. This may depend on the situation
however.

3.2. Inverse cumulative distribution function

The inverse cumulative distribution function or quantile function is defined in
equation (1). We can utilise (12) (or (13)) along with a numerical root-finding
algorithm to determine the value of the p-th quantile, z, = ¢(p), 0 < p < L
Newton’s method can be applied for example. In this case, the following equation
is iteratively evaluated until sufficient accuracy is achieved:

, B
gyt =2y — ‘NA(wpw)i) : (14)
In(2p7)

where fy(z) is given in (11) and Fy(z) is given in (12) (or (13)). Naturally,
convergence behaviour will depend on the choice of initial value, :icz(,o), and the
properties of fN(ac) In principle convergence may be slow, or the method may
not converge at all. If techniques such as Newton’s method and related methods
prove unstable in a given setting, more robust numerical root-finding algorithms
can be applied. The best choice of root-finding algorithm and optimal initial
value selection are areas for future research.

It is important to note that in many cases of interest, the quantile itself is
not required but rather it is necessary to determine whether an observation is
above or below a particular quantile (consider outlier detection for example).
In this case, no root finding is required. One simply plugs the observation into
the cumulative distribution function and determines whether the cumulative
probability is less than or greater than p.

4. Online quantile estimation: Static quantiles

The problem we treat in this section involves estimating an unknown cumulative
distribution function (and associated inverse cumulative distribution function)
from a stream of independent and identically-distributed (i.i.d.) continuous ran-
dom variable data. The Gauss-Hermite expansion furnishes an efficient means
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to achieve this. The primary reason for this is that the coefficients in the expan-
sion can be updated with each new observation without recalculating the entire
sum in (10). We can just incorporate a new term corresponding to the new ob-
servation and maintain a running average for each coefficient. Moreover, we can
simply plug in these updated coefficients into the analytical expression for the
cumulative distribution function we have derived (12) (or (13)). Any quantile
can then be obtained by a simple numerical root finding procedure (section 3.2).
The basic algorithm can be summarised as follows:

1. Initialize N + 1 coefficients as follows d,(co) = aZ(x0)Hi(x0), where xq is
the first observation from the data stream and £k =0...N.
2. For each new observation, x;, update aqg, ...an as follows:

al" = % (i—Dal " + apZ(xi)Hy(x:)| , k=0,...,N.  (15)
3. Plug the updated coefficients do, ... ay into the expressions (11) and (12)
(or (13)) to obtain updated estimates of the probability density function
and cumulative distribution function respectively.
4. Utilise a numerical root finding algorithm, along with the updated cu-
mulative distribution function (and potentially the updated probability
density function) to determine any arbitrary quantile.

The above algorithm can also be applied to summarise the distribution of
massive datasets in an efficient, one-pass manner which should be particularly
useful when the size of the dataset is larger than the available memory.

The computational cost of updating each of the coefficients (10) is manifestly
constant (O(1)) and does not depend on the number of previous observations.
Also, since the cumulative distribution function only depends on the coefficients
and has no explicit dependence on the observations, the time complexity of
updating the cumulative distribution function following the arrival of a new
observation is also O(1). Similarly, the computational cost of the numerical root
finding algorithm yielding any quantile of interest from the updated cumulative
distribution does not depend on the number of previous observations. This is
to be contrasted with deterministic approaches to obtaining quantiles such as
efficient heap based median maintenance which has a time complexity O(log i)
at the i-th observation and has growing space requirements.

While the updating procedure for the coefficients is fully sequential, it is clear
that since we use a fixed and constant N the resultant Gauss-Hermite estimate
of the probability density function is biased and thus, the resultant CDF and
quantile estimates will in general be biased too. Thus our quantile estimator
is sequential but biased. This bias does not prevent the estimator from being
useful however.

Data streams that have static quantiles are likely to be less prevalent than
those that have dynamic quantiles (quantiles that vary over time). Indeed, many
real-world data streams of interest exhibit non-stationarity. In section 5 we con-
sider how the proposed algorithm can be modified to treat quantile estimation
in the more realistic, dynamic setting.
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4.1. Selection of N

It is natural to assume that the quality of the CDF and quantile estimates is re-
lated to the MISE of fy(z). Indeed, we demonstrate in section 6 that the MISE
of fy(x) directly determines bounds on the MSE of the CDF and the MAE
of the resultant quantile estimates for distributions with non-negative support
under certain conditions. When viewed in the context of the MISE of fN(as),
the choice of N controls the trade-off between the integrated variance and inte-
grated squared bias of the estimate of f(x). For the Hermite series estimators,
the integrated variance term vanishes as n — oo for fixed N (under certain con-
ditions on f(x), see [12]). This leaves the contribution from the integrated bias
term. The higher the value of N, the smaller the integrated bias. Thus in the
setting of streaming data or one pass analysis of a massive data set, where we
regard n — oo, N would naively be made as large as possible to minimise the
bias and hence the MISE (recall that the MISE controls the quality of the CDF
and quantile estimates, see section 6.2). It is worth noting however that memory
requirements and processing time increase with N since more coefficients have
to be stored and updated. In addition, early quantile estimates could be poor for
large N. If the intended application is sensitive to poor early quantile estimates,
a small sample from the data stream or massive data set can be analysed in
order to select V. While it is clear that in general the optimal N is different for
the PDF, CDF and quantile estimates, our results suggest that it is a reasonable
starting point to attempt to minimise the MISE of fN(z) Principled techniques
exist to select the (MISE) optimal N such as the Kronmal-Tarter optimal stop-
ping rule algorithm [16], [19]. This algorithm must be applied with care though
as it may perform poorly if f(z) is multimodal or peaked as pointed out in [9].
The reader is referred to [9] and [14] for improvements to the algorithm. Data
driven selection of N specific to the CDF and quantile estimates is an area of fu-
ture research. In our simulation studies we demonstrate that above a minimum
size of N, the effectiveness of the algorithm is in fact not critically dependent
on the choice of N. Good results can be obtained for a range of values of N.
Through extensive empirical studies we have determined that a value of N = 6
yields good results for data with a unimodal distribution for example.

5. Online quantile estimation: Dynamic quantiles

The problem we treat in this section involves obtaining a local estimate of an
unknown cumulative distribution function (and associated inverse cumulative
distribution function) from a stream of continuous random variable data with
dynamic quantiles. In order to do this we replace the Gauss-Hermite coefficient
estimator defined in (10) with an exponentially weighted moving average esti-
mator for the coeflicients. We will term the resulting expansion an exponentially
weighted Gauss-Hermite expansion (EWGH expansion). The new estimator for
the coefficients is given by:
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0l = AawZ(x) He(x:)] + (1 - Nl ™Y,
0l = lanZ(xo)Hy(x0)], k=0,..., N, (16)

where 0 < A < 1 controls the weight of new observations (and controls how
rapidly the weightings of older observations decrease). This weighting scheme
allows the local behaviour of the data stream to be tracked. The algorithm
for obtaining arbitrary quantiles presented in the previous section is essentially
unchanged except that we replace (15) with (16). To re-iterate, the updated
coefficients can then be plugged into into the expressions (11) and (12) (or (13))
to obtain updated estimates of the probability density function and cumulative
distribution function respectively. A numerical root finding procedure can again
be applied to obtain arbitrary quantiles.

5.1. Selection of the parameters A\ and N

For the choice of N, the same broad considerations apply as in section 4.1 i.e.
the more complex the probability distribution of the data being analyzed, the
higher the appropriate N to ensure a sufficiently low bias. In our simulation
studies we have observed that a value of N = 6 gives competitive performance
for all choices in the set A = 0.01,0.05,0.1, for unimodal distributions.

Given a choice of N, there are two factors to consider when selecting A. The
first is how quickly the quantiles of the non-stationary data stream are expected
to vary. We expect that the optimal A will be smaller for slowly varying quan-
tiles and larger for rapidly varying quantiles. By selecting A, one is essentially
selecting an effective window size of previously observed data to include in the
quantile estimation. This follows from the fact that more recent data is weighted
more heavily than older data. Consider the fraction of the weight included in
the most recent r terms.

AS(lf)\)j =1-(1-)\".

3=0
This is to be contrasted with the weight of the first (oldest) term:
(1—=XN)".

If we define the effective window size as that number of observations for which
99.9% of the weight is contained in the most recent r terms or equivalently that
the remaining 0.1% of the weight is associated with the first (oldest) term, then
we see that the effective window size is:

- log 0.001
~log (1 —))
We include below a tabulation of some commonly used values of A in EWMA

applications and their associated effective window size in number of observa-
tions.
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A Effective Window Size
0.01 687
0.05 135
0.1 66
0.2 31

The ideal effective window size should be selected by judgement and domain
specific knowledge of the data being analysed. For example, when analysing
high frequency forex return data, one may expect that the most recent observa-
tions are the most pertinent and only the previous few minutes of observations
would be relevant to estimating the current, local behaviour of the process. The
second factor to consider is that A cannot be too large. As we demonstrate in
section 6, the MISE of fy(z) determines the quality of both CDF and quantile
estimates under certain conditions. Using the bound on the MISE that we derive
in theorem 8 we see that we can achieve a small integrated variance term by
ensuring:

)\N1/2

is sufficiently small. As a starting point, we have found through extensive empiri-
cal studies that the common choices of A = 0.01, 0.05, 0.1 yield good performance
of the algorithm in a number of scenarios. Indeed, in our simulation studies we
demonstrate that the EWGH algorithm provides good results over this range of
values for .

6. Quality of CDF and quantile estimates

In this section we derive error bounds on the mean squared error of the Gauss-
Hermite CDF estimator and the mean absolute error (MAE) of the quantile
estimator for distributions with support on the positive half-real line, subject
to some additional conditions. In particular, we demonstrate that these error
bounds directly depend on the MISE of the associated probability density func-
tion estimates. This greatly simplifies obtaining the aforementioned error bounds
and allows us to examine the asymptotic behaviour of the Gauss-Hermite based
CDF estimator and the associated quantile estimator. While these results do
not directly apply to the sequential quantile estimation setting (since N and A
are fixed in that case), they are novel and interesting in their own right. These
asymptotic results provide general context and provide comfort that the be-
haviour of estimators constructed from the Hermite series probability density
estimators have sensible asymptotic properties. To obtain asymptotic results we
utilise existing MISE consistency results along with the associated rates for the
standard Gauss-Hermite expansion [12] as well as novel MISE results for the ex-
ponentially weighted Gauss-Hermite expansion which we derive in appendix B.
All the results derived below are easily extended to f(z) with support on a
bounded interval, [a,b] with Fy(z) = N fn(a')da’ (omitted for brevity). Our
approach below is not directly generalisable to (—oo, 00) however and deriving
error bounds in that case is an interesting problem for further study.
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6.1. Quality of the cumulative distribution function estimate

In what follows we assume that f(z) is supported on [0, c0).
For non-negative random variables we obtain the simpler estimator:

Fy(z) = /”fN(x’)dm’
0
N (¥ (L 4 )
— kz::oakk!; NG Lz >0, (17)

The expression (17) differs from (12) since the domain of integration is dif-
ferent. We consider the Mean Squared Error (MSE) criterion and an integrated
weighted MSE criterion (inspired by the Cramer-von Mises criterion) as mea-
sures of the quality of the estimated cumulative distribution function. The in-
tegrated weighted MSE criterion is defined as follows:

w? E

[Ew(e) - F@)] f(a)de

0
/ Tk [En(2) ~ F)] f(a)da, (18)
0

where we have made use of Fubini’s theorem which allows us to interchange the
ordering of the integrals. Note that the PDF f(x) is the weighting factor in (18).

Proposition 1. Suppose f(x) is supported on [0,00) and f(x) € Lo then we
have:

E|Fy(z) — F(x)’2 <z MISE(fy),

for fized x.

Proof. For a non-negative random variable:

Thus:

fn@') = f(2')

X 2 @ 2
FN(x)fF(:c)’ §z[/ da:'].

0
Now, since (fn(z') — f(2'))? is non-negative we have,

/ C(Faa!) — Fa))de < | v - s pa
0

— 0o
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o | [~ |t - )| av|

= & MISE(fn). (19)

Thus:

E|Fy(z) — F(x)

IA

‘ 2

This implies that if we have an upper bound for the MISE of fN(x) we can
bound the MSE of Fy(x). O

Proposition 2. Suppose f(z) is supported on [0,00) and f(x) has a finite mean,
1 < oo then we have: o .
w? < MISE(fn)p.

Proof. Utilizing proposition 1 we have,

o7 < MISE(fy) /Oo o f (2)da
0
= MISE(f)u, (20)
where p is the mean of f(x). |

We now consider the consistency and associated rate of convergence for the
CDF estimator (17) defined from the standard Gauss-Hermite coefficients (10).

Theorem 1. Suppose f(x) is supported on [0,00) and f(x) € L. In addition

1
suppose that NzT(n) — 0 as N(n),n — oo and E|X|3 < oo then we have:

Proof. The result follows from proposition 1 and the fact that MISE( f N) — 0

1
under the conditions 22" — 0 as N(n),n — oo and E|X|3 < 0o [12]. O

n

Theorem 2. Suppose f(x) is supported on [0,00), f(x) € Lo, r > 1 derivatives
1
of f(z) exist and (x — )" f(x) € La. Suppose in addition that NZT(") — 0 as
N(n),n — 0o and E|X|3 < oo then if:
N(n) ~n? @Y we have

’2 20 <n72r/(2r+1)> '

E|Fy(z) — F(x)

Proof. In [12] it is established that provided f(z) € Lg, r > 1 derivatives of

1
fla) exist, (z — L) f(x) € La, NQT(H) — 0 as N(n),n — oo and E|X|? < oo
then if:

N(n) ~n* @+ we have

MISE(fy) = O (n_QT/ <2T+1>) .

Combining this with proposition 1 completes the proof. O
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Note that for 7 = 1 the rate is O(n=2/3). It is important to note that this
rate is suboptimal compared to the smooth kernel CDF estimate rate which is
O(n~1). For smooth probability density functions (r — oo) satisfying the ap-
propriate conditions, the rate for the Gauss-Hermite CDF estimator approaches

O(n™1).
Theorem 3. Suppose f(x) is supported on [0,00) and f(x) has a finite mean,

1
u < oo. In addition suppose that NZT(n) — 0 as N(n),n — oo then we have:
w? = 0.

Proof. The result follows directly from proposition 2 and the fact that
1

MISE(fy) — 0 under the conditions Ngn(") — 0 as N(n),n — oo and E|X|3 <
o0 [12] (for positive random variables, we have E(X) < oo implying E|X|? < oo
by the Lyapunov inequality). O

Theorem 4. Suppose f(x) is supported on [0,00), f(x) has a finite mean,
p < oo, f(z) € Ly, 7 > 1 derivatives of f(z) ezist and (x — )" f(z) € Lo.

Suppose in addition that ki (n) — 0 as N(n),n — oo then if:

N(n) ~n? @Y we have

02— O( 72r/(2r+1)>.

Proof. This follows directly from proposition 2 and the MISE result referenced
in the proof of theorem 2. O

Remark. An important class of distributions for which we can gain further
insight into the theoretical performance of the Gauss-Hermite CDF estimator
(and quantile estimator in principle) is power-law distributions. These are heavy-
tailed distributions and are highly relevant in a number of fields including finance
[6]. We utilise the following definition of the power law distribution:

R P I

min min

where @ > 1 is a requirement for normalisability. In addition, we assume
Tpin > 0. Thus f(z) is supported on [0,00), f(z) € Lo and all derivatives
of f(x) exist for x > x5, If we require in addition that a > 2, then we have
a finite mean E(X) < oo. The condition in the theorems proven above that
(z— L) f(x) € Ly can be related to a as follows:

Denote the operator % as D. Now:

-1 . X
(x — D) f(z) = (aﬁ (2" +2" 'D+a" ?Dx+2"*D*+---+ D")z™
Tmin

= 0(a~(>™),
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since  and D are non-commutative operators. Thus [(z — D)"f(z)]” =
O(z=2(@=")). This implies that for [(z — D)" f(z)]? to be integrable, we must

have —2(av — r) < —1. Which implies r < a — % and thus r = [a — 1] — L.

1
Thus if we also have N2T(n) — 0 as N(n),n — oo, theorem 1 and theorem 2
imply that the Gauss-Hermite CDF estimator is consistent for power-law dis-

FN(x) — F(:c)‘2 —z0 (n—(ﬂa—%1—2)/(2fa—%1—1)),
Similarly theorem 3 and theorem 4 imply that w? — 0 and the rate is w? =
0 (n—(2[0¢—%—\—2)/(2[a—%"\—1)). Thus for power-law distributions that have a fi-

tributions and the rate is F

nite mean, the rates are O (n_2/ 3) or better. For power-law distributions that
have a finite variance, @ > 3 and thus the rates are O (n~%/°) or better. As
a — oo (along with the number of finite moments of the power-law distribu-
tion), the Gauss-Hermite rates approach O (n’l).

To summarise, we have derived the asymptotic results above in the setting
where N depends on n, i.e. N = N(n). These results give comfort that the
Gauss-Hermite based CDF estimator has sensible asymptotic behaviour. Our
proposed online estimators have N fixed however. Thus results such as theo-
rem 1 do not apply directly. Instead, as n — oo, these online estimators have
MSE bounds determined by the integrated squared bias of the truncated Gauss-
Hermite PDF estimators on which the plug-in CDF estimators are based. While
this bias persists for fixed N even as n — oo, these estimators are nonetheless
very useful in practice as we have demonstrated in our simulation and real data
results. In addition, we can still gain insight into the behaviour of these estima-
tors at fixed N. We now consider the behaviour of the EWGH CDF estimator
defined from utilising the exponentially weighted Gauss-Hermite coefficients (16)
in the expression (17) for the CDF where A is fixed, N is fixed and sufficiently
large and n — co. We begin with the case of i.i.d. data drawn from f(x).

Theorem 5. Suppose f(z) is supported on [0,00), f(x) has a finite mean,
p < oo, f(x) € Ly, r > 1 deriwatives of f(x) exist and (x — %)’"f(x) € Lo.
Then for N fixed and sufficiently large and n — oo.

=z {O(NW) {A] - O(N’“)] ,

E|Fy () —F(:z:)r =

and
— A .
w2 =O(NY?) | ==~ | + O(NT).
2—A
Proof. The result follows from proposition 1 and 2 respectively along with the-
orem 8. 0O

We now treat the case of independent, non-identically distributed data. In
particular, we consider the case of a change point where the distribution changes
from f1(z) to fa(x). We consider this a fundamental example of non-identically
distributed data.
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Theorem 6. Suppose s + 1 observations are drawn from a probability dis-
tribution f1 € Lo followed by a further t observations from a second distri-
bution fo € Lo i.e. we assume an independent sequence of s + 1 observa-
tions Xo, ..., Xs ~ f1(z) followed by an independent sequence of t observations,
Xst1y- s Xeqs ~ fa(x). If r > 1 derivatives of fa(x) exist and (x — %)’"fg(a:) €

Lo and both distributions have a finite mean, then:
. 2
E|by(@) - Fa(a)|

=z [O(Nl/z) {4(1 — N4 [1—(1—A)2<8+f>] +(1 - A)2<S+t>] +O(N‘T)}

2—-A

and

E:O(NI/Q) |:4(1)\)2t+2i)\ [1(IA)2(5+t)}+(1>\)2(s+t):| +O(N7T),

where Fy(x) is the CDF of fo(x) and w? = I E [FN(:E) - Fg(z)]2 fo(x)dx.

Proof. The result follows from proposition 1 and 2 respectively along with the-
orem 9. O

Note that asymptotically we can choose A(n) — 0,n — oo such that
2

E‘FN(ZL‘) - F(x)’ — 0 and w? — 0 for both the ii.d. case and the non-

identically distributed, independent (change point) case. We do not present the
proof here for the sake of brevity.

6.2. Quality of quantile estimate

Theorem 7. Suppose f(x) is supported on [0,00). In addition we suppose that
the true quantile x, lies between [x™" x| and that f(z) > d,d > 0 for

. p ? p .
T € [xg””ﬁvgmm], Finally we assume that we know x"", x'**, d allowing us to
refine the Gauss-Hermite quantile estimate as follows:
Fﬁl(p) if F]#A(p) ezists in [x;m", xzwz]
Tp= and fn(v)>d, x € x)"", z] (21)

undefined otherwise.

For well defined &,:

Bl — 2] < Y20\ [MISE(fx ().

Proof. In the proof of proposition 1 we established:

oo

~ 2 ~
Pr(e) -~ PG| <a / (') — f(a'))2da.

— 00
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Thus:
Fr(ay) ~ F(ay)| < w—\/ | tv@) - spar, e
Frla,) —| < \/x—\/ [t - rapar. (@)
where z,, = ¢(p). Provided &, = AA_,l(p) exists, this implies:

A

F(ey) — Fnldy)| < wc—\/ /°°<fN<x'>ff<xf>>2dx' (24)

/ Y bz (25)

A\
5
bS]

«
—
8
<
Z
H\
\
g

g\
S

U

H\

v (@)

|2 — & (26)

A\
5
bS]

«
—
8
<
Z

H\
g

R\
S

U

H\

where ¢ lies in the interval (z,,&,) if &, > z, or (Z,,x)p) if £, < x,. We have
applied the mean value theorem and thus fx(¢) is equal to the mean value of
fn in the interval ie. fy(¢) = == [77 fy(z)da.

P

Tp—Tp

Thus, provided fx () # 0, we have:

2y — iy < YT\ SISE(f), (27)

fn (@)

To get a more concrete result we assume we utilize our refined quantile es-
timator. This estimator is quite natural as it restricts the quantile estimates
to those formed from bona-fide probability densities i.e. those fN(x) that are
non-negative. Moreover, requiring fN(;U) > 0 ensures that there is a unique
solution for &, = gn(p). Finally, it allows us to reject quantile estimates that
are out of bounds. For the estimates that are not undefined we have, via the
Cauchy-Schwarz inequality:

B, — iyl < 7\ /MISB(f ). (28)
O

This result again demonstrates the direct link to the MISE of the probability
density function and allows one to, in principle, establish asymptotic properties
under certain conditions (similar to above results for the CDF). As a note to
the practitioner, this refined quantile estimator can be viewed as one where
we reject estimates that are out of bounds and those that are not constructed
from bona-fide probability density estimates. We expect this to be an infrequent
scenario unless N is too small and the probability density estimator is heavily
biased or too few observations have been incorporated into the estimate. We
base this expectation on extensive empirical analysis.
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7. Simulation results

In this section we evaluate the behaviour of the Gauss-Hermite (GH) online
quantile estimation algorithm presented in section 4 and the Exponentially
Weighted Gauss Hermite (EWGH) algorithm presented in section 5 on simulated
data. We also compare the performance of these algorithms to a leading exist-
ing algorithm for online quantile estimation, namely Exponentially Weighted
Stochastic Approximation (EWSA), which has been shown to be competitive
with a number of other algorithms for online quantile estimation [4]. The EWSA
algorithm is an exponentially weighted version of the stochastic approximation
algorithm of [28]. EWSA has two parameters, one that controls the size of
the batches of data used to update the quantile estimates (denoted M) and a
weighting factor w that controls the weighting of updates to the density and
quantile estimates in the stochastic approximation scheme (see [4] for a detailed
description of the algorithm).

In our investigations both i.i.d and non-identically distributed simulated data
are considered. In particular, i.i.d data from a chi-squared distribution with five
degrees of freedom, x5, and an exponential distribution with mean and variance
equal to one are considered. In the i.i.d. case, the data have static quantiles.

In the non-identically distributed setting we consider simulated data drawn
from distributions with non-stationary parameters. In particular we consider
simulated data drawn from a normal distribution with variance one and a mean
of .0065 at update j to simulate data with a linear trend in the mean. We then
consider an exponential distribution with mean and variance equal to 1+0.0067
at update j to simulate data with a non-stationary mean and standard deviation.
This is an interesting test in that the dispersion of the data increases as the
number of observations grows. These non-identically distributed simulated data
have dynamic quantiles that change over time. Both of these models were studied
in the simulations of [4].

The choice of these test distributions can be motivated by the diversity of
their properties and the frequent appearance of these distributions in statistical
applications. For each distribution, three quantiles are estimated, namely the 0.5
(median), 0.9 and 0.99 quantiles following [4]. Note that in the case of the Gauss-
Hermite based algorithms arbitrary quantiles can be obtained at any point in
time whereas algorithms such as the EWSA algorithm require the quantiles to
be specified upfront. Online, arbitrary quantiles are not available for algorithms
such as EWSA. The maximum number of observations, m = 4000 per run in the
i.i.d. case and m = 1000 in the non-identically distributed case (corresponding
to the maximum number of updates in [4]). There were 1000 runs in total for
each distribution. We utilise the empirical root mean squared error (RMSE)
to evaluate the performance of the online quantile estimation algorithms in
estimating the quantile ¢ after j observations (where we denote the quantile
estimate §;). The RMSE at updating step j is defined by:

=

RMSE(q;) = [E(q; — ¢;)%]* (29)
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and is estimated by averaging the squared difference between ¢; and §; over
the 1000 simulation runs and then taking the square root. As a measure of the
error in the RMSE estimate at updating step j, we construct a 95% percentile
bootstrap confidence interval:

(RMSE?@,()%); RMSE?O,Q?S))?

where RMSE() g5, and RMSE(g g75) denote the 0.025 and 0.975 quantiles of the
bootstrap estimates of the RMSE respectively (1000 bootstrap estimates were
utilised in constructing the intervals for each j).

In [4] a range of values for the EWSA algorithm parameters M and w were
investigated for performance. It was demonstrated that w = 0.05 gives the best
trade-off between bias and long-run variability. In addition, the value of M = 15
was shown to be superior in long-run performance to other values of M tested.
Since we evaluate the same i.i.d. and non-independently distributed data stream
models as [11] in our simulations (except for the addition of the chi-squared i.i.d.
model which is qualitatively similar), we regard these parameters as principled
choices for good performance of the EWSA algorithm in these settings.

In our simulation studies for the GH and EWGH algorithms we demonstrate
the effectiveness of the algorithms over a range of values for N and A and identify
particularly good choices. Concretely for the GH algorithm we consider N =
4,6,8,10,12 at m = 100,400,4000 observations to evaluate the bias-variance
trade-off at different numbers of observations. We also present RMSE curves
where we compare the results to the EWSA algorithm. For the EWGH algorithm
we consider A = 0.01,0.05,0.1 (N = 6) at m = 100,400, 1000 observations and
present RMSE curves comparing to the GH (N = 6) and EWSA algorithms.

Finally, in order to practically apply the Gauss-Hermite based algorithms
more effectively, an online standardisation procedure was applied to the data as
outlined in appendix A. This is not a pre-processing step (this would defeat the
purpose of an online algorithm) but rather part of the online algorithm. Also,
this procedure may not always be necessary, depending on the application. It is
also noteworthy that we utilise the alternate CDF estimator (13) in estimating
quantiles for the GH and EWGH algorithms as we have found this estimator to
yield better results empirically.

7.1. IID data

For the i.i.d. simulated data, we evaluate the performance of the GH algorithm
for various choices of N and we use the EWGH algorithm (A = 0.05) and
the EWSA algorithm (M = 15, w = 0.05) for comparison. The GH algorithm
performs well for most choices of NN, illustrating that the effectiveness of the
algorithm is not critically dependent on this choice. That said, the value of
N = 6 appears to be the best choice in most cases when viewed from a RMSE
perspective. In addition, N = 6 is a good choice from a computational speed and
efficiency viewpoint since there are fewer coefficients to store and update than for
higher choices of N. When compared to the EWSA algorithm, the GH algorithm
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performs better in most cases. The EWGH algorithm (with A = 0.05) has a
larger error than the GH algorithm in all cases. This is not entirely surprising
however. The EWGH algorithm trades extra variance in the estimates of the
coefficients for the ability to track dynamic quantiles. The individual tests are
discussed below.

7.1.1. The chi-squared distribution

The chi-squared distribution appears frequently in statistics and is a useful
test distribution in that it has support on the half real line [0,00) and not
the full real line. This distribution is used to simulate skewed data. This is
a challenging test case for the Gauss-Hermite based algorithms since the chi-
squared distribution is a considerable departure from the normal distribution
which undergirds the Gauss-Hermite expansion. We consider the chi-squared
distribution with five degrees of freedom in particular. See figure 1 for plots of the
GH RMSE for N =4,6,8,10, 12 at m = 100, 400, 4000 observations. The results
for the EWGH and EWSA algorithms are also included for comparison. These
figures illustrate that good results are achieved for all values of N considered for
the GH algorithm. N = 6 appears to provide the best results. It is interesting to
note that upon first inspection, it is counter-intuitive that the RMSE increases
at higher values of IV even when the number of observations is large. We suspect
that this is due to the additional bias introduced by the online standardisation
procedure as well as by using the CDF estimator (13) instead of (12). See figure 3
for a comparison of the GH algorithm (N = 6) and the EWSA algorithm. Note
that the EWSA results were excluded from figure 1(i) and figure 3(c) since they
were disproportionately large and would obscure the GH results when presented
on a common scale. This may indicate instability in the EWSA algorithm for
estimating tail quantiles such as p = 0.99.

7.1.2. The exponential distribution

The exponential distribution is another commonly occurring distribution. The
distribution also has support on the half real line [0, c0) and is used to simulate
skewed data. The exponential distribution is an even more challenging test case
for the Gauss-Hermite based algorithms than the chi-squared distribution. This
is due to the fact that the exponential distribution’s mode occurs at the start of
its domain which is to be contrasted with the mode of the normal distribution
which is equal to its median. We consider the exponential distribution with
mean and variance equal to one. See figure 2 for plots of the GH RMSE for
N =4,6,8,10,12 at m = 100, 400, 4000 observations. The results for the EWGH
and EWSA algorithms are also included for comparison. These figures again
illustrate that good results are achieved for all values of N considered and
that the value of N = 6 appears to provide the best results. See figure 4 for
a comparison of the GH algorithm (N = 6) and the EWSA algorithm. Note
that the EWSA results were excluded from figure 2(i) and figure 4(c) since they
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Fic 1. Chi-Squared Distribution: GH RMSE for N = 4,6,8,10,12 at m = 100,400,4000
observations for the p = 0.5,0.9,0.99 quantiles (including 95% percentile bootstrap confidence
intervals). The exact quantiles are 4.3515, 9.2364 and 15.0863 for comparison.

were again disproportionately large and would obscure the GH results when
presented on a common scale.

7.2. Non-identically distributed data

For the non-identically distributed simulated data, we evaluate the performance
of the EWGH algorithm for various choices of A and we use the GH algorithm
(N = 6) and the EWSA algorithm (M = 15, w = 0.05) for comparison. Moti-
vated by the analysis of the GH algorithm in the i.i.d. setting we set N = 6 for
all tests of the EWGH algorithm. The EWGH algorithm compares favourably
with the EWSA algorithm for all values of ), illustrating that the effectiveness
of the algorithm is not critically dependent on this choice in the models we
studied. The GH and EWGH algorithms outperform the EWSA algorithm in
almost all cases. The dynamic quantile tracking ability of the EWGH algorithm
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Fic 2. Ezponential Distribution: GH RMSE for N = 4,6,8,10,12 at m = 100,400,4000
observations for the p = 0.5,0.9,0.99 quantiles (including 95% percentile bootstrap confidence
intervals). The exact quantiles are 0.6931, 2.8026 and 4.6052 for comparison.
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for the 0.5, 0.9 and 0.99 quantiles (including 95% percentile bootstrap confidence intervals).
The exact quantiles are 4.3515, 9.236/ and 15.0863 respectively. The Gauss-Hermite algo-
rithm utilises N = 6.
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Fic 5. Normal Distribution with Drift: EWGH RMSE for X\
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0.01,0.05,0.1 at m =

100, 400, 1000 observations for the p = 0.5,0.9,0.99 quantiles (including 95% percentile boot-
strap confidence intervals). The GH and EWGH algorithms utilise N = 6.

is apparent in that it achieves better results than the GH algorithm when using
an appropriate value of A. The individual tests are discussed below.
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Fic 7. RMSE curves associated with the normal distribution with mean = 0.006j and standard
deviation = 1 for the 0.5, 0.9 and 0.99 quantiles. The final exact quantiles at j = m = 1000
are 6, 7.2816 and 8.3263 respectively. The GH and EWGH algorithms utilise N = 6. The
EWGH algorithm wutilises A = 0.01.



Sequential quantiles via Hermite series density estimation 597

RMSE Curve p=05. RMSE Curve p=09 RMSE Curve p=099

AMSE
RMSE

8
6
- 4
[ 2
100 200 300 400 500 600 700 800 900 1000 0 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of Updates Number of Updates Number of Updates

(a) p=0.5 (b) p=0.9 (c) p=0.99

Fic 8. RMSE curves associated with the exponential distribution with mean and standard
deviation = 1 + 0.0065 for the 0.5, 0.9 and 0.99 quantiles. The final exact quantiles at j =
m = 1000 are 4.8562, 16.1319 and 32.2638 respectively. The GH and EWGH algorithms
utilise N = 6. The EWGH algorithm utilises A = 0.01.

7.2.1. Normal distribution with drift

The normal distribution is ubiquitous. We consider simulated data drawn from
a normal distribution with variance one and a mean of .0065 at update j to
simulate data with a linear trend in the mean. See figure 5 for plots of the
EWGH RMSE for A = 0.01,0.05,0.1 at m = 100,400, 1000 observations. The
results for the GH and EWSA algorithms are also included for comparison.
These figures illustrate that competitive results are achieved for all values of A
considered for the EWGH algorithm. The value of A = 0.01 appears to provide
the best results. See figure 7 for the RMSE curve for the EWGH algorithm with
N =6, A = 0.01 compared to the GH and EWGH algorithms.

7.2.2. Exponential distribution with drift

In this section we consider an exponential distribution with mean and variance
equal to 1+ 0.0065 at update j to simulate data with a non-stationary mean
and standard deviation. The dispersion of the data increases as the number
of observations grows. See figure 6 for plots of the EWGH RMSE for A =
0.01,0.05,0.1 at m = 100,400, 1000 observations. The results for the GH and
EWSA algorithms are also included for comparison. These figures illustrate
that competitive results are again achieved for all values of A considered for the
EWGH algorithm. The value of A\ = 0.01 appears to provide the best results.
See figure 8 for the RMSE curve for the EWGH algorithm with N =6, A = 0.01
compared to the GH and EWGH algorithms.

8. Real data results

In this section we test the GH and EWGH algorithms on a real data set to
evaluate their effectiveness in a non-idealised setting. In particular we consider
one month (January 2013) of high frequency forex return data, namely EURUSD
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Fia 9. An extract of the forex returns and price series for 2013-01-28 to 2013-01-31. Note-
worthy features include the prevalence of return outliers and distinctive changes in return
variance. Also apparent are periods of pronounced, but temporary trending behaviour corre-
sponding to changes in the mean of the return distribution.

spot mid-price returns intervaled at 15 seconds. We begin with the mid-price
series:

PtysPtiays - - Primys  (it1) — by & 15 seconds,
which we transform online to obtain arithmetic returns:
T(1):T(2)s---T(m=1)s  T(G) = Ptj11y) — Pty

The summary statistics of the arithmetic returns (in pips, 1 pip = 0.0001)
are as follows (data set size = 71797):

Statistic Value (Pips)
Mean 1.0449e-05
Standard Deviation 1.0852
Skewness -0.0222
Kurtosis 16.5736

Accurately tracking the quantiles of this return series is a non-trivial check
of our methods - the distribution of these returns is non-stationary and the fre-
quency of outliers is high. The frequency of outliers is related to the fact that
the distribution of the returns is heavy-tailed as evidenced by the high kurtosis.
This will probe the dynamic quantile estimation performance in the setting of
general non-stationarity as well as evaluating the robustness of the algorithms.
Applications of online quantile estimation for financial price series include iden-
tifying high frequency trading opportunities, real-time risk estimation (such as
the calculation of real time Value at Risk, VaR) and outlier detection.
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Our test is as follows: we count the number of times the (i + 1)th observation
is smaller than the online estimates of the 0.5 (median), 0.9 and 0.99 quantiles
obtained up to observation i. These counts are then normalised by the total
number of observations. Ideally, the out-of-sample observation should be smaller
than the median quantile with probability 0.5. Similarly, the out-of-sample ob-
servation should be smaller than the 0.9 quantile with probability 0.9 and it
should be smaller than the 0.99 quantile with probability 0.99. We compare the
observed frequencies to these probabilities and report 95% percentile bootstrap
confidence intervals for the observed frequencies. The bootstrap confidence in-
tervals are created by calculating the observed frequencies for each day in the
period in question (January 2013), resampling the resultant daily frequencies
with replacement (1000 resamples) and providing the 0.025 and 0.975 quantiles
of the resampled distribution. We also include the results for the EWSA algo-
rithm for comparison. The parameters used for the algorithms are as follows:
N = 6 for the GH and EWGH algorithms. This choice of N was motivated
by the simulation results and computational efficiency considerations. For the
EWGH algorithm, A = 0.05. This choice was motivated by an analysis of an
initial sample (not contained within the January 2013 data set) and by the fact
that we expect forex return quantiles to vary rapidly around news events and
thus a choice of A bigger than 0.01 (the best choice in the simulation studies)
appeared appropriate. The parameters for the EWSA algorithm are the same
as in section 7.

Algorithm | p=0.5 p=0.9 p=0.99
GH 0.469 [0.463,0.475] | 0.860 [0.849,0.873] | 0.974 [0.971,0.978]
EWGH 0.500 [0.499,0.502] | 0.894 [0.892,0.895] | 0.992 [0.991,0.992
EWSA 0.501 [0.500,0.502] | 0.897 [0.895,0.899] | 0.976 [0.973,0.979

The EWGH algorithm performs well overall and is the only algorithm that
does not underestimate the p=0.99 quantile. This provides evidence that not
only does the EWGH algorithm perform well in a non-stationary environment,
but also that it handles heavy-tailed distributions well. Note that we have per-
formed the same test on other months to check the consistency of the results
and the same behaviour emerges (omitted for brevity). We re-iterate that for
the GH and EWGH algorithms, we can obtain online estimates of any quantile
of interest.

9. Conclusion

In this article we have defined a cumulative distribution function estimator based
on Hermite series estimators which allows quantiles to be obtained numerically.
For probability densities with support on the positive half-real line, we have
proven asymptotic MSE consistency (pointwise consistency) as well as asymp-
totic consistency based on a Cramer-von Mises like criterion for this estimator.
We have also provided the associated rates. In addition, we have demonstrated
that quantile estimates obtained from this estimator directly depend on the
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MISE of the Hermite series density estimator under certain conditions. While
these results are novel and interesting in their own right, our particular appli-
cation of interest is that of sequential quantile estimation. In this setting, the
Hermite series based estimators are biased in general. They are still very useful
in practice however. In particular, we have introduced algorithms - based on
the Gauss-Hermite expansion - for online quantile estimation in the settings of
static quantile estimation and dynamic quantile estimation. These algorithms
have O(1) time complexity for updating the distribution and quantile function
estimates.

In the static quantile estimation setting we have exploited the fact that Gauss-
Hermite coefficients can be updated in a sequential manner. To treat dynamic
quantile estimation, we have introduced a novel expansion with an exponentially
weighted estimator for the Gauss-Hermite coefficients which we have termed
the Exponentially Weighted Gauss-Hermite (EWGH) expansion. This expan-
sion should allow the local behaviour of a non-stationary stream of data to be
tracked. To make our analysis concrete, we have considered i.i.d data streams
and independent, non-identically distributed data streams in our simulation
studies and our theoretical analysis. The simulation studies revealed the Gauss-
Hermite based algorithms to be competitive with a leading existing algorithm
for online quantile estimation. In addition, a test on real forex data confirmed
the effectiveness of the EWGH algorithm in a more general and realistic set-
ting and provided evidence that our techniques are effective for heavy-tailed
distributions.

The particular usefulness of our algorithms is that they allow arbitrary quan-
tiles to be estimated in an online manner. They do not require a particular
set of quantiles to be specified upfront, which is a limitation of existing algo-
rithms. In obtaining these novel algorithms, we have thus provided a solution
to the problem of online distribution function and online quantile function esti-
mation for both stationary and non-stationary data streams. Online estimates
of these functions are in fact useful in a broader context in that any func-
tion of these quantities can be calculated in an online manner. These online
estimates could also be used in online machine learning applications for exam-
ple.

Appendix A: Standardising the observations

It is reasonable to assume that in practice, the quality of the fit yielded by the
truncated Gauss-Hermite expansion should be better if applied to standardised
random variables (with mean equal to zero and standard deviation equal to
one). For a random variable 2 with mean u and standard deviation o we have
the standardised random variable:
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with probability density f(Z) = of(cZ + p). The associated truncated Gauss-
Hermite expansion is:

N
F@) = axHp(3)Z (%),
k=0

where
o = a /_ 2(3) (&) Hy(7)di.

Ideally, we would utilise:

. 1 & Ti— [ T — W
ak(#,(f):akﬁ;z( pu JH( o )

to estimate the coefficients. In practice however, we do not know the true values
of © and o and thus we must use estimates of these values, i and &. In general,
the effect of using these estimates is to bias the estimate of a;. This can be seen
by considering the Taylor expansion of ag(fi,&) which implies F(ag(f,6)) #
E(an(p,0)).

Despite this bias, standardising using the estimated mean and standard de-
viation improves the quality of the fit in many cases. In the sections below
we provide online algorithms to estimate the mean and standard deviation in
both the static and dynamic setting. These estimates can then be plugged into
the standard Gauss-Hermite coefficients and the exponentially weighted Gauss-
Hermite coefficients respectively.

A.1. Static quantile estimation

The usual estimators of the mean and standard deviation can be calculated in
an online way. The mean (fix) can be updated with each new observation as:

[:Ll =T,
N 1 .
e =7 (k= Dfpig—r +zr), k=2

The standard deviation (6%) can also be estimated in an online manner. To
avoid numerical precision problems an algorithm such as that originating from
Welford [30] can be applied.

Ml =T,
S1 =0,
— M. _
My, = My + (@ = My—1)

k 9
S = Sk—1+ (2 — My_1) (z — My),

[ Sk
/\,: >2.
Ok 1 k>
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A.2. Dynamic quantile estimation

For the purposes of obtaining a local estimate of the mean and standard devia-
tion we can utilise EWMA estimators:

,&11 = T,
fue = (1 — N fik—1 + Mg, k>2,
Vi=1,

Vi= (1= MViot + Ao — an)?, k>2,

1 =\ V.
0<A<1.

Appendix B: MISE of the exponentially weighted Gauss-Hermite
expansion

B.1. MISE of the exponentially weighted Gauss-Hermite erpansion
for IID data

Proposition 3. Let the true probability density function f(x) € Lo and
E|X\§ < 00. The MSE of the coefficients (16) have the following upper bound
for a sample of n + 1 observations in the i.i.d. case:

A

e -1/2
AﬁE@wg[§_K[L‘G—Afﬂ+%1—ﬂ%]1_ﬁij__

- kTRl

where ¢ 1s a constant.

Proof. The truncated EWGH expansion of f(z) is given by:

N
fr(@) =) arHy(2)Z (@),
k=0

where the coefficient estimates are given by (16). In what follows we assume an
i.i.d sequence of n + 1 observations has been drawn from f(x) i.e. x; ~ f(x).
The estimator (16) can be equivalently written as:

ax = A z_:(l — N [ Z (xp—j) Hi (xn—)] + (1 = X)" [an Z (x0) Hi.(x0)] -
=0

The expected value of this estimator, F (4j) = a) and thus the estimator is
unbiased.
The variance, Var(ay) = E [(ar — ax)?] of the estimator is:

n—1

Var(ag) = A (1= N Var ([oxZ(xn—;) Hy(%n—;)])
J=0
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+ (1 =N Var ([ar Z(x0) Hr(%0)])
A

- {ﬁ [1-(-N"]+0- A)ﬂ % (k), (30)

where 0% (k) = Var [, Z(z)Hy,(z)] = E [ﬁ 1Z(2)]? [Hk(x)ﬂ — a2. Note
that we have exploited the independence of the observations x;.

Now, we can obtain an upper bound on 0% (k) using the properties of Hermite
polynomials (following from (4) and (5), see [12]):

me(k +1)71/2
A < T

This yields the following bound on the MSE of a;, (since ay is unbiased, the
bound on the MSE of d; is equal to the bound on the variance):

MSE(ax) = E [(ar — ax)?]
T —1/2
< [P n-a-nr) o OET

O

Theorem 8. Let the true probability density function f(x) € Ly and E|X|3 <

co. If r > 1 derivatives of f(z) exist and (x — L) f(z) € Ly then the MISE

for the EWGH expansion in the i.i.d. case behaves as follows for N sufficiently
large and n — oo:

MISE(fy) = O(N'/?) [%} +O(N™).

Proof. If v > 1 derivatives of f(z) exist and (z — -L)"f(z) € Ly then

> N4 Qk_—\/;k!ai = O(N™") (see [29],[12]). Combining this fact and the bound

on MSE(ay) (proposition 3) with the expression for the MISE (12) we obtain
the following:

. N gk—1p) > okl
MISE (fy) = E [(ag — ag)?] + a;
v k=0 v [( ' k)} k:ZN:H VT ’
A N
< {2_/\ [1—(1—=X*"]+(1- /\)2”] cZ(k +1)"1/2
k=0
+ O(N7T)

For N sufficiently large and n — oo we have:

MISE (fy) = O(N'/?) [%] +O(N™). O
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B.2. MISE of the exponentially weighted Gauss-Hermite erpansion
for non-identically distributed data

In this section we extend the results derived for i.i.d data to non-identically
distributed, independent data. We consider the case where we observe s + 1
observations from a probability distribution f; € Lo followed by a further ¢
observations from a second distribution fy € Lo i.e. we assume an independent
sequence of s + 1 observations Xg,...,xs ~ fi(z) followed by an independent
sequence of ¢ observations, Xsy1,...,Xi+s ~ fo(x). We consider this a funda-
mental example of non-identically distributed data. We evaluate and bound the
MISE of fy(x) compared to fy(z) at observation t + s. We denote the true

Gauss-Hermite coefficients of fi(x) as a](cl) and the true Gauss-Hermite coeffi-

cients of fo(x) as aff).

Proposition 4. The MSE of the coefficients (16) compared to a§€2) have the

following upper bound after s+1 independent observations from f1 € Lo followed
2

by t independent observations from fo € Lo provided E|X|3 < oo for both

distributions:

{E (a - aff))Q]
o oVt D72 [4(1 BN

= ok—1J| 1— (1 _ )\)2(5+t)} + (1 _ )\)2(s+t):| .

2—-A

Proof. The expected value of the exponentially weighted estimator for the
Gauss-Hermite coefficients is:

s+t—1
E(a) = N (1=NE(onZ(Xep1—5) H(Xs41-5)])
§=0
+ (1= N)"E ((anZ (x0) Hi(x0)])
= ! S (1= +al? 2(1 N+ (1= A Hal)
j=t 7=0
= o+ (1= N'ay” - ). (32)

Thus the squared bias of the estimator compared to the true Gauss-Hermite

. 2) .
coefficient afc ) is:

2
[E (&k) - a,(f)} = (1 _ /\)Zt[al(cl) _ a,(cz)]Q.

Similarly, the variance Var(ay) = E [(ax — E (ax))?] of the estimator is:

s+t—1 t
Var(ar) = N[0 (B)? 7 (1-N2+2120%) (k)2

-1
Jj=t Jj=

(1=N)%
0
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F(1-N)2H [0 P (k)2

_ [ag)(k)]Q %(1 . )\)2t + [1 . %] (1— )\)2(s+t)]
) e SV (38)
where [agg)(k)]2 = Var|opZ(z)Hi(x)],z ~ fi(z) and [O'g?)(k)]z =
Var (o, Z(x)H (2)] , @ ~ fa(x).
Thus the mean squared error of a; compared to a,(f) is:
[E (ak - af))z] - [E (ax) — a§f>]2 + Var(ay,)
_ (1 _ )\)Qt[ag) _ 01(62)]2
+ o (k) [%(1 A+ {1 - %] (1- )\)2(3”)}
+ [ag?(k)}z% [1—(1-N%]. (34)

The MSE therefore depends on the difference between the true Gauss-Hermite
coefficients of fi(x) and f3(z) and the number of observations since the switch
between the distributions (along with the value of A). We can bound the MSE
above using the properties of Hermite polynomials:

{E (ak - a,(f))j covmk+ DT

- 2k—1k!

X [4(1 — N2 % [1 —(1— /\)2<S+t>] +(1— A)ﬂﬁﬂ} .
(35)
O

Theorem 9. Given s + 1 independent observations from f1 € Lo followed by t
independent observations from fo € Lo, if v > 1 derivatives of fo(x) exist and
(x— L) fr(x) € Ly and E|X|3 < oo for both distributions then the MISE for
the EWGH expansion behaves as follows for N sufficiently large:

MISE(fy) = O(N'/?) [4<1 NP A ] A)%M]

2—A
+O(NT").
Proof. If r derivatives of f(z) exist and (z — “L)"f(z) € Ly then
> e N1 Lﬁai = O(N™7) (see [29],[12]). Combining this fact with the bound

on the MSE in proposition 4 and the expression for the MISE (12), we obtain:
MISE (fN) _ O(N1/2) |:4(1 o )\)275 + ﬁ [1 _ (1 _ )\)2(S+t)j| + (1 _ )\)2(8+t):|

+O(N™™). O
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