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Abstract: Minimum disparity estimation in controlled branching proce-
sses is dealt with by assuming that the offspring law belongs to a general
parametric family. Under some regularity conditions it is proved that the
minimum disparity estimators proposed -based on the nonparametric max-
imum likelihood estimator of the offspring law when the entire family tree
is observed- are consistent and asymptotic normally distributed. Moreover,
the robustness of the estimators proposed is discussed. Through a simulated
example, focusing on the minimum Hellinger and negative exponential dis-
parity estimators, it is shown that both are robust against outliers, and the
minimum negative exponential estimator is also robust against inliers.
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1. Introduction

Branching processes are useful models for the description of the dynamics of
systems whose elements produce new ones following probability laws. Its theory
has been developed from simple models to increasing realism. Added to the the-
oretical interest in these processes there is therefore a major practical dimension
due to their potential applications in such diverse fields as biology, epidemiology,
genetics, medicine, nuclear physics, demography, actuarial mathematics, algo-
rithm and data structures, see, for example, the monographs [9, 23, 25, 29, 34].

In particular, controlled branching processes (CBPs) are discrete time sto-
chastic processes very appropriate to describe the growth of populations in
which the number of participating individuals in the reproduction process is
determined in each generation by a control mechanism. Besides, as is common
in the branching framework, every individual reproduces independently of the
others following the same probability law, which is called the offspring distri-
bution. The novelty of adding to the branching notion a mechanism that fixes
the number of progenitors generation by generation allows to model a great va-
riety of random migratory movements (immigration, emigration, or even both
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(Carmen Minuesa); Ext.: 86820 (Inés del Puerto).

295

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/17-EJS1232
mailto:mvelasco@unex.es
mailto:cminuesaa@unex.es
mailto:idelpuerto@unex.es


296 M. González et al.

depending on the generation sizes). Applications can be found, for example, in
an ecological context. Consider an invasive animal species that is widely recog-
nized as a threat to native ecosystems, but there is disagreement about plans
to eradicate it, i.e., while the presence of the species is appreciated by a part of
the society, if its numbers are left uncontrolled it is known to be very harmful to
native ecosystems. In such a case, it is better to control the population to keep
it between admissible limits (a deterministic control function can be appropri-
ated) even though this might mean periods when animals have to be culled.
Two examples of discussions about this topic are [13, 44]. Another practical sit-
uation that can be modelled by this kind of process is the evolution of an animal
population that is threatened by the existence of predators. In each generation,
the survival of each animal (and therefore the possibility of giving new births)
will be strongly affected by this factor, making the introduction of a random
mechanism necessary to model the evolution of this kind of population. In such
a situation a binomial control process would be reasonable or its approximation
by Poisson distributions as the survival probability of an animal is very low and
the reproductive capacity is high (see Section 2 for details).

Several well-known branching processes can be included in this class as par-
ticular cases by considering specific control mechanisms, for instance, the own
Bienaymé–Galton–Watson (BGW) process, the branching processes with immi-
gration (see [40] and references therein), with random migration (see [46]), with
immigration at state zero (see [7]) or with bounded emigration (see [35]). Other
interesting particular cases are branching processes with adaptive control (see
[4]) or with continuous state space (see [36]).

Since the appearance of the pioneering publication by [47], the probability
theory of the CBPs has been widely studied, showing increased diversity of
behaviours far from those of the classical branching models, and, then, becoming
these processes an interesting and flexible tool for describing more complex
situations (see, for instance [21]). The development of its inference theory, which
guarantees the applicability of these models, has become the main goal in the
most recent researches. For this issue, in a frequentist framework, it is important
to mention [12, 16, 17, 18, 28, 41]. From a Bayesian standpoint, one can find
the papers [14, 15, 31].

From an applied standpoint, it is of interest to develop robust procedures
in the field of branching processes due to the fact that it is not unusual to
find in the development of a population the existence of a small proportion
of individuals whose reproductive capacity is influenced by temporary events
that can provoke outliers in the model. For instance, this may happen due to
the presence of a disease with a low prevalence or punctual changes on the
environmental conditions. These situations can hide the assumption of com-
mon offspring distribution along generations, usually assumed in the context
of branching processes. Moreover, maximum likelihood estimation is badly af-
fected by outliers as is well-known and pointed out in the simulated example
at the end of the paper. Until now, robust estimation has barely developed in
this context. One only can find results in the frame of the BGW processes, by
using weighted least trimmed estimation (see [43]) and by considering minimum
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Hellinger distance estimation (see [42]). The aforementioned facts motivate the
need to go in depth in robust procedures to estimate the original offspring dis-
tribution in the general framework provided by the CBPs. To this end, we make
use of the minimum disparity methodology. This methodology has arisen as one
that attains robustness properties without loss of efficiency. It was introduced
in [30] for discrete models and since then, the literature on it has experimented
a large growth (see [2, 32] for further information). In our context, assuming
that the offspring distribution belongs to a very general parametric family, we
determine minimum disparity estimators (MDEs) of the underlying parameter
and study their asymptotic and robustness properties. The method consists in
minimizing the discrepancy between a nonparametric estimator of the offspring
distribution and the considered parametric family. The discrepancy is measured
by a function called disparity measure. Thus, one can obtain different MDEs
depending on the nonparametric estimator and the disparity measure consid-
ered. Special interest is highlighted in this paper for the negative exponential
disparity and the Hellinger distance. The maximum likelihood estimator based
on the observation of the whole family tree until a certain generation is con-
sidered as the nonparametric estimator. This paper presents for the first time
the application of the technique of minimum disparity for the general class of
branching structure given by CBPs, hence extending the results in [42] in a
double sense: model and measure, and moreover extending the results in [1, 33]
from an independent and identically distributed (i.i.d.) and continuous context
to a dependent and discrete setup. It is worthwhile to point out the fundamen-
tal roles played by the nonparametric estimator and the dependence structure
of the CBP to obtain the asymptotic properties of the MDEs proposed, that
require a different approach from those already established in the i.i.d. setting.

Besides the introduction, this paper is organized into 6 sections and an ap-
pendix. In Section 2, we present the formal model and establish some hypotheses
that we assume throughout the paper. Section 3 is devoted to defining and de-
scribing minimum disparity estimation. The asymptotic properties of MDEs
are also studied; to this end, we introduce the disparity functional associated
to a disparity measure and research its properties. The robustness of MDEs
is studied in Section 5. To illustrate this methodology, we present a simulated
example in Section 6. Concluding remarks about the contributions of the paper
are presented in Section 7. Finally, we dedicate an appendix to the proofs of the
theorems, in order to facilitate the reading of the paper.

2. The probability model

We consider a controlled branching process with random control function (CBP).
Mathematically, this process is a discrete–time stochastic model {Zn}n∈N de-
fined recursively as:

Z0 = N, Zn+1 =

φn(Zn)∑
j=1

Xnj , n ∈ N0, (2.1)
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where N0 = N ∪ {0}, N ∈ N0, {Xnj : n = 0, 1, . . . ; j = 1, 2, . . .} and {φn(k) :
n, k = 0, 1, . . .} are two independent families of nonnegative integer valued ran-
dom variables defined on the same probability space (Ω,A, P ). Moreover, Xnj ,
n = 0, 1, . . ., j = 1, 2, . . ., are i.i.d. random variables and for each n = 0, 1, . . .,
{φn(k)}k≥0, are independent stochastic processes with equal one–dimensional
probability distributions. The empty sum in (2.1) is considered to be 0. We de-
note by p = {pk}k≥0 the common probability distribution of the random vari-
ables Xnj , i.e., pk = P [Xnj = k], k ≥ 0, which is known as offspring distribution
or reproduction law, and by m and σ2 its mean and variance (assumed finite),
and we referred to them as offspring mean and variance, respectively. We also
denote the mean and the variance of the control variables by ε(k) = E[φ0(k)]
and σ2(k) = V ar[φ0(k)], k ∈ N0 (assumed finite too).

Intuitively, Zn denotes the number of individuals in generation n, and Xni

the number of offspring of the ith individual in generation n. With the control
mechanism φn(·), if φn(Zn) < Zn then Zn − φn(Zn) individuals are removed
from the population (this can model an emigration process, the culling process in
the ecological example above or the presence of predators), and therefore do not
participate in the future evolution of the process. If φn(Zn) > Zn then φn(Zn)−
Zn new individuals of the same type are added to the population participating
under the same conditions as the others (this can model an immigration process
or a re-population). No control is applied to the population when φn(Zn) = Zn.

Particular cases of CBPs commented in the introduction can be obtained by
considering the following specific control variables:

(a) The evolution of invasive animal species can be described by a CBP by
considering φn(k) = �infI(0,�inf)

(k) + kI[�inf,�sup](k) + �supI(�sup,∞)(k),

with IB standing for the indicator function of the set B, and �inf and �sup
nonnegative numbers, �inf < �sup.

(b) The evolution of a population threatened by the presence of predators
can be modeled by setting that φn(k) follows a binomial distribution with
parameters k and γ, for each n, k ∈ N0, where γ represents the survival
probability of an individual or by a Poisson distribution of parameter γk
as γ is low and the offspring mean is high.

(c) The BGW process is obtained by considering φn(k) = k, for each n, k ∈
N0.

(d) The branching process with immigration can be seen as a particular case
of the CBP. One only needs to set φn(k) = k + Yn, for each n, k ∈ N0,
where Yn are N0-valued i.i.d. random variables which are also independent
of Xnj , n = 0, 1, . . ., j = 1, 2, . . ..

(e) A branching process with random migration can be described as a CBP
by considering φn(k) = max{0, k+Mn} with {Mn}n≥0 a sequence of i.i.d.
random variables such that

P [Mn = 0] = p, P [Mn = −1] = q, P [Mn = 1] = r,

with p+ q + r = 1, p, q, r ∈ (0, 1).
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(f) The branching process with immigration at the state 0 (see [7]) can be
obtained by using the control function φn(k) = max(1, k), for each n, k ∈
N0.

It is easy to verify that {Zn}n≥0 is a Markov chain with stationary transition
probabilities. Moreover, from now on we assume

(a) p0 > 0 or P [φn(k) = 0] > 0, k > 0,
(b) φn(0) = 0 almost surely (a.s.).

Such conditions guarantee that 0 is an absorbing state and the states k = 1, 2, . . .
are transient. Whence it is verified that P [Zn → 0] + P [Zn → ∞] = 1.

In addition, for our purpose, we suppose that the offspring distribution be-
longs to a general parametric family:

FΘ = {p(θ) : θ ∈ Θ}, (2.2)

where p(θ) = {pk(θ)}k≥0 and Θ is a subset of R, that is, p = p(θ0) for some
θ0 ∈ Θ, referred as to the offspring parameter. For ease of presentation, we
establish the results for a scalar parameter θ, although these can be generalized
for a vector value parameter. The aim of this paper is to estimate θ0 efficiently
and robustly by choosing θ ∈ Θ which provides the best adjustment to the
observed sample in terms of the disparity measures.

To develop this methodology we need to consider nonparametric estimators
of the offspring distribution. In this sense, in [18], nonparametric maximum
likelihood estimators (MLEs) based on different samples are provided. Let de-
note a generic nonparametric estimator of p based on a sample, say Xn, by
p̃n = {p̃n,k}k≥0, satisfying p̃n,k ≥ 0, for each k ≥ 0, and

∑∞
k=0 p̃n,k = 1 (where

n indicates that we observe the data up to the generation n).

3. Minimum disparity estimation

In this section, we introduce the notions of disparity measure and minimum
disparity estimator, and present several interesting examples of them. Although
we focus our attention on probability distributions defined on the nonnegative
integers, that is, those which can be offspring distributions, the definitions and
results given in this section keep valid for whatever discrete model. Let Γ be the
set of all probability distributions defined on the nonnegative integers, FΘ the
parametric family introduced in (2.2), and G(·) a three times differentiable and
strictly convex function on [−1,∞) with G(0) = 0. The disparity measure ρG
corresponding to G(·) is defined for any q ∈ Γ and θ ∈ Θ, as

ρG : Γ×Θ → [0,∞]

(q, θ) �→ ρG(q, θ) =

∞∑
k=0

G(δ(q, θ, k))pk(θ),
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where δ(q, θ, k) denotes the “Pearson residual at k”, that is,

δ(q, θ, k) =

{ qk
pk(θ)

− 1, if pk(θ) > 0;

0, otherwise.

Note that one has different disparity measures ρG by considering different func-
tions G(·); however, we drop G and write simply ρ in order to ease the notation.
Moreover, notice that the Pearson residual at k depends on the probability dis-
tribution q and on the parameter θ, and that δ(q, θ, k) ∈ [−1,∞), for each q ∈ Γ,
θ ∈ Θ, and k ≥ 0.

Due to the fact that G(·) is strictly convex, one has that ρ is nonnegative.
Moreover, when G(·) is also nonnegative and has a unique zero at 0 it is verified
that ρ(q, θ) = 0 if and only if q = p(θ). Given a sample Xn and a nonparametric
estimator of p, p̃n, based on it, we define the minimum disparity estimator
(MDE) of θ0 for the disparity measure ρ based on p̃n as

θ̃ρn(p̃n) = argmin
θ∈Θ

ρ(p̃n, θ). (3.1)

It is important to mention that this estimator might not exist unless we
assume some regularity conditions on the disparity measure ρ and on the para-
metric space Θ. This issue is addressed below.

Remark 1. Some interesting cases of nonnegative disparity measures are the
following:

(a) The disparity obtained with the function G(δ) = (δ+1) log(δ+1) is a kind
of the Kullback–Leibler divergence. It is denoted by LD(p̃n, θ), for each p̃n,
n ∈ N, and θ ∈ Θ, and it is known as likelihood disparity. Its minimizer,
θ̃LD
n (p̃n), is known as the minimum likelihood disparity estimator (MLDE).
In some cases, this estimator coincides with the MLE.

(b) The disparity determined by the function G(δ) = [(δ + 1)1/2 − 1]2 is the
squared Hellinger distance, denoted by HD(p̃n, θ), for each p̃n, n ∈ N, and
θ ∈ Θ. Notice that the squared Hellinger distance between two probability
distributions is the square of the l2-distance between the square roots of the
corresponding probability distributions, i.e., HD(q, θ) = ‖q1/2−p(θ)1/2‖22,
where ‖ · ‖2 denotes the l2-norm defined on Γ, and for each q ∈ Γ,

q1/2 = {q1/2k }k≥0. In this case, the MDE is the minimum Hellinger dis-

tance estimator (MHDE), denoted by θ̃HD
n (p̃n).

(c) The disparities defined by using either the function G(δ) = exp(−δ) − 1
or G(δ) = exp(−δ)− 2 (denoted by D(p̃n, θ) and DM (p̃n, θ), respectively,
for each p̃n, n ∈ N, and θ ∈ Θ) are both known as negative exponential
disparity (notice both disparities differ only in a constant). The MDE is
denoted by θ̃NED

n (p̃n) and it is called the minimum negative exponential
disparity estimator (MNEDE).

Other examples are the family of power divergence measures (see [8]), the
blended chi-squared measures, which include Pearson’s chi–squared and Ney-
man’s chi-square, the blended weight chi–squared measures and the blended
weight Hellinger distance family (see [30]).
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Under conditions of differentiability of the model, a useful way for determin-
ing a MDE is to take into account that it must satisfy ρ̇(p̃n, θ̃

ρ
n(p̃n)) = 0, where

for each q ∈ Γ, ρ̇(q, θ) denotes the first derivative of ρ(q, θ) with respect to θ. It
is verified, for q ∈ Γ and θ ∈ Θ,

−ρ̇(q, θ) =

∞∑
k=0

p′k(θ)A(δ(q, θ, k)),

where A(δ) = (δ+1)G′(δ)−G(δ), and G′(·) and p′k(·) denote the first derivative
ofG(·) and pk(·), respectively. The function A(·) is called the residual adjustment
function (RAF) of the disparity. It is twice differentiable and an increasing
function on [−1,∞) that can be redefined (standarized), without changing the
estimating properties of the disparity, so that A(0) = 0, and A′(0) = 1.

Remark 2. The function G(·) and the RAF of the disparity measures of Remark
1 after standardization (that is, for which A(0) = 0 and A′(0) = 1) are the
following:

(a) The RAF of the likelihood disparity is A(δ) = δ and G(δ) = (δ+1) log(δ+
1)− δ.

(b) The RAF of the squared Hellinger distance is A(δ) = 2[(δ + 1)1/2 − 1],
corresponding to the function G(δ) = 2((δ + 1)2 − 1)2.

(c) The RAF of the negative exponential disparity is A(δ) = −(2+δ) exp(−δ)+
2, corresponding to G(δ) = exp(−δ)− 1 + δ.

In [30], the RAFs of different disparity measures are compared (see Figures
4 and 5 in [30]). The RAF of a disparity measure is relevant in determining
the efficiency and robustness properties of the corresponding MDE. Concretely,
A′′(0) is demonstrated to play a key role: large negative values of A′′(0) corre-
spond to robustness properties and zero value matches a second–order efficient
estimator in the sense of [37].

Before focusing on these matters, first we establish the existence of the min-
imum in (3.1) and its uniqueness. To this end, the approach followed is to
view θ̃ρn(p̃n) as the value of a functional T ρ at p̃n. We consider the dispar-
ity functional associated with a disparity measure ρ, defined as T ρ : Γ → Θ,
with T ρ(q) = argminθ∈Θ ρ(q, θ), whenever the minimum exists. Notice that
there might exist multiple values of the parameter θ which minimize the func-
tion ρ(q, ·). As a consequence, T ρ(q) would denote any of these values. Clearly,
T ρ(p̃n) = θ̃ρn(p̃n).

It is obvious that if the parameter space Θ is compact and the function ρ(q, ·)
is continuous in Θ, for each q ∈ Γ, then T ρ(q) exists. However, we will weaken
the compactness of Θ in a similar way as was done in [39] and in [42]. Specifically,
given a disparity ρ, we limit our study to the subclass of probability distributions
Γ̃ρ ⊆ Γ which satisfies the following condition: there exists a compact set Cρ ⊆ Θ

such that for every q ∈ Γ̃ρ,

inf
θ∈Θ\Cρ

ρ(q, θ) > ρ(q, θ∗), (3.2)

for some θ∗ ∈ Cρ.
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Theorem 3.1 (Existence). It is satisfied:

(i) For each q ∈ Γ̃ρ satisfying that ρ(q, ·) is continuous in Cρ, there exists
T ρ(q).

(ii) If ρ is a disparity measure, θ∗ ∈ Θ verifies infθ∈Θ\K ρ(p(θ∗), θ) > 0
for some compact set K ⊆ Θ and ρ(p(θ∗), ·) is continuous in K, then
T ρ(p(θ∗)) exists. Moreover, if FΘ is identifiable, that is, p(·) is injective,
and the disparity ρ can be redefined (without changing its minimizer) so
that the related function G(·) is nonnegative and has a unique zero at 0,
then θ∗ = T ρ(p(θ∗)).

The proof is provided in Appendix.

Remark 3. (a) Notice that the continuity of pk(·) in an arbitrary set B ⊆ Θ
for each k ≥ 0 leads to the continuity in B of the function ρ(q, ·) associated
with any disparity measure ρ determined by a bounded function G(·), for
each q ∈ Γ. This is deduced from a generalized dominated convergence
theorem (see [38], p.92). The aforesaid condition is satisfied by the negative
exponential disparity. Although the Hellinger distance is defined by a non
bounded function G(·), in this case the condition of continuity of pk(·) in
B for each k ≥ 0 is enough to obtain the continuity of HD(q, ·) in B for
each q ∈ Γ. This latter is followed by the Cauchy-Schwarz inequality and
the Scheffé’s theorem.

(b) The redefinition of some disparities, without affecting their minimizer, so
that the related functions G(·) will be nonnegative and have a unique zero
at 0 is possible. For instance, for the negative exponential disparity we
can consider the function Ḡ(δ) = G(δ) + δ instead of G(δ), which verifies
the previous properties and for each q ∈ Γ,

∑∞
k=0 Ḡ(δ(q, θ, k))pk(θ) =∑∞

k=0 G(δ(q, θ, k))pk(θ).

In order to study the asymptotic properties of the MDEs, we have to assume
several conditions. Let fix the next assumptions:

(A1) ρ is a disparity measure associated with a function G(·) which satisfies
that G(·) and G′(·) are bounded in [−1,∞).

(A2) pk(·) is continuous in Cρ for each k ≥ 0 (where Cρ is introduced in (3.2)).

Notice that under (A2), by Theorem 3.1, T ρ(q) exists for every q ∈ Γ̃ρ. Let Γ̂ρ

be the set of q ∈ Γ̃ρ such that T ρ(q) is unique. Now, in the following theorem the
continuity of the disparity functional is established. Henceforth, all the limits
are taken as n → ∞.

Theorem 3.2 (Continuity). Let q and {qn}n∈N be in Γ such that qn → q in
l1. Assuming (A1), (A2) and that q ∈ Γ̂ρ, then T ρ(qn) eventually exists and the
functional T ρ(·) is continuous in q, that is, T ρ(qn) → T ρ(q).

Analogously, since the Hellinger distance does not satisfy condition (A1),
under the following alternative hypotheses, the result is also established.
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Theorem 3.3 (Continuity for the Hellinger distance). Let q and {qn}n∈N

be in Γ satisfying ||q1/2n − q1/2||2 → 0. If (A2) holds and q ∈ Γ̂HD, then
THD(qn) eventually exists and the functional THD(·) is continuous in q, that
is, THD(qn) → THD(q).

The proofs of Theorems 3.2 and 3.3 are given in Appendix.

Recall that p = p(θ0) is the true reproduction law. Observe that under (A1), if
(A2) is verified and p ∈ Γ̂ρ, one obtains T

ρ(p) = θ0 and for the case of Hellinger
distance, dropping (A1), one also has THD(p) = θ0. Next theorem establishes
the strong consistency of the MDEs.

Theorem 3.4 (Consistency). Assume (A2) and p ∈ Γ̂ρ, for the corresponding
disparity ρ. Then if p̃n,k converges to pk(θ0) a.s., for each k ≥ 0, one has that:

(i) θ̃ρn(p̃n) eventually exists, is a random variable, and θ̃ρn(p̃n) → θ0 a.s. if
(A1) holds.

(ii) θ̃HD
n (p̃n) eventually exists, is a random variable, and θ̃HD

n (p̃n) → θ0 a.s.

The proof can be consulted in Appendix.

4. Asymptotic normality

The results given in the previous section are general in the sense that the explicit
expression of the nonparametric estimator is not required, and one only needs
to know its properties, as for example, its consistency. However, to establish
the asymptotic normality of the MDEs, explicit formulas of the nonparametric
estimators are needed. For this reason, to develop this section we come back to
the CBP context.

In [18], we provide nonparametric estimators of the offspring distribution
under several sampling schemes. In particular, in a complete data context, we
consider that the entire family tree up to generation n can be observed, that is,

the sample Z∗
n = {Zl(k) : 0 ≤ l ≤ n−1; k ≥ 0}, where Zl(k) =

∑φl(Zl)
i=1 I{Xli=k},

0 ≤ l ≤ n−1, k ≥ 0, with recall IB standing for the indicator function of the set
B. Intuitively, Zl(k) represents the number of parents in generation l who have
exactly k offspring. Thus, it is easy to check that φl(Zl) =

∑∞
k=0 Zl(k), and

Zl+1 =
∑∞

k=0 kZl(k), for l ∈ N0. Recall that in a general setting p = {pk}k≥0 is
the offspring distribution. The MLE of pk, for each k ≥ 0, (see [18]), is given by
p̂n = {p̂n,k}k≥0:

p̂n,k =
Yn−1(k)

Δn−1
, k ≥ 0, (4.1)

where Δl =
∑l

j=0 φj(Zj), and Yl(k) =
∑l

j=0 Zj(k), k ≥ 0, 0 ≤ l ≤ n − 1.
Intuitively, Δl is the total number of parents until generation l, and Yl(k) is
the total number of progenitors with exactly k offspring until generation l.
Consequently, one estimates the probability that an individual has k offspring
as the relative proportion of parents with k offspring. For the BGW process
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(recall φn(k) = k for each k and n), p̂n corresponds to the estimator given in
[24], p. 42.

It is proved that p̂n,k is strongly consistent for pk on {Zn → ∞}, for each
k ≥ 0, (see Theorem 3.6 in [18]), under the following assumption:

(A3) The CBP satisfies that:

(a) There exists τ = limk→∞ ε(k)k−1 < ∞, and the sequence
{σ2(k)k−1}k≥1 is bounded.

(b) τm = τm > 1 and Z0 is large enough such that P [Zn → ∞] > 0.

(c) {Znτ
−n
m }n≥0 converges a.s. to a finite random variable W such that

P [W > 0] > 0.

(d) {W > 0} = {Zn → ∞} a.s.

In order to establish the asymptotic normality of the MDEs, we add to assump-
tion (A3)(c) that {Znτ

−n
m }n≥0 converges in L1 to a finite random variable W ,

with 0 < E[W ] < ∞.

Remark 4. (a) For CBPs verifying (A3)(a), sufficient conditions for (A3)(b)-
(d) are discussed in [19]–[22].

(b) It is easy to check that τm = limk→∞ E[Zn+1|Zn = k]k−1. For each k ∈ N,
E[Zn+1|Zn = k]k−1 can be interpreted as a mean growth rate, thus, τm
is referred to as the asymptotic mean growth rate. This is the threshold
parameter of CBPs (see [21]).

(c) It can be proved that, under (A3), φn(Zn)Z
−1
n → τ a.s., and ε(Zn)/

φn(Zn) → 1 a.s. on {Zn → ∞}. As a result, φn(Zn)τ
−n
m → τW a.s.

on {Zn → ∞} (see [18], Proposition 3.5).
(d) Since the BGW process can be seen as a CBP with φn(k) = k, for each

n, k ∈ N0, one has that ε(k) = k and σ2(k) = 0, for each k ∈ N0. Con-
sequently, (A3) is fulfilled provided that m > 1 (and taking into account
that σ2 < ∞).

As a consequence, under (A3), from Theorem 3.4 (i) and (ii), one obtains,
respectively, that the estimators θ̃ρn(p̂n) and θ̃HD

n (p̂n) are strongly consistent on
{Zn → ∞}.

Now, we focus our attention on the asymptotic normality. To this end, we
must consider additional conditions on the functions p(·). From now on, we
assume that for each k ≥ 0, pk(θ) is twice continuously differentiable with
respect to θ and:

(A4) For θ ∈ Θ, ε > 0, for each θ∗ ∈ (θ − ε, θ + ε), and k ≥ 0,

(a) there exists Jk(θ) such that |p′k(θ∗)| < Jk(θ), and
∑∞

k=0 Jk(θ) < ∞,

(b) there exists Lk(θ) such that |p′′k(θ∗)| < Lk(θ), and
∑∞

k=0 Lk(θ) < ∞,

(c) there exists Mk(θ) such that |u(θ∗, k)2pk(θ∗)| < Mk(θ), and∑∞
k=0 Mk(θ) < ∞, where u(θ, k) = (log(pk(θ)))

′ = p′k(θ)/pk(θ).

(A5) ρ is a disparity measure whose RAF A(·) satisfies that A(0) = 0, A′(0) = 1,
and A(δ), A′(δ), A′(δ)(1 + δ) and A′′(δ)(1 + δ) are bounded functions on
δ ∈ [−1,∞).
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Remark 5. Notice that for a disparity measure ρ satisfying (A5), (A4) is a suf-
ficient condition to guarantee that ρ(q, θ) can be twice differentiable with respect
to θ.

It is easy to check that the negative exponential disparity satisfies (A5) but
the Hellinger distance does not. In the latter case, to establish the efficiency of
MHDE, instead of the previous hypotheses, we assume the following condition
on s(θ) = {sk(θ)}k≥0, with sk(θ) = pk(θ)

1/2, in a similar way to that in [3]:

(A6) For θ ∈ int(Θ) (that is, θ in the interior of Θ), s(θ) is twice differentiable in
l2; that is, there exist s

′(θ) = {s′k(θ)}k≥0 ∈ l2 and s′′(θ) = {s′′k(θ)}k≥0 ∈ l2
and for every β in a neighbourhood of zero

sk(θ + β) = sk(θ) + βs′k(θ) + βvk(β),

s′k(θ + β) = s′k(θ) + βs′′k(θ) + βwk(β),

where
∑∞

k=0 vk(β)
2 → 0, and

∑∞
k=0 wk(β)

2 → 0, as β → 0.

Let denote I(θ0) =
∑∞

k=0 u(θ0, k)
2pk(θ0), the Fisher information for θ con-

tained in the random variableX01. Since I(θ0) = 4||s′(θ0)||22, either from (A4)(c)
or from s′(θ0) ∈ l2, I(θ0) < ∞ is obtained. In addition, observe that although
conditions (A1) and (A5) seem to be quite restrictive, they are satisfied by a
wide set of disparities (see [33]).

Theorem 4.1 (Asymptotic normality). Let be a CBP satisfying (A3), with
p = p(θ0) its offspring distribution. Moreover, assume (A2) and p ∈ Γ̂ρ (recall
that in this case T ρ(p) = θ0).

(i) If (A1), (A4), and (A5) hold, s′(θ0) ∈ l1, and supposing that any sequence
of estimators {ϕn}n∈N converging to θ0 in probability satisfies

∞∑
k=0

|p′′k(ϕn)− p′′k(θ0)|
P−→ 0, (4.2)

∞∑
k=0

|u(ϕn, k)
2pk(ϕn)− u(θ0, k)

2pk(θ0)| P−→ 0, (4.3)

then, it is verified:

Δ
1/2
n−1(θ̃

ρ
n(p̂n)− θ0)

d−→ N
(
0, I(θ0)

−1
)
, (4.4)

where
P→ denotes the convergence in probability and

d→ represents the con-
vergence in distribution with respect to the probability P [·|Zn → ∞].

(ii) For the Hellinger distance, (4.4) also holds under the assumptions (A6),

θ0 ∈ int(Θ), and
∑∞

k=0 s
′′
k(θ0)p

1/2
k < 0.

The proof of the previous theorem is given in Appendix.
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Remark 6. (a) Notice that to establish the asymptotic normality of the MDEs,
the assumptions are imposed on the offspring distribution and on the dis-
parity measure, so that taking into account Remark 4, (c), for a BGW
process one has that under hypotheses in Theorem 4.1,⎛⎝n−1∑

j=0

Zj

⎞⎠1/2

(θ̃ρn(p̂n)− θ0)
d−→ N

(
0, I(θ0)

−1
)
.

(b) Assuming that we observe Z∗
n, one knows φl(Zl) =

∑∞
k=0 Zl(k) and Zl+1 =∑∞

k=0 kZl(k), l = 0, . . . , n− 1. Consequently, using Theorem 3.4, 4.4, the
continuity of I(θ), and Slutsky’s theorem,

θ̃ρn(p̂n)± zγ(Δn−1I(θ̃
ρ
n(p̂n))

−1/2,

with zγ the quantile of order 1 − γ/2 of a standard Normal distribution,
provides an asymptotic confidence interval at (1− γ)% level.

(c) Besides the MDEs based on the whole family tree, one can determine the
ones based on other samples. In [18], we also study the maximum like-
lihood estimation of the offspring distribution under incomplete sampling
schemes, considering the random samples given by the number of individu-
als and progenitors in each generation, that is, Zn={Z0, Zl+1, φl(Zl) : l=
0, . . . , n− 1}, and only by the generation sizes, that is, Zn={Z0, . . . , Zn}.
The proposed estimators for the offspring distribution, based on Zn and
Zn, are obtained by the Expectation–Maximization algorithm (EM algo-
rithm). Making use of these estimators, one can obtain MDEs of θ0 based
on Zn and Zn, respectively.

5. Robustness

In this section, we address the issue of the robustness of the MDEs of θ. For this
purpose, we will study the behaviour of the corresponding disparity functional
under contamination by considering the following model:

p(α, θ, L) = (1− α)p(θ) + αηL, (5.1)

where α ∈ (0, 1), θ ∈ Θ, L ∈ N0 and ηL is a point mass distribution at a
nonnegative integer L. This model is called mixture model for gross errors at
L and it represents the simplest context of contamination. This approach was
introduced in [45] and consists in assuming the contaminated model instead of
the model distribution in order to explain or incorporate outliers.

In the analysis of robustness of an estimator, an essential tool is the influence
curve, which for each disparity ρ is a function of L ∈ N0 defined as

lim
α→0

α−1(T ρ(p(α, θ, L))− T ρ(p(θ))).

Although the unboundedness of this function is an indicator of the misbehaviour
of the MDEs of θ in presence of outliers, the influence curve can be very a
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deceptive measure of robustness (see [30]). For this reason, we will also exam-
ine the α-influence curves of T ρ(·), which are functions of L ∈ N0 defined as
α−1(T ρ(p(α, θ, L))− T ρ(p(θ))), for each α ∈ (0, 1).

Next theorem, whose proof can be read in Appendix, provides an expression
for the influence curves and establishes conditions under which the disparity
functional is robust at p(θ) against 100α% contamination by gross error at an
arbitrary integer.

Theorem 5.1 (Robustness). Suppose the parameter space Θ is compact, (A2)
holds (with Cρ = Θ), and FΘ is identifiable. For every α ∈ (0, 1) and every
θ ∈ Θ:

(i) Let ρ be a disparity measure which can be redefined (without changing its
minimizer) so that the related function G(·) is nonnegative, has a unique
zero at 0 and satisfies (A1) and (A5). For each q ∈ Γ and t ∈ Θ, define
ρ∗(α, q, t) =

∑∞
k=0 G

∗(δ(q, t, k))pk(t), with G∗(δ) = G((1 − α)δ). If (A4)
holds, T ρ(p(θ, α, L)) is unique for all L ∈ N0, and there exists a strictly
increasing function f such that f(ρ∗(α, p(θ), t)) = ρ((1 − α)p(θ), t), for
t ∈ Θ; then

(a) limL→∞ T ρ(p(θ, α, L)) = θ.

(b) T ρ(p(θ, α, L)) is a bounded and continuous function of L.

(c) limα→0 α
−1(T ρ(p(θ, α, L))− θ) = (I(θ)pL(θ))

−1p′L(θ).

(ii) For the Hellinger distance, if THD(p(θ)) ∈ int(Θ),
∑∞

k=0 s
′′
k(θ)p

1/2
k < 0,

(A6) holds, and THD(p(θ, α, L)) is unique for all L ∈ N0; then (i-a), (i-b)
and (i-c) are also satisfied.

Observe that p′L(θ)(I(θ)pL(θ))
−1 can be an unbounded function of L. Never-

theless, from Theorem 5.1 (a) and (b), we have that for every α ∈ (0, 1), the α–
influence curves are bounded continuous functions of L satisfying limL→∞ α−1 ·
(T ρ(p(θ, α, L))−θ) = 0, and limL→∞ α−1(THD(p(θ, α, L))−θ) = 0, respectively.
Consequently, the associated disparity functionals are robust at p(θ) against
100α% contamination by gross error at an arbitrary integer L.

Another important concept in the study of the robustness is the asymptotic
breakdown point. Intuitively, the asymptotic breakdown point represents the
smallest amount of contamination that can cause the estimator to take arbi-
trarily large values. Formally, the asymptotic breakdown point of a disparity
functional T ρ(·) at q ∈ Γ is given by:

α∗(T ρ, q) = inf {α ∈ (0, 1) : b(α;T ρ, q) = ∞} ,

with b(α;T ρ, q) = sup {|T ρ((1 − α)q + αq) − T ρ(q)| : q ∈ Γ}. Note that
b(α;T ρ, q) = ∞ is equivalent to the existence of a sequence of probability distri-
butions {qn}n∈N satisfying |T ρ((1−α)q+αqn)− T ρ(q)| → ∞ and in that case,
we say there is breakdown in T ρ(·) for a level of contamination equals α. The
sequence {qn}n∈N is called sequence of contaminating probability distributions.
This fact is useful for the establishment of a lower bound for the asymptotic
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breakdown point of T ρ(·) at some probability distribution in the following the-
orem, and in particular, for determining the asymptotic breakdown point of the
MDEs of θ0 based on nonparametric estimators of the offspring distribution.

Theorem 5.2 (Asymptotic breakdown point).

(i) Assume that the contaminant sequence {qn}n∈N, the distributions of the
family FΘ, and θ∗ ∈ Θ satisfy:

(a)
∑∞

k=0 min{pk(θ∗), qn,k} → 0.

(b)
∑∞

k=0 min{pk(θ), qn,k} → 0, uniformly for θ ∈ Θ such that |θ| ≤ c,
for any fixed c ∈ R.

(c)
∑∞

k=0 min{pk(θ∗), pk(θn)} → 0, if |θn| → ∞.

(d) G(−1) and limt→∞ G(t)/t are finite.

Then, the asymptotic breakdown point of the MDE of θ∗ is at least 1/2.
(ii) Assume (A2), q ∈ Γ̂HD, and THD(q) ∈ int(Θ). Let �(q, p(θ)) =∑∞

k=0(qkpk(θ))
1/2, �̂ = maxθ∈Θ �(q, p(θ)), �∗ = limM→∞ sup|θ|>M

�(q, p(θ)) and hn = (1− α)q + αqn, 0 < α < 1, with qn ∈ Γ, for every n.
Assume that for each n ≥ 1, THD(hn) exists and is unique. It holds that
if α < (�̂− �∗)2/[1 + (�̂− �∗)2], then there is no sequence {hn}n∈N of the
form defined above for which limn→∞ |THD(hn)− THD(q)| = ∞.

The proof of (i) is analogous to that given in Theorem 4.1 in [33] replac-
ing integrals with sums. Intuitively, the assumptions (a)-(c) indicate the worst
possible selection of the contamination and represent the asymptotic singularity
between the probability distributions considered (see [33] for a further descrip-
tion). The proof of (ii) is exactly the same as Theorem 3 in [39] and it is omitted.
In particular, when q is the offspring distribution p = p(θ0), then �̂ = 1 and
as a consequence, the asymptotic breakdown point for HD is at least 1/2 when
�∗ = 0, which usually holds.

6. Simulated example

Through a simulated example, we compare the behaviour of the MHDEs,
MNEDEs and MLDEs based on the whole family tree under an uncontami-
nated model and under mixture models for gross errors. To this end, we have
considered as initial model a CBP starting with one individual and Poisson
distributions as offspring and control distributions. In particular, the offspring
distribution is a Poisson distribution with the parameter θ0 = 7 and the variable
φn(k) follows Poisson distribution with parameter λk, with λ = 0.3, for each
k ≥ 0, n ≥ 0. Therefore, the offspring mean and variance are m = σ2 = 7,
and τm = θ0λ = 2.1 (see (A3) for definition). In practice, control functions
φn(k) that follow Poisson distributions with parameters λk are appropriate to
describe an environment with expecting immigration or emigration according
to the value of the parameter λ: the former corresponds to λ > 1 and the latter
to λ < 1. Recall as was pointed out in the introduction, this control distribution
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can be used to model populations threatened by a predator as an approxima-
tion to the binomial control process. In our example, we consider a model with
expected emigration although supercritical (τm > 1).

First, we show that in a contamination-free context, MHDEs and MNEDEs
are as efficient as MLDEs. To this end, we have simulated 10 generations of
N = 100 CBPs following the previous model, and we have estimated the relative
efficiency of θ̃NED

n (p̂n) to θ̃HD
n (p̂n), of θ̃

HD
n (p̂n) to θ̃LD

n (p̂n) and of θ̃NED
n (p̂n) to

θ̃LD
n (p̂n) in each generation by the ratios of these mean squared errors:

MSE(HD)

MSE(NED)
,

MSE(LD)

MSE(HD)
,

MSE(LD)

MSE(NED)
,

where MSE(ρ)= N−1
∑N

i=1(θ̃
ρ
i (p̂n) − θ0)

2, ρ ∈ {LD, NED, HD}, where n
indicates the generation, for n = 1, . . . , 10, and i indicates the simulated process,
for i = 1, . . . , N . The evolution of these estimates is shown in Figure 1 (first
row -left), where one observes that as generations go up, MNED and MHD
procedures are shown as efficient as the MLD one.

In a contaminated context, to illustrate and compare the accuracy of the
estimates obtained by MHD and MNED methods, we have considered several
different contaminated models for the offspring distribution in the aforemen-
tioned CBP. Specifically, we have contaminated the reproduction law according
to the mixture model for gross errors, for α = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45, 0.5, and L = 0, 1, . . . , 25, obtaining 260 different contaminated CBPs.

For a generic CBP, the information given by a sample observed until a fixed
generation n depends on its asymptotic mean growth rate, τm, and it is poorer
when τm ≈ 1 than when τm > 1. This implies that to compare the behaviour
of the different estimators for each one of the contaminated models (which have
asymptotic mean growth rates, called τm(θ0, α, L), of different magnitudes) one
needs to observe different numbers of generations depending upon the value of
τm(θ0, α, L). In our example, these values go from n = 8 for τm(θ0, α, L) = 4.8
to n = 65 for τm(θ0, α, L) = 1.05.

For each simulated process, we have determined the MHDEs, MNEDEs and
MLDEs of θ0 in its last generation. In Figure 1, we show the mean (over the
100 simulations) of the MHDEs (first row -right) and of the MNEDEs (second
row -left) of θ0, for each one of the 260 contaminated models. Moreover, the
respective MSEs for both methods are represented in Figure 1 (second row
-right and third row -left).

In addition, Figure 1 (third row -right) shows the contour plot of the asymp-
totic mean growth rate of the contaminated models, τm(θ0, α, L), and the un-
derlying points represent the minimum disparity method which provides the
smallest MSE for each contaminated model. There are two remarkable facts
that can be deduced from this plot. The first one is that the MNEDE sup-
plies more accurate estimates in most of the contaminated models (166 models,
that is 63.85% of the models), but the best method when the contaminated
state is between 3 and 11 is usually the MHD (85 models, that is, 32.69% of
models). Moreover, the MLDE only behaves properly in 9 models (3.46% of
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Fig 1. First row. Left: evolution of the estimates of the relative efficiency of θ̃NED(p̂n) to
θ̃HD(p̂n) (solid line), the relative efficiency of θ̃HD(p̂n) to θ̃LD(p̂n) (dashed line) and the
relative efficiency of θ̃NED(p̂n) to θ̃LD(p̂n) (dotted line). Right: contour plot of the means
of the MHDEs for each contaminated offspring distribution. Second row. Left: contour plot
of the means of the MNEDEs of θ0 = 7 for each contaminated offspring distribution. Right:
contour plot of the MSEs of the MHDEs of θ0 = 7 for each contaminated offspring distri-
bution. Third row. Left: MSEs of the MNEDEs of θ0 = 7 for each contaminated offspring
distribution. Right: Contour plot of the asymptotic mean growth rates of the contaminated
models (solid line) and points (L,α) where the minimum of MSE of the estimates of θ0 = 7
by the three methods is attained in the MLDE (crosses), in the MHDE (filled triangles) and
in the MNEDEs (circles).
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Table 1

Relative bias for Hellinger distance and negative exponential disparity for the mixture
models for gross errors with L = 0 and different values of α.

α
ΔTHD(α,L)

ΔTLD(α,L)

ΔTNED(α,L)

ΔTLD(α,L)

−0.0001 1.0108310 0.9980851

−0.0002 1.0519480 0.9911580

−0.0003 1.1041350 0.9787859

−0.0004 1.1383230 0.9600473

−0.0005 1.1891900 0.9338905

−0.0006 1.2520860 0.9004372

−0.0007 1.3377720 0.8556661

−0.0008 1.4711780 0.7992881

−0.0009 1.7769600 0.7296631

Table 2

Relative bias for Hellinger distance and negative exponential disparity for the mixture
models for gross errors with L = 8 and different values of α.

α
ΔTHD(α,L)

ΔTLD(α,L)

ΔTNED(α,L)

ΔTLD(α,L)

-0.01 1.022095 1.0004884

-0.02 1.041636 0.9985267

-0.03 1.064554 0.9947680

-0.04 1.089620 0.9895525

-0.05 1.117349 0.9830758

-0.06 1.148303 0.9737196

-0.07 1.183068 0.9622187

-0.08 1.222421 0.9480543

-0.09 1.267872 0.9306867

the models), where L is equal to 7 (consequently, the offspring mean remains
unchanging). The second fact is that the most accurate method for estimat-
ing the offspring parameter does not depend on the resulting asymptotic mean
growth rate after contamination, but on the state where the contamination is
produced.

We have also studied the performance of these methods in presence of in-
liers, which correspond to the model introduced at (5.1) with α < 0 such
that p(θ, α, L) is a probability distribution. To this end, we compare the po-
tential bias, defined as ΔT ρ(α,L) = T ρ(p(θ0, α, L)) − T ρ(p(θ0)), with ρ ∈
{NED,HD,LD}. In fact, we examine the relative bias of MHDE and MNEDE
with respect to MLDE under mixture model for gross errors located at L = 0
(Table 1), at L = 8 (Table 2) and at L = 20 (Table 3) for different values
of α. The results show that the MNEDE has decreasingly less bias than the
MLDE in all the cases, whereas the inliers have the opposite effect on the
MHDE.
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Table 3

Relative bias for Hellinger distance and negative exponential disparity for the mixture
models for gross errors with L = 20 and different values of α.

α
ΔTHD(α,L)

ΔTLD(α,L)

ΔTNED(α,L)

ΔTLD(α,L)

−0.0000075 1.2087000 0.9920636
−0.0000100 1.1790380 0.9820383
−0.0000125 1.1987310 0.9682116
−0.0000150 1.2351010 0.9501191
−0.0000175 1.2755030 0.9272487
−0.0000200 1.3213920 0.8990362
−0.0000225 1.3841210 0.8648598
−0.0000250 1.4062240 0.8240357
−0.0000275 1.6524540 0.7758114

7. Concluding remarks

In the context of controlled branching processes with random control functions,
assuming a general parametric framework for the offspring distribution, we have
studied the minimum disparity estimation of its main parameter.

First, we have established conditions for the existence and uniqueness of
MDEs for a general discrete model. Moreover, it has been established that the
proposed MDEs are strongly consistent as the associated nonparametric esti-
mators are. In particular, we have considered as the nonparametric estimator
of the offspring law, the MLE based on the observation of the entire family
tree until a certain generation, which is consistent under some regularity con-
ditions. Based on this nonparametric estimator, the limiting normality of the
corresponding MDEs of the offspring parameter, suitably normalized, has been
also established. These results are regarded as a generalization of those given for
BGW processes (see [42]), by considering the more general branching structure
given by CBPs, and more disparity measures besides Hellinger one.

The MDEs proposed for the offspring parameter are appropriate robust alter-
natives to the MLE based on the whole family tree. Focusing our attention on
the MHDE and MNEDE, through a simulated example, we show that both are
robust against outliers, showing more insensitive the MNEDE to gross-errors at
points far from the offspring parameter, and the MHDE when they are at points
close to the same one. However, the robustness against inliers only holds for the
MNEDE.

Appendix

Proof of Theorem 3.1

(i) It is immediate from the definition of Γ̃ρ and the continuity of ρ(q, ·) in Cρ.
(ii) From inft∈Θ\K ρ(p(θ∗), t) > 0, it is deduced that θ∗ ∈ K, and hence,

mint∈K ρ(p(θ∗), t) = 0; consequently, T ρ(p(θ∗)) exists. Since the function G(·)
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is nonnegative and has a unique zero at 0, ρ(p(θ∗), θ) = 0 if and only if p(θ∗) =
p(θ), and from the identifiability of FΘ, this can only occur when θ∗ = θ.

Proof of Theorem 3.2

We present an adaptation and extension of the proofs of Proposition 2 in [1]
and of Theorem 3.2 in [33], developed for general continuous models.

Let θ = T ρ(q) (there exists and it is unique by Theorem 3.1). For each
t ∈ Θ, using the mean value theorem for the functions hk(y) = G(y/pk(t)− 1),
y ∈ [0, 1], k ≥ 0, one can prove that |ρ(qn, t)−ρ(q, t)| ≤ M

∑∞
k=0 |qn,k−qk| → 0,

as n → ∞, being M an upper bound of the function G′(·). Hence,

sup
t∈Θ

|ρ(qn, t)− ρ(q, t)| → 0, (7.1)

obtaining that ρ(·, t) is continuous in l1 for each t ∈ Θ. From this latter, it is
deduced that qn ∈ Γ̃ρ eventually. In fact, if qn /∈ Γ̃ρ eventually, for all N ∈ N,
there exists kN > N such that

inf
t∈Θ\Cρ

ρ(qkN
, t) ≤ min

t∈Cρ

ρ(qkN
, t),

therefore q �∈ Γ̃ρ, which is in contradiction with the hypotheses of the theorem.
Thus, using Theorem 3.1, there exists T ρ(qn), which we denote θn to ease the
notation, and θn ∈ Cρ eventually. Finally, one has to show that θn → θ.

Note that if ρ(qn, θn) ≤ ρ(q, θ), then |ρ(qn, θn)−ρ(q, θ)| = ρ(q, θ)−ρ(qn, θn) ≤
ρ(q, θn) − ρ(qn, θn); on the other hand, if ρ(qn, θn) ≥ ρ(q, θ), then |ρ(qn, θn) −
ρ(q, θ)| = ρ(qn, θn)− ρ(q, θ) ≤ ρ(qn, θ)− ρ(q, θ). Thus,

|ρ(qn, θn)− ρ(q, θ)| ≤ |ρ(q, θn)− ρ(qn, θn)|+ |ρ(qn, θ)− ρ(q, θ)|
≤ 2 sup

t∈Θ
|ρ(qn, t)− ρ(q, t)|,

and from (7.1), ρ(qn, θn) → ρ(q, θ). Moreover, |ρ(qn, θn) − ρ(q, θn)| → 0 is also
deduced from (7.1), and as a result, ρ(q, θn) → ρ(q, θ).

If the sequence {θn}n≥0 does not converge to θ, then there exists a sub-
sequence {θnj}j∈N ⊆ {θn}n∈N such that θnj → θ∗ �= θ, as j → ∞. From
(A1), taking into account Remark 3 (a), one has that ρ(q, ·) is continuous and
ρ(q, θnj ) → ρ(q, θ∗), as j → ∞. Due to all of the above, one has ρ(q, θ) = ρ(q, θ∗),
which contradicts the uniqueness of T ρ(q).

Proof of Theorem 3.3

It is analogous to the previous proof taking into account that (7.1) for ρ = HD
is followed from

sup
t∈Θ

|HD(qn, t)
1/2 −HD(q, t)1/2| ≤ ‖q1/2n − q1/2‖2.
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Proof of Theorem 3.4

First of all, note that since p̃n,k → pk a.s., for each k ≥ 0, by Glick’s Theorem
(see [10], p.10), one has p̃n → p a.s. in l1.

(i) It is immediate from Theorem 3.2 and the fact that p̃n → p a.s. in l1.
(ii) The proof is analogous to that of Theorem 3.2 in [42]. Bearing in mind

Theorem 3.3, to obtain the eventual existence and the consistency it is enough

to prove ||p̃1/2n − p1/2||2 → 0 a.s. and this is shown from the convergence of p̃n
to p in l1 and the inequality ||p̃1/2n − p1/2||22 ≤ ||p̃n − p||1.

The measurability of θ̃ρn(p̃n) and θ̃HD
n (p̃n) is obtained by Corollary 2.1 in [6].

Proof of Theorem 4.1 (i)

To prove (i) we adapt and extend the proofs of Theorem 1 in [1] and of Theorem
3.4 in [33] developed for general continuous models. In order to facilitate the
proof, we will assume that P [Zn → ∞] = 1.

Let ρ̇(p̂n, θ) and ρ̈(p̂n, θ) be the first and the second derivative of ρ(p̂n, θ)
with respect to θ. Since θ̃ρn(p̂n) = argminθ∈Θ ρ(p̂n, θ), ρ̇(p̂n, θ̃

ρ
n(p̂n)) = 0, and

from the Taylor series expansion of ρ̇(p̂n, θ̃
ρ
n(p̂n)) around θ0 one obtains

Δ
1/2
n−1(θ̃

ρ
n(p̂n)− θ0) = −Δ

1/2
n−1ρ̇(p̂n, θ0)ρ̈(p̂n, θ

∗
n)

−1,

where θ∗n is a point between θ0 and θ̃ρn(p̂n). Consequently, from Slutsky’s The-
orem, it is enough to prove

ρ̈(p̂n, θ
∗
n)

P−→ I(θ0), (7.2)

−Δ
1/2
n−1ρ̇(p̂n, θ0)

d−→ N (0, I(θ0)) . (7.3)

Observe that

ρ̇(p̂n, θ) = −
∞∑
k=0

p′k(θ)A(δ(p̂n, θ, k)),

ρ̈(p̂n, θ
∗
n) = −

∞∑
k=0

p′′k(θ
∗
n)A(δ(p̂n, θ

∗
n, k))

+
∞∑
k=0

A′(δ(p̂n, θ
∗
n, k))(1 + δ(p̂n, θ

∗
n, k))u(θ

∗
n, k)

2pk(θ
∗
n).

On the one hand, from (A2) and (A3), δ(p̂n, θ
∗
n, k) → 0, and consequently,

using (A5), one has A(δ(p̂n, θ
∗
n, k)) → 0 a.s. and A′(δ(p̂n, θ

∗
n, k)) → 1 a.s. for

each k ∈ N0. Therefore, applying the dominated convergence theorem, (A4) and
(A5), one has

∞∑
k=0

p′′k(θ0)A(δ(p̂n, θ
∗
n, k))

P−→ 0,
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∞∑
k=0

A′(δ(p̂n, θ
∗
n, k))(1 + δ(p̂n, θ

∗
n, k))u(θ0, k)

2pk(θ0)
P−→

∞∑
k=0

u(θ0, k)
2pk(θ0) = I(θ0).

Moreover, as θ∗n converges to θ0 in probability,A(δ) andA′(δ)(1+δ) are bounded,
(4.2) and (4.3),

∞∑
k=0

p′′k(θ
∗
n)A(δ(p̂n, θ

∗
n, k))

P−→ 0,

∞∑
k=0

A′(δ(p̂n, θ
∗
n, k))(1 + δ(p̂n, θ

∗
n, k))u(θ

∗
n, k)

2pk(θ
∗
n)

P−→ I(θ0),

hence, (7.2) yields.

In order to establish (7.3), since

−Δ
1/2
n−1ρ̇(p̂n, θ0) = Δ

1/2
n−1

∞∑
k=0

p′k(θ0)δ(p̂n, θ0, k)

+ Δ
1/2
n−1

∞∑
k=0

p′k(θ0)[A(δ(p̂n, θ0, k))− δ(p̂n, θ0, k)],

again by using Slutsky’s Theorem, it is sufficient to prove that

Δ
1/2
n−1

∞∑
k=0

p′k(θ0)δ(p̂n, θ0, k)
d−→ N(0, I(θ0)), (7.4)

Δ
1/2
n−1

∞∑
k=0

p′k(θ0)[A(δ(p̂n, θ0, k))− δ(p̂n, θ0, k)]
P−→ 0. (7.5)

Note that due to
∑∞

k=0 p
′
k(θ0) = 0 and to (A4) (a), then

Δ
1/2
n−1

∞∑
k=0

p′k(θ0)δ(p̂n, θ0, k) = Δ
−1/2
n−1

n−1∑
i=0

φi(Zi)∑
j=1

u(θ0, Xij).

Thus

Δ
1/2
n−1

∞∑
k=0

p′k(θ0)δ(p̂n, θ0, k)
d
= Δ

−1/2
n−1

Δn−1∑
i=0

u(θ0, X0i),

where
d
= indicates equal in distribution. Now, bearing in mind that E[u(θ0, X0i)]=

0, V ar[u(θ0, X0i)] = I(θ0), Δn(τ
n+1
m − 1)−1(τm − 1) → τW a.s., with W the

limit variable introduced in (A3) (this property is deduced by applying Remark



316 M. González et al.

4 (c) and Cèsaro’s lemma), the hypotheses of the central limit theorem given in
Theorem I in [11] hold and one has

Δ
−1/2
n−1 I(θ0)

−1/2

Δn−1∑
i=0

u(θ0, X0i)
d−→ N(0, 1).

Consequently, (7.4) holds.
Respect to (7.5), applying |A(t2 − 1)− (t2 − 1)| ≤ B(t− 1)2 for some B > 0

(see [30], p. 1107), one has∣∣∣Δ1/2
n−1

∞∑
k=0

p′k(θ0)[A(δ(p̂n, θ0, k))− δ(p̂n, θ0, k)]
∣∣∣

≤ BΔ
1/2
n−1

∞∑
k=0

|u(θ0, k)|
(
p̂
1/2
n,k − pk(θ0)

1/2
)2

= BΔ
−1/2
n−1 τn/2m

∞∑
k=0

A2
n,k, (7.6)

with

A2
n,k = τ−n/2

m Δn−1|u(θ0, k)|
(
p̂
1/2
n,k − pk(θ0)

1/2
)2

= 2τ−n/2
m |s′k(θ0)|Δn−1sk(θ0)

−1
(
p̂
1/2
n,k − pk(θ0)

1/2
)2
, (7.7)

and recall s(θ) = p(θ)1/2. Let us demonstrate
∑∞

k=0 A
2
n,k = 1oP (1). To this end,

we prove limn→∞
∑∞

k=0 E[A2
n,k] = 0. First, taking into account that in [18] it

was proved that

(pk(θ0)(1− pk(θ0)))
−1/2Δ

1/2
n−1(p̂n,k − pk(θ0))

d→ N(0, 1),

using delta method one obtains that Δ
1/2
n−1(p̂

1/2
n,k −pk(θ0)

1/2) converges in distri-

bution. Thus, from τ
−n/2
m → 0 and Slutsky’s theorem, A2

n,k = oP (1) follows.

Second, let denote Vi(k) =
∑φi−1(Zi−1)

j=1 (I{Xi−1j=k}−pk(θ0)). It can be checked
that E[Vi(k)] = 0 and V ar[Vi(k)] = pk(θ0)(1−pk(θ0))E[ε(Zi−1)]. Moreover, us-
ing (A3)(a) and (A3)(c), for each i ∈ N, E[ε(Zi)] ≤ K ′

0E[Zi] ≤ K0τ
i
m for some

constants K ′
0,K0 ∈ R. Consequently,

E[A4
n,k] ≤ 4τ−n

m |s′k(θ0)|2pk(θ0)−1E

[( n∑
i=1

Vi(k)

)2]

= 4|s′k(θ0)|2(1− pk(θ0))τ
−n
m E

[ n∑
i=1

ε(Zi−1)

]

≤ K0|s′k(θ0)|2(1− pk(θ0))
n−1∑
i=0

τ−(n−i)
m .

1We write Xn = oP (Yn) to mean P [|Xn| > ε|Yn|] → 0, as n → ∞, for each ε > 0.
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Since
∑n−1

i=0 τ
−(n−i)
m = τ−n

m (τnm − 1)(τm − 1)−1 → (τm − 1)−1, one obtains
supn E[A4

n,k] < ∞ and {An,k}n∈N is uniformly integrable for each k ≥ 1. There-

fore, since A2
n,k = oP (1) as n → ∞, we have A2

n,k converges to 0 in l1, as n → ∞.

Moreover,
∑∞

k=0 E[A2
n,k] ≤ K

1/2
0

∑∞
k=0 |s′k(θ0)| < ∞, as a consequence, by the

dominated convergence theorem, limn→∞
∑∞

k=0 E[A2
n,k] = 0.

Now, from (7.6), since τ−n
m Δn−1 → (τm − 1)−1τW a.s., from Remark 4 (c),

one has (7.5).

Proof of Theorem 4.1 (ii)

In order to prove Theorem 4.1 (ii), we will make use of a previous result:

Lemma 1. Let be a CBP satisfying (A3) and (A6), with offspring distribution
p = p(θ0). Assume (A2), p ∈ Γ̂HD and θ0 ∈ int(Θ); then

Δ
−1/2
n−1

n∑
l=1

φl−1(Zl−1)∑
j=1

s′Xl−1j
(θ0)p

−1/2
Xl−1j

d→ N
(
0, ||s′(θ0)||22

)
,

with respect to the distribution P [·|Zn → ∞].

Proof. To simplify the proof, we assume that P [Zn → ∞] = 1. Let βl =∑φl−1(Zl−1)
j=1 s′Xl−1j

(θ0)p
−1/2
Xl−1j

and Gl = σ(Xij , φi(k) : j ≥ 1, k ≥ 0, i = 0, . . . , l −
1); then {βl,Gl}l≥0 is a martingale difference. Indeed, let ω ∈ Ω such that
Zl−1(ω) = z, one has that

E[βl|Gl−1](ω) = E

⎡⎣φl−1(z)∑
j=1

s′Xl−1j
(θ0)p

−1/2
Xl−1j

⎤⎦
= E

⎡⎣E
⎡⎣φl−1(z)∑

j=1

s′Xl−1j
(θ0)p

−1/2
Xl−1j

∣∣∣∣∣φl−1(z)

⎤⎦⎤⎦
= ε(z)E

[
s′X01

(θ0)p
−1/2
X01

]
= ε(z)

∞∑
k=0

s′k(θ0)p
1/2
k = 0,

since θ0 = argminθ∈Θ HD(p, θ). In addition, it satisfies

E[β2
l |Gl−1] = ε(Zl−1)||s′(θ0)||22 a.s. (7.8)

To show the latter, let ω ∈ Ω such that Zl−1(ω) = z; then

E[β2
l |Gl−1](ω) = V ar[βl|Gl−1](ω)

= V ar

⎡⎣φl−1(z)∑
j=1

s′Xl−1j
(θ0)p

−1/2
Xl−1j

⎤⎦
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= E

⎡⎣V ar

⎡⎣φl−1(z)∑
j=1

s′Xl−1j
(θ0)p

−1/2
Xl−1j

∣∣∣∣∣φl−1(z)

⎤⎦⎤⎦
= E

⎡⎣φl−1(z)V ar

⎡⎣ ∞∑
j=0

s′Xl−1j
(θ0)p

−1/2
Xl−1j

⎤⎦⎤⎦
= ε(z)||s′(θ0)||22 = ε(Zl−1(ω))||s′(θ0)||22.

Moreover,

Δ
−1/2
n−1

n∑
l=1

βl =

(
τnm

Δn−1

)1/2
[

1

τ
n/2
m

n∑
l=1

(
(ε(Zl−1) + 1)1/2 − (τ l−1

m τW )1/2
)
βl

(ε(Zl−1) + 1)1/2

+ (τW )
1/2

n∑
l=1

τ
−(n−l+1)/2
m βl

(ε(Zl−1) + 1)1/2

]
.

Because of τ−n
m Δn−1 → (τm − 1)−1τW a.s., it is enough to prove

n∑
l=1

(
(ε(Zl−1) + 1)1/2 − (τ l−1

m τW )1/2
)
βl

(ε(Zl−1) + 1)1/2
= oP (τ

n/2
m ), (7.9)

that is, τ
−n/2
m

∑n
l=1

(
(ε(Zl−1) + 1)1/2 − (τ l−1

m τW )1/2
)
βl(ε(Zl−1) + 1)−1/2 con-

verges to 0 in probability, and

(τm − 1)1/2
n∑

l=1

τ
−(n−l+1)/2
m βl

(ε(Zl−1) + 1)1/2
d−→ N

(
0, ||s′(θ0)||22

)
, (7.10)

as n → ∞. The proof follows similar steps to those given in Theorem 2 in [41].
For (7.9), using Cauchy-Schwarz inequality,

n∑
l=1

(
(ε(Zl−1) + 1)1/2 − (τ l−1

m τW )1/2
)
βl(ε(Zl−1) + 1)−1/2 ≤ A1/2

n B1/2
n ,

with

An =

n∑
l=1

τ (l−1)/2
m

(
((ε(Zl−1) + 1)τ−(l−1)

m )1/2 − (τW )1/2
)2

,

Bn =

n∑
l=1

τ (l−1)/2
m (ε(Zl−1) + 1)−1β2

l .

On the one hand, since (ε(Zl−1) + 1)τ
−(l−1)
m )1/2 → (τW )1/2 a.s., one has

An = o(
∑n

l=1 τ
(l−1)/2
m ) = o(τ

n/2
m ).
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Moreover, from (7.8), E[Bn] = O(τ
n/2
m ). As a consequence, An = o(τ

n/2
m ) and

Bn = 2OP (τ
n/2
m ), and hence (7.9) is proved.

To obtain (7.10), we define γnj = βn−j+1(ε(Zn−j) + 1)−1/2, j = 1, . . . , n;
then

(τm − 1)1/2
n∑

l=1

τ
−(n−l+1)/2
m βl

(ε(Zl−1) + 1)1/2
= (τm − 1)1/2

n∑
j=1

τ−j/2
m γnj

= U (n)
n = U

(n)
J + (τm − 1)1/2

n∑
j=J+1

τ−j/2
m γnj ,

where U
(n)
J = (τm − 1)1/2

∑J
j=1 τ

−j/2
m γnj , J = 1, . . . , n.

For J ≥ 1 and given (t1, . . . , tJ) ∈ R
J , using analogous arguments to those

given in the proof of Theorem 1 in [26], we prove that, as n → ∞,

E
[
exp

(
i

J∑
j=1

tjτ
−j/2
m γnj

)]
→ exp

(
− 1

2
||s′(θ0)||22

J∑
j=1

t2jτ
−j
m

)
,

that is, the random vector (τ
−1/2
m γn1, . . . , τ

−J/2
m γnJ) converges in distribution to

a J-dimensional Gaussian vector which is centered and with covariance matrix
given by ||s′(θ0)||22 diag(τ−1

m , . . . , τ−J
m ); as a consequence of the application of

delta method, one obtains that U
(n)
J

d−→ UJ , with UJ following a N(0, (τm −
1)||s′(θ0)||22

∑J
j=1 τ

−j
m ). Moreover, for every n ≥ 0 and ε > 0, using Chebyshev’s

inequality, one has

P
[
|U (n)

J − U (n)
n | > ε

]
≤ ε−2(τm − 1)E

⎡⎢⎣
⎛⎝ ∞∑

j=J+1

τ−j/2
m γnj

⎞⎠2
⎤⎥⎦

= ε−2(τm − 1)

∞∑
j=J+1

V ar
[
τ−j/2
m γnj

]
= ε−2(τm − 1)||s′(θ0)||22

∞∑
j=J+1

τ−j
m E

[
ε(Zn−j)

ε(Zn−j) + 1

]

≤ ε−2(τm − 1)||s′(θ0)||22
∞∑

j=J+1

τ−j
m .

As a result, there exists a constant k0 ≥ 0 such that

lim sup
n→∞

P
[
|U (n)

J − U (n)
n | > ε

]
≤ k0

∞∑
j=J+1

τ−j
m → 0, as J → ∞.

2We write Xn = OP (Yn) to mean that for every ε > 0 there exists a constant M such that
supn P [|Xn| > M |Yn|] < ε.
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Finally, from Theorem 25.5 in [5] and the fact that UJ
d−→ N(0, ||s′(θ0)||22), as

J → ∞, it is verified U
(n)
n

d−→ N
(
0, ||s′(θ0)||22

)
, as n → ∞, and hence (7.10) is

obtained.

Once Lemma 1 is proved, the proof of Theorem 4.1 (ii) is analogous to the
proof of Theorem 3.4 in [42]. Recall that THD(p̂n) = θ̃HD

n (p̂n) eventually exists,
so applying Theorem 3.3 of [42],

Δ
1/2
n−1(θ̃

HD
n (p̂n) − θ0) = Δ

1/2
n−1

[
an

∞∑
k=0

s′k(θ0)(p̂
1/2
n,k − pk(θ0)

1/2)

− ||s′(θ0)||−2
2

∞∑
k=0

s′k(θ0)(p̂
1/2
n,k − pk(θ0)

1/2)
]

(7.11)

where an → 0. To obtain the distribution of (7.11), one has to determine the

distribution of
∑∞

k=0 s
′
k(θ0)(p̂

1/2
n,k −pk(θ0)

1/2), which verifies
∑∞

k=0 s
′
k(θ0)(p̂

1/2
n,k −

pk(θ0)
1/2) =

∑∞
k=0 s

′
k(θ0)p̂

1/2
n,k due to θ0 = argminθ∈Θ ||pk(θ)1/2 − pk(θ0)

1/2||2.
From the fact that

∞∑
k=0

s′k(θ0)p̂
1/2
n,k =

1

2

∞∑
k=0

s′k(θ0)pk(θ0)
−1/2p̂

1/2
n,k

−1

2

∞∑
k=0

s′k(θ0)pk(θ0)
−1/2(p̂

1/2
n,k − pk(θ0)

1/2)2,

and I(θ0) = 4||s′(θ0)||22, it suffices

Δ
1/2
n−1

∞∑
k=0

s′k(θ0)pk(θ0)
−1/2p̂

1/2
n,k

d→ N(0, ||s′(θ0)||22),(7.12)

Δ
1/2
n−1

∞∑
k=0

s′k(θ0)pk(θ0)
−1/2(p̂

1/2
n,k − pk(θ0)

1/2)2
P→ 0. (7.13)

Now, from

Δ
1/2
n−1

∞∑
k=0

s′k(θ0)pk(θ0)
−1/2p̂

1/2
n,k = Δ

−1/2
n−1

n∑
l=1

φl−1(Zl−1)∑
j=1

s′Xl−1j
(θ0)pXl−1j

(θ0)
−1/2,

and Lemma 1, one has (7.12).

For each k, n ≥ 0, we define Cn,k = 2−1An,k, where A2
n,k are the random

variables introduced in (7.7). Following the same arguments as in the proof of
(i), one establishes (7.13) and this completes the proof.
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Proof of Theorem 5.1

(i) (a) Let θL = T ρ(p(θ, α, L)). If the sequence {θL}L≥0 does not converge to
θ, as L → ∞, then there will exist a subsequence, which we continue denoting
{θL}L≥0, such that θL → θ1 �= θ. From the definition of θL, for each t ∈ Θ,

ρ(p(θ, α, L), θL) ≤ ρ(p(θ, α, L), t), (7.14)

follows; moreover, applying a generalization of the dominated convergence the-
orem (see [38], p.92), one has

ρ(p(θ, α, L), θL) → ρ((1− α)p(θ), θ1), as L → ∞; (7.15)

as a consequence, from (7.14) and (7.15), for each t ∈ Θ,

ρ((1− α)p(θ), θ1) ≤ ρ((1− α)p(θ), t). (7.16)

On the one hand, since ρ∗(α, p(θ), t) = 0 if and only if t = θ, ρ∗(α, p(θ), θ1) >
0 = ρ∗(α, p(θ), θ). On the other hand, due to ρ((1 − α)p(θ), t) is an increasing
function of ρ∗(α, p(θ), t), one obtains ρ((1−α)p(θ), θ1) > ρ((1−α)p(θ), θ), which
contradicts (7.16).

(i) (b) The continuity of the function L �→ T ρ(p(θ, α, L)) is immediate and
the boundedness of the sequence {θL}L≥0 is deduced from its convergence.

(i) (c) By definition of θL, from the Taylor series expansion of ρ̇(p(θ, α, L), θL)
around θ one has

θL − θ

α
= −α−1ρ̇(p(θ, α, L), θ)

ρ̈(p(θ, α, L), θ∗L)
,

where θ∗L is a point between θ and θL. Consequently, it will be sufficient to prove

lim
α→0

α−1ρ̇(p(θ, α, L), θ) = −u(θ, L), (7.17)

lim
α→0

ρ̈(p(θ, α, L), θ∗L) = I(θ). (7.18)

With the same arguments as Theorem 4.1 (i), one can prove

ρ̇(p(θ, α, L), θ) = −
∞∑
k=0

p′k(θ)A(δ(p(θ, α, L), θ, k)),

ρ̈(p(θ, α, L), θ∗L) = −
∞∑
k=0

p′′k(θ
∗
L)A(δ(p(θ, α, L), θ

∗
L, k))

+

∞∑
k=0

A′(δ(p(θ, α, L), θ∗L, k))u(θ
∗
L, k)

2pk(θ
∗
L)

· (1 + δ(p(θ, α, L), θ∗L, k)).

Using L’Hôpital’s rule and the fact that
∑∞

k=0 p
′
k(θ) = 0, (7.17) is obtained. To

show (7.18) we use the convergence dominated theorem in the above expression.
(ii) The proof follows similar steps to Theorem 7 in [3] and it is omitted.
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