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Abstract: Many methods have been proposed for community detection in
networks, but most of them do not take into account additional information
on the nodes that is often available in practice. In this paper, we propose a
new joint community detection criterion that uses both the network edge
information and the node features to detect community structures. One
advantage our method has over existing joint detection approaches is the
flexibility of learning the impact of different features which may differ across
communities. Another advantage is the flexibility of choosing the amount of
influence the feature information has on communities. We show the method
performs well on simulated and real networks.
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1. Introduction

Community detection is a fundamental problem in network analysis, exten-
sively studied in a number of domains – see [20] and [21] for some examples
of applications. A number of approaches to community detection are based on
probabilistic models for networks with communities, such as the stochastic block
model [10], the degree-corrected stochastic block model [12], and the latent fac-
tor model [9]. Other approaches work by optimizing a criterion measuring the
strength of community structure in some sense, often through spectral approxi-
mations. Examples include normalized cuts [22], modularity [17, 16], and many
variants of spectral clustering, e.g., [19].

Many of the existing methods detect communities based only on the network
adjacency matrix. However, we often have additional information on the nodes
(node features), and sometimes edges as well, for example, [26], [25] and [11]. In
many networks the distribution of node features is correlated with community
structure [15], and thus a natural question is whether we can improve commu-
nity detection by using the node features. Several generative models for jointly
modeling the edges and the features have been proposed, including the network
random effects model [8], the embedding feature model [31], the latent variable
model [6], the discriminative approach [30], the latent multi-group membership
graph model [14], the social circles model for ego networks [15], the communi-
ties from edge structure and node attributes (CESNA) model [29], the Bayesian
Graph Clustering (BAGC) model [28], the topical communities and personal
interest (TCPI) model [7] and the modified stochastic block model [18]. The
latter paper was written after this work was completed, and while its goals are
somewhat similar to ours by also learning the relationship between the features
and the network from data, it is very different in that it postulates a model
connecting them in a particular way. Most of these models are designed for spe-
cific feature types, and their effectiveness depends heavily on the correctness
of model specification. Model-free approaches include weighted combinations
of the network and feature similarities [27, 2], attribute-structure mining [23],
simulated annealing clustering [3], and compressive information flow [24]. Most
methods in this category use all the features in the same way without deter-
mining which ones influence the community structure and which do not, and
lack flexibility in how to balance the network information with the information
coming from its node features, which do not always agree. Including irrelevant
node features can only hurt community detection by adding in noise, while
selecting features that by themselves cluster strongly may not correspond to
features that correlate with the community structure present in the adjacency
matrix.
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In this paper, we propose a new joint community detection criterion that
uses both the network adjacency matrix and the node features. The idea is that
by properly weighing edges according to feature similarities on their end nodes,
we strengthen the community structure in the network thus making it easier
to detect. Rather than using all available features in the same way, we learn
which features are most helpful in identifying the community structure from
data. Intuitively, our method looks for an agreement between clusters suggested
by two data sources, the adjacency matrix and the node features. Numerical
experiments on simulated and real networks show that our method performs
well compared to methods that use either the network alone or the features alone
for clustering, as well as to a number of benchmark joint detection methods.

2. The joint community detection criterion

Our method is designed to look for assortative community structure, that is,
the type of communities where nodes are more likely to connect to each other
if they belong to the same community, and thus there are more edges within
communities than between. This is a very common intuitive definition of commu-
nities which is incorporated in many community detection criteria, for example,
modularity [16]. Our goal is to use such a community detection criterion based
on the adjacency matrix alone, and add feature-based edge weights to improve
detection. Several criteria using the adjacency matrix alone are available, but
having a simple criterion linear in the adjacency matrix makes optimization
much more feasible in our particular situation, and we propose a new criterion
which turns out to work particularly well for our purposes. Let A denote the
adjacency matrix with Aij = 0 if there is no edge between nodes i and j, and
otherwise Aij > 0 which can be either 1 for unweighted networks or the edge
weight for weighted networks. The community detection criterion we start from
is a very simple analogue of modularity, to be maximized over all possible label
assignments e:

R(e;α) =

K∑
k=1

1

|Ek|α
∑

i,j∈Ek

Aij . (2.1)

Here e is the vector of node labels, with ei = k if node i belongs to community
k, for k = 1, . . . ,K, Ek = {i : ei = k}, and |Ek| is the number of nodes in
community k. We assume each node belongs to exactly one community, and the
number of communities K is fixed and known. Rescaling by |Ek|α is designed to
rule out trivial solutions that put all nodes in the same community, and α > 0
is a tuning parameter. When α = 2, the criterion is approximately the sum of
edge densities within communities, and when α = 1, the criterion is the sum
of average “within community” degrees, which both intuitively represent com-
munity structure. Varying the tuning parameter α allows the user to penalize
unbalanced communities (with larger α, see Sections 3.1 and A.2 for details),
which, to the best of our knowledge, makes the criterion (2.1) the first method
that allows such tuning. This criterion can be shown to be consistent under the
stochastic block model, see Section 4.



3156 Y. Zhang et al.

The ideal use of features with this criterion would be to use them to up-
weigh edges within communities and down-weigh edges between them, thus
enhancing the community structure in the observed network and making it
easier to detect. However, node features may not be perfectly correlated with
community structure, different communities may be driven by different features,
as pointed out by [15], and features themselves may be noisy. Thus we need to
learn the impact of different features on communities as well as balance the roles
of the network itself and its features. Let fi denote the p-dimensional feature
vector of node i. We propose a joint community detection criterion (JCDC),

R(e, β;wn) =

K∑
k=1

1

|Ek|α
∑

i,j∈Ek

AijW (fi, fj , βk;wn) (2.2)

where α is a tuning parameter as in (2.1), βk ∈ R
p is the coefficient vector

that defines the impact of different features on the kth community, and β :=
{β1, . . . , βK}. The criterion is then maximized over both e and β. Having a
different βk for each k allows us to learn the roles different features may play
in different communities. The balance between the information from A and
F := {f1, . . . , fn} is controlled by wn, another tuning parameter which in general
may depend on n.

For the sake of simplicity, we model the edge weight W (fi, fj , βk;wn) as a
function of the node features fi and fj via a p-dimensional vector of their simi-
larity measures φij = φ(fi, fj). The choice of similarity measures in φ depends
on the type of fi (for example, on whether the features are numerical or cate-
gorical) and is determined on a case by case basis; the only important property
is that φ assigns higher values to features that are more similar. Note that this
trivially allows the inclusion of edge features as well as node features, as long
as they are converted to some sort of similarity. To eliminate potential differ-
ences in units and scales, we standardize all φij along each feature dimension.
Finally, the function W should be increasing in 〈φij , β〉, which can be viewed
as the “overall similarity” between nodes, and for optimization purposes it is
convenient to take W to be concave. Here we use the exponential function,

wijk = W (fi, fj , βk;wn) = wn − e−〈φij ,βk〉 (2.3)

One can use other functions of similar shapes, for example, the logit exponential
function, which we found empirically to perform similarly.

3. Estimation

The joint community detection criterion needs to be optimized over both the
community assignments e and the feature parameters β. Using block coordi-
nate descent, we optimize JCDC by alternately optimizing over the labels with
fixed parameters and over the parameters with fixed labels, and iterating until
convergence.
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3.1. Optimizing over label assignments with fixed weights

When parameters β are fixed, all edge weights wijk’s can be treated as known
constants. It is infeasible to search over all nK possible label assignments, and,
like many other community detection methods, we rely on a greedy label switch-
ing algorithm to optimize over e, specifically, the tabu search [5], which updates
the label of one node at a time. Since our criterion involves the number of nodes
in each community |Ek|, no easy spectral approximations are available. Fortu-
nately, our method allows for a simple local approximate update which does not
require recalculating the entire criterion. For a given node i considered for label
switching, the algorithm will assign it to community k rather than l if

Skk + 2Si↔k

(|Ek|+ 1)α
+

Sll

|El|α
>

Skk

|Ek|α
+

Sll + 2Si↔l

(|El|+ 1)α
, (3.1)

where Skk is twice the total edge weights in community k, and Si↔k is the sum
of edge weights between node i and all the nodes in Ek. When |Ek| and |El| are
large, we can ignore +1 in the denominators, and (3.1) becomes

Si↔k

|Ek|
· |Ek|

1−α

|El|1−α
>

Si↔l

|El|
, (3.2)

which allows for a “local” update for the label of node i without calculating
the entire criterion. This also highlights the impact of the tuning parameter α:
when α = 1, the two sides of (3.2) can be viewed as averaged weights of all edges
connecting node i to communities Ek and El, respectively. Then our method as-
signs node i to the community with which it has the strongest connection. When
α �= 1, the left hand side of (3.2) is multiplied by a factor (|Ek|/|El|)1−α. Sup-
pose |Ek| is larger than |El|; then choosing 0 < α < 1 indicates a preference for
assigning a node to the larger community, while α > 1 favors smaller commu-
nities. A detailed numerical investigation of the role of α is provided in Section
A.2.

The edge weights involved in (3.2) depend on the tuning parameter wn. When
β = 0, all weights are equal to wn − 1. On the other hand, wijk ≤ wn for all
values of β. Therefore, wn/(wn − 1) is the maximum amount by which our
method can reweigh an edge. When wn is large, wn/(wn − 1) ≈ 1, and thus
the information from the network structure dominates. When wn is close to 1,
the ratio is large and the feature-driven edge weights have a large impact. See
Section A.2 for more details on the choice of wn.

While the tuning parameter wn controls the amount of influence features can
have on community detection, it does not affect the estimated parameters β for
a fixed community assignment. This is easy to see from rearranging terms in
(2.2):

R(e, β;wn) = wn

K∑
k=1

1

|Ek|α
∑

i,j∈Ek

Aij − g(e,A, β, φ) (3.3)

where the function g does not depend on wn. Note that the term containing wn

does not depend on β.
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3.2. Optimizing over weights with fixed label assignments

Since we chose a concave edge weight function (2.3), for a given community
assignment e the joint criterion is a concave function of βk, and it is straight-
forward to optimize over βk by gradient ascent. The role of βk is to control the
impact of different features on each community. One can show by a Taylor-series
type expansion around the maximum (details omitted) and also observe empir-

ically that for our method, the estimated β̂k’s are correlated with the feature
similarities between nodes in community k. In other words, our method tends to

produce a large estimated β̂
(�)
k for a feature with high similarity values φ

(�)
ij ’s for

i, j ∈ Ek. However, in the extreme case, the optimal β̂
(�)
k can be +∞ if all φ

(�)
ij ’s

are positive in community k or −∞ if all φ
(�)
ij ’s are negative (recall that similari-

ties are standardized, so this cannot happen in all communities). To avoid these
extreme solutions, we subtract a penalty term λ‖β‖1 from the criterion (2.2)
while optimizing over β. We use a very small value of λ (λ = 10−5 everywhere
in the paper) which safeguards against numerically unstable solutions but has
very little effect on other estimated coefficients.

The complete algorithm is given as pseudo-code in Section A.1. The com-
putational cost is heaviest for the step of updating community assignments;
some numerical studies of the computational cost for varying network sizes and
numbers of communities are reported in Section A.4.

4. Consistency

In this section, we focus on the properties of community detection criterion (2.1),
which serves as the foundation for the joint criterion (2.2). We show that under
certain models, (2.1) is asymptotically consistent for community detection.

Let P(Aij = 1) = ρnPcicj where ρn is a factor controlling the overall edge
density and c = (c1, . . . , cn) is the vector of true labels. Assume the following
regularity conditions hold:

1. Let Ck := {i : ci = k}. There exists a global constant π0 such that |Ck| ≥
π0n > 0 for all k.

2. For all 1 ≤ k < l ≤ K, 2(K − 1)Pkl < min(Pkk, Pll).

Condition 1 guarantees that the proportions of nodes in each community do not
vanish asymptotically. Condition 2 enforces assortativity. Note that Condition
2 can be substantially relaxed if we use α = 1, as we do for all the numerical
results later in the paper. In that case, we only need Pkl < min(Pkk, Pll) for all
1 ≤ k < l ≤ K.

Since the estimated labels e are only defined up to an arbitrary permuta-
tion of communities, we measure the agreement between e and c by |e − c| =
minσ∈PK

1
n

∑n
i=1 1(σ(ei) �= ci), where PK is the set of all permutations of

{1, . . . ,K}.
Recall we assume that the fraction of nodes in each community is bounded

below by some π0, thus we restrict the range of the estimated community size



Community detection in networks with node features 3159

to be at least π0n. Denote Eπ0 = {(E1, . . . , EK) : mink |Ek| ≥ π0n}, and let

ê = arg max
e∈Eπ0

R(e;α) ,

where R(e;α) is the criterion defined in (2.1), and ê is defined up to a permuta-
tion of community labels. We suppress the dependence of ê on α wherever there
is no confusion.

Theorem 1. Under conditions 1 and 2, if nρn → ∞, and the parameter α
satisfies

maxk,l 2(K − 1)Pkl

mink,l(Pkk, Pll)
≤ α ≤ 1 (4.1)

then we have, for any fixed δ > 0,

P

(
| arg max

e∈Eπ0
R(e;α)− c| > δ

)
→ 0 (4.2)

The proof is given in Section A.5.
The natural question to ask next is whether the joint criterion is also con-

sistent, and under what conditions. This brings to light the fundamentally dif-
ferent asymptotic behavior of community detection and multivariate clustering.
Theorem 1 indicates that, under certain conditions, (2.1) can obtain consistent
community detection from the adjacency matrix alone, with all nodes labeled
correctly with high probability. On the other hand, suppose the node features
are generated from a mixture of multivariate Gaussians, a standard set-up used
for analysis of clustering. Then it is well known that the only possible way to
obtain consistent clustering from a Gaussian mixture is to have the cluster vari-
ances go to 0, which makes the problem trivial; otherwise the best one can hope
to achieve is the Bayes risk for the corresponding classification problem. Thus
asymptotic analysis of the joint criterion can only tell us that the adjacency ma-
trix alone is enough for consistency when there is enough signal in the network,
and in that situation consistency of JCDC can be maintained by diminishing
the influence of node features as the size of the network grows. To see the real
benefits of including node features, we have to look at the finite sample perfor-
mance, and there are not enough analytic tools available right now to carry out
an analysis of this nature. Nonetheless, we see marked improvements empirically
with inclusion of node features, as was also reported by [2].

5. Simulation studies

We compare JCDC to three representative benchmark methods which use both
the adjacency matrix and the node features: CASC (Covariate Assisted Spec-
tral Clustering, [2]), CESNA (Communities from Edge Structure and Node
Attributes, [29]), and BAGC (BAyesian Graph Clustering, [28]). In addition,
we also include two standard methods that use either the network adjacency
alone (SC, spectral clustering on the Laplacian regularized with a small constant
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τ = 1e−7, as in [1]), or the node features alone (KM, K-means performed on the
p-dimensional node feature vectors, with 10 random initial starting values). We
also considered three different initialization methods for JCDC: random start-
ing values, spectral clustering regularized with the same small constant, and the
pseudo-likelihood method [1]. Detailed comparisons are provided in Section A.3.
We found that initializing with spectral clustering produces the best results, and
thus we initialize JCDC with spectral clustering for the rest of the paper.

To test these methods, we generate networks with n = 150 nodes and K =
2 communities of sizes 100 and 50 from the degree-corrected stochastic block
model as follows. The edges are generated independently with probability θiθjp
if nodes i and j are in the same community, and rθiθjp if nodes i and j are in
different communities. We set p = 0.1 and vary r from 0.25 to 0.75. We set 5%
of the nodes in each community to be “hub” nodes with the degree correction
parameter θi = 10, and for the remaining nodes set θi = 1. All resulting products
are thresholded at 0.99 to ensure there are no probability values over 1. These
settings result in the average expected node degree ranging approximately from
22 to 29.

For each node i, we generate p = 2 features, with one “signal” feature related
to the community structure and one “noise” feature whose distribution is the
same for all nodes. The “signal” feature follows the distribution N(μ, 1) for
nodes in community 1 and N(−μ, 1) for nodes in community 2, with μ varying
from 0.5 to 2 (larger μ corresponds to stronger signal). For use with CESNA,
which only allows categorical node features, we discretize the continuous node
features by partitioning the real line into 20 bins using the 0.05, 0.1, . . . , 0.95-th
quantiles. For the JCDC, based on the study of the tuning parameters in Section
A.2, we use α = 1 and compare two values of wn, wn = 1.5 and wn = 5. Finally,
agreement between the estimated communities and the true community labels is
measured by normalized mutual information, a measure commonly used in the
network literature which ranges between 0 (random guessing) and 1 (perfect
agreement). For each configuration, we repeat the experiments 30 times, and
record the average NMI over 30 replications.

Figure 1 shows the heatmaps of average NMI for all methods under these
settings, as a function of r and μ. As one would expect, the performance of
spectral clustering (c), which uses only the network information, is only affected
by r (the larger r is, the harder the problem), and the performance of K-means
(d), which uses only the features, is only affected by μ (the larger μ is, the easier
the problem). JCDC is able to take advantage of both network and feature
information by estimating the coefficients β from data, and its performance
only deteriorates when neither is informative. The informative features are more
helpful with a larger value of w (a), and conversely uninformative features affect
performance slightly more with a lower value of w (b), but this effect is not
strong. CASC (e) appears to inherit the sharp phase transition from spectral
clustering, which forms the basis of CASC; the sharp transition is perhaps due to
different community sizes and hub nodes, which are both challenging to spectral
clustering. CESNA (f) and BAGC (g) do not perform as well overall, with BAGC
often clustering all the hub nodes into one community.
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Fig 1. Performance of different methods measured by normalized mutual information as
a function of r (out-in probability ratio) and μ (feature signal strength), for networks with
K = 2, n1 = 100, n2 = 50.

Fig 2. Performance of different methods measured by normalized mutual information as a
function of r (out-in probability ratio) and μ (feature signal strength), for networks with
K = 3 and n1 = n2 = n3 = 50.

Figures 2 and 3 show the NMI results for all methods on networks with
K = 3 communities and n = 150 nodes, Figure 2 for the case of communities of
equal sizes, and Figure 3 for the unbalanced case. The setting for generating the
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Fig 3. Performance of different methods measured by normalized mutual information as a
function of r (out-in probability ratio) and μ (feature signal strength), for networks with
K = 3 and n1 = 30, n2 = 50, n3 = 70.

adjacency matrix is the same as in the previous simulation, and for node features,
we set the distribution of the “signal” feature to be N(μ, 1) for community
1, N(0, 1) for community 2 and N(−μ, 1) for community 3. The results are
similar to those in Figure 1, and the JCDC method has an advantage over other
benchmark methods for most (r, μ) combinations.

Finally, we inspect the estimated feature coefficients β̂k in each community.
Ideally, we should obtain larger estimated values of β�

k when the �-th feature
is helpful in identifying nodes in community k. Since in the simulation settings
the features affect all three communities in the same way, we report ‖β(1)‖1/K
and ‖β(2)‖1/K for the two features, averaged across communities, in Figure 4.
Overall, the coefficients for the “signal” feature are substantially larger than
the estimated coefficients for the “noise” feature. Further, as μ decreases and
the feature signal gets weaker, the estimated coefficients for the signal feature
also get smaller, while they are not affected much by changes in the network
parameter r.

6. Data applications

6.1. The world trade network

The world trade network [4] connects 80 countries based on the amount of
trade of metal manufactures between them in 1994, or when not available for
that year, in 1993 or 1995. Nodes are countries and edges represent positive
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Fig 4. Estimated ‖β̂(�)‖1/K values. First row: K = 2, n1 = 100, n2 = 50; second row: K = 3,
n1 = n2 = n3 = 50; third row: K = 3, n1 = 30, n2 = 50, n3 = 70.

amount of import and/or export between the countries. Each country also has
three categorical features: the continent (Africa, Asia, Europe, N. America, S.
America, and Oceania), the country’s structural position in the world system
in 1980 (core, strong semi-periphery, weak semi-periphery, periphery) and in
1994 (core, semi-periphery, periphery). Figures 5 (a) to (c) show the adjacency
matrix rearranged by sorting the nodes by each of the features. The partition by
continent (Figure 5(a)) clearly shows community structure, whereas the other
two features show hubs (core status countries trade with everyone), and no as-
sortative community structure. We will thus compare partitions found by all
the competing methods to the continents, and omit the three Oceania countries
from further analysis because no method is likely to detect such a small com-
munity. The two world position variables (’80 and ’94) will be used as features,
treated as ordinal variables.

The results for all methods are shown in Figure 5, along with NMI values
comparing the detected partition to the continents. All methods were run with
the true value K = 5.

The result of spectral clustering agrees much better with the continents than
that of K-means, indicating that the community structure in the adjacency ma-
trix is closer to the continents than the structure contained in the node features.
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Fig 5. (a)-(c): the adjacency matrix ordered by different node features; (d) network with nodes
colored by continent (taken as ground truth); blue is Africa, red is Asia, green is Europe, cyan
is N. America and purple is S. America. (e)-(k) community detection results from different
methods; colors are mated to (d) in the best way possible.

JCDC obtains the highest NMI value, CASC performs similarly to spectral clus-
tering, whereas CESNA and BAGC both fail to recover the continent partition.
Note that no method was able to estimate Africa well, likely due to the disas-
sortative nature of its trade seen in Figure 5 (a). Figure 5 (e) indicates that
JCDC estimated N. America, S. America and Asia with high accuracy, but split
Europe into two communities, since it was run with K = 5 and could not pick
up Africa due to its disassortative structure. Table 1 contains the estimated
feature coefficients, suggesting that in 1980 the “world position” had the most
influence on the connections formed by Asian countries, whereas in 1994 world
position mattered most in Europe.
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Table 1

Feature coefficients β̂k estimated by JCDC with w = 5. Best match is determined by
majority vote.

Community Best match Position ’80 Position ’94
blue Europe 0.000 0.143
red Asia 0.314 0.127
green Europe 0.017 0.204
cyan N. America 0.107 0.000
purple S. America 0.121 0.000

6.2. The lawyer friendship network

The second dataset we consider is a friendship network of 71 lawyers in a New
England corporate law firm [13]. Seven node features are available: status (part-
ner or associate), gender, office location (Boston, Hartford, or Providence, a very
small office with only two non-isolated nodes), years with the firm, age, practice
(litigation or corporate) and law school attended (Harvard, Yale, University
of Connecticut, or other). Categorical features with M levels are represented
by M − 1 dummy indicator variables. Figures 6 (a)-(g) show heatmap plots
of the adjacency matrix with nodes sorted by each feature, after eliminating
six isolated nodes. Partition by status (Figure 6(a)) shows a strong assortative
structure, and so does partition by office (Figure 6(c)) restricted to Boston and
Hartford, but the small Providence office does not have any kind of structure.
Thus we chose the status partition as a reference point for comparisons, though
other partitions are certainly also meaningful.

Communities estimated by different methods are shown in Figure 6 (i)-(o),
all run with K = 2. Spectral clustering and K-means have equal and reasonably
high NMI values, indicating that both the adjacency matrix and node features
contain community information. JCDC obtains the highest NMI value, with
wn = 5 performing slightly better than wn = 1.5. CASC improves upon spec-
tral clustering by using the feature information, with NMI just slightly lower
than that of JCDC with wn = 1.5. CESNA and BAGC have much lower NMI
values, possibly because of hub nodes, or because they detect communities cor-
responding to something other than status.

The estimated feature coefficients are shown in Table 2. Office location, years
with the firm, and age appear to be the features most correlated with the com-
munity structure of status, for both partners and associates, which is natural.
Practice, school, and gender are less important, though it may be hard to esti-
mate the influence of gender accurately since there are relatively few women in
the sample.

Table 2

Feature coefficients β̂k, JCDC with wn = 5.

Comm. gender office years age practice school
partner 0.290 0.532 0.212 0.390 0.095 0.000
associate 0.012 0.378 0.725 0.320 0.118 0.097
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Fig 6. (a)-(g): adjacency matrix with nodes sorted by features; (h): network with nodes colored
by status (blue is partner, red is associate); (i)-(n): community detection results from different
methods.

7. Discussion

Our method incorporates feature-based weights into a community detection cri-
terion, improving detection compared to using just the adjacency matrix or the
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node features alone, if the cluster structure in the features is related to the
community structure in the adjacency matrix. It has the ability to estimate co-
efficients for each feature within each community and thus learn which features
are correlated with the community structure. This ability guards against in-
cluding noise features which can mislead community detection. The community
detection criterion we use is designed for assortative community structure, with
more connections within communities than between, and benefits the most from
using features that have a similar clustering structure.

This work can be extended in several directions. It would be useful to develop
fast (possibly approximate) algorithms to optimize (2.2). Variation in node de-
grees, often modeled via the degree-corrected stochastic block model [12] which
regards degrees as independent of community structure, may in some cases be
correlated with node features, and accounting for degree variation jointly with
features can potentially further improve detection. Another useful extension is to
overlapping communities. One possible way to do that is to optimize each sum-
mand in JCDC (2.2) separately and in parallel, which can create overlaps, but
would require careful initialization. Statistical models that specify exactly how
features are related to community assignments and edge probabilities can also be
useful, though empirically we found no such standard models that could compete
with the non-model-based JCDC on real data. This suggests that more involved
and perhaps data-specific modeling will be necessary to accurately describe real
networks, and some of the techniques we proposed, such as community-specific
feature coefficients, could be useful in that context.

Appendix

A.1. The algorithm

Algorithm 1 JCDC algorithm

1: Input: A ∈ R
n×n, φ ∈ R

n×n×p, α, wn, λ, m, mu, mv

2: for t = 1 to m do
3: for u = 1 to mu do
4: for i = 1 to n do Update:

5: i ← argmaxk
Si↔k
|Ek|α

6: for v = 1 to mv do
7: for k = 1 to K do Update:

8: βk ← argmaxβk
1

|Ek|α
∑

i,j∈Ek
Aij

(
wn − e−〈φij ,βk〉

)
− λ‖βk‖1

A.2. Choice of tuning parameters

The JCDC method involves two user-specified tuning parameters, α and wn. In
this section, we investigate the impact of these tuning parameters on community
detection results via numerical experiments.
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First we study the impact of α, which determines the algorithm’s preference
for larger or smaller communities. We study its effect on the estimated commu-
nity size as well as on the accuracy of estimated community labels. We generate
data from a stochastic block model with n = 120 nodes and K = 2 communities
of sizes n1 and n2 = n − n1. We set the within-community edge probabilities
to 0.3 and between-community edge probabilities to 0.15, and vary n1 from 60
to 110. Since α is not related to feature weights, we set features to a constant,
resulting in unweighted networks. The results are averaged over 50 replications
and shown in Figure 7.

Fig 7. (a) The size of the larger estimated community as a function of the tuning parameter
α. (b) Estimation accuracy measured by NMI as a function of the tuning parameter α. Solid
lines correspond to JCDC and horizontal dotted lines correspond to spectral clustering, which
does not depend on α.

We report the size of the larger estimated community in Figure 7(a), and
the accuracy of community detection as measured by normalized mutual in-
formation (NMI) in Figure 7(b). For comparison, we also record the results
from spectral clustering (horizontal lines in Figure 7), which do not depend on
α. When communities are balanced (n1 = n2 = 60), JCDC performs well for
all values of α, producing balanced communities and uniformly outperforming
spectral clustering in terms of NMI. In general, larger values of α in JCDC re-
sult in more balanced communities, while smaller α’s tend to produce a large
and a small community. In terms of community detection accuracy, Figure 7(b)
shows that the JCDC method outperforms spectral clustering over a range of
values of α, and this range depends on how unbalanced the communities are.
For simplicity and ease of interpretation, we set α = 1 for all the simulations
and data analysis reported in the main manuscript; however, it can be changed
by the user if information about community sizes is available.

Next, we investigate the impact of wn, which controls the influence of fea-
tures. To study the trade-off between the two sources of information (network
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and features), we generate two different community partitions. Specifically, we
consider two communities of sizes n1 and n2, with n1 + n2 = n = 120. We gen-
erate two label vectors cA and cF , with cAi = 1 for i = 1, . . . , n1 and cAi = 2 for
i = n1 + 1, . . . , n, while the other label vector has cFi = 1 for i = 1, . . . , n2 and
cFi = 2 for i = n2 + 1, . . . , n. Then the edges are generated from the stochastic
block model based on cA, and the node features are generated based on cF . We
generate two node features: one feature is sampled from the distribution N(μ, 1)
if cFi = 1 and N(0, 1) if cFi = 2; the other feature is sampled from N(0, 1) if
cFi = 1 and N(−μ, 1) if cFi = 2. We fix μ = 3 and set α = 1, as discussed
above. We set the within- and between-community edge probabilities to 0.3 and
0.15, respectively, same as in the previous simulation, and vary the value of wn

from 1.1 to 10. Finally, we look at the the agreement between the estimated
communities ê and cA and cF , as measured by normalized mutual information.
The results are shown in Figure 8.

Fig 8. MNI between the estimated community structure ê and the network community struc-
ture cA (solid lines) and the feature community structure cF (dotted lines). Note that when
n1 = n2 = 60, cA = cF , so the solid and dotted lines coincide.

As we expect, smaller values of wn give more influence to features and thus
the estimated community structure agrees better with cF than with cA. As wn

increases, the estimated ê becomes closer to cA. In the manuscript, we compare
two values of wn, 1.5 and 5.

A.3. Initialization methods

In this section, we compare three initialization methods for JCDC: random
starts, spectral clustering regularized by a small constant τ = 1e − 7, as in
[1] (SC), and conditional pseudo-likelihood method (CPL), also from [1]. The
results are shown in Figures 9, 10 and 11, for the three different simulation
settings. Overall, spectral clustering performs the best. When K = 3 (Figures
10 and 11), CPL had some convergence issues, but when it does converge, the
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Fig 9. NMI for JCDC using different initialization methods, K = 2 communities of sizes
100, 50.

Fig 10. NMI for JCDC using different initialization methods, K = 3 communities of sizes
30, 50, 70.
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Fig 11. NMI for JCDC using different initialization methods, K = 3 communities of sizes
50, 50, 50.

results initialized by CPL are similar to those initialized by SC. Random starts
are only slightly worse that initializing by spectral clustering, suggesting that
JCDC is not particularly sensitive to starting values.

A.4. Computational cost

The proposed algorithm uses a local greedy search to update estimated commu-
nity labels and is thus computationally demanding. Empirically, we found that
the proposed algorithm is able to estimate networks of n = 500 nodes within a
few minutes. Networks with more than 1000 nodes, however, are challenging for
the proposed algorithm. In Figure 12, we show the computational time of the
proposed algorithm under varying network sizes. As we can see, as the network
size increases, the computational time increases polynomially.

A.5. Proofs

We start with summarizing notation. Let E1, . . . , EK be the estimated commu-
nities corresponding to the label vector e, and C1, . . . , CK the true communities
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Fig 12. Running time of the proposed algorithm, in log(seconds) as a function of log(network
size), where the network size ranges from 100 to 1500. For each (n,K), the experiment was
repeated 10 times and the average was plotted.

corresponding to the label vector c. Define R0(e), the “population version” of
R, as

R0(e;α) =

K∑
k=1

1

|Ek|α
∑

i,j∈Ek

ρnPcicj .

Lemma 2. If ρnn → ∞, then

P

(
max
e∈Eπ0

|R(e;α)−R0(e;α)|
ρnn2−α

> C

)
→ 0

for any global constant C > 0.

Proof of Lemma 2. By Bernstein’s inequality,

P

⎛
⎝
∣∣∣∣∣∣
∑

i,j∈Ek

(
Aij − ρnPcicj

)∣∣∣∣∣∣ ≥ t

⎞
⎠ ≤ 2 exp

(
−

1
2 t

2∑
i,j∈Ek

Var(Aij) +
1
3 t

)

≤ 2 exp

(
−

1
2 t

2

ρnn2 + 1
3 t

)

Setting t = n2ε, we have

P

⎛
⎝
∣∣∣∣∣∣
∑

i,j∈Ek

(
Aij − ρnPcicj

)∣∣∣∣∣∣ ≥ n2ε

⎞
⎠ ≤ 2 exp

(
−

1
2n

2ε2

ρn + ε
3

)
(A.1)

Taking the union bound over the K communities and applying

|Ek| ≥ π0n
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for all k, we have

P

(
|R(e)−R0(e)|πα

0

n2−α
≥ Kε

)

=P

⎛
⎝
∣∣∣∣∣∣
K∑

k=1

πα
0

|Ek|αn2−α

∑
i,j∈Ek

(
Aij − ρnPcicj

)∣∣∣∣∣∣ ≥ Kε

⎞
⎠

≤
K∑

k=1

P

⎛
⎝
∣∣∣∣∣∣

πα
0

|Ek|αn2−α

∑
i,j∈Ek

(
Aij − ρnPcicj

)∣∣∣∣∣∣ ≥ ε

⎞
⎠

≤
K∑

k=1

P

⎛
⎝
∣∣∣∣∣∣
1

n2

∑
i,j∈Ek

(
Aij − ρnPcicj

)∣∣∣∣∣∣ ≥ ε

⎞
⎠ ≤ 2K exp

(
−

1
2 t

2

ρnn2 + 1
3 t

)

where the last inequality is due to (A.1). Setting ε = ρnε0, we have

P

(
|R(e;α)−R0(e;α)|πα

0

ρnn2−α
≥ Kε0

)
≤ 2K exp

(
−

1
2ρnn

2ε20
1 + ε0

3

)
= 2K exp

(
−C1ρnn

2
)

where C1 =
1
2ε

2
0

1 + ε0
3

. Finally, taking a union bound over community assignments

e ∈ Eπ0 , we have

P

(
max
e∈Eπ0

|R(e;α)−R0(e;α)|πα
0

ρnn2−α
≥ Kε0

)
≤ 2Kn+1 exp

(
−C1ρnn

2
)

= 2K exp (−C1(ρnn− logK)n) → 0

since ρnn → ∞.

We next show that c, up to a permutation of community labels, is the
unique maximizer of R0(e;α) under mild conditions.Define U ∈ R

K×K by
Ukl =

∑n
i=1 1[ei = k, ci = l]/n, and let D be a diagonal K × K matrix with

π1, . . . , πK on the diagonal, where πk =
∑n

i=1 1[ci = k]/n is the fraction of nodes
in community Ck. Roughly speaking, U is the confusion matrix between e and
c, and U = DO for a permutation matrix O means the estimation is perfect.
Define

g(U ;α) =

K∑
k=1

∑K
l=1

∑K
l′=1 UklUkl′Pll′(∑K
a=1 Uka

)α .

Each estimated community assignment e induces a unique U = U(e). It is not
difficult to verify that

g (U(e);α) =

K∑
k=1

∑
i,j∈Ek

Pcicj

|Ek|αn2−α
=

R0(e;α)

ρnn2−α
.
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and
2|e1 − e2| = ‖U1 − U2‖1

where |e1 − e2| denotes the Hamming distance between e1 and e2.

Lemma 3. Under Condition 2, if α ∈ [max1≤k<l≤K 2(K − 1)Pkl/

min(Pkk, Pll), 1], then for all U satisfying
∑K

k=1 Ukl = πl for 1 ≤ k ≤ K, g(U)
is uniquely maximized at U = DO for O ∈ OK , where OK denotes the set of
K ×K permutation matrices.

Proof of Lemma 3. We have

g(D;α)− g(U ;α)

=
K∑
l=1

(
K∑

k=1

Ukl

)2−α

Pll −
K∑

k=1

∑K
l=1 U

2
klPll +

∑K
l=1

∑
l′ �=l UklUkl′Pll′(∑K

a=1 Uka

)α

=

K∑
l=1

⎧⎨
⎩
(

K∑
k=1

Ukl

)2−α

−
K∑

k=1

U2
kl(∑K

a=1 Uka

)α

⎫⎬
⎭Pll

−
K∑

k=1

K∑
l=1

∑
l′ �=l

⎧⎨
⎩ UklUkl′(∑K

a=1 Uka

)α

⎫⎬
⎭Pll′ (A.2)

For 0 < α ≤ 1, since Ukl ≥ 0 for all k and l, we have
(∑K

k=1 Ukl

)2−α

≥∑K
k=1 U

2−α
kl . By mid-value theorem, there exists ξkl ∈

(
0,
∑

a �=l Uka

)
, such that

(
K∑

a=1

Uka

)α

− Uα
kl = α

⎛
⎝∑

a �=l

Uka

⎞
⎠ /

(
Ukl + ξkl

)1−α

≥ α

⎛
⎝∑

a �=l

Uka

⎞
⎠ /

(
K∑

a=1

Uka

)1−α

. (A.3)

Finally, we will need the following inequality: for 0 < α ≤ 2 and x, y ≥ 0
satisfying x+ y ≤ u,

x2−α(u− x) + y2−α(u− y) ≥ xyu1−α . (A.4)

For x = y = 0, equality holds. To verify (A.4) when 0 < x+ y ≤ u, dividing by
u3−α we have

x2−α(u− x) + y2−α(u− y)− xyu1−α

u3−α

=
(x
u

)2−α (
1− x

u

)
+
(y
u

)2−α (
1− y

u

)
− xy

u2

≥
(x
u

)2 (
1− x

u

)
+
(y
u

)2 (
1− y

u

)
− xy

u2
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=

{(x
u

)2

+
(y
u

)2

− xy

u2

}(
1− x+ y

u

)
≥ 0 .

The first inequality above implies that a necessary condition for equality to hold
in (A.4) is xy = 0.

We now lower bound the first term on the right hand side of (A.2).

K∑
l=1

⎧⎨
⎩
(

K∑
k=1

Ukl

)2−α

−
K∑

k=1

U2
kl(∑K

a=1 Uka

)α

⎫⎬
⎭Pll

≥
K∑
l=1

K∑
k=1

U2−α
kl

{(∑K
a=1 Uka

)α

− Uα
kl

}
(∑K

a=1 Uka

)α Pll

≥
K∑
l=1

K∑
k=1

U2−α
kl

(∑
a �=l Uka

)
∑K

a=1 Uka

αPll ≥
K∑
l=1

K∑
k=1

U2−α
kl

(∑
a �=l Uka

)
∑K

a=1 Uka

∑
l′ �=l

2Pll′

=

K∑
k=1

⎧⎨
⎩

K∑
l=1

∑
l′ �=l

U2−α
kl

(∑
a �=l Uka

)
Pll′∑K

a=1 Uka

+

K∑
l′=1

∑
l �=l′

U2−α
kl′

(∑
a �=l′ Uka

)
Pll′∑K

a=1 Uka

⎫⎬
⎭

=

K∑
k=1

K∑
l=1

∑
l′ �=l

U2−α
kl

(∑
a �=l Uka

)
+ U2−α

kl′

(∑
a �=l′ Uka

)
∑K

a=1 Uka

Pll′

≥
K∑

k=1

K∑
l=1

∑
l′ �=l

UklUkl′(∑K
a=1 Uka

)αPll′ , (A.5)

where the last equality is obtained by applying (A.4) with x = Ukl, y = Ukl′

and u =
∑K

a=1 Uka. Plugging (A.5) into (A.2), we have

g(D;α)− g(U ;α) ≥ 0 .

It remains to show that equality holds only if U = DO for some O ∈ OK .
Note that the last inequality in (A.5) is obtained from (A.4), where equality
holds only when xy = 0. The corresponding condition for equality to hold in
(A.5) is thus UklUkl′ = 0 for all k, l and l′. Therefore, for each k, there is only
one l such that Ukl �= 0, i.e., U = DO for some O ∈ OK .

Proof of Theorem 1. For any δ > 0, define the set Uδ as follows:

Uδ = {U : min
O∈OK

‖U −OD‖1 ≥ δ} .

Since Uδ is compact, by Lemma 3 we have

max
U∈Uδ

g(U ;α) < g(D;α) .
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The event

Ωδ =

{
max
e∈Eπ0

|R(e)−R0(e)|
ρnn2−α

<
g(D;α)−maxU∈Uδ

g(U ;α)

2

}

implies that the ê that maximizes g(U(e);α) is not in Uδ, because

g(U(ê);α) =
R0(ê)

ρnn2−α
>

R(ê)

ρnn2−α
− g(D;α)−maxU∈Uδ

g(U ;α)

2

≥ R(c)

ρnn2−α
− g(D;α)−maxU∈Uδ

g(U ;α)

2

>
R0(c)

ρnn2−α
−
(
g(D;α)− max

U∈Uδ

g(U ;α)

)
= max

U∈Uδ

g(U ;α)

That is,

|ê− c| ≤ δ/2

By Lemma 2,

P(Ωδ) → 1

We have shown that ê converges to c in probability.
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