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1. Introduction

Following a suggestion of Bai and Saranadasa [1] to investigate classical statisti-
cal procedures in high-dimensional settings, Wang and Cui [27] re-examine the
usual F -test in the linear regression model under a “large p, large n” asymptotic
framework. They derive the asymptotic power in a fairly general, non-Gaussian
setting, highlighting the dependence of the local power function on the dimen-
sionality of the problem, i.e., on the limit ρ = lim p/n ∈ (0, 1), where n is sample
size, and p is the number of regressors in the model. In particular, they find that
the rejection probability of the F -test for H0 : Rβ = r0, where R = [0, Iq] and
p/n → ρ, q/n → ρ, satisfies

P(Fn > f
(1−ν)
q,n−p−1)− Φ

(
−ζ1−ν +

√
nΔβ

√
1− ρ

2ρ

)
−→ 0. (1.1)

Here Fn is the usual F -statistic, f
(1−ν)
q,n−p−1 is the appropriate F -quantile, Φ is the

cdf of the standard normal distribution, ζ1−ν = Φ−1(1 − ν) and Δβ = (Rβ −
r0)

′(RΣ−1R′)−1(Rβ − r0)/σ
2 is the scaled distance from the null hypothesis.

From this approximation we see that the local asymptotic power of the F -test
depends monotonically on the value of ρ and inflates to the nominal significance
level ν as ρ increases to one. The result of Wang and Cui [27] is consistent with
the derivations of the local asymptotic power in the case of Gaussian errors,
as obtained by Zhong and Chen [29]. Both of these studies consider only the
overall F -test for the null hypothesis that all, or almost all (cf. Condition (C3)
in Wang and Cui [27]) of the p slope coefficients are equal to zero. Also, they do
not consider hypotheses involving the intercept parameter. Here, we extend this
analysis and study the problem of testing q general linear hypotheses (including
also hypotheses on the intercept term), without the restriction that (p−q)/n →
0. In this sense, we examine the effect of the dimension of the null hypothesis
(i.e., the number of linear restrictions being tested) on the local asymptotic
rejection probability of the F -test. We find that when testing the null hypothesis
H0 : R0γ = r0, for some q × (p + 1) matrix R0 of rank q ≤ p + 1, such that
p/n → ρ1 and q/n → ρ2 ≤ ρ1, the rejection probability of the F -test satisfies

P(Fn > f
(1−ν)
q,n−p−1)− Φ

(
−ζ1−ν +

√
nΔγ

√
(1− ρ1)(1− ρ1 + ρ2)

2ρ2

)
→ 0. (1.2)

Now the asymptotic rejection probability depends also on the mean μ ∈ R
p

of the random design through Δγ = (R0γ − r0)
′(R0S

−1R′
0)

−1(R0γ − r0)/σ
2,
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where γ = (α, β′)′ is the vector of regression coefficients including an intercept
parameter α ∈ R and

S =

[
1 μ′

μ Σ+ μμ′

]
.

This limiting expression coincides with that in (1.1) if ρ1 = ρ2 and R0 = [0, R].
But (1.2) refines the statement in (1.1) and shows the impact of both the relative
number of regressors ρ1 and the relative number of hypotheses ρ2. These quan-
tities affect the asymptotic rejection probability monotonically, which is consis-
tent with small sample analyses in the Gaussian error case [cf. 12]. However, in
contrast to the complicated nature of the cdf of the non-central F -distribution
as a function in p, q and the non-centrality parameter, our asymptotic approx-
imation to the rejection probability depends on the quantities ρ1, ρ2 and Δγ

only through elementary operations and the Gaussian cdf, and it is valid for a
large class of error distributions. In particular, we see that even if ρ1 is close
to 1, the F -test still has power if ρ2 is sufficiently small. In a second step, and
under slightly more restrictive assumptions on the data generating process, we
also investigate the case where only a very small relative number of hypotheses
q/n is tested, i.e., q is bounded as n → ∞ and ρ2 = 0, and the result in (1.2)
no longer holds.

Our work heavily builds on the ideas of Wang and Cui [27] (hereafter abbre-
viated as WC). The first part of the present work is concerned with reproducing
their results under substantially more general assumptions. First of all, here we
do not require independence between the random design and the error terms,
but we assume only the usual first and second order specification of conditional
moments of the errors given the design. This extension requires a slight modi-
fication of the result of Bhansali, Giraitis and Kokoszka [5] on the asymptotic
normality of certain quadratic forms as applied by WC (cf. Lemma 6.1). Further-
more, we do not assume that the n× p design matrix X, after standardization,
consists of i.i.d. components, as is needed for the application of the famous Bai-
Yin Theorem [2] used by WC in order to control extreme eigenvalues of large
sample covariance matrices. Instead, we apply a recent result of Srivastava and
Vershynin [23] which essentially requires only certain moment restrictions on
the i.i.d. rows of X. For our extensions, we also develop a novel result on the
diagonal entries of a fairly general random projection matrix that might be of
interest on its own (see Lemma 6.3). It has the statistical interpretation that
in a moderately high-dimensional regression the leverage values hi, i.e., the di-
agonal entries of the projection matrix U(U ′U)−1U ′, where U = [ι,X] is the
design matrix including an intercept column, typically behave like p/n. Finally,
we point out that since we also consider tests on the intercept parameter, the
distribution of the F -statistic, in general, also depends on the mean μ of the
random design vectors x1, . . . , xn. This causes certain technical complications
due to non-centrality issues which are often avoided in the literature on random
design regression by restricting to the case μ = 0. Here, we present a detailed
treatment of the general case.
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The paper is organized as follows. Section 2 introduces the setup and notation
and presents our main results in Theorem 2.1 and Corollary 2.2, which provide
a precise formulation of the statement in (1.2). In Section 3, we specifically
consider the situation where q is fixed and also provide a unifying result that does
not distinguish between large or small q. Next, in Section 4 we provide a detailed
discussion of our technical assumptions and explain the main differences to those
imposed by WC. The results of an extensive numerical study are reported in
Section 5. Finally, Section 6 provides the basic steps in the proof of our main
results. Some of the more technical arguments are deferred to the appendices.

2. Model formulation and main results

We consider a random array {(yi,n, xi,n) : 1 ≤ i ≤ n, n ≥ 1} where, for each n ∈
N, the pairs (yi,n, xi,n)

n
i=1 are i.i.d. observations of a real valued response variable

y1,n and pn-dimensional random regressors x1,n with pn < n − 1, satisfying
E[y1,n|x1,n] = αn + β′

nx1,n and Var[y1,n|x1,n] = σ2
n ∈ (0,∞). Equivalently,

writing εi,n = yi,n − E[yi,n|xi,n], the observations can be represented as

yi,n = αn + β′
nxi,n + εi,n, i = 1, . . . , n, (2.1)

where the (εi,n)
n
i=1 are i.i.d., satisfying E[εi,n|xi,n] = 0 and Var[εi,n|xi,n] =

σ2
n. Note that ε1,n does not need to be independent of x1,n. For identifiability,

we also assume that Σn := Var[x1,n] is positive definite and we define μn :=
E[x1,n]. Furthermore, we adopt the matrix notation Yn = (y1,n, . . . , yn,n)

′, Xn =
[x1,n, . . . , xn,n]

′, εn = (ε1,n, . . . , εn,n)
′, γn = (αn, β

′
n)

′ and Un = [ιn, Xn], where
ιn = (1, 1, . . . , 1)′ ∈ R

n. For notational convenience we will drop the subscript n
whenever there is no risk of confusion, i.e., we write Y = Yn, X = Xn, α = αn,
β = βn, etc., keeping in mind that, unless noted otherwise, all quantities to
follow depend on sample size n. With this, the model equations in (2.1) become

Y = Uγ + ε. (2.2)

We want to test a general linear hypothesis on the coefficients γ, i.e.,

H0 : R0γ = r0 vs. H1 : R0γ �= r0, (2.3)

where R0 is a q× (p+1) matrix with rankR0 = q ≤ p+1 and r0 ∈ R
q. Without

restriction we may assume that R0 has orthonormal rows (premultiply (2.3) by
(R0R

′
0)

−1/2). We test H0 by use of the F -statistic Fn defined as

Fn =
(R0γ̂n − r0)

′(R0(U
′U)−1R′

0)
−1(R0γ̂n − r0)/q

(Y − Uγ̂n)′(Y − Uγ̂n)/(n− p− 1)
, (2.4)

provided that all the appearing quantities are well defined, and Fn = 0, other-
wise. The F -statistic is then compared to the 1−ν quantile of an F -distribution

with q and n − p − 1 degrees of freedom, which we denote by f
(1−ν)
q,n−p−1. Here,

γ̂n = (α̂n, β̂
′
n)

′ is the OLS estimate in the unrestricted model. We also define
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the usual estimator of the error variance σ̂2
n = ‖Y − Uγ̂n‖2/(n − p − 1), that

appears in the denominator of the F -statistic.
In Section 6 we prove the following results, involving the scaled distance from

the null hypothesis

Δγ := (R0γ − r0)
′(R0S

−1R′
0)

−1(R0γ − r0)/σ
2,

where

S =

[
1 μ′

μ Σ+ μμ′

]
= E

[(
1
x1

) (
1 x′

1

)]
= E [U ′U/n] .

A list of further technical conditions is given below in Section 2.1.

Theorem 2.1. Consider the linear, homoskedastic model (2.1) and set sn =

2
(

1
qn

+ 1
n−pn−1

)
and bn =

√
(1−(pn+1)/n)(1−(pn+1)/n+qn/n)

2qn/n
. Moreover, suppose

that lim supn pn/n < 1, qn → ∞ and Δγ = o(qn/n) as n → ∞. If either one of
the following three cases applies then the F -statistic satisfies

s−1/2
n (Fn − 1)−

√
nΔγbn

w−−−−→
n→∞

N (0, 1). (2.5)

(i) The assumptions (A1).(a,b,c,d) and (A2) on the random design and on
the error distribution, are satisfied, and either R0 = Ipn+1 for all n ∈ N,
or R0 = [0, Ipn ] for all n ∈ N. (In this case, either qn = pn or qn = pn+1,
and thus (pn − qn)/n → 0 holds.)

(ii) The assumptions (A1).(a,b,c,d,e) and (A2) on the random design and
on the error distribution, are satisfied, (pn − qn)/n → 0, and (R0γ −
r0)

′R0SR
′
0(R0γ − r0)/σ

2 = O(
√
qn/n) holds.

1

(iii) Assumption (A2) on the error distribution is satisfied and the design vec-
tors x1,n, . . . , xn,n are i.i.d. Gaussian with mean μn ∈ R

pn and positive
definite covariance matrix Σn.

2

By a simple argument involving Polya’s theorem this translates into the fol-
lowing corollary on the rejection probability of the F -test.

Corollary 2.2. If lim supn pn/n < 1 and qn → ∞, as n → ∞, and the conclu-
sion of Theorem 2.1 holds, then the rejection probability of the F -test satisfies

P(Fn > f
(1−ν)
qn,n−pn−1)−Φ

⎛
⎝−ζ1−ν +

√
nΔγ

√
(1− pn+1

n )(1− pn+1
n + qn

n )

2qn/n

⎞
⎠ → 0.

Here, ζ1−ν = Φ−1(1−ν) is the 1−ν quantile of the standard normal distribution
and ν ∈ (0, 1) does not depend on n.

1Notice that this additional requirement implies and strengthens the assumption that
Δγ = o(qn/n). Simply observe that, by block matrix inversion, R0S−1R′

0 = (R0SR′
0 −

R0SR′
1(R1SR′

1)
−1R1SR′

0)
−1, where R1 is a (pn+1−qn)× (pn+1) matrix with orthonormal

rows which are also orthogonal to the rows of R0. Therefore, Δγ ≤ (R0γ− r0)′R0SR′
0(R0γ−

r0)/σ2 = O(
√
qn/n).

2It is easy to see that the normality assumption implies Assumption (A1).
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Proof. It is easy to see, using Polay’s theorem and Lemma C.8, that f̃n :=

s
−1/2
n (f

(1−ν)
qn,n−pn−1 − 1) satisfies f̃n → ζ1−ν . Now use the conclusion of Theo-

rem 2.1, Polya’s theorem and the Lipschitz continuity of Φ to obtain

|P(Fn > f
(1−ν)
q,n−p−1)− Φ(−ζ1−ν + η2n)|

= |P(s−1/2
n (Fn − 1) > f̃n)− Φ(−ζ1−ν + η2n)|

= |P(s−1/2
n (Fn − 1)− η2n ≤ f̃n − η2n)− Φ(ζ1−ν − η2n)|

≤ |P(s−1/2
n (Fn − 1)− η2n ≤ f̃n − η2n)− Φ(f̃n − η2n)|

+ |Φ(f̃n − η2n)− Φ(ζ1−ν − η2n)|
≤ sup

t∈R

|P(s−1/2
n (Fn − 1)− η2n ≤ t)− Φ(t)|+ o(1) −−−−→

n→∞
0,

where η2n :=
√
nΔγbn.

If (pn − qn)/n → 0 and 0 < lim infn qn/n ≤ lim supn pn/n < 1, then Corol-
lary 2.2 recovers the result of WC under weaker assumptions on the joint dis-
tribution of the design and the errors, and for a null hypothesis that possibly
restricts also the intercept parameter α (cf. the assumptions of Theorem 2.1(i)
and (ii)). In this case the factor bn above asymptotically reduces to

bn =

√
(1− pn+1

n )(1− pn+1
n + qn

n )

2qn/n
∼

√
1− pn+1

n

2pn+1
n

,

as in (1.1). It highlights the dependence of the power function on the relative
number of regressors pn/n. However, since (pn − qn)/n → 0, the individual
roles of pn and qn can not be discerned. This shortcoming is removed here,
but it comes at the price of a stronger design condition (cf. Theorem 2.1(iii)).
It is tempting, however, to conjecture that Assumptions (A1) and (A2) are
actually sufficient also for the general case. Corollary 2.2 nicely shows the effect
of both the dimension of the parameter space as well as the dimension of the
null hypothesis, on the asymptotic power function. In particular, we see that
even in a case where the relative number of regressors pn/n is large, the classical
F -test still has power, as long as we are interested in testing only a relatively
small number of hypotheses. However, we should make a cautionary remark at
this point. In Theorem 2.1 and Corollary 2.2 we have assumed that qn → ∞.
If the number of hypotheses q being tested is too small, then the asymptotic
approximation presented above will not be very accurate, in the same way the
χ2
q distribution is not very accurately approximated by the normal if q is small.

Therefore, in the next section we specifically study the case where qn is bounded.
In Theorem 2.1, we treat the special cases of R0 = Ip+1 and R0 = [0, Ip]

separately, because here it is considerably much easier to deal with the non-
centrality term in the decomposition of the F -statistic (see Section 6.4.1). In
particular, in this case we do not need to impose further restrictions on the
distance from the null Δγ other than that it is of order o(qn/n) as n → ∞ and
we can also work with weaker design conditions (cf. Theorem 2.1(i)).
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Remark 2.3 (On the detection boundary of the F -test). In the classical setting,
where q and p are fixed, while n goes to infinity, it is well known that the
detection boundary of the F -test is n−1/2. This means that a violation of the
null hypothesis H0 : R0γ = r0 that is of the order ‖R0γ − r0‖2 
 n−1/2 leads
to non-trivial asymptotic power, while a slower order yields asymptotic power
equal to the size of the test and a larger order yields asymptotic power equal
to one. However, in general, when q = qn and p = pn are allowed to grow with
sample size n, the detection boundary of the F -test is no longer n−1/2 but rather

q
1/4
n /n1/2. To see this, first we ignore the influence of the nuisance parameters
and set μ = 0, Σ = Ip and σ2 = 1, so that S = Ip+1 and Δγ = ‖R0γ − r0‖22.
From Corollary 2.2, we see that in order to obtain non-trivial asymptotic power,
i.e., asymptotic power in the open interval (ν, 1), the non-centrality term

√
nΔγbn =

(
n1/2

q
1/4
n

‖R0γ − r0‖2

)2 √
1

2

(
1− pn + 1

n

) (
1− pn + 1

n
+

qn
n

)
,

has to stay away from 0 and ∞. If we exclude the pathological case
lim supn pn/n = 1, then this requirement is met if the violation of the null

hypothesis is of the order ‖R0γ − r0‖2 
 q
1/4
n /n1/2.

Remark 2.4 (Gaussian errors and fixed design). In the classical case where the
error ε follows a spherical normal distribution which is independent of the design,
the F -statistic (2.4) follows a non-central F -distribution with qn and n− pn− 1
degrees of freedom and non-centrality parameter ς2n = n∇n, conditional on X,
where ∇n = (R0γ − r0)

′(R0(U
′U/n)−1R′

0)
−1(R0γ − r0)/σ

2 [cf. 22, page 41].
Nevertheless, even in this traditional case, only basic monotonicity results are

available for the power function P(Fn > f
(1−ν)
qn,n−pn−1|X) as a function of qn,

n−pn−1 and ς2n [e.g., 12, 26]. In Section 6.4 we investigate ∇n as n → ∞, such
that lim supn pn/n < 1. Our results provide approximations for the average (or

unconditional) rejection probability, i.e., for E[P(Fn > f
(1−ν)
qn,n−pn−1|X)], which

are given by the Gaussian cdf applied to an elementary function in pn/n, qn/n
and Δγ = (R0γ − r0)

′(R0S
−1R′

0)
−1(R0γ − r0)/σ

2 and which are therefore easy
to interpret (cf. Corollary 2.2).

Remark 2.5 (On omitted variable misspecification). One major motivation
for us to extend the result of WC to scenarios where there is some depen-
dence between the design and the errors, and also among the components of
the standardized design vectors themselves (see Section 4 for details), was to
treat simple sub-models of high-dimensional linear models. These sub-models
typically exhibit misspecification due to omitted regressor variables. Consider
an i.i.d. sample (yi, zi)

n
i=1 from the high-dimensional linear model

yi = θ′zi + ui,

where the zi are random d-vectors with d � n that are independent of the ui,
which satisfy E[ui] = 0 and E[u2

i ] ∈ (0,∞). Moreover, assume that the marginal
distribution of the regressors zi can be represented as zi = Ω1/2z̃i, where Ω

1/2 is
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symmetric and positive definite and z̃i has a Lebesgue density fz̃ which is such
that the components of z̃i are independent with zero means, unit variances and
bounded 8-th moments, so that in particular Cov[zi] = Ω.

Now suppose we want to use only a small number p of the d available regres-
sors, with p < n, so that classical regression methods are feasible within this
subset regression problem. These working regressors can be described as

xi = M ′zi,

where M is a d×p matrix of full rank p < d. For instance, M could be a selection
matrix so that xi consists of a certain choice of p components of zi. In such a
situation, the sample (yi, xi)

n
i=1 need not follow a linear homoskedastic model

as in (2.1), because, in general, the conditional expectation E[yi|xi] is not linear
in xi and the conditional variance Var[yi|xi] is not constant if the pair (yi, xi)
is not jointly Gaussian. However, one can always write

yi = β̃′xi + ξi,

where β̃ = argminb E[(yi − b′xi)
2] and ξi = yi − β̃′xi. Here, the parameter β̃

corresponds to the best linear predictor of yi given xi, and it may be of interest
to test whether H0 : β̃ = 0, i.e., whether the selected regressors xi = M ′zi have
any value for linearly predicting the response variables yi.

Clearly, in the present setting the errors ξi are not independent of the design
vectors xi and, in general, E[ξi|xi] �= 0 and Var[ξi|xi] �= Var[ξi]. Now consider
the unobservable corrected sample (y∗i , xi)

n
i=1, where

y∗i = β̃′xi +

√
Var[ξi]

Var[ξi|xi]
(ξi − E[ξi|xi]).

The corrected sample clearly follows a linear homoskedastic model as in (2.1),
because E[y∗i |xi] = β̃′xi and Var[y∗i |xi] = Var[ξi]. Moreover, the corrected sam-
ple satisfies Assumption (A1) in view of Lemma A.2 applied with Γ = M ′Ω1/2,
μ = 0 and mn = d, and because the design matrix X = [x1, . . . , xn]

′ has a
Lebesgue density on R

n×p. Of course, in general, the actual sample (yi, xi)
n
i=1

may be very different from the corrected sample (y∗i , xi)
n
i=1, but the results

of Steinberger and Leeb [24] suggest that if d � p, then E[ξi|xi] ≈ 0 and
Var[ξi|xi] ≈ Var[ξi], at least for a large collection of selection matricesM . There-
fore, the observed sample and the corrected sample should be very similar if d
is large relative to p, and one might expect that also for a sufficiently regular
statistic T , we have T ((yi, xi)

n
i=1) ≈ T ((y∗i , xi)

n
i=1). We suspect that the results

of Steinberger and Leeb [24] can also be used to establish the validity of As-
sumption (A2) for the corrected sample, with ei,n :=

√
Var[ξi]/Var[ξi|xi] and

ε̃i,n := ξi − E[ξi|xi]. Thus, we expect the F -test for H0 : β̃ = 0 based on the
sample (yi, xi)

n
i=1 to be asymptotically valid and even possess similar power as

the F -test in a correctly specified model, for most choices of M , provided that
d = dn and p = pn tend to infinity along with n, such that dn � pn. The details
of this line of reasoning will be further developed elsewhere.
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2.1. Technical conditions

Throughout this paper, the reader will encounter several different norms. For
vectors v ∈ R

k we write ‖v‖ = (
∑k

i=1 v
2
i )

1/2 for the usual Euclidean norm,
whereas for matrices M ∈ R

k×� we distinguish between the spectral norm
‖M‖S = (λmax(M

′M))1/2 and the Frobenius norm ‖M‖F = (trace(M ′M))1/2.
We write PM for the matrix of orthogonal projection onto the column span of
M . If M satisfies rankM = � ≤ k, then PM = M(M ′M)−1M ′. We also make
use of the stochastic Landau notation. For a sequence of real random variables
zn, we say that zn = OP(1) if the sequence is bounded in probability, i.e., if
supn∈N P(|zn| > δ) → 0 as δ → ∞, and we say that zn = oP(1) if zn → 0 in
probability. For a non-stochastic real sequence an �= 0 we write zn = OP(an) if
zn/an = OP(1) and zn = oP(an) if zn/an = oP(1).

The following is a list of technical assumptions needed in the proof of Theo-
rem 2.1.

(A1) (a) The design vectors xi,n are linearly generated as follows:

xi,n = μn + Γnzi,n,

where Γn is a pn ×mn matrix with mn ≥ pn, such that ΓnΓ
′
n = Σn.

The random mn-vectors z1,n, . . . , zn,n are i.i.d. and satisfy E[z1,n] =
0, E[z1,nz

′
1,n] = Imn .

(b) The (n − 1) × (pn + 1) matrix Un,−1 = [0, In−1]Un has rank pn + 1
with probability one. (In particular, P(det(U ′

nUn) = 0) = 0.)

(c) For every n∈N, the randommn-vector z1,n from Assumption (A1).(a)
also has the following property. There exist universal positive con-
stants c and C, not depending on n, such that for every orthog-
onal projection P in R

mn and for every t > C rankP , we have
P(‖Pz1,n‖2 > t) ≤ Ct−1−c.

(d) Let z1,n be the random mn-vector from Assumption (A1).(a). For
Lk,n := sup‖v‖=1(E|v′z1,n|k)1/k we have L4,n = O(1) as n → ∞. For

every symmetric matrix Mn ∈ R
mn×mn we have Var[z′1,nMnz1,n] =

O(trace
(
M2

n

)
) + (trace(Mn))

2o(1), as n → ∞.

(e) In addition to (A1).(d), we also have L8,n = O(1) as n → ∞ and for
any projection matrix Pn in R

mn , (E[(z′1,nPnz1,n)
4])1/4 = O(‖Pn‖2F )

as n → ∞.
(A2) The error terms εi,n can be written as εi,n = ei,nε̃i,n, where ei,n is xi,n-

measurable and such that maxi=1,...,n ei,n = OP(1), and the ε̃i,n have
the following properties. There exists a universal constant κ > 0, not
depending on n, such that E[(E[|ε̃1,n/σn|4|x1,n])

1+κ] = O(1) as n → ∞,
and maxi E[(ε̃i,n/σn)

4|xi,n] = oP(
√
qn).

This set of assumptions is weaker than the analogous conditions imposed by
WC to treat the case (pn − qn)/n → 0. A detailed discussion and comparison of
the differences between our treatment and the one of WC is deferred to Section 4.
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3. Testing only a small number of hypotheses

In Theorem 2.1 above, we needed the assumption that qn → ∞ as n → ∞ in
order to achieve asymptotic normality of the F -statistic. Since the asymptotic
distribution of the F -statistic is well understood in the Gaussian error and fixed
design case (cf. Remark 2.4 and Lemma C.8), we expect the asymptotic distri-
bution of the F -statistic to be χ2

q rather than Gaussian if qn = q is fixed. The
following result establishes this asymptotic χ2 distribution for the F -statistic
when the error distribution of the model 2.1 is arbitrary up to bounded fourth
moments. For this result we need somewhat stronger assumptions than those of
Theorem 2.1. The proof is deferred to Section 6.

Theorem 3.1. Consider the linear, homoskedastic model (2.1) and assume that
the design vectors x1,n, . . . , xn,n are i.i.d. Gaussian with mean μn ∈ R

pn and
positive definite covariance matrix Σn, and that the design Xn = [x1, . . . , xn]

′

is independent of the errors εn = (ε1,n, . . . , εn,n)
′ which satisfy E[(ε1,n/σn)

4] =
O(1). Moreover, suppose that lim supn pn/n < 1, Δγ = o(qn/n) and that the
null hypothesis does not involve a restriction on the intercept parameter (i.e.,
the first column of R0 is equal to zero). If qn = q ∈ N does not depend on n,
then

s−1/2
n (Fn − 1)−

√
nΔγbn

w−−−−→
n→∞

(2q)−1/2χ2
q −

√
q/2, (3.1)

where sn and bn are as in Theorem 2.1.

Together with the asymptotic normality of the F -statistic in the case qn → ∞
(cf. Theorem 2.1), we can establish a non-central F approximation for the F -
statistic for any number of tested hypotheses qn.

Corollary 3.2. Consider the linear, homoskedastic model (2.1) and assume that
the design vectors x1,n, . . . , xn,n are i.i.d. Gaussian with mean μn ∈ R

pn and
positive definite covariance matrix Σn, and that the design Xn = [x1, . . . , xn]

′

is independent of the errors εn = (ε1,n, . . . , εn,n)
′ which satisfy E[(ε1,n/σn)

4] =
O(1). Moreover, suppose that lim supn pn/n < 1, Δγ = o(qn/n) and that the
null hypothesis does not involve a restriction on the intercept parameter (i.e.,
the first column of R0 is equal to zero). Then,

sup
t∈R

|P(Fn ≤ t)− P(Fqn,n−pn−1(λn) ≤ t)| −−−−→
n→∞

0,

where Fqn,n−pn−1(λn) denotes a random variable following the non-central F
distribution with qn and n − pn − 1 degrees of freedom and non-centrality pa-
rameter λn = Δγ(n− pn − 1 + qn).

Proof. Suppose the claim does not hold. Then there exists a subsequence n′,
such that the supremum converges to a positive number along n′. Then, by com-
pactness of the closed unit interval and the extended real line, we can extract a
further subsequence n′′, such that pn′′/n′′ → ρ1 ∈ [0, 1), qn′′/n′′ → ρ2 ∈ [0, ρ1],
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and qn′′ → q ∈ [1,∞], as n′′ → ∞. If q = ∞, then we are in the setting of The-

orem 2.1(iii) and we obtain asymptotic normality of s
−1/2
n (Fn − 1)−√

nΔγbn.
Since the limiting distribution function is continuous, we get uniform conver-
gence of the corresponding distribution functions, in view of Polya’s theorem.

Since by Lemma C.8, s
−1/2
n (Fqn,n−pn−1(λn) − 1) − √

nΔγbn is also asymptot-
ically standard normally distributed, we get a contradiction in that case. If
q < ∞, then qn′′ = q for all large n′′, because qn′′ is integer valued. Thus The-

orem 3.1 applies and shows that s
−1/2
n (Fn − 1)−√

nΔγbn converges weakly to

(2q)−1/2χ2
q−

√
q/2. Since the limiting distribution function is again continuous,

and since Lemma C.8 shows that s
−1/2
n (Fqn,n−pn−1(λn)− 1)−√

nΔγbn has the
same asymptotic distribution, we also get a contradiction in this case, upon
using the same argument as before, involving Polya’s theorem.

Corollary 3.2 provides a unified treatment of the asymptotic behavior of
the F -statistic without distinguishing between the cases qn = q and qn →
∞. However, this does not immediately lead to a neat formula for the local
asymptotic power function of the F -test because of the complicated nature of
the cdf of the non-central F -distribution.

Remark 3.3 (Fixed vs. random design). It is instructive to compare the non-
central F approximation of Corollary 3.2 to the distribution of the F -statistic in
the Gaussian error and fixed design case (cf. Remark 2.4). In the former case the
non-centrality parameter is given by nΔγ(n−pn−1+ qn)/n, while in the latter
case it is n∇n. Now if the designX is random with i.i.d. rows and S = E[U ′U/n],
U = [ι,X], it turns out that Δγ := (R0γ − r0)

′(R0S
−1R′

0)
−1(R0γ − r0)/σ

2 is
not a good approximation for ∇n := (R0γ − r0)

′(R0(U
′U/n)−1R′

0)
−1(R0γ −

r0)/σ
2 if pn/n is not close to qn/n, even if n is very large. In fact, we need a

correction factor of E[χ2
n−pn−1+qn/n] = (n− pn − 1+ qn)/n in order to account

for the additional randomness coming from the design X (cf. Lemma C.5). This
correction factor, however, is close to one if qn/n ≈ pn/n. If the number qn
of hypotheses to be tested is much smaller than the number of parameters pn,
this correction is quite significant. Thus, the limiting distribution of the F -
statistic under random design with E[U ′U/n] = S is, in general, not equal to
the distribution of the F -statistic under Gaussian errors and fixed design X
satisfying U ′U/n = S. This distinction only occurs for qn � pn. In particular,
this issue disappears completely if pn/n ≈ 0.

Remark 3.4 (On confidence sets for R0γ). Corollary 3.2 can immediately be
used to construct asymptotically valid confidence sets for R0γ. Simply define

CIν =
{
r ∈ R

q : (R0γ̂n − r)′(R0(U
′U)−1R′

0)
−1(R0γ̂n − r) ≤ f

(1−ν)
q,n−p−1σ̂

2
nq

}
,

and note that

P(R0γ /∈ CIν) = P(Fn > f
(1−ν)
q,n−p−1) → P(Fq,n−p−1(0) > f

(1−ν)
q,n−p−1) = ν,

where Fn is the F -statistic under the null hypothesis r0 = R0γ.
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4. Discussion of the technical assumptions

We pause for a moment to discuss the meaning of our Assumptions (A1) and
(A2), as well as the other conditions used in Theorem 2.1, and we comment on
the main differences to the conditions imposed in WC.

First of all, Assumption (A1).(a) of linear generation of the design from pos-
sibly much higher dimensional random vectors also appears in WC who take
it as a modification from Bai and Saranadasa [1]. We point out that this is a
straight forward generalization of the case m = p, where moment restrictions
have to be imposed directly on the design vectors xi (note that the compo-
nents of x1 may not be independent, even after standardization, whereas x1 can
still be linearly generated from a vector z1 whose components are independent).
Moreover, this assumption also allows for the interpretation that there is actu-
ally a much higher dimensional set of explanatory variables zi available whose
dimensionality m (possibly m � n) has already been reduced to p < n. See also
Remark 2.5.

Together with (A1).(a), our Conditions (A1).(d,e) replace and considerably
relax Assumption (C1) in WC, which reads as follows.

(C1) xi is linearly generated by a m-variate random vector zi = (zi1, ..., zim)′ so
that xi = Γzi+μ, where Γ is a p×mmatrix for somem ≥ p such that ΓΓ′ =
Σ, each zil has finite 8-th moment, E[zi] = 0, Var[zi] = Im, E[z4ik] = 3+Δ

and for any
∑d

j=1 �j ≤ 8, E[z�11i1z
�2
1i2

· · · z�d1id ] = E[z�11i1 ]E[z
�2
1i2

] · · ·E[z�d1id ],
where Δ is some finite constant.3

In fact, in addition to (C1), WC also need the 8-th moments of zik to be
uniformly bounded so that none of them goes off to infinity as n (and m =
mn) increases. The factorization requirement of the 8-th mixed moments in
(C1) is a straight forward relaxation of an independence assumption. How-
ever, just like the independence assumption, it rules out many spherical dis-
tributions (cf. Lemma A.1(i)). Therefore, moment conditions like (A1).(d,e)
are much more natural to accommodate both product and spherical distribu-
tions. In fact, Condition (C1), together with uniform boundedness of E[z8ik],
is strictly stronger than our Assumptions (A1).(a,d,e) (cf. Lemma A.1(iii) and
Lemma A.2(ii)).

Our Assumption (A1).(b) is important to guarantee that the F -statistic is
equal to the expression on the right-hand-side of (2.4), at least with asymptotic
probability one, which is used in WC implicitly. The reason that we not only
require almost sure invertibility of U ′U but also of the design matrix based on
n − 1 observations is only of a technical nature and plays an important role
in the proof of Lemma 6.3 (cf. the end of Subsection 6.2), which is based on
leave-one-out ideas. This lemma replaces the strong assumption of WC that
there exists a global constant c1 > 0, such that the smallest eigenvalue of the

3Note that this formulation, as it stands, is self-contradictory. Clearly, one has to assume
that the indices i1, . . . , id are distinct, or otherwise (C1) implies 1 = E[z211] = E[z111z

1
11] =

E[z11]E[z11] = 0.
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sample covariance matrix satisfies λmin(X̃
′X̃/n) ≥ c1, almost surely, where

X̃ = (X − ιμ′)Σ−1/2 is the design matrix based on the standardized regressors
(cf. page 147 in WC).4

Finally, Assumption (A1).(c) is taken directly from Srivastava and Vershynin
[23] to control the extreme eigenvalues of large sample covariance matrices, and
different sets of sufficient conditions for (A1).(c) can be found in that reference.
In WC, control of extreme eigenvalues is accomplished by use of the celebrated
Bai-Yin Theorem of Bai and Yin [2] (cf. Lemma 2 in WC). However, this comes
at the price of the implicit assumption that the standardized design vector
Σ−1/2(x1 − μ) has independent components.5

Altogether, our design condition (A1) includes linear functions of both, prod-
uct distributions with uniformly bounded 8-th marginal moments and a large
class of spherically symmetric distributions (cf. Lemma A.1 and Lemma A.2 in
Appendix A).

The Assumption (A2) on the error distribution extends the fourth moment
condition (C2) in WC, which simply states that E[(ε1,n/σn)

4] = O(1), as n →
∞.6 If the errors are independent of the design and qn → ∞ (as is the case in
WC), then (C2) and (A2) are equivalent. However, Condition (A2) is suited to
also allow for some amount of dependence between the errors and the design.
This dependence is ruled out in WC, because they use results of asymptotic
normality of quadratic forms from Bhansali, Giraitis and Kokoszka [5] that
apply only in the independence case (see Lemma 6.1 and the discussion at the
beginning of Subsection 6.2). We note that an (8+κ)-th moment condition like,
e.g., supn E[(ε̃1/σn)

8+κ] ≤ K, together with maxi ei = OP(1), is sufficient for
(A2), provided that lim infn qn/n > 0.

The additional requirement of Theorem 2.1, that lim supn pn/n < 1 and
qn → ∞, simply describes the regime of the relative number of parameters and
hypotheses we are interested in. The corresponding assumption (C3) in WC and
also parts (i) and (ii) of Theorem 2.1 additionally require that (pn− qn)/n → 0.
This is a more serious restriction which is convenient in the present strategy
of proof to show that the non-centrality term in the F -statistic under the local
alternative degenerates to the correct value (cf. Section 6.4.2). This, however,
means that asymptotically we are only dealing with hypotheses where almost
all of the p parameters are restricted, since qn/pn → 1 in this regime. It is
therefore important to extend the analysis of the rejection probability of the F -
test also to the regime where qn � pn in order to asses the different contributions
of the overall dimensionality and the multiplicity of hypothesis testing to the
asymptotic rejection probability. This is what we do in Theorem 2.1(iii) and
in Section 3 in the Gaussian design setting. The requirement that qn → ∞ as

4Notice that this assumption rules out, for example, Gaussian design [see, e.g., 11, Theorem
2.1].

5This is particularly inconvenient if one is interested in the case where the random
vectors z1, . . . , zn in (C1) (and (A1).(a)) have independent components. If both z1 and
Σ−1/2(x1 − μ) = (ΓΓ′)−1/2Γz1 have independent components and at least two rows of
(ΓΓ′)−1/2Γ have only non-zero entries (this can be relaxed even further), then, by the Darmois-
Skitovich Theorem [cf. 7, Theorem 5.3.1.], z1 must already be Gaussian.

6In WC it is implicitly assumed that lim infn σ2
n > 0.
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n → ∞ is essential in Theorem 2.1 in order to obtain a Gaussian limit. This
assumption is dropped in Theorem 3.1 and Corollary 3.2.

Finally, the assumption in Theorem 2.1 that Δγ = o(qn/n), is rather natural
in the case where lim infn qn/n > 0, where it simply reduces to Δγ = o(1). In
this case, it says that we study the asymptotic rejection probability only in a
shrinking neighborhood of the null hypothesis. If lim infn qn/n > 0, we also do
not need to specify a rate at which Δγ approaches zero. Note, however, that
part (ii) of Theorem 2.1 actually does require a specific rate of contraction which
is, again, only needed for technical reasons in establishing the asymptotic be-
havior of the non-centrality term (cf. Section 6.4). The corresponding Assump-
tion (C4) in WC is rather dubious and seems to arise from a miscalculation when
dealing with said non-centrality term. In fact, they also need the O(n−1/2) rate
of (R0γ−r0)

′R0SR
′
0(R0γ−r0)/σ

2
n imposed by our Theorem 2.1(ii) and nothing

more.7

In the case where lim infn qn/n = 0, we need the rate Δγ = o(qn/n) in order
to ensure that the mixed term in the expansion of the F -statistic is asymp-
totically negligible (cf. the discussion following display (6.7)). Note that in the
extreme case where qn = q is fixed, the assumption Δγ = o(qn/n) appears to be
somewhat restrictive because it rules out nΔγ 
 1, as required for non-trivial
local asymptotic power (cf. Remark 2.3). In the classical case where qn = q (and
pn = p) is fixed, the classical approach based on the asymptotic normality of
the OLS estimator γ̂n allows for a much wider range of local alternatives than
our present strategy. Of course, the asymptotic normality of the whole vector
γ̂n breaks down if the dimensions pn and qn are too large relative to sample
size n (see, e.g., Portnoy [20, 21]), which is why we here use a different strat-
egy involving the assumption Δγ = o(qn/n). Judging from the simulations of
Section 5 below, it seems as if some bound on Δγ that is proportional to qn
is essential for the validity of the normal approximation to the power function,
because this approximation turns out to be accurate for a larger range of Δγ if
q gets larger.

5. Numerical results

In order to better understand the quality of the theoretical approximations
to the power function of the F -test derived above, we conducted an extensive
simulation study. We roughly follow the simulation setup of WC but our focus
is more on the role of the number of tested hypotheses q. The linear model we
considered was

yi = β′xi + εi,

where the εi were i.i.d. with mean zero and variance one, independent of the
design. We tried different error distributions but found little effect on the power
function so we report only the results for N (0, 1) errors and for t(5)/

√
5/3

7See the first display on page 146 in WC, where also the matrix X2XT
2 needs to be

standardized. Also, there is a scaling factor of
√
n missing in that argument, which is necessary

to bring the non-centrality term to the same scale as the noise term.
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errors.8 The p-dimensional design vectors xi were generated as i.i.d. realizations
of a moving average process

xij =

T∑
t=1

αtzi(j+t−1),

where zi = (zi1, . . . , zi(p+T−1))
′ was either a (p + T − 1)-dimensional standard

normal vector or generated with i.i.d. Γ(1, 1) − 1 entries9 and T = 10. The
coefficients αt were generated as i.i.d. uniform from (0, 1) only once and then
held fixed across all the simulations to follow.

We tested only null hypotheses of the form

H0 : β1 = · · · = βq = 0,

at level ν = 0.05, so that the distribution of the F -statistic does neither depend
on the mean of the design vectors nor on the intercept parameter, and hence it is
no loss of generality that we have omitted both. The signal β was generated such
that half of the tested coefficients where equal to one and all the other coefficients
were equal to zero. The signal was then scaled appropriately to produce a range
of alternatives at which the power function was evaluated numerically.

Since WC have already extensively studied the effect of the dimensionality
p on the power of the F -test, we here focus more on the effect of the num-
ber of tested restrictions q. For our first set of Montecarlo experiments we fixed
n = 100 and p = 60 and looked at the cases q = 4 and q = 50. Figure 1 shows the
simulated power of the F -test (solid lines) as a function of the scaled distance
from the null hypothesis Δγ , where for each value of Δγ , 10.000 Montecarlo

samples were generated. The left column shows the results for t(5)/
√
5/3 dis-

tributed errors and a design that was generated from a moving average process
with Γ(1, 1)−1 innovations. The right column was generated with i.i.d. standard
Gaussian errors and a Gaussian moving average design. As a first observation
we note that the influence of non-Gaussianity on the simulated power (solid
lines) is almost negligible at the present sample size of n = 100. Now Figure 1
should be inspected from top to bottom. In the first row we clearly see the gain
of power as the number of hypotheses q decreases from q = 50 to q = 4. We also
compare the simulated power to the Gaussian approximation from our asymp-
totic result of Theorem 2.1 (dotted lines). The picture is qualitatively the same
as in WC, who considered q = p − 2 and who concluded “that there is a good
conformity between the empirical power and the theoretical power of the [. . . ]
F -test [. . . ]” [27, p. 142]. It seems hard to evaluate the quality of approximation
directly from this picture in absolute terms. Moreover, the Gaussian approxima-
tion does not seem to become much more accurate when q increases, contrary

8Of course, one can always completely change the picture by, e.g., taking an error distribu-
tion that does not have a finite variance. In that case none of our theoretical approximations
is of much use.

9The Γ(1, 1)-distribution is just the standard exponential distribution, but we keep the Γ
notation in the plots to facilitate comparability with WC.
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Fig 1. Simulated power functions of the F -test (Montecarlo) at level ν = 0.05, compared to
the Gaussian approximation of Corollary 2.2 (Gauss) and the non-central F approximation
of Corollary 3.2 (NCF).

to what was suggested by Theorem 2.1. In fact, however, Theorem 2.1 says that
we should look at the Gaussian approximation only locally, for values of Δγ

that are of a smaller order than q/n. Indeed, if we look at the power function in
a smaller neighborhood around the null (cf. the second row of Figure 1) we see
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Fig 2. Simulated power functions of the F -test (Montecarlo) at level ν = 0.05,Gaussian
approximation (Gauss) and the non-central F approximation (NCF) for sample size n = 30
and p = 20 regressor variables.

a much better agreement between the simulated true power and the Gaussian
approximation. We also see that when q/n is larger, the approximation is accu-
rate on a larger interval around the null, as predicted by the theory. However,
a global Gaussian approximation to the power of the F -test seems to be too
much to ask for. Finally, the last row of Figure 1 is identical to the first row,
except that we have added the theoretical approximation based on the non-
central F -distribution as in Corollary 3.2 (NCF). Compared to the Gaussian
approximation, the non-central F approximation is remarkably accurate over
the entire range of alternatives considered, not just locally, and for both large
and small values of q.

To investigate also the quality of our approximations in small samples, we
have repeated the simulations above with n = 30 and p = 20. We present
only one instance of this second round of simulations in Figure 2 to discuss the
main differences to the case where n = 100. We still find that the non-central F
approximation is much better than the Gaussian approximation, but clearly also
the quality of the former deteriorates considerably compared to the case n = 100.
However, the local behavior of the power function is still picked up quite well
even in the small sample scenario. Moreover, it is remarkable how similar the
picture with t(5)-errors is to the picture with normal errors already for n = 30.
This suggests that the dominant reason for the imperfect approximation by
the non-central F -distribution is the randomness of the design rather than the
non-Gaussianity of the errors (cf. Remark 3.3).

Finally, as in WC, we also investigate the distribution of the F -statistic under
the null hypothesis H0 : β1 = · · · = βq = 0. For different choices of n, p and q, we

have generated 10.000 Montecarlo samples of s
−1/2
n (Fn − 1) as before, but with

vanishing true signal β = 0, and for t(5)/
√
5/3-errors and regressors generated

from Γ(1, 1)−1. To investigate also the impact of a non-symmetric error distribu-
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tion we have repeated all the simulations also with the distribution of the errors
and the design interchanged.10 The plots in Figure 3 were generated by apply-
ing the R-function ‘density’ [25] to the samples of standardized F -statistics with
default settings. As before, the dashed lines correspond to the (appropriately
scaled and centered) asymptotic non-central F -approximation of Corollary 3.2
and the black dotted line is the standard normal density. The overall picture is
the same as for the power function. The non-central F approximation is remark-
ably accurate even for moderate sample sizes like n = 50. As predicted by the
theory, for large n and large q the null distribution is well approximated by the
normal, whereas for small q the normal approximation fails. We also note that,
again, the approximation accuracy appears to be rather insensitive to changes
of the error and design distributions.

6. Proofs of main results

In this section we give a high-level description of the proofs of both Theorem 2.1
and Theorem 3.1. The more technical parts of the argument are collected in
the appendices. The following outline section pertains to both proofs and uses
only assumptions that are invoked by both theorems. Note that because of
compactness and, in particular, lim supn pn/n < 1, it is no restriction to assume
that pn/n and qn/n are convergent sequences with limits ρ1 ∈ [0, 1) and ρ2 ∈
[0, ρ1], respectively.

6.1. Outline

In addition to the general model assumptions of Section 2, the present outline
section 6.1 only uses the conditions Δγ = o(qn/n), P(det(U

′U) = 0) = 0 and√
n(σ̂2

n/σ
2
n − 1) = OP(1). All of these are satisfied under the assumptions of any

part of Theorem 2.1 as well as under the assumptions of Theorem 3.1, in view
of Lemma C.1.

The first part of Section 6.1 closely follows the classical approach for the
decomposition of the F -statistic as described, e.g., in Rao and Toutenburg [22,
Chapter 3.7]. These arguments are kept to a minimum but are included nonethe-
less to make the notation more intelligible.

Recall the F -statistc Fn as defined in (2.4). For the following preliminary
consideration, we work only on the event Cn = {ω : σ̂2

n(ω) > 0, det(U ′U(ω)) �=
0}, where σ̂2

n = ‖Y − Uγ̂n‖2/(n− p− 1). On this event, Fn is given by

Fn =
(R0γ̂n − r0)

′(R0(U
′U)−1R′

0)
−1(R0γ̂n − r0)/q

σ2
n

σ2
n

σ̂2
n

. (6.1)

Setting δγ = (R0γ − r0)/σn, we have

(R0γ̂n − r0)/σn = (R0(U
′U)−1U ′Y − r0)/σn = R0(U

′U)−1U ′(ε/σn) + δγ ,

10We do not report any results for Gaussian errors here because in that case the F -statistic
follows exactly a central Fq,n−p−1-distribution under the null hypothesis, irrespective of the
design (cf. Remark 2.4).
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Fig 3. Kernel density estimates of simulated standardized F -statistics under the null hypoth-
esis (solid lines), appropriately standardized non-central F -approximation of Corrolary 3.2
(dashed lines) and the standard normal density (black dotted lines) for different choices of n,
p and q, and different design and error distributions.
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and thus, the first fraction in (6.1) reads

(ε/σn)
′U(U ′U)−1R′

0(R0(U
′U)−1R′

0)
−1R0(U

′U)−1U ′(ε/σn)/q

+ 2(ε/σn)
′U(U ′U)−1R′

0(R0(U
′U)−1R′

0)
−1δγ/q

+ δ′γ(R0(U
′U)−1R′

0)
−1δγ/q.

Next, if q < p + 1, choose a (p + 1 − q) × p matrix R1, whose rows form an
orthonormal basis for the orthogonal complement of the rows of R0. Recall that
R0 was chosen such that R0R

′
0 = Iq. Hence, T := [R′

0, R
′
1]

′ is a (p+1)× (p+1)
orthogonal matrix. Partitioning UT ′ = [U0, U1], where U0 = UR′

0 and U1 =
UR′

1, and using block matrix inversion, we see that

R0(U
′U)−1R′

0 = [Iq, 0]T (U
′U)−1T ′[Iq, 0]

′

= [Iq, 0](TU
′UT ′)−1[Iq, 0]

′

= (U ′
0(In − PU1)U0)

−1.

Similarly, we get

R0(U
′U)−1U ′ = [Iq, 0]T (U

′U)−1T ′TU ′

= (U ′
0(In − PU1)U0)

−1U ′
0(In − PU1).

Now, by writing W = (In − PU1)U0, on Cn, we can simplify the F -statistic to
read

(σ̂2
n/σ

2
n)Fn = (ε/σn)

′PW (ε/σn)/q + 2(ε/σn)
′Wδγ/q + δ′γW

′Wδγ/q.

The above representation remains correct also in the case where q = p + 1
provided that the matrix U1 is removed wherever it appears, i.e., W = U0 in

this case. The correct centering and scaling of Fn is s
−1/2
n (Fn − 1), for sn =

2(1/q+ 1/(n− p− 1)) (cf. Lemma C.8). After noting that PW = PU − PU1 and
abbreviating Mn = (PU − PU1)/q − (In − PU )/(n− p− 1), we obtain

s−1/2
n (Fn − 1) = s−1/2

n (ε/σn)
′Mn(ε/σn)

σ2
n

σ̂2
n

(6.2)

+ s−1/2
n

(
2(ε/σn)

′Wδγ/q + δ′γW
′Wδγ/q

) σ2
n

σ̂2
n

, (6.3)

on the event Cn. Now, to get rid of the restriction to Cn, define Gn by

Gn = s−1/2
n (ε/σn)

′Mn(ε/σn) + 2s−1/2
n (ε/σn)

′Wδγ/q + s−1/2
n δ′γW

′Wδγ/q,

(6.4)

and note that this is well defined everywhere. It is now elementary to verify that

we can study the asymptotic behavior of Gn instead of s
−1/2
n (Fn − 1). Simply

note that if Gn − η2n converges weakly to some limiting distribution L, for an
appropriate centering sequence η2n with η2n = o(

√
n), then, on Cn,

s−1/2
n (Fn − 1)− η2n = (Gn − η2n)(σ

2
n/σ̂

2
n) + η2n(σ

2
n/σ̂

2
n − 1)

w−−−−→
n→∞

L, (6.5)
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and P(Cn) → 1 as n → ∞, because P(det(U ′U) = 0) = 0,
√
n(σ̂2

n/σ
2
n − 1) =

OP(1) and P(σ̂2
n = 0) ≤ P(|σ̂2

n/σ
2
n − 1| > 1/2) → 0, as claimed at the beginning

of this section.
In what follows, we will establish that the first term on the right of the equal

sign in (6.4), which we denote by Qn := s
−1/2
n ε′Mnε/σ

2
n, satisfies Qn → L,

weakly, for an appropriate limit distribution L. The last summand in (6.4)

can be abbreviated to s
−1/2
n n∇n/q, where ∇n = δ′γW

′Wδγ/n =
δ′γ(R0(U

′U/n)−1R′
0)

−1δγ (as in Remark 2.4). It will play the role of a non-
centrality term and it will be shown to be asymptotically non-random. Note

that if we can also show s
−1/2
n n∇n/q = oP(

√
q), then the mixed term in (6.4)

satisfies s
−1/2
n (ε/σn)

′Wδγ/q = oP(1). Indeed, the conditional mean of the latter
expression given X is equal to zero, and its conditional variance is equal to

s−1
n n∇n/q

2 = (s
−1/2
n n∇n/q)/(

√
q
√
snq) = oP(1), provided that s

−1/2
n n∇n/q =

oP(
√
q).

Suppose, for now, that we have already established both, the weak conver-
gence

Qn
w−−−−→

n→∞
L, (6.6)

and also the fact that

s−1/2
n n∇n/q −

√
nΔγbn

i.p.−−−−→
n→∞

0, (6.7)

where bn is as in Theorem 2.1. Then, because Δγ = o(q/n), we have η2n :=√
nΔγbn = o(

√
q) = o(

√
n), as required for the argument in (6.5). It also follows

that s
−1/2
n n∇n/q = o(

√
q) + oP(1) = oP(

√
q), so we have asymptotic negligi-

bility of the mixed term in (6.4) by the argument in the previous paragraph.
Altogether, we arrive at

Gn − η2n = Qn + oP(1)
w−−−−→

n→∞
L,

which establishes the conclusion of Theorem 2.1 and Theorem 3.1, for an ap-
propriate choice of L, provided that (6.6) and (6.7) hold.

For Theorem 2.1, we will prove the weak convergence (6.6) with L = N (0, 1),
under the general Assumptions (A1).(a,b,c,d) and (A2) in Section 6.2, and the
convergence in (6.7) under each of the sets of assumptions of Theorem 2.1(i),
2.1(ii) and 2.1(iii), respectively (cf. Section 6.4).

For Theorem 3.1, we will prove the convergence (6.6) with L = (2q)−1/2χ2
q −√

q/2 in Section 6.3, and the convergence in (6.7) is established by the same
argument as in the case of Theorem 2.1(iii) in Section 6.4, which does not require
qn → ∞ nor Assumption (A2), so that it goes through also in the setting of
Theorem 3.1.

6.2. Asymptotic normality of the noise term

This section establishes the weak convergence in (6.6) with L = N (0, 1). For this
claim we only use the Assumptions (A1).(a,b,c,d), (A2), as well as pn/n → ρ1 ∈
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[0, 1), qn/n → ρ2 ∈ [0, ρ1] and qn → ∞. The following lemma is a variation of
Theorem 2.1 in Bhansali, Giraitis and Kokoszka [5] on the asymptotic normality
of quadratic forms for the case where the matrix and the enclosing vectors
may exhibit a certain dependence between each other. Its proof is deferred to
Appendix B.

Lemma 6.1. Let (Ω,F ,P) be the common probability space on which all the
random quantities below are defined. For every n ∈ N, let Gn ⊆ F be a sub-
sigma algebra, let An = (aij,n)

n
i,j=1 be a real random symmetric n × n matrix

that is Gn measurable and such that An(ω) �= 0, ∀ω ∈ Ω. Let Z1,n, . . . , Zn,n be
real random variables that are conditionally independent, given Gn, and such that
for i ≤ n, almost surely, E[Zi,n|Gn] = 0, E[Z2

i,n|Gn] = 1 and E[|Zi,n|4|Gn] < ∞.
Moreover, assume that, as n → ∞,

‖An‖2S
‖An‖2F

max
j=1,...,n

E[Z4
j,n|Gn]

i.p.−−−−→
n→∞

0,

maxj(A
2
n)jj

‖An‖2F

(
max

j=1,...,n
E[Z4

j,n|Gn]

)2
i.p.−−−−→

n→∞
0,

and

n∑
j=1

a2jj,nE[Z
4
j,n|Gn]

‖An‖2F
i.p.−−−−→

n→∞
0.

Then, for Zn = (Z1,n, . . . , Zn,n)
′, we have

Z ′
nAnZn − E[Z ′

nAnZn|Gn]√
2‖An‖F

w−−−−→
n→∞

N (0, 1).

Remark 6.2. The proof of Lemma 6.1 essentially follows the rationale of
Bhansali, Giraitis and Kokoszka [5] with the obvious modification that all the
moments of Zi,n have to be replaced by conditional moments. Note that if the
Z1,n, . . . , Zn,n are the first n elements of a sequence of i.i.d. random variables
and An is non-random, as in Bhansali, Giraitis and Kokoszka [5], then the as-
sumptions of Lemma 6.1 reduce to those imposed by Theorem 2.1(iii) in that
reference, except for the additional requirement that E[Z4

1 ] < ∞, as needed here.
By the method of Bhansali, Giraitis and Kokoszka [5] we can not get rid of this
additional requirement because their truncation argument does not apply in the
case of dependence between An and Zn.

With Lemma 6.1 at hand, we can proof the asymptotic normality of

Qn = s−1/2
n (ε/σn)

′Mn(ε/σn).

Under the linear model (2.1), the components ε1, . . . , εn of ε are conditionally
independent given the design X, with E[εi/σn|X] = 0, E[(εi/σn)

2|X] = 1 and
E[(εi/σn)

4|X] < ∞, almost surely, in view of Assumption (A2). Moreover, the
random matrix Mn = (PU −PU1)/q− (In−PU )/(n−p−1) is σ(X)-measurable
and satisfies trace(Mn) = 0 and

‖Mn‖2F = trace
(
M2

n

)
= trace

(
[(PU − PU1)/q

2 + (In − PU )/(n− p− 1)2]
)
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= 1/q + 1/(n− p− 1),

with probability one, in view of (A1).(b). Also, ‖Mn‖2F ≥ 1/(n−p−1) ≥ 1/n, ev-
erywhere, because trace(PU ) ≤ p+1. With this and in view of E[ε′Mnε|X]/σ2

n =
trace(Mn) = 0, almost surely, we see that

Qn = s−1/2
n

ε′Mnε

σ2
n

=
(ε/σn)

′Mn(ε/σn)− E[(ε/σn)
′Mn(ε/σn)|X]√

2‖Mn‖F
,

at least on a set of probability one, and it remains to verify the convergence
conditions of Lemma 6.1. For the first one, note that ‖Mn‖2S ≤ (1/q + 1/(n −
p− 1))2 and hence, almost surely,

‖Mn‖2S
‖Mn‖2F

max
j=1,...,n

E[(εj/σn)
4|X] ≤

(
1 +

q

n− p− 1

)
maxj=1,...,n E[(εj/σn)

4|X]

q
.

But clearly maxj E[(εj/σn)
4|X]/q ≤ OP(1) maxj E[(ε̃j/σn)

4|xj ]/q = oP(q
−1/2)

under Assumption (A2). Therefore, the upper bound in the previous display
converges to zero in probability. For the second condition, since the diagonal
entries of a projection matrix are between 0 and 1, we see that (M2

n)jj ≤ 1/q2+
1/(n− p− 1)2, and thus

maxj(M
2
n)jj

‖Mn‖2F

(
max

j=1,...,n
E[(εj/σn)

4|X]

)2

≤ 1 + q2/(n− p− 1)2

1 + q/(n− p− 1)
(max

i
ei)

8 (maxj E[(ε̃j/σn)
4|xj ])

2

q
,

which converges to zero in probability under Assumption (A2) and qn → ∞.
Establishing the validity of the last condition is slightly more involved. Since
‖Mn‖2F is of order 1/q, we have to show that

q

n∑
j=1

m2
jjE[(εj/σn)

4|X] ≤ (max
i

ei)
4q

n∑
j=1

m2
jjE[(ε̃j/σn)

4|X] = oP(1),

where Mn = (mij)
n
i,j=1. By Assumption (A2), (maxi ei)

4 = OP(1). Now, take
expectation and use Hölder’s inequality with a, b > 1 such that 1/a + 1/b = 1
to obtain

E

⎛
⎝q

n∑
j=1

m2
jjE[(ε̃j/σn)

4|X]

⎞
⎠

≤
(
E[(E[(ε̃1/σn)

4|x1])
b]

)1/b
q

n∑
j=1

(E[m2a
jj ])

1/a. (6.8)

Now choose b = 1+κ and invoke Assumption (A2) to show that the b-th moment
of the conditional expectation in (6.8) is O(1). To establish that

q

n∑
j=1

(E[m2a
jj ])

1/a i.p.−−−−→
n→∞

0, (6.9)

we distinguish between the cases ρ2 > 0 and ρ2 = 0.
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If ρ2 > 0, we write the diagonal elements of Mn = (PU − PU1)/q − (In −
PU )/(n− p− 1) as

mjj =
(PU )jj − (PU1)jj

q
− 1− (PU )jj

n− p− 1

=
(PU )jj − p+1

n + p+1−q
n − (PU1)jj

q
+

(PU )jj − p+1
n

n− p− 1
,

and note that (PU )jj − (p+1)/n ∈ [−1, 1] and (PU1)jj − (p+1− q)/n ∈ [−1, 1],
in order to get the bound

(
E[m2a

jj ]
)1/a

=
1

n2

(
E

[{(
(PU )jj −

p+ 1

n

) (
n

q
+

n

n− p− 1

)
+

(
p+ 1− q

n
− (PU1)jj

)
n

q

}2a
])1/a

≤ 1

n2

(
22a−1

{(
n

q
+

n

n− p− 1

)2a

E

[(
(PU )jj −

p+ 1

n

)2a
]
+

(
n

q

)2a

E

[(
(PU1)jj −

p+ 1− q

n

)2a
]})1/a

,

where we have used the inequality (c + d)2a ≤ 22a−1(c2a + d2a) for c, d ∈ R.
Hence, if we can show that the (PU )jj , for j = 1, . . . , n, and also the (PU1)jj ,
for j = 1, . . . , n, are identically distributed, then

n

n∑
j=1

(E[m2a
jj ])

1/a ≤ 2(2a−1)/aO(1)×

×
(
E

[
|(PU )11 − (p+ 1)/n|2a

]
+ E

[
|(PU1)11 − (p+ 1− q)/n|2a

])1/a
,

because n/q → 1/ρ2. Since a = (1 + κ)/κ is fixed, it then remains to show that
|(PU )11 − (p+ 1)/n| → 0 and |(PU1)11 − (p+ 1− q)/n| → 0, in probability. The
desired properties of the diagonal entries of PU and PU1 are now established by
the following lemma, which applies under the Assumptions (A1).(a,b,d), and
whose proof is deferred to Appendix B.

Lemma 6.3. For every n ∈ N, let x1,n, . . . , xn,n be i.i.d. random pn-vectors
that satisfy Assumptions (A1).(a,b) with μn ∈ R

pn and positive definite covari-
ance matrix Σn. Moreover, suppose that the random vector z1,n from Assump-
tion (A1).(a) also satisfies Var[z′1,nMnz1,n] = O(trace

(
M2

n

)
)+(trace(Mn))

2o(1),
as n → ∞, for every symmetric mn × mn matrix Mn. Let Rn be a non-
random (pn + 1) × kn matrix such that rankRn = kn ≤ pn + 1 and define
Xn = [x1,n, . . . , xn,n]

′ and Wn = [ι,Xn]Rn, where ι = (1, . . . , 1)′ ∈ R
n. Fur-

thermore, let h1,n, . . . , hn,n denote the diagonal entries of the projection matrix
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PWn . Then, the (hj,n)
n
j=1 are exchangeable random variables and

|h1,n − kn/n| −−−−→
n→∞

0,

in probability.

Remark 6.4. Note that for Rn = Ipn+1, the h1, . . . , hn in Lemma 6.3 are the
leverage values of the regression with design matrix U = [ι,X].

Altogether, we see that in the case ρ2 > 0, (6.9) holds and the weak conver-
gence

Qn = s−1/2
n

ε′Mnε

σ2
n

w−−−−→
n→∞

N (0, 1),

follows, as required in (6.6).
To treat the case ρ2 = 0, we recall from Section 6.1 that PU − PU1 =

PW = U(U ′U)−1R′
0(R0(U

′U)−1R′
0)

−1R0(U
′U)−1U ′, almost surely, by Assump-

tion (A1).(b), and write the diagonal elements of Mn = PW /q− (In−PU )/(n−
p− 1) as before as

mjj =
(PW )jj − q

n

q
+

(PU )jj − p+1
n

n− p− 1
.

Note that the (PW )jj = (1, x′
j)(U

′U)−1R′
0(R0(U

′U)−1R′
0)

−1R0(U
′U)−1(1, x′

j)
′,

for j = 1, . . . , n, are exchangeable random variables, because x1, . . . , xn are i.i.d.
and U ′U =

∑n
j=1(1, x

′
j)

′(1, x′
j) is a function in x1, . . . , xn that is invariant under

permutations of its arguments. Therefore,

q
n∑

j=1

(E[m2a
jj ])

1/a ≤ q
n∑

j=1

(
E

[( |(PW )jj − q
n |

q
+

1

n− p− 1

)2a
])1/a

=

(
E

[(√
n

q

∣∣∣(PW )11 −
q

n

∣∣∣ + √
nq

n− p− 1

)2a
])1/a

.

By boundedness of the diagonal entries of a projection matrix, it remains to
show that Hn :=

√
n/q((PW )11 − q/n) → 0, in probability, as n → ∞. By

exchangeability, and Assumption (A1).(b), it follows that q = trace(PW ) =
E[trace(PW )] =

∑n
j=1 E[(PW )jj ] = nE[(PW )11], almost surely, and thus E[Hn] =

0. Moreover, Hn ≥ −
√

q/n, and for ε > 0, 0 = E[Hn] ≥ E[Hn1{Hn>ε}]−
√

q/n,

which implies that for n large (such that
√

q/n < ε), εP(|Hn| > ε) ≤ εP(Hn >

ε)+εP(Hn < −ε) ≤ E[Hn1{Hn>ε}]+0 ≤
√

q/n. This establishes the asymptotic
normality required in (6.6) also in the case ρ2 = 0.

6.3. Asymptotic χ2-distribution of the noise term

In this section we show that under the assumptions of Theorem 3.1, (6.6) holds
with L = (2q)−1/2χ2

q −
√

q/2. First note that

Qn = s−1/2
n

ε′Mnε

σ2
n

= s−1/2
n

ε′PW ε

σ2
nq

− s−1/2
n

σ̂2
n

σ2
n

.



Dimensionality and multiplicity of hypotheses in the F -test 2609

By Lemma C.1, we have s
−1/2
n σ̂2

n/σ
2
n →

√
q/2, in probability. Since we do not

test the intercept parameter α, we can write R0 = [0, T0], for some q× p matrix
T0, and

R1 =

⎛
⎜⎜⎜⎝
1 0 · · · 0
0
...
0

T1

⎞
⎟⎟⎟⎠

for some (p − q) × p matrix T1, such that T̄ := [T ′
0, T

′
1]

′ is p × p orthogonal.
If q = p, then T0 = Ip and R1 = (1, 0, . . . , 0). With this notation, we get
U = [ι,X], U0 = UR′

0 = XT ′
0 and U1 = UR′

1 = [ι,XT ′
1]. From this we see

that the distribution of W = (In − PU1)U0 = (In − P[ι,(In−Pι)XT ′
1]
)XT ′

0 does
not depend on μ, and without loss of generality we may assume that μ = 0.
Moreover, by standard properties of orthogonal projections,

PW = PU − PU1 = PX + P(In−PX)ι −
(
PXT ′

1
+ P(In−PXT ′

1
)ι

)
= PXT̄ ′ − PXT ′

1
+ P(In−PX)ι − P(In−PXT ′

1
)ι

= P(In−PXT ′
1
)XT ′

0
+ P(In−PX)ι − P(In−PXT ′

1
)ι.

Now, abbreviate A = (In − PXT ′
1
)XT ′

0 and B = P(In−PX)ι − P(In−PXT ′
1
)ι, and

note that PA is uniformly distributed on the Grassmann manifold of n × n
projection matrices of rank q, because for an n × n orthogonal matrix O we
have OX = (OXΣ−1/2)Σ1/2

∼ X, OPAO
′ = OA(A′O′OA)−1A′O′, and

OA = (In −OXT ′
1(T1X

′O′OXT ′
1)

−1T1X
′O′)OXT ′

0

∼ (In −XT ′
1(T1X

′XT ′
1)

−1T1X
′)XT ′

0 = A.

Moreover, trace(B) = 0, almost surely, and thus E[ε′Bε/σ2
n|X] = 0 and by

standard calculations using independence (cf. the proof of Lemma C.1) and the
fact that PX = PXT̄ ′ = P[XT ′

0,XT ′
1]
,

Var[ε′Bε/σ2
n|X] = 2trace

(
B2

)
+

n∑
i=1

(E[(εi/σn)
4]− 3)B2

ii

≤ (2 + E[(ε1/σn)
4])trace

(
B2

)
= O(1)

(
2− 2

ι′(In − PX)(In − PXT ′
1
)ιι′(In − PXT ′

1
)(In − PX)ι

ι′(In − PX)ιι′(In − PXT ′
1
)ι

)

= O(1)

(
1− ι′(In − PXT̄ ′)ι

ι′(In − PXT ′
1
)ι

)
.

In view of Lemma C.7 with μ = 0 and using the first two moments of the χ2

distribution, we see that the expressions ι′(In −PXT̄ ′)ι/n and ι′(In −PXT ′
1
)ι/n

both converge to 1 − ρ1, in probability, and thus the whole expression on the
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last line of the previous display converges to zero in probability. Altogether, we
see that

Qn = (snq
2)−1/2 ε

′PAε

σ2
n

−
√
q/2 + oP(1).

Because PA is uniformly distributed on the Grassmann manifold, it can be
stochastically represented as PA ∼ CC ′, where C is a random n× q matrix that
is uniformly distributed on the Stiefel manifold of order n × q, i.e., V has or-
thonormal columns and its distribution is both left and right invariant under the
action of the appropriate orthogonal group. Since C and ε are independent, the
so called Diaconis-Freedman effect as described in Dümbgen and Conte-Zerial
[9, Theorem 2.1] entails that the conditional distribution of C ′ε/σn given C,
converges weakly in probability to a q-dimensional standard normal distribu-
tion because ‖ε/σn‖2/n → 1 in probability and ε′ε̄/(nσ2

n) → 0 in probability,
where ε̄ is an independent copy of ε. Weak convergence in probability implies
convergence of the conditional characteristic functions of C ′ε/σn given C, in
probability, which, by boundedness, implies convergence of the unconditional
characteristic functions. Consequently, we obtain the weak convergence

Qn ∼ (snq
2)−1/2‖C ′ε/σn‖2 −

√
q/2 + oP(1)

w−−−−→
n→∞

(2q)−1/2χ2
q −

√
q/2.

This establishes (6.6) with L as claimed.

6.4. Asymptotic behavior of the non-centrality term

Finally, we have to establish the convergence in (6.7) in the three cases of
Theorem 2.1(i), 2.1(ii) and 2.1(iii) as well as under the assumptions of The-

orem 3.1. We begin by a representation of s
−1/2
n n∇n/q that pertains to all of

these cases. In this preliminary consideration we only use Assumpitons (A1).(a)
and (b) which are assumed to hold in each of the cases under investigation.
Recall the conventions and definitions of Section 6.1, in particular, U = [ι,X],
T = [R′

0, R
′
1]

′, U0 = UR′
0, U1 = UR′

1, W = (In − PU1)U0, δγ = (R0γ − r0)/σn,
Δγ = δ′γ(R0S

−1R′
0)

−1δγ , and ∇n = δ′γW
′Wδγ/n = δ′γ(R0(U

′U/n)−1R′
0)

−1δγ .

Write μ̂n =
∑n

i=1 xi/n = X ′ι/n and Σ̂n = X ′X/n − μ̂nμ̂
′
n = X ′(In − Pι)X/n

and partition the (p+ 1)× (p+ 1) orthogonal matrix T as

T =

(
R0

R1

)
=

(
t0 T0

t1 T1

)
,

where t0 ∈ R
q and T0 ∈ R

q×p. Since

(U ′U/n)−1 =

(
1 μ̂′

n

μ̂n Σ̂n + μ̂nμ̂
′
n

)−1

=

(
1 + μ̂′

nΣ̂
−1
n μ̂n −μ̂′

nΣ̂
−1
n

−Σ̂−1
n μ̂n Σ̂−1

n

)
,
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almost surely, by (A1).(b), we have

s−1/2
n n∇n/q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
n
q (snq)

−1/2
√
nδ′γ(U

′
0U0/n)δγ , if q = p+ 1,√

n
q (snq)

−1/2
√
nδ′γU

′
0(In − PU1)U0δγ/n, if q ≤ p,√

n
q (snq)

−1/2
√
nδ′γ(T0Σ̂

−1
n T ′

0)
−1δγ , if t0 = 0.

(6.10)

Notice that the last two cases are not mutually exclusive, but the case t0 = 0 is
a sub-case of the case q ≤ p. The representation of ∇n in the case t0 = 0 will
come in handy. With the notation

Ω =

[
Ω00 Ω01

Ω10 Ω11

]
=

[
R0SR

′
0 R0SR

′
1

R1SR
′
0 R1SR

′
1

]
= TST ′, where

S =

(
1 μ′

μ Σ+ μμ′

)
= E

[(
1
x1

)(
1 x′

1

)]
= E[U ′U/n],

under (A1).(a), and by the simple block matrix inversion argument R0S
−1R′

0 =
[Iq, 0](TST

′)−1[Iq, 0]
′ = (Ω00 − Ω01Ω

−1
11 Ω10)

−1, involving the orthogonality of
T , we analogously get

Δγ =

⎧⎪⎨
⎪⎩
δ′γΩ00δγ , if q = p+ 1,

δ′γ(Ω00 − Ω01Ω
−1
11 Ω10)δγ , if q ≤ p,

δ′γ(T0Σ
−1T ′

0)
−1δγ , if t0 = 0.

(6.11)

6.4.1. The case of Theorem 2.1(i)

Under the assumptions of Theorem 2.1(i), choose bn as in the theorem, which can
be written as bn =

√
(1− (p+ 1)/n)(1− (p+ 1)/n+ q/n)/(2q/n) =√

n/q(snq)
−1/2(n − p − 1 + q)/n. To establish the convergence in (6.7) in the

case of q = p+ 1, first note that now bn =
√

n/q(snq)
−1/2, and consider

s−1/2
n n∇n/q −

√
nΔγbn = bn

√
nδ′γ (U

′
0U0/n− Ω00) δγ , (6.12)

which has mean zero. For the variance, we observe that Var[
√
nδ′γ(U

′
0U0/n)δγ ] =

n−1
∑n

i=1 Var[δ
′
γR0(1, x

′
i)

′(1, x′
i)R

′
0δγ ] ≤ E[|δ′γR0(1, x

′
1)

′|4] = O(|δ′γΩ00δγ |2) =
O(Δ2

γ), in view of Lemma C.3(i) and Assumption (A1).(d), and bnΔγ =

O(1)
√

n/qΔγ = o(1), by assumption. This clearly covers also the case R0 =
Ip+1. If R0 = [0, Ip], then t0 = 0, T0 = Ip, q = p and the difference in (6.7) reads

s−1/2
n n∇n/q −

√
nΔγbn =

√
n

q
(snq)

−1/2
√
nδ′γ

(
Σ̂n − Σ

n− 1

n

)
δγ .

The mean of this expression is, again, equal to zero. For its variance we find that
Var[

√
nδ′γΣ̂nδγ ] = O(|δ′γΣδγ |2), in view of Lemma C.3(ii) together with Assump-

tion (A1).(d), and
√
n/q(snq)

−1/2δ′γΣδγ = O(1)
√

n/qΔγ → 0, by assumption.
This finishes the proof of Theorem 2.1(i).
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6.4.2. The case of Theorem 2.1(ii)

For part (ii) we only need to consider the case where q ≤ p, as the case q = p+1
has already been treated above (simply restrict to the subsequence n′ such that
qn′ ≤ pn′). We establish the convergence in (6.7) for bn =

√
n/q(snq)

−1/2 rather
than bn as in the Theorem. It should be clear, however, that this is no restriction.
[Indeed, if (6.7) holds with bn =

√
n/q(snq)

−1/2 and b̃n = bn(n− p− 1 + q)/n

is as in the theorem, then
√
nΔγbn−

√
nΔγ b̃n = (bn− b̃n)

√
nΔγ = ((p+1)/n−

q/n)bn
√
nO(

√
q/n), by the additional assumption of Theorem 2.1(ii). Since in

the present case (p − q)/n → 0, the previous expression converges to zero as
n → ∞.] Now, since q ≤ p, the quantity of interest reads

s−1/2
n n∇n/q −

√
nΔγbn = bn

√
nδ′γ (U

′
0U0/n− Ω00) δγ

+ bn
√
nδ′γ

(
Ω01Ω

−1
11 Ω10 −

U ′
0U1

n

(
U ′
1U1

n

)−1
U ′
1U0

n

)
δγ . (6.13)

The first term on the right-hand-side has already been studied in (6.12), and
the same argument applies, except that now δ′γΩ00δγ �= Δγ , in general. But

bnδ
′
γΩ00δγ = O(1)

√
n/qδ′γR0SR

′
0δγ = O(n−1/2) → 0 by the additional assump-

tion of Theorem 2.1(ii). For the remaining term in (6.13), as in WC, we begin
by approximating U ′

1U1/n by Ω11. This can only be successful because here we
are dealing with a sample covariance matrix of dimension p+1− q, based on n
independent observations and we assume that (p+1− q)/n → 0. We abbreviate

Ũ0 = U0Ω
−1/2
00 and Ũ1 = U1Ω

−1/2
11 and consider the absolute difference∣∣∣∣∣√nδ′γ

[
U ′
0U1

n

(
U ′
1U1

n

)−1
U ′
1U0

n
− U ′

0U1

n
Ω−1

11

U ′
1U0

n

]
δγ

∣∣∣∣∣
=

∣∣∣∣∣∣
√
nδ′γΩ

1/2
00

Ũ ′
0Ũ1

n

⎡
⎣(

Ũ ′
1Ũ1

n

)−1

− Ip+1−q

⎤
⎦ Ũ ′

1Ũ0

n
Ω

1/2
00 δγ

∣∣∣∣∣∣
≤

∥∥∥∥∥∥
(
Ũ ′
1Ũ1

n

)−1

− Ip+1−q

∥∥∥∥∥∥
S

∥∥∥∥∥ Ũ1Ũ
′
1

n

∥∥∥∥∥
S

∥∥∥∥∥ Ũ
′
0Ũ0

n

∥∥∥∥∥
S

√
nδ′γΩ00δγ . (6.14)

Now, Lemma C.3(iii) with kn = p + 1 − q shows that ‖Ũ ′
1Ũ1/n − Ip+1−q‖S →

0 in probability, since kn/n → 0, and it also establishes the boundedness
in probability of ‖Ũ1Ũ

′
1/n‖S‖Ũ ′

0Ũ0/n‖S . The assumptions of this lemma are
clearly satisfied under (A1).(a,c,d). Now the convergence in spectral norm im-
plies the convergence of the extreme eigenvalues of Ũ ′

1Ũ1/n to 1, and thus,
also the extreme eigenvalues of the inverse converge to 1, which means that
‖(Ũ ′

1Ũ1/n)
−1 − Ip+1−q‖S → 0, in probability. Since bn

√
nδ′γΩ00δγ = O(1), by

the additional assumption of Theorem 2.1(ii), the upper bound in (6.14) con-
verges to zero in probability. Thus, we have shown that we can replace U ′

1U1/n
in (6.13) by Ω11, without changing the limit.
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To finish part (ii) it remains to show that bnBn converges to zero in proba-
bility, where

Bn :=
√
nδ′γ

[
U ′
0U1

n
Ω−1

11

U ′
1U0

n
− Ω01Ω

−1
11 Ω10

]
δγ .

To evaluate its expectation, write

Bn =
1

n2

n∑
i,j=1

√
nδ′γ

[
R0(1, x

′
i)

′(1, x′
i)R

′
1Ω

−1
11 R1(1, x

′
j)

′(1, x′
j)R

′
0 −Ω01Ω

−1
11 Ω10

]
δγ .

Since E[R0(1, x
′
i)

′(1, x′
i)R

′
1] = R0SR

′
1 = Ω01, all summands in E[Bn] with dis-

tinct indices i �= j disappear. Using parts (i) and (iv) of Lemma C.3, which
apply in view of Assumptions (A1).(a,d), we arrive at

|E[Bn]| =
∣∣∣ 1
n

√
nδ′γE[R0(1, x

′
1)

′(1, x′
1)R

′
1Ω

−1
11 R1(1, x

′
1)

′(1, x′
1)R

′
0]δγ

− 1

n

√
nδ′γΩ01Ω

−1
11 Ω10δγ

∣∣∣
≤ n−1/2

√
E[|δ′γR0(1, x′

1)
′|4]E[|(1, x′

1)R
′
1Ω

−1
11 R1(1, x′

1)
′|2]

+ n−1/2δ′γΩ01Ω
−1
11 Ω10δγ

= n−1/2
√
O(|δ′γR0SR′

0δγ |2)O((p+ 1− q)2) + n−1/2δ′γΩ01Ω
−1
11 Ω10δγ

= O(
√
nδ′γΩ00δγ (p+ 1− q)/n) + n−1/2δ′γΩ01Ω

−1
11 Ω10δγ .

After multiplying by bn, the upper bound still converges to zero, because, first,
bn
√
nδ′γΩ00δγ = O(1) and (p + 1 − q)/n → 0, by the additional assumptions

of Theorem 2.1(ii), and because bnn
−1/2δ′γΩ01Ω

−1
11 Ω10δγ ≤ bnn

−1/2δ′γΩ00δγ =
O(n−1), where the inequality holds in view of the second case in (6.11).

In order to show that the distribution of Bn also concentrates around its
mean, we make use of the Efron-Stein inequality.11 We use the abbreviations
D = δ′γΩ01Ω

−1
11 Ω10δγ , Li = δ′γR0(1, x

′
i)

′, Qij = (1, x′
i)R

′
1Ω

−1
11 R1(1, x

′
j)

′ and de-

fine the functions g : Rp×n → R and gk : Rp×(n−1) → R, for k = 1, . . . , n, by
g(x1, . . . , xn) = n−3/2

∑n
i,j=1 LiQijLj −

√
nD = Bn and

gk(x1, . . . , xk−1, xk+1, . . . , xn) = n−3/2
n∑

i,j=1
i �=k,j �=k

LiQijLj −
√
nD.

By the Efron-Stein inequality [18, Theorem 9],

Var[Bn] ≤
n∑

k=1

E[(g(x1, . . . , xn)− gk(x1, . . . , xk−1, xk+1, . . . , xn))
2]. (6.15)

11An explicit argument for the concentration aspect of Bn is missing in WC.
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Now, for k ∈ {1, . . . , n}, g(x1, . . . , xn) can be expressed as

n−3/2

⎡
⎢⎢⎣

n∑
i,j=1

i �=k,j �=k

LiQijLj +

n∑
i=1
i �=k

LiQikLk +

n∑
i=1
i �=k

LkQkiLi + LkQkkLk

⎤
⎥⎥⎦−

√
nD.

Using the fact that Qij = Q′
ij = Qji, the differences g − gk in (6.15), are equal

to

n−3/2

⎡
⎢⎣2 n∑

i=1
i �=k

LiQikLk + LkQkkLk

⎤
⎥⎦ . (6.16)

We need to bound the expectation of the squared expression. To this end, we
calculate the expectation of LiQikLkLjQjkLk for arbitrary indices i, j, k, as
well as in the special case where i �= k, j �= k and i �= j. Observe that

Qik is the inner product of Ω
−1/2
11 R1(1, x

′
i)

′ and Ω
−1/2
11 R1(1, x

′
k)

′ and there-
fore, by Cauchy-Schwarz inequalities in both Euclidean and Lp space, satisfies

E[|Qik|4] ≤ E[‖Ω−1/2
11 R1(1, x

′
i)

′‖4‖Ω−1/2
11 R1(1, x

′
k)

′‖4] ≤ E[‖Ω−1/2
11 R1(1, x

′
1)

′‖8] =
E[Q4

11]. Moreover, parts (i) and (v) of Lemma C.3, whose assumptions are im-
plied by the conditions (A1).(a,d,e), establish the facts E[L4

1] = O(|δ′γΩ00δγ |2),
E[L8

1] = O(|δ′γΩ00δγ |4) and E[Q4
11] = O(|p + 1 − q|4), provided that at least

one of the assumptions (a) or (b) of Lemma C.3(v) holds. But this follows from
Lemma C.4, because if t0 = 0, then from the representations of ∇n and Δγ in
(6.10) and (6.11), we see that the distribution of the quantity of interest does
not depend on μ and we may restrict to μ = 0, whereas, if t0 �= 0, Lemma C.4
shows that T1 has full rank.12 With this, in general, we obtain

|E[LiQikLkLjQjkLk]| = |E[LiLjL
2
kQikQjk]| ≤

√
E[L2

iL
2
jL

4
k]E[Q

2
ikQ

2
jk]

≤ (E[L8
1])

1/2(E[Q4
ik])

1/4(E[Q4
jk])

1/4 ≤ (E[L8
1])

1/2(E[Q4
11])

1/2

= O(|δ′γΩ00δγ |2)O(|p+ 1− q|2) = O(q|p+ 1− q|2/n2).

If i �= k, j �= k and i �= j, using the abbreviations v = R′
0δγ and M = R′

1Ω
−1
11 R1,

we get the smaller bound

|E[LiQikLkLjQjkLk]| = |E[E[LiQik|xk, xj ]LjQjkL
2
k]|

= |E[v′SM(1, x′
k)

′
E[LjQjk|xk]L

2
k]| = |E[(v′SM(1, x′

k)
′)2L2

k]|

≤
√

E[(v′SM(1, x′
k)

′)4]E[L4
k] =

√
O(|v′SMSMSv|2)O(|δ′γΩ00δγ |2)

= O(δ′γΩ01Ω
−1
11 Ω10δγ)O(δ′γΩ00δγ) ≤ O(|δ′γΩ00δγ |2) = O(q/n2),

12It should be noted that the case t0 = 0 corresponds to a null-hypothesis that does not
involve a restriction on the intercept parameter α, i.e., H0 : R0γ = r0 can be expressed as
H0 : T0β = r0, in this case.
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where we have used Lemma C.3 and δ′γΩ01Ω
−1
11 Ω10δγ ≤ δ′γΩ00δγ again. It is

now easy to bound the expectations in (6.15). When squaring the expression in
(6.16) we first note the leading factor n−3. Next, we expand the square of the
bracket term in (6.16) and take expectation. From the previous considerations
we see that those summands in the resulting sum involving LkQkkLk are of order
O(q|p + 1 − q|2/n2), and there are O(n) of them. Together with the leading
factor n−3 and the summation in (6.15) we arrive at a total contribution of
O(q|p+1−q|2/n3) from all those summands involving LkQkkLk. This expression
has to be multiplied by b2n = O(n/q) to yield O(|p + 1 − q|2/n2) = o(1). The
remaining terms are of the form |E[LiQikLkLjQjkLk]| with i �= k and j �= k.
Of those, there are a number of O(n) summands where i = j, but they are
again of order O(q|p + 1 − q|2/n2) and therefore, as in the case before, their
total contribution to (6.15) is asymptotically negligible, even after multiplying
by b2n. Finally, there is a number of O(n2) remaining summands as above, but
with i �= k, j �= k and i �= j. Therefore, by the refined bound above, they are of
order O(q/n2), so that their total contribution to the variance bound in (6.15)
is O(q/n2). Together with the factor b2n we arrive at an additional term of order
O(1/n) = o(1). Hence, we see that the variance of bnBn goes to zero as n → ∞
and the proof of Theorem 2.1(ii) is finished.

6.4.3. The cases of Theorem 2.1(iii) and Theorem 3.1

In this section we establish (6.7) under the assumptions that the design vectors
x1, . . . , xn are Gaussian, pn/n → ρ1 ∈ [0, 1), qn/n → ρ2 ∈ [0, ρ1] (cf. the
beginning of Section 6) and Δγ = o(qn/n).

We restrict to q ≤ p, because this is assumed in Theorem 3.1 and the case
q = p + 1 of Theorem 2.1(iii) has already been treated above in Section 6.4.1,
in much higher generality. We use different arguments for the two cases t0 = 0
and t0 �= 0. If t0 = 0, then, by (6.10) and (6.11), we see that the quantity of
interest is given by

s−1/2
n n∇n/q −

√
nΔγbn

=

√
n

q
(snq)

−1/2
√
n

(
δ′γ(T0Σ̂

−1
n T ′

0)
−1δγ − δ′γ(T0Σ

−1T ′
0)

−1δγ
n− (p+1)+ q

n

)
.

By Lemma C.5, this expression has mean zero and variance equal to

n

snq2
(δ′γ(T0Σ

−1T ′
0)

−1δγ)
2 2(n− (p+ 1) + q)

n
=

n

q
Δ2

γO(1) = o(1).

For the case t0 �= 0 we recall T = (R′
0, R

′
1)

′ and introduce the matrix ΣT by

ΣT = Var[T (1, x′
1)

′] = T

(
0 0
0 Σ

)
T ′ =

(
T0ΣT

′
0 T0ΣT

′
1

T1ΣT
′
0 T1ΣT

′
1

)
=

(
Σ00 Σ01

Σ10 Σ11

)
,

and note that by Lemma C.4 the sub matrix Σ11 = Var[R1(1, x
′
1)

′] of order
(p+ 1− q) is regular. In the present case the difference in (6.7) is given by

s−1/2
n n∇n/q −

√
nΔγbn
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= (snq)
−1/2

√
n

q
× (6.17)

√
nδ′γ

(
U ′
0(In − PU1)U0

n
− (Ω00 − Ω01Ω

−1
11 Ω10)

n− (p+ 1) + q

n

)
δγ .

The distribution of this quantity is slightly more complicated than that of
the corresponding object in the case t0 = 0, because now we have to deal
with non-centrality issues due to μ �= 0. We take a closer look at the ran-
dom part. The joint distribution of the first row of U0 and the first row of
U1 is T (1, x′

1)
′
∼ N (T (1, μ′)′,ΣT ). Therefore, the conditional distribution of

R0(1, x
′
1)

′ given R1(1, x
′
1)

′ is given by N (μ̃ + Σ01Σ
−1
11 R1(1, x

′
1)

′,Σ00·1), where
μ̃ = R0(1, μ

′)′ −Σ01Σ
−1
11 R1(1, μ

′)′ and Σ00·1 = Σ00 −Σ01Σ
−1
11 Σ10. Hence, condi-

tional on U1, the rows of U0·1 := U0−U1Σ
−1
11 Σ10 are i.i.d. N (μ̃,Σ00·1) and since

this distribution is free of U1, this also means that U1 and U0·1 are indepen-
dent. Also, we clearly have U ′

0(In − PU1)U0 = U ′
0·1(In − PU1)U0·1. So if V is a

random n× q matrix independent of U1, whose rows are i.i.d. N (0,Σ00·1), then
U ′
0(In − PU1)U0 has the same distribution as (V + ιμ̃′)′(In − PU1)(V + ιμ̃′) =

V ′(In − PU1)V + μ̃ι′(In − PU1)V + V ′(In − PU1)ιμ̃
′ + μ̃μ̃′ι′(In − PU1)ι. For the

Schur complement of Ω11 in Ω we use the representation given by Lemma C.6.
Plugging this back into (6.17) and removing the leading (snq)

−1/2 term that
converges to a positive constant, it remains to study the limiting behavior of

√
nδ′γ

(
V ′(In − PU1)V

n
− Σ00·1

n− (p+ 1) + q

n

)
δγ (6.18)

+ 2
√
nδ′γ μ̃

ι′(In − PU1)V δγ
n

(6.19)

+
(δ′γ μ̃)

2

1 + ν

√
n

(
ι′(In − PU1)ι(1 + ν)

n

n

n− (p+ 1) + q
− 1

)
n− (p+ 1) + q

n
,

(6.20)

multiplied by
√
n/q, where ν = (1, μ′)R′

1Σ
−1
11 R1(1, μ

′)′ is defined as in Lem-
ma C.6. From that lemma we also see that δ′γΣ00·1δγ + (δ′γ μ̃)

2/(1 + ν) =
δ′γΩ00·1δγ = Δγ = o(q/n). Since Σ00·1 is the Schur complement of the posi-
tive definite matrix Σ11 within the positive semidefinite matrix ΣT , it follows
that Σ00·1 is itself positive semidefinite (consider the minimizer of the quadratic
form u �→ (v′, u′)′ΣT (v

′, u′)′ in those variables u ∈ R
p+1−q corresponding to the

block Σ11). Consequently, δ
′
γΣ00·1δγ ≥ 0 and both δ′γΣ00·1δγ and (δ′γ μ̃)

2/(1+ ν)
are bounded by δ′γΩ00·1δγ = Δγ = o(q/n). Now, we first show that the quantity
in (6.20) converges to zero in probability. By Lemma C.7 with λn = nν and
k = p+ 1− q, we have

√
n

(
ι′(In − PU1)ι(1 + ν)

n

n

n− (p+ 1) + q
− 1

)

=
√
n

(
ξ/(n− (p+ 1) + q)

(ξ + ζ)/(n(1 + ν))
− 1

)
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=

√
n (ξ/(n− (p+ 1) + q)− 1) +

√
n (1− (ξ + ζ)/(n(1 + ν)))

(ξ + ζ)/(n(1 + ν))
,

where ξ ∼ χ2
n−(p+1)+q independent of ζ ∼ χ2

p+1−q(nν). The term in the denom-

inator has mean (n+nν)/(n(1+ν)) = 1 and variance 2(n+2nν)/(n2(1+ν)2) =
O(1/n), by independence, and thus, converges to 1 in probability. From the form
of these moments we also conclude that the term

√
n (1− (ξ + ζ)/(n(1 + ν)))

is OP(1). Moreover, it is easy to see that also
√
n (ξ/(n− (p+ 1) + q)− 1) is

OP(1), which entails that the entire expression in the previous display is of or-
der OP(1), and hence, the expression in (6.20) converges to zero in probability
even after multiplying by

√
n/q. Next, the mixed term in (6.19) is easily seen to

have conditional distribution N (0, 4δ′γΣ00·1δγι
′(In − PU1)ι(δ

′
γ μ̃)

2/n) given U1.
By the previous considerations, the conditional variance is equal to

4δ′γΣ00·1δγι
′(In − PU1)ι(δ

′
γ μ̃)

2/n = O(Δ2
γ)

ι′(In − PU1)ι(1 + ν)

n
= OP(Δ

2
γ),

which converges to zero in probability, even after multiplying by n/q, and this
implies convergence to zero of the scaled mixed term itself. Finally, for the ex-
pression in (6.18), we note that conditional on U1, V

′(In−PU1)V has a Wishart
distribution with scale matrix Σ00·1 and n−(p+1)+q degrees of freedom. There-
fore, (6.18) has mean zero and δ′γV

′(In−PU1)V δγ ∼ δ′γΣ00·1δγχ
2
n−(p+1)+q [cf. 19,

Theorem 3.4.2], which entails that the variance of (6.18), multiplied by n/q, is
(n/q)(δ′γΣ00·1δγ)

22(n− (p+1)+ q)/n = o(q/n), since δ′γΣ00·1δγ ≤ Δγ = o(q/n).
This finishes the proofs of Theorem 2.1 and Theorem 3.1. �

Appendix A: Auxiliary results of Section 4

Lemma A.1. For m ∈ N, let Z = (Z1, . . . , Zm)′ be a spherically symmetric
random vector in R

m such that E[ZZ ′] = Im, let V ∼ N (0, Im) and let z1, . . . , zn
be i.i.d. copies of Z. For p ≤ m, let Γ be a p×m matrix of full rank p, let μ ∈ R

p

and define xi = Γzi + μ.

(i) Fix r ∈ N. If E[‖Z‖2r] < ∞ and for every choice of non-negative integers

�j with
∑m

j=1 �j ≤ 2r, we have E[
∏m

j=1 Z
�j
j ] =

∏m
j=1 E[Z

�j
j ], then E[Z2l

1 ] =

E[V 2l
1 ] and E[‖Z‖2l] = E[‖V ‖2l] for every l = 1, . . . , r.13

(ii) If 2 ≤ p ≤ n − 2 and Z also satisfies P(‖Z‖ = 0) = 0, then the ran-
dom vectors x1, . . . , xn satisfy Assumptions (A1).(a,b). Moreover, if also
E[‖Z‖8] < ∞, E[‖Z‖4]/E[‖V ‖4] → 1 and E[‖Z‖8]/E[‖V ‖8] = O(1), as
m → ∞, then also Assumptions (A1).(d,e) hold.

(iii) If Z follows the uniform distribution on the ball (of appropriate radius√
m+ 2, to ensure E[ZZ ′] = Im) and 2 ≤ p ≤ n − 2, then the xi, for

i = 1, . . . , n, satisfy the full Assumption (A1), but not Assumption (C1).

13Due to symmetry, we always have E[Zl
1] = 0 = E[V l

1 ] if l is odd and the former moment
exists.
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Proof. We make use of the well known fact that any spherical distribution can be
represented as Z = b‖Z‖, where b and ‖Z‖ are independent, and b is uniformly
distributed on the unit m-sphere Sm−1 [cf. 8].

For part (i), set � =
∑m

j=1 �j and let ei ∈ R
m denote the i-th element of the

standard basis in R
m and note that

E

⎡
⎣ m∏
j=1

Z
�j
j

⎤
⎦ = E

⎡
⎣ m∏
j=1

(e′jZ)�j

⎤
⎦ = E

⎡
⎣‖Z‖�

m∏
j=1

(e′jb)
�j

⎤
⎦

= E
[
‖Z‖�

]
E

⎡
⎣ m∏
j=1

(e′jb)
�j

⎤
⎦ .

Of course, the same argument can be carried through for the spherical vector
V ∼ N (0, Im), so that we have

E

[∏m
j=1 Z

�j
j

]
E

[∏m
j=1 V

�j
j

] =
E

[
‖Z‖�

]
E [‖V ‖�] , (A.1)

provided that all the �j are even, so that E[
∏m

j=1 V
�j
j ] �= 0. Now choose the

�j to be either equal to 2 or 0, such that � is any even number from 2 to 2r.
Therefore, since E[Z2

1 ] = 1 = E[V 2
1 ] and by our factorization assumption, the

left-hand-side of (A.1) is equal to one, so that we have established the equality
of even moments of ‖Z‖ and ‖V ‖. To see that also the even moments of Z1 and
V1 coincide, simply choose �1 = � = 2l, for some l ∈ {1, . . . , k} and �j = 0, if
j �= 1.

For part (ii), to establish Assumption (A1).(b), first note that the column
span of U−1 = [ι, [z2, . . . , zn]

′Γ′ + ιμ′] does not depend on μ ∈ R
p, where ι =

(1, . . . , 1)′ ∈ R
n−1. So we may assume without restriction that μ = 0. Moreover,

[ι, [z2, . . . , zn]
′Γ′] and

[ι, [z2, . . . , zn]
′Γ′]

[
1 0
0 Σ−1/2

]

also have the same column span, such that it suffices to determine the rank of
[ι, [x̃2, . . . , x̃n]

′], where x̃i = (ΓΓ′)−1/2Γzi is spherically symmetric with P(‖x̃i‖ =
0) = 0. Next, we claim that the matrix Mk = [x̃2, . . . , x̃k+1]

′ has full rank p,
almost surely, provided that k ≥ p. To see this, simply write Mk = D1D

−1
2 Λ,

almost surely, where D1 is k × k diagonal with entries ‖x̃2‖, . . . , ‖x̃k+1‖, D2

is k × k diagonal with i.i.d. χp entries and Λ is k × p and has i.i.d. N (0, 1)
entries. Now it is easy to see that D1D

−1
2 is almost surely of full rank, and

thus, P(rank(Mk) = p) = P(det(Λ′Λ) �= 0) = 1, where the last equality follows
from the well known fact that the zero-set of a non-constant polynomial is a
Lebesgue null-set. It remains to show that the event A = {ι ∈ span(Mn−1)}
has probability zero. Define B = {rank(Mp) = p}, ιk = (1, . . . , 1)′ ∈ R

k and the
function v : Rp×p → R

p by v(M) = M−1ιp, if det(M) �= 0, and v(M) = 0, else.
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Note that P(B) = 1 and v is Borel measurable. Since p + 2 ≤ n, we see that
A ∩ B is a subset of the event where both ιp = Mpv(Mp) and 1 = x̃′

p+2v(Mp),
the probability of which is clearly bounded by

P(1 = x̃′
p+2v(Mp)) = P

(
‖x̃p+2‖−1 = (x̃′

p+2/‖x̃p+2‖)v(Mp), ‖x̃p+2‖ �= 0
)

= E
[
P

(
‖x̃p+2‖−1 = (x̃′

p+2/‖x̃p+2‖)v(Mp), ‖x̃p+2‖ �= 0
∣∣Mp, ‖x̃p+2‖

)]
.

But the conditional probability in the previous display is equal to zero, al-
most surely, because v(Mp), x̃p+2/‖x̃p+2‖ and ‖x̃p+2‖ are independent and
x̃p+2/‖x̃p+2‖ is uniformly distributed on the unit sphere in R

p, and therefore its
inner product with any fixed vector has a Lebesgue density on R provided that
p ≥ 2. For Assumptions (A1).(d,e), recall the moments of the χ2-distribution

with m-degrees of freedom E[‖V ‖2k] =
∏k−1

j=0 (m+2j) [cf. 15]. The same reason-
ing as in part (i) yields

E[|v′Z|8] = E[|v′b|8]E[‖Z‖8] = E[‖Z‖8]
E[‖V ‖8]E[|v

′V |8] = O(1),

uniformly in v ∈ Sm−1. Similarly, for a symmetric matrix M ∈ R
m×m,

E[(Z ′MZ)2] = E[(b′Mb)2]E[‖Z‖4] = E[‖Z‖4]
E[‖V ‖4]E[(V

′MV )2],

and one easily calculates E[(V ′MV )2] = (trace(M))2 + 2trace
(
M2

)
. Therefore,

Var[Z ′MZ] = (trace(M))2
(
E[‖Z‖4]
E[‖V ‖4] − 1

)
+ 2

E[‖Z‖4]
E[‖V ‖4] trace

(
M2

)
.

Finally, for a projection matrix P ∈ R
m×m, V ′PV follows a χ2-distribution

with rankP = ‖P‖2F degrees of freedom, and thus

(
E[(Z ′PZ)4]

)1/4
=

(
E[‖Z‖8]
E[‖V ‖8]

)1/4 (
E[(V ′PV )4]

)1/4

=

(
E[‖Z‖8]
E[‖V ‖8]

)1/4
⎛
⎝ 3∏

j=0

(‖P‖2F + 2j)

⎞
⎠

1/4

= O(‖P‖2F ).

To establish part (iii), we first verify the conditions of part (ii). The finiteness
of the 8-th moment of the radial component and P(‖Z‖ = 0) = 0 are immediate.
It is also elementary to calculate the higher non-central moments E[‖Z‖2k] =
(m+2)km/(m+2k). [Use, for example, the formula for the volume of the m-ball
of radius r > 0 to obtain P(‖Z‖ ≤ x) = (x/

√
m+ 2)m, for x ∈ [0,

√
m+ 2].]

Comparing this to the moments of the χ2
m distribution E[‖V ‖2k] =

∏k−1
j=0 (m+2j)

for k = 2, 4, we see that for m → ∞ the moment ratios behave as desired.
Therefore, Assumptions (A1).(a,b,d,e) hold in this case. Finally, the validity of
Assumption (A1).(c) follows from Srivastava and Vershynin [23, Section 1.4].
But Condition (C1) can not be satisfied in view of part (i) (with r = 4) and the
fact that E[‖Z‖4] �= E[‖V ‖4].
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Lemma A.2. Let Z = (Z1, . . . , Zm)′ be a random m-vector with E[Z] = 0 and
E[ZZ ′] = Im and let z1, . . . , zn be i.i.d. copies of Z. For p ≤ m, let Γ be a p×m
matrix of full rank p, let μ ∈ R

p and define xi = Γzi + μ.

(i) If Z has independent components, whose 8-th moments are uniformly
bounded, then the xi satisfy Assumptions (A1).(a,c,d,e).

(ii) If z1, . . . , zn are as in Condition (C1) and, in addition, the components
of Z have 8-th moments that are uniformly bounded, then the xi satisfy
Assumptions (A1).(a,d,e).

Proof. To establish part (i), we use the results of Whittle [28]. Theorem 2 in
that reference shows that for a unit vector v = (v1, . . . , vm)′ ∈ R

m,

E[|v′Z|8] ≤ C

⎛
⎝∑

j

v2j (E[|Zj |8])1/4
⎞
⎠

4

≤ Cmax
j

E[|Zj |8],

for some numerical constant C > 0, and thus, L8 = O(1) as m → ∞, in view
of uniform boundedness of E[|Zj |8]. Next, for a symmetric matrix M ∈ R

m×m,
the same theorem yields

Var[Z ′MZ] ≤ C
∑
j,k

M2
jk

√
E[|Zj |4]E[|Zk|4] ≤ Cmax

j
E[|Zj |4]trace

(
M2

)
,

and, for a projection matrix P ∈ R
m×m,∣∣∣(E[(Z ′PZ)4])1/4 − E[Z ′PZ]

∣∣∣ ≤ (
E[(Z ′PZ − E[Z ′PZ])4]

)1/4

≤ C1/4

⎛
⎝∑

j,k

P 2
jk

(
E[|Zj |8]E[|Zk|8]

)1/4⎞⎠
1/2

≤
(
Cmax

j
E[|Zj |8]

)1/4

‖P‖F ,

where the first inequality is the reverse triangle inequality for the L4-norm. Now
the previous chain of inequalities implies that

(E[(Z ′PZ)4])1/4 ≤ E[Z ′PZ] +D‖P‖F ≤ ‖P‖2F +D‖P‖2F = O(‖P‖2F ),

since E[Z ′PZ] = trace(P ) = trace
(
P 2

)
= ‖P‖2F = rankP is integer, and where

D > 0 is an appropriate constant, not depending on m. The validity of As-
sumption (A1).(c) follows from the arguments in Section 1.4 in Srivastava and
Vershynin [23].

For part (ii), simply note that under the factorization assumption in (C1) all
the moments occurring in Conditions (A1).(d,e) are identical to those calculated
under independence of the components of Z. Therefore, the result follows from
part (i).
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Appendix B: Proofs of auxiliary results of Section 6.2

Proof of Lemma 6.1. For ease of notation we drop the subscript n that indexes
the position of the matrix An in the array, i.e., we write A = An and denote by
aij the ij-th entry of that matrix. Similarly, we write Z = (Z1, . . . , Zn)

′, where
Zi = Zi,n. Now, expand

Z ′AZ − E[Z ′AZ|Gn] =

n∑
i �=j

ZiZjaij +

n∑
j=1

ajj(Z
2
j − 1)

=

n∑
j=1

2Zj

j−1∑
i=1

Ziaij +

n∑
j=1

ajj(Z
2
j − 1)

= T̄n + T ∗
n ,

where we adopt the convention that empty sums are equal to zero. We show

that T̄n/(
√
2‖A‖F ) w−→ N (0, 1) and T ∗

n/(
√
2‖A‖F )

i.p.−−→ 0, as n → ∞.
The desired convergence of T ∗

n follows from the straight forward calculation

E

[(
T ∗
n√

2‖A‖F

)2
∣∣∣∣∣Gn

]
=

n∑
j=1

a2jjE[(Z
2
j − 1)2|Gn]

2‖A‖2F

=
n∑

j=1

a2jj(E[Z
4
j |Gn]− 1)

2‖A‖2F

≤ 1

2

n∑
j=1

a2jjE[Z
4
j |Gn]

‖A‖2F
,

and by assumption.
To see the weak convergence of T̄n, for j = 1, . . . , n, define

Vn,j =
√
2Zj

j−1∑
i=1

Ziaij/‖A‖F ,

Fn,0 = Gn and Fn,j = σ (Gn, Zi : i ≤ j), by which we mean the smallest sigma
algebra for which Z1, . . . , Zj are measurable and which also contains Gn. Note

that for each n, j ∈ N, Fn,j−1 ⊆ Fn,j ⊆ F , ‖An‖F =
√
trace(A2) is Fn,0

measurable and Vn,j is Fn,j measurable. Moreover, we have

T̄n√
2‖A‖F

=

n∑
j=1

Vn,j .

Now, by the central limit theorem for dependent random variables [see 10, 13,
and notice the discussion in Helland [13] following eq. (2.7)], it remains to verify
that

n∑
j=1

E[Vn,j |Fn,j−1]
i.p.−−−−→

n→∞
0, (B.1)
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n∑
j=1

Var[Vn,j |Fn,j−1]
i.p.−−−−→

n→∞
1, and (B.2)

n∑
j=1

E[V 2
n,j1|Vn,j |>δ|Fn,j−1]

i.p.−−−−→
n→∞

0 for all δ > 0, (B.3)

as in equations (2.5)–(2.7) in Helland [13]. The convergence in (B.1) is trivial,
since E[Vn,j |Fn,j−1] = 0, in view of the conditional independence of the Zi given
Gn.

For (B.2), abbreviate Tn =
∑n

j=1 Var[Vn,j |Fn,j−1] =
∑n

j=1 E[V
2
n,j |Fn,j−1]

and use conditional independence again to obtain

E[V 2
n,j |Fn,j−1] = 2‖A‖−2

F

(
j−1∑
i=1

Ziaij

)2

.

Expanding the squared sum gives

(
j−1∑
i=1

Ziaij

)2

=

j−1∑
i,k

ZiZkaijakj =

j−1∑
i=1

Z2
i a

2
ij + 2

j−1∑
i<k

ZiZkaijakj ,

and therefore, the absolute difference |Tn − 1| can be bounded as

|Tn − 1| = ‖A‖−2
F

∣∣∣∣
n∑

j=1

2

(
j−1∑
i=1

Z2
i a

2
ij + 2

j−1∑
i<k

ZiZkaijakj

)
− ‖A‖2F

∣∣∣∣
≤ ‖A‖−2

F

(
2

∣∣∣∣
n∑

i<j

(Z2
i − 1)a2ij

∣∣∣∣ + 4

∣∣∣∣
n∑

j=1

j−1∑
i<k

ZiZkaijakj

∣∣∣∣ +
∣∣∣∣

n∑
j=1

a2jj

∣∣∣∣
)
.

To establish the convergence in (B.2), it remains to show convergence to zero
in probability of the terms in absolute values on the last line of the preceding
display multiplied by ‖A‖−2

F .
First, note that ‖A‖−2

F

∑n
j=1 a

2
jj converges to zero in probability by assump-

tion and because of E[Z4
j |Gn] ≥ 1. Now, write Tn,1 =

∑n
i<j(Z

2
i − 1)a2ij and

Tn,2 =
√
2

∑n
j=1

∑j−1
i<k ZiZkaijakj and observe that

E[T 2
n,1|Gn] =

n∑
i1<j1

n∑
i2<j2

E[(Z2
i1 − 1)(Z2

i2 − 1)|Gn]a
2
i1j1a

2
i2j2

=
n∑

j1,j2

j1∧j2−1∑
i=1

(E[Z4
i |Gn]− 1)a2ij1a

2
ij2

≤
(

max
j=1,...,n

E[Z4
j |Gn]

) n∑
j1,j2

j1∧j2−1∑
i=1

a2ij1a
2
ij2 ,
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and

E[T 2
n,2|Gn] = 2

n∑
j1,j2

j1−1∑
i1<k1

j2−1∑
i2<k2

E[Zi1Zk1Zi2Zk2 |Gn]ai1j1ak1j1ai2j2ak2j2

=

n∑
j1,j2

2

j1∧j2−1∑
i<k

aij1akj1aij2akj2

≤
(

max
j=1,...,n

E[Z4
j |Gn]

) n∑
j1,j2

j1∧j2−1∑
i �=k

aij1akj1aij2akj2 .

Therefore, if we define the triangular truncation operator Ã of the symmetric
matrix A by Ã =

∑
s>t esaste

′
t, where es ∈ R

n is the s-th element of the standard
basis in R

n, we see that

trace

((
Ã′Ã

)2
)

= trace

⎛
⎝(

n∑
s1>t1

n∑
s2>t2

et1as1t1e
′
s1es2as2t2e

′
t2

)2
⎞
⎠

= trace

⎛
⎝(

n∑
s=1

s−1∑
t1,t2=1

et1ast1ast2e
′
t2

)2
⎞
⎠

=

n∑
s1,s2=1

trace

(
s1−1∑

t1,t2=1

et1as1t1as1t2e
′
t2

s2−1∑
u1,u2=1

eu1as2u1as2u2e
′
u2

)

=

n∑
s1,s2=1

s1∧s2−1∑
t1,t2=1

as1t1as1t2as2t2as2t1 , (B.4)

and, in turn, that

E[T 2
n,1|Gn] + E[T 2

n,2|Gn]

≤
(

max
j=1,...,n

E[Z4
j |Gn]

) n∑
j1,j2

j1∧j2−1∑
i,k

aij1akj1aij2akj2

=

(
max

j=1,...,n
E[Z4

j |Gn]

)
trace

(
(Ã′Ã)2

)
.

(B.5)

Now, convergence to zero of ‖A‖−2
F (|Tn,1| + |Tn,2|) in probability follows from

the above considerations and Lemma 2.1 in Bhansali, Giraitis and Kokoszka [5],
which yields the inequality

E

[
‖A‖−4

F (|Tn,1|+ |Tn,2|)2
∣∣∣Gn

]
≤ 2

(
max

j=1,...,n
E[Z4

j |Gn]

)
‖A‖−4

F ‖Ã′Ã‖2F

≤ 2C2

(
max

j=1,...,n
E[Z4

j |Gn]

)
‖A‖2S
‖A‖2F

,
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where C > 0 is a global constant, not depending on n. Thus, by assumption,
the bound on the far right-hand-side of the preceding display converges to zero,
in probability, which establishes the convergence in (B.2).

Finally, for (B.3) we abbreviate mn = maxj E[Z
4
j |Gn] and use the upper

bound V 2
n,j1|Vn,j |>δ ≤ δ−2V 4

n,j . Now,

E

⎡
⎣ n∑
j=1

E[V 4
n,j |Fn,j−1]

∣∣∣∣∣Gn

⎤
⎦ = 4‖A‖−4

F

n∑
j=1

E[Z4
j |Gn]E

⎡
⎣(

j−1∑
i=1

Ziaij

)4 ∣∣∣∣∣Gn

⎤
⎦

= 4‖A‖−4
F

n∑
j=1

E[Z4
j |Gn]

⎛
⎝3

j−1∑
i1 �=i2

a2i1ja
2
i2j +

j−1∑
i=1

E[Z4
i |Gn]a

4
ij

⎞
⎠

≤ 4mn(mn + 3)‖A‖−4
F

n∑
j=1

j−1∑
i1,i2=1

a2i1ja
2
i2j ,

and furthermore

‖A‖−4
F

n∑
j=1

j−1∑
i1,i2=1

a2i1ja
2
i2j = ‖A‖−4

F

n∑
j=1

(
j−1∑
i=1

a2ij

)2

≤ ‖A‖−4
F

(
max

j

n∑
i=1

a2ij

)
n∑

i,j=1

a2ij

=
maxj(A

2)jj
‖A‖2F

.

Together with mn ≥ 1 and our assumption, this implies that the upper bound
on the second-to-last display converges to zero in probability.

Proof of Lemma 6.3. For convenience, we drop the subscript n that indexes the
position in the array whenever there is no risk of confusion. Let w′

i = (1, x′
i)R

denote the i-th row of the matrix W and define w̃i = Ω
−1/2
W wi, W̃ = WΩ

−1/2
W

and S1 = W̃ ′W̃ − w̃1w̃
′
1 =

∑n
i=2 w̃iw̃

′
i = Ω

−1/2
W R′U ′

−1U−1RΩ
−1/2
W , where

ΩW = E[w1w
′
1] = R′

[
1 μ′

μ Σ+ μμ′

]
R

is positive definite and U−1 is defined as in Assumption (A1).(b). This assump-
tion also entails that W ′W , W̃ ′W̃ and S1 are invertible with probability one,
where we denote the corresponding null set by N . For convenience, we redefine
these quantities in an arbitrary invertible and measurable way on N . Moreover,
we must also have pn + 2 ≤ n under (A1).(b).

Since hj = hj,n = w′
j(W

′W )−1wj on N c, permuting the h1, . . . , hn is equiv-
alent to a permutation of w1, . . . , wn, which are i.i.d., and therefore their joint
distribution is invariant under permutation. Hence, the hj are exchangeable
random variables. In particular, the hj are identically distributed and therefore
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the fact that
∑n

j=1 hj = trace(PW ) = kn, on N c, entails that E[h1] = kn/n.

We also note for later use that Var[h1] = E[h2
1] − E[h1]

2 ≤ E[h1] − E[h1]
2 =

(1 − kn/n)kn/n, since 0 ≤ h1 ≤ 1. It only remains to show that the variance
actually converges to zero.

As a preliminary consideration, we study h1 in the case where tn := kn/n →
t ∈ [0, 1]. The general case of possibly non-converging tn then follows from a
standard subsequence argument (see the end of the proof). The case t ∈ {0, 1} is
immediate, because here Var[h1] → 0 as n → ∞, and thus, h1 → t in probability,
by the arguments in the previous paragraph. Assume now that t ∈ (0, 1). Note
that PW = PW̃ and use the Sherman-Morrison formula to obtain

h1 = w̃′
1 (S1 + w̃1w̃

′
1)

−1
w̃1 =

w̃′
1S

−1
1 w̃1

1 + w̃′
1S

−1
1 w̃1

,

at least on N c. For α ≥ 0, set Jα = (S1+(n−1)αIkn)
−1 and define the random

function

Ψn(α) =
w̃′

1Jαw̃1

1 + w̃′
1Jαw̃1

,

which satisfies Ψn(0) = h1, almost surely. Since y �→ y/(1+y) is non-decreasing
on [0,∞), and M �→ M−1 is non-increasing on invertible hermitian matrices
[cf. 6, p. 114], the function Ψn is non-increasing on [0,∞). We establish the
convergence in probability of Ψn(0) by first analyzing the limiting behavior of
Ψn(α) as n → ∞, for every α > 0. To this end, we consider the conditional
mean and variance of w̃′

1Jαw̃1 given S1.
Since w̃1 and S1 are independent and E[w̃1w̃

′
1] = Ikn , one easily calculates

E[w̃′
1Jαw̃1|S1] = trace(Jα). The conditional variance is slightly more involved.

Abbreviate ΣW = Var[w1], μ̄ = E[w̃1] = Ω
−1/2
W R′(1, μ′)′ and use Assump-

tion (A1).(a) to write

w̃1 = μ̄+Ω
−1/2
W R′

(
0 0
0 Γ

) (
0
z1

)
.

Also notice that ΣW = ΩW − R′(1, μ′)′(1, μ′)R, and hence Ω
−1/2
W ΣWΩ

−1/2
W =

Ikn − μ̄μ̄′. Since Ω
−1/2
W ΣWΩ

−1/2
W is positive semidefinite, this also implies that

‖μ̄‖ ≤ 1. Now, decompose the quantity of interest

w̃′
1Jαw̃1 = μ̄′Jαμ̄ + 2μ̄′JαΩ

−1/2
W R′

(
0 0
0 Γ

)(
0
z1

)

+ (0, z′1)

(
0 0
0 Γ′

)
RΩ

−1/2
W JαΩ

−1/2
W R′

(
0 0
0 Γ

) (
0
z1

)
. (B.6)

Conditional on S1, the variance of μ̄′Jαμ̄ is zero, the variance of half of the
mixed term is

μ̄′JαΩ
−1/2
W ΣWΩ

−1/2
W Jαμ̄ = μ̄′J2

αμ̄− (μ̄′Jαμ̄)
2
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and the variance of the last term in (B.6) is

Var[(0, z′1)M(0, z′1)
′|S1] = Var[z′1M22z1|S1]

= O(trace
(
M2

22

)
) + (trace(M22))

2o(1)

≤ O(trace
(
M2

)
) + (trace(M))2o(1),

by assumption, and where we have abbreviated the symmetric positive semidef-
inite matrix in between the vectors (0, z′1) and (0, z′1)

′ in (B.6) by M and used
the notation M22 to denote its bottom right sub matrix of order m×m. Now,

trace(M) = trace
(
JαΩ

−1/2
W ΣWΩ

−1/2
W

)
= trace(Jα) − μ̄′Jαμ̄ and trace

(
M2

)
=

trace
(
JαΩ

−1/2
W ΣWΩ

−1/2
W JαΩ

−1/2
W ΣWΩ

−1/2
W

)
= trace

(
J2
α

)
− 2μ̄′J2

αμ̄+ (μ̄′Jαμ̄)
2.

For α > 0, ‖Jα‖S ≤ [α(n − 1)]−1 and ‖μ̄‖2 ≤ 1. Therefore, μ̄′Jαμ̄ and μ̄′J2
αμ̄

converge to zero, almost surely, for every α > 0. Thus, in order to show that
Var[w̃′

1Jαw̃1|S1] converges to zero, almost surely, for every α > 0, it suffices to
show that trace

(
J2
α

)
→ 0 as n → ∞, almost surely, and that trace(Jα) is almost

surely convergent. Moreover, if we can even show that trace(Jα) → ψα ∈ [0,∞),
almost surely, for every α > 0, then we also have w̃′

1Jαw̃1 → ψα, in probability
(since E[w̃′

1Jαw̃1|S1] = trace(Jα)), and thus Ψn(α) → Ψ(α) := ψα/(1 + ψα), in
probability, for every α > 0.

Therefore, we need to study the limiting behavior of

trace
(
(S1 + (n− 1)αIkn)

−�
)
=

kn
(n− 1)�

1

kn

kn∑
j=1

1

(λj + α)�

=
kn

(n− 1)�

∫ ∞

0

(y + α)−� dFS1/(n−1)(y), (B.7)

for � = 1, 2, where 0 ≤ λ1 ≤ · · · ≤ λkn are the ordered eigenvalues of S1/(n−1) =∑n
j=2 w̃jw̃

′
j/(n−1) and FS1/(n−1) denotes the corresponding empirical spectral

distribution function. Now one easily verifies the assumptions of Theorem 1.1 in
Bai and Zhou [3]. First note that the w̃j are i.i.d. and E[w̃1w̃

′
1] = Ikn . Second,

by the same argument following (B.6) and for an arbitrary non-random kn×kn
matrix B with bounded spectral norm, we have

E[|w̃′
1Bw̃1 − trace(B)|2] = Var[w̃′

1(B/2 +B′/2)w̃1]

= O(trace
(
(B/2 +B′/2)2

)
) + (trace(B) +O(1))2o(1) +O(1)

= O(kn‖B‖2S) + k2n‖B‖2So(1) +O(1) = o(n2).

Recall also that for now tn = kn/n → t ∈ (0, 1). Therefore, FS1/(n−1) con-
verges weakly, almost surely to the Marčenko-Pastur distribution with Lebesgue
density fMP (y) =

√
(y − a)(b− y)/(2πty) on [a, b], where a = (1 −

√
t)2 and

b = (1 +
√
t)2. Now we see that we can not use the same strategy to estab-

lish the convergence of (B.7) in the case where α = 0, because the function
hα(y) = (y + α)−1 is not bounded on (0,∞) in that case. However, for α > 0,
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hα is bounded and continuous on [0,∞) and therefore the integral in (B.7)
converges almost surely,

∫ ∞

0

h�
α(y) dF

S1/(n−1)(y)
a.s.−−→

∫ b

a

h�
α(y)f

MP (y) dy ∈ (0,∞).

Since kn/(n−1) → t ∈ (0, 1) and kn/(n−1)2 → 0, this means that trace(Jα) →
ψα := t

∫ b

a
hα(y)f

MP (y) dy and trace
(
J2
α

)
→ 0, almost surely, for every α > 0.

As discussed at the end of the previous paragraph, this entails that Ψn(α) →
Ψ(α), in probability, for every α > 0, where the function Ψ is given by

Ψ(α) =
t
∫ b

a
hα(y)f

MP (y) dy

1 + t
∫ b

a
hα(y)fMP (y) dy

.

Now it is easy to see (e.g., by the dominated convergence theorem) that the
function Ψ is continuous and non-increasing on [0,∞) (recall that here t < 1
and a > 0). Moreover, the limiting integral for α = 0 can be evaluated as∫ b

a
h0(y)f

MP (y) dy = 1/(1− t) [cf. 14, Lemma B.1] resulting in Ψ(0) = t.

Let us briefly recapitulate what we have found so far. First of all, we have
seen that h1 = h1,n → t in probability, as n → ∞, if tn → t ∈ {0, 1}. For
tn → t ∈ (0, 1), we know that E[h1,n] = kn/n → t and 0 ≤ Ψn(α) ≤ Ψn(0) =
h1 ≤ 1 almost surely. Moreover, Ψn(α) → Ψ(α) in probability, for every α > 0,
and Ψ(α) → Ψ(0) = t as α → 0. Thus, Lemma C.2 applies and we obtain that
h1,n → t in probability, also in the case t ∈ (0, 1).

Finally, consider Δn := |h1−kn/n| with arbitrary tn = kn/n ∈ [0, 1]. Suppose
that c := lim supE[Δn] > 0. Then there exists a subsequence n′, such that
E[Δn′ ] → c, as n′ → ∞. By compactness, there exists a further subsequence n′′,
such that tn′′ → t ∈ [0, 1], as n′′ → ∞. But in this case, our previous arguments
have shown that Δn′′ → 0 in probability, which also entails that E[Δn′′ ] → 0,
by boundedness, contradicting the assertion that E[Δn′ ] → c > 0.

Appendix C: Other technical results

Lemma C.1. Under the model (2.1), suppose that 1
n

∑n
i=1 E[(εi/σn)

4|xi] =
OP(1) and rank(U) = pn+1, almost surely, for all n ∈ N. If lim supn→∞ pn/n <
1, then

√
n|σ̂2

n/σ
2
n−1| = OP(1). In particular, we have P(σ̂2

n = 0) → 0 as n → ∞.

Remark. The assumption that 1
n

∑n
i=1 E[(εi/σn)

4|xi] = OP(1) is clearly weaker
than a uniform bound on E[(ε1/σn)

4] or a uniform bound on E[ε41] together with
lim infn σ

2
n > 0. Clearly, also Assumption (A2) implies 1

n

∑n
i=1 E[(εi/σn)

4|xi] =
OP(1).

Proof of Lemma C.1. Recall that σ̂2
n = ε′Mε, almost surely, where M :=

M(X) := (In − PU )/(n − p − 1) is a function of the design matrix X. Note
that y1, . . . , yn are conditionally independent given X, and hence, also εi =
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yi−E[yi|xi], for i = 1, . . . , n, are conditionally independent given X. Therefore,
one easily obtains the almost sure identities

E[σ̂2
n/σ

2
n|X] = trace(M) and

Var[σ̂2
n/σ

2
n|X] = 2trace

(
M2

)
+

n∑
i=1

(E[(εi/σn)
4|xi]− 3)M2

ii.

By our assumption on U , with probability one, trace(M) = 1 and trace
(
M2

)
=

1/(n−p−1), whereas M2
ii ≤ 1/(n−p−1)2 holds everywhere, since the diagonal

entries of the projection matrix In − PU are always between 0 and 1. Taken
together, we see that E[σ̂2

n/σ
2
n|X] = 1 and Var[σ̂2

n/σ
2
n|X] ≤ 2/(n − p − 1) +∑n

i=1 E[(εi/σn)
4|xi]/(n−p−1)2. Now, the conditional Markov inequality yields

P(
√
n|σ̂2

n/σ
2
n − 1| > δ) = E[P(

√
n|σ̂2

n/σ
2
n − 1| > δ|X) ∧ 1]

≤ E

[( n

δ2
Var[σ̂2

n/σ
2
n|X]

)
∧ 1

]
≤ P(nVar[σ̂2

n/σ
2
n|X] > δ) +

(
1

δ
∧ 1

)
.

Since nVar[σ̂2
n/σ

2
n|X] = OP(1), in view of the previous considerations and the

assumptions lim supn→∞ pn/n < 1 and 1
n

∑n
i=1 E[(εi/σn)

4|xi] = OP(1), this
finishes the proof of the first claim. The second assertion follows immediately,
because of P(σ̂2

n = 0) ≤ P(|σ̂2
n/σ

2
n − 1| > 1/2).

Lemma C.2. For n ∈ N and α > 0, let hn and Ψn(α) be real random variables
such that 0 ≤ Ψn(α) ≤ hn ≤ 1 almost surely, and, for t ∈ [0, 1], let Ψ : [0,∞) →
[0, 1] be such that Ψ(α) → t as α → 0. If for every α > 0, Ψn(α) −→ Ψ(α) in
probability, and E[hn] −→ t as n → ∞, then hn −→ t in probability, as n → ∞.

Remark. Lemma C.2 is an asymptotic version of the well known fact that a
random variable h that satisfies h ≥ t ∈ R and E[h] = t must be equal to t,
almost surely.

Proof of Lemma C.2. Fix δ > 0, choose α = α(δ) > 0 such that |Ψ(α)−t| < δ/2
and do the following standard bound,

P(hn < E[hn]− δ) ≤ P(|Ψn(α)− E[hn]| > δ)

+ P(hn < E[hn]− δ, |Ψn(α)− E[hn]| ≤ δ).

But |Ψn(α)− E[hn]| ≤ |Ψn(α)−Ψ(α)|+ |Ψ(α)− t|+ |t− E[hn]| ≤ δ/2 + oP(1),
whereas |Ψn(α)− E[hn]| ≤ δ and hn < E[hn]− δ together imply that Ψn(α) ≥
E[hn]−δ > hn, which, by assumption, happens only on a set of probability zero.
Therefore, the upper bound in the previous display converges to zero. Now, by
boundedness of hn we have

E[|hn − E[hn]|] ≤ E[|hn − E[hn] + δ|] + δ

≤ E[(hn − (E[hn]− δ))1{hn≥E[hn]−δ}]
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+ P(hn < E[hn]− δ) + δ

≤ E[hn1{hn≥E[hn]−δ}]− E[hn]P(hn ≥ E[hn]− δ)

+ 2δ + o(1),

and we also see that both E[hn1{hn≥E[hn]−δ}] and E[hn]P(hn ≥ E[hn]− δ) con-
verge to t. Since δ > 0 was arbitrary, we must have lim supE[|hn − E[hn]|] = 0
and thus, convergence in probability of hn to t.

Lemma C.3. For every n ∈ N, let x1,n, . . . , xn,n be i.i.d. random pn-vectors
satisfying xi,n = μn + Γnzi,n as in Assumption (A1).(a) with positive semidef-

inite covariance matrix Σn = ΓnΓ
′
n. Set Xn = [x1,n, . . . , xn,n]

′, Σ̂n = X ′
n(In −

Pι)Xn/n and

Sn = E

[(
1
x1

) (
1 x′

1

)]
=

(
1 μ′

n

μn Σn + μnμ
′
n

)
=

(
0 0
0 Σn

)
+

(
1
μn

) (
1 μ′

n

)
.

Moreover, let Rn be a kn × (pn + 1) matrix such that RnR
′
n = Ikn (i.e., kn ≤

pn + 1) and set Ωn = RnSnR
′
n.

(i) Let un ∈ R
pn+1. If sup‖w‖=1 E[|w′z1,n|�] = O(1) as n → ∞, for some fixed

� ∈ N, not depending on n, then E[|u′
n(1, x

′
1,n)

′|�] = O(|u′
nSnun|�/2) as

n → ∞.
(ii) Let vn,1, vn,2 ∈ R

pn . If sup‖w‖=1 E[|w′z1,n|4] = O(1) as n → ∞, then

Var[
√
nv′n,1Σ̂nvn,2] = O(v′n,1Σvn,1v

′
n,2Σvn,2).

(iii) If Σn is positive definite, z1,n satisfies (A1).(c) and sup‖w‖=1 E[|w′z1,n|4] =
O(1), then the design matrix of the transformed data Wn = [ι,X]R′

n sat-
isfies

∥∥∥Ω−1/2
n (W ′

nWn/n)Ω
−1/2
n − Ikn

∥∥∥
S
=

{
oP(1), if kn/n → 0,

OP(1), if kn = O(n).

(iv) If Σn is positive definite and Var[z′1,nMz1,n] = O(trace
(
M2

)
) +

(trace(M))2o(1), as n → ∞, for every symmetric matrix M ∈ R
mn×mn ,

then we have E[|(1, x′
1,n)R

′
nΩ

−1
n Rn(1, x

′
1,n)

′|2] = O(k2n).
(v) Suppose that Σn is positive definite and that sup‖w‖=1 E[|w′z1,n|8] = O(1)

and (E[|z′1,nPz1,n|4])1/4 = O(‖P‖2F ), as n → ∞, for every projection ma-

trix P in R
mn , and partition Rn = [t1, T1] with t1 ∈ R

kn . If for ev-
ery n ∈ N either one of (a) μn = 0, or (b) rankT1 = kn holds, then
E[|(1, x′

1,n)R
′
nΩ

−1
n Rn(1, x

′
1,n)

′|4] = O(k4n).

Proof. For ease of notation we will drop the subscript n whenever there is no risk
of confusion. A simple calculation involving the elementary inequality |a+ b|� ≤
2�−1(|a|� + |b|�) and the notation un = u = (u0, u

′
−1)

′, with u−1 ∈ R
pn , yields

E[|u′(1, x′
1)

′|�] = E[|u′(1, μ′)′ + u′(0, z′1Γ
′)′|�]

≤ 2�−1
E

[
|u′(1, μ′)′|� + |u′

−1Γz1|�
]
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= 2�−1
(
|u′(1, μ′)′(1, μ′)u|�/2 + |u′

−1Σu−1|�/2E
[
|w′z1|�

])
,

where w = Γ′u−1/‖Γ′u−1‖, if ‖Γ′u−1‖ > 0 and w = 0, else. In the sum
u′(1, μ′)′(1, μ′)u + u′

−1Σu−1 = u′Snu both summands are non-negative and
thus both summands are bounded by u′Snu. Therefore, the upper bound in the
previous display is itself bounded by a constant multiple of |u′Snu|�/2. This was
the claim of part (i).

For part (ii), first note that because the distribution of Σ̂n does not depend on
μ, we may assume that μ = 0, without loss of generality. By the same argument
as above but with μ = 0, u0 = 0 and u−1 is either vn,1 or vn,2, we see that
E[|v′n,sx1|4] = O(|v′n,sΣvn,s|2), s = 1, 2. Now

Var[
√
nv′n,1Σ̂nvn,2] = nVar[v′n,1X

′Xvn,2/n− v′n,1X
′ιι′Xvn,2/n

2]

≤ 2n

⎛
⎝ 1

n2

n∑
i=1

Var[v′n,1xiv
′
n,2xi] +

1

n4
Var

⎡
⎣ n∑
i,j=1

v′n,1xiv
′
n,2xj

⎤
⎦

⎞
⎠

≤ 2
√
E[|v′n,1x1|4]E[|v′n,2x1|4] +

2

n3

n∑
i,j,k,l=1

E[v′n,1xiv
′
n,2xjv

′
n,1xkv

′
n,2xl]

= O(v′n,1Σvn,1v
′
n,2Σvn,2) +

2

n2
E[|v′n,1x1|2|v′n,2x1|2]

+
4

n3

∑
i �=j

E[v′n,1xiv
′
n,2xi]E[v

′
n,1xjv

′
n,2xj ]

+
2

n3

∑
i �=j

E[|v′n,1xi|2]E[|v′n,2xj |2],

which is of order O(v′n,1Σvn,1v
′
n,2Σvn,2) because E[|v′n,sx1|2] = v′n,sΣvn,s and

E[v′n,1x1v
′
n,2x1] ≤

√
E[|v′n,1x1|2]E[|v′n,2x1|2].

For parts (iii), (iv) and (v) we make the following preliminary considerations.
First, note that in all three of these statements Σ is assumed to be positive
definite and thus Ω is regular. Abbreviate μ̄′ := (1, μ′)R′Ω−1/2 and

ΣW = R

(
0 0
0 Σ

)
R′.

Since ΣW = Ω−R(1, μ′)′(1, μ′)R′ we have

Ω−1/2ΣWΩ−1/2 = Ikn − μ̄μ̄′ = A

(
1− ‖μ̄‖2 0

0 Ikn−1

)
A′, (C.1)

for some orthogonal matrix A whose first column is μ̄/‖μ̄‖ if ‖μ̄‖ > 0, and
A = Ikn if μ̄ = 0. Here, quantities of dimension kn − 1 have to be removed
in case kn = 1. The matrix Ω−1/2ΣWΩ−1/2 in the previous display is positive
semidefinite, which means that 0 ≤ ‖μ̄‖ ≤ 1. For later use, we partition the
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matrix B := Ω−1/2A as B = [b1, B1] where b1 ∈ R
kn and note that B satisfies

B′ΣWB =

(
1− ‖μ̄‖2 0

0 Ikn−1

)
, (C.2)

and Ikn = B′ΩB = B′ΣWB +B′R(1, μ′)′(1, μ′)R′B, which entails that

B′R(1, μ′)′(1, μ′)R′B =

(
‖μ̄‖2 0
0 0

)
. (C.3)

This finishes the preliminary considerations.
Now, for the proof of part (iii), write the quantity of interest as∥∥∥Ω−1/2(W ′W/n)Ω−1/2 − Ikn

∥∥∥
S
=

∥∥∥A′Ω−1/2(W ′W/n)Ω−1/2A−A′A
∥∥∥
S

= ‖B′(W ′W/n)B − Ikn‖S ≤
∥∥∥∥B′Σ̂WB −

(
1− ‖μ̄‖2 0

0 Ikn−1

)∥∥∥∥
S

+

∥∥∥∥B′R(1, μ̂′)′(1, μ̂′)R′B −
(
‖μ̄‖2 0
0 0

)∥∥∥∥
S

=

∥∥∥∥
(
b′1Σ̂W b1 − (1− ‖μ̄‖2) b′1Σ̂WB1

B′
1Σ̂W b1 B′

1Σ̂WB1 − Ikn−1

)∥∥∥∥
S

(C.4)

+

∥∥∥∥
(
b′1R(1, μ̂′)′(1, μ̂′)R′b1 − ‖μ̄‖2 b′1R(1, μ̂′)′(1, μ̂′)R′B1

B′
1R(1, μ̂′)′(1, μ̂′)R′b1 B′

1R(1, μ̂′)′(1, μ̂′)R′B1

)∥∥∥∥
S

. (C.5)

where

Σ̂W = R

(
0 0

0 Σ̂n

)
R′ and μ̂ = X ′ι/n.

For a partitioned matrix as above we have∥∥∥∥
(
c11 c′12
c21 C22

)∥∥∥∥
2

S

= sup
‖w‖=1

∥∥∥∥
(
c11w1 + c12w−1

c21w1 + C22w−1

)∥∥∥∥
2

≤ (|c11|+ ‖c12‖)2 + (‖c21‖+ ‖C22‖S)2.

Therefore, it suffices to show that the norms of the respective blocks are OP(1),
if kn = O(n), and converge to zero in probability, if kn/n → 0.

We begin with the terms involving μ̂ in (C.5). First,

E [b′1R(1, μ̂′)′(1, μ̂′)R′b1]− ‖μ̄‖2

= b′1R

[(
0 0
0 Σ/n

)
+

(
1
μ

) (
1 μ′)]R′b1 − ‖μ̄‖2

= (1− ‖μ̄‖2)/n −−−−→
n→∞

0,

in view of E[μ̂μ̂′] = Σ/n+μμ′, (C.2) and (C.3). Moreover, the variance satisfies

Var
[
(b′1R(1, μ̂′)′)

2
]
=

1

n4
Var

⎡
⎣ n∑
i,j=1

b′1R(1, x′
i)

′b′1R(1, x′
j)

′

⎤
⎦
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=
1

n4
Var

⎡
⎣ n∑

i �=j

b′1R[(1, x′
i)

′(1, x′
j)− (1, μ′)′(1, μ′)]R′b1

+

n∑
i=1

b′1R[(1, x′
i)

′(1, x′
i)− S]R′b1

]

≤ 2

n4

⎛
⎝ n∑

i �=j

n∑
r �=s

E[b′1R[(1, x′
i)

′(1, x′
j)− (1, μ′)′(1, μ′)]R′b1×

b′1R[(1, x′
r)

′(1, x′
s)− (1, μ′)′(1, μ′)]R′b1]

+

n∑
i=1

E[(b′1R(1, x′
i)

′(1, x′
i)R

′b1)
2]

)
.

To work out the combinatorics of the quadruple sum above, abbreviate Fij =
b′1R[(1, x′

i)
′(1, x′

j) − (1, μ′)′(1, μ′)]R′b1 and note that E[Fij ] = 0 if i �= j and

E[FijFrs] = 0 if all four indices are distinct. Moreover, there are only O(n3)
summands in which not all four indices are distinct, i.e., there are only O(n3)
non-zero summands. Moreover, the non-zero summands can always be bounded
by

|E[FijFrs]| ≤
√

E[F 2
ij ]E[F

2
rs] = E[F 2

ij ] = Var[Fij ] = Var[b′1R(1, x′
i)

′(1, x′
j)R

′b1]

≤ E[((1, x′
i)R

′b1)
2((1, x′

j)R
′b1)

2] = (E[((1, x′
1)R

′b1)
2])2,

if i �= j and r �= s. Since E[(b′1R(1, x′
1)

′)2] = b′1RSR′b1 = b′1Ωb1 = 1, by
definition of B, we see that the quadruple sum in the second-to-last display is
of order O(n3). The remaining sum in the same display is of order O(n), since
E[(b′1R(1, x′

1)
′)4] = O(1), by part (i) and the assumption sup‖w‖=1 E[|w′z1|4] =

O(1). Thus, we have shown that b′1R(1, μ̂′)′(1, μ̂′)R′b1−‖μ̄‖2 → 0, in probability.
Next, consider ‖b′1R(1, μ̂′)′(1, μ̂′)R′B1‖2 ≤ |b′1R(1, μ̂′)′|2‖B′

1R(1, μ̂′)′‖2. The
first factor in the upper bound was just shown to be OP(1). For the second factor
note that E[‖B′

1R(1, μ̂′)′‖2] = trace((B′
1ΣWB1/n+B′

1R(1, μ′)′(1, μ′)R′B1)) =
(kn−1)/n, by (C.2) and (C.3). Since ‖B′

1R(1, μ̂′)′(1, μ̂′)R′B1‖S = ‖B′
1R(1, μ̂′)′‖2,

we see that the spectral norm in (C.5) is OP(1) if kn = O(n), and converges to
zero in probability, if kn/n → 0.

For the spectral norm in (C.4), we may restrict to μ = 0. First, write
R = [t1, T1] with t1 ∈ R

kn and use (C.2) to see that E[b′1Σ̂W b1]− (1− ‖μ̄‖2) =
b′1ΣW b1(n − 1)/n − (1 − ‖μ̄‖2) = (1 − ‖μ̄‖2)/n → 0, whereas Var[b′1Σ̂W b1] =
Var[b′1T1Σ̂nT

′
1b1] → 0, in view of the result in part (ii) with vn = vn,1 = vn,2 =

T ′
1b1/n

1/4, which satisfies v′nΣvn = b′1ΣW b1/
√
n = (1 − ‖μ̄‖2)/√n → 0. For

the off-diagonal block B′
1Σ̂W b1, note that it has mean zero in view of (C.2).

Therefore, E[‖B′
1Σ̂W b1‖2] =

∑kn−1
j=1 E[(e′jB

′
1Σ̂W b1)

2] =
∑kn−1

j=1 Var[e′jB
′
1Σ̂W b1],

where e1, . . . , ekn−1 is the standard basis in R
kn−1. Now, Var[e′jB

′
1Σ̂W b1] =

Var[e′jB
′
1T1Σ̂nT

′
1b1], and part (ii) applies with vn,1 = T ′

1B1ej/n
1/4 and vn,2 =

T ′
1b1/n

1/4, which satisfy v′n,1Σvn,1 = e′jB
′
1ΣWB1ej/

√
n = 1/

√
n and v′n,2Σvn,2 =
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b′1ΣW b1/
√
n = (1 − ‖μ̄‖2)/√n, in view of (C.2). Therefore, E[‖B′

1Σ̂W b1‖2] =∑kn−1
j=1 O(1/n) = O(kn/n). Hence, the only remaining term is ‖B′

1Σ̂WB1 −
Ikn−1‖S ≤ ‖ 1

n

∑n
i=1 B

′
1T1xix

′
iT

′
1B1 − Ikn−1‖S + ‖B′

1T1μ̂μ̂
′T ′

1B1‖S . For the sec-
ond term in the upper bound, one easily finds its expected value to be (kn−1)/n,
as in the previous paragraph. For the spectral norm of the remaining covariance
term we verify the strong regularity (SR) condition of Srivastava and Vershynin
[23, Theorem 1.1] for the random (kn − 1)-vectors x̄i = B′

1T1xi = B′
1T1Γzi.

First, note that the x̄i are independent and isotropic, since μ = 0 and E[x̄ix̄
′
i] =

B′
1T1ΣT

′
1B1 = B′

1ΣWB1 = Ikn−1. Fix a projection matrix P in R
kn−1 and

note that Γ′T ′
1B1PB′

1T1Γ is a projection matrix in R
mn of the same rank as

P . Since the zi satisfy Assumption (A1).(c) and ‖Px̄1‖2 = ‖PB′
1T1Γz1‖2 =

z′1Γ
′T ′

1B1PB′
1T1Γz1 = ‖Γ′T ′

1B1PB′
1T1Γz1‖2, we see that the (SR) condition

holds for x̄1 and with the same constants c, C as in (A1).(c). Therefore, Corol-
lary 1.4 of Srivastava and Vershynin [23] shows that ‖ 1

n

∑n
i=1 B

′
1T1xix

′
iT

′
1B1 −

Ikn−1‖S is OP(1) if kn = O(n), and converges to zero, in probability, if kn/n → 0.
This finishes part (iii).

For the proof of parts (iv) and (v), take � ∈ N and consider the elementary
bound

E[|(1, x′
1)R

′Ω−1R(1, x′
1)

′|�] = E
[∣∣(1, μ′)R′Ω−1R(1, μ′)′

+2(1, μ′)R′Ω−1R(0, z′1Γ
′)′ + (0, z′1Γ

′)R′Ω−1R(0, z′1Γ
′)′

∣∣�]
≤ 2�−1

(
‖μ̄‖2� + 2�−1

{
2�E

[∣∣∣μ̄′Ω−1/2R(0, z′1Γ
′)′

∣∣∣�] (C.6)

+E

[∣∣(0, z′1Γ′)R′Ω−1R(0, z′1Γ
′)′

∣∣�]})
.

Partition R = [t1, T1] as above and abbreviate M = Γ′T ′
1Ω

−1T1Γ, so that
the expectation on the last line of the previous display can be written as
E[|z′1Mz1|�]. Now, if � = 2, this can be evaluated as E[|z′1Mz1|2] = Var[z′1Mz1]+
(E[z′1Mz1])

2 = O(trace
(
M2

)
) + (trace(M))2o(1) + (trace(M))2 under the as-

sumption of part (iv). Since trace(M) = trace
(
Ω−1/2ΣWΩ−1/2

)
= kn−‖μ̄‖2 and

trace
(
M2

)
= kn−1+(1−‖μ̄‖2), by (C.1), we see that E[|z′1Mz1|2] = O(k2n). Fur-

thermore, E[|μ̄′Ω−1/2R(0, z′1Γ
′)|2] = μ̄′Ω−1/2ΣWΩ−1/2μ̄ = ‖μ̄‖2 − ‖μ̄‖4 ≤ 1/4,

which finishes part (iv).
For part (v) we begin with the expectation in (C.6) with � = 4, which can be

written as

E[|μ̄′Ω−1/2T1Γz1|4] ≤ ‖μ̄′Ω−1/2T1Γ‖4 sup
‖w‖=1

E[|w′z1|4]

= O(|μ̄′Ω−1/2ΣWΩ−1/2μ̄|2) = O(1).

For E[|z′1Mz1|4], we begin with case (a) μ = 0. Then

E[|z′1Mz1|4] = E

⎡
⎣

∣∣∣∣∣(0, z′1)
(
1 0
0 Γ′

)
R′

(
R

(
1 0
0 Σ

)
R′

)−1

R

(
1 0
0 Γ

)
(0, z′1)

′

∣∣∣∣∣
4
⎤
⎦ ,
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and we denote the matrix corresponding to the quadratic form in the vector
(0, z′1)

′ on the right-hand-side of this display by P . Clearly, P is a projection
matrix which we partition as

P =

(
p11 p′21
p21 P22

)
,

with p11 ∈ [0, 1]. Exploiting the idempotency and symmetry of P , one can
show that the generalized Schur complement of p11 in P , i.e, the matrix P22 −
p21p

†
11p

′
21, is again a projection matrix [cf. 4, Corollary 2.1], where p†11 = p−1

11 ,

if p11 �= 0, and p†11 = 0, else.14 Moreover, since |‖P22‖S − ‖p21p†11p′21‖S | ≤
‖P22 − p21p

†
11p

′
21‖S ≤ 1 and ‖P22‖S ≤ ‖P‖S = 1, we see that ‖p21(p†11)1/2‖2 =

‖p21p†11p′21‖S ≤ 2 and that the Frobenius norm of the generalized Schur comple-

ment satisfies ‖P22 − p21p
†
11p

′
21‖2F = trace

(
(P22 − p21p

†
11p

′
21)

)
≤ trace(P22) ≤

trace(P ) = kn. Therefore, using our assumptions, we calculate

E[|z′1Mz1|4] = E[|z′1P22z1|4]

≤ 23
(
E[|z′1(P22 − p21p

†
11p

′
21)z1|4] + E[|z′1p21p†11p′21z1|4]

)
≤ 23

(
O(k4n) + E[|(p†11)1/2p′21z1|8]

)
= O(k4n).

Finally, in the case (b), where rankT1 = kn, the matrix T1ΣT
′
1 in the represen-

tation Ω = RSR′ = T1ΣT
′
1+R(1, μ′)′(1, μ′)R′, is regular and thus we can invert

Ω by the Sherman-Morrison formula to get

M = Γ′T ′
1Ω

−1T1Γ

= Γ′T ′
1(T1ΣT

′
1)

−1T1Γ− Γ′T ′
1(T1ΣT

′
1)

−1R(1, μ′)′(1, μ′)′R′(T1ΣT
′
1)

−1T1Γ

1 + (1, μ′)R′(T1ΣT ′
1)

−1R(1, μ′)′
.

Therefore, we make use of the abbreviations P = Γ′T ′
1(T1ΣT

′
1)

−1T1Γ and v =
Γ′T ′

1(T1ΣT
′
1)

−1R(1, μ′)′ to bound the fourth moment of the quadratic form
z′1Mz1 by

E[|z′1Mz1|4] ≤ 23

(
E[|z′1Pz1|4] + E

[(
|v′z1|2
1 + ‖v‖2

)4
])

≤ 23

(
O(‖P‖8F ) +

(
‖v‖2

1 + ‖v‖2
)4

sup
‖w‖=1

E[|w′z1|8]
)
.

Since ‖P‖8F = (trace(P ))4 = k4n, the upper bound is of order O(k4n), which
finishes the proof of part (v).

14Baksalary, Baksalary and Szulc [4] actually prove a more general result. The special case
we are interested in here can also be easily derived by direct calculation.
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Lemma C.4. Let 1 ≤ q ≤ p be positive integers. If T is a (p + 1) × (p + 1)
orthogonal matrix that is partitioned as

T =

[
t0 T0

t1 T1

]
,

where t0 ∈ R
q, t1 ∈ R

p+1−q, T0 ∈ R
q×p and T1 ∈ R

(p+1−q)×p, then ‖t0‖ > 0 if
and only if, rankT1 = p+ 1− q.

Proof. By orthogonality,

Ip+1 = TT ′ =

[
t0t

′
0 + T0T

′
0 t0t

′
1 + T0T

′
1

t1t
′
0 + T1T

′
0 t1t

′
1 + T1T

′
1

]
,

and ‖t0‖2 + ‖t1‖2 = 1. Hence,

T1T
′
1 = Ip+1−q − t1t

′
1

has eigenvalues 1, with multiplicity p − q, and a single eigenvalue 1 − ‖t1‖2 =
‖t0‖2, which is strictly positive if and only if, rankT1 = p+ 1− q.

Lemma C.5. If the n × p random matrix X has i.i.d. rows following the
N (0,Σ)-distribution with positive definite Σ, v ∈ R

p, v �= 0 and T ∈ R
q×p

has orthonormal rows, then v′(T Σ̂−1
n T ′)−1v ∼ v′(TΣ−1T ′)−1v χ2

n−1−(p−q)/n,

where Σ̂n = X ′(In − Pι)X/n is the sample covariance matrix.

Proof. It is well known that nΣ̂n ∼ Wp(Σ, n−1) has a Wishart distribution with
scale matrix Σ and n−1 degrees of freedom [e.g., 19, Theorem 3.4.4.(c)]. If q = p,
then T is orthogonal and nv′(T Σ̂−1

n T ′)−1v = v′TnΣ̂nT
′v ∼ v′TΣT ′v χ2

n−1 =
v′(TΣ−1T ′)−1v χ2

n−1 [cf. 19, Theorem 3.4.2]. So assume that q < p. Let S ∈
R

(p−q)×p be such that R = [S′, T ′]′ is an orthogonal matrix. Then, by block
matrix inversion of

RΣ̂nR
′ =

(
SΣ̂nS

′ SΣ̂nT
′

T Σ̂nS
′ T Σ̂nT

′

)
∼

1

n
Wp(RΣR′, n− 1),

we see that the matrix (T Σ̂−1
n T ′)−1 = ([0, Iq](RΣ̂nR

′)−1[0, Iq]
′)−1 = T Σ̂nT

′ −
T Σ̂nS

′(SΣ̂nS
′)−1SΣ̂nT

′ is the Schur complement of SΣ̂nS
′ in RΣ̂nR

′, which
follows the Wq(Ω22·1, n− 1− (p− q))-distribution divided by n, where Ω22·1 =
TΣT ′ − TΣS′(SΣS′)−1SΣT ′ [cf. 19, Theorem 3.4.6.(a)]. Therefore,
nv′(T Σ̂−1

n T ′)−1v ∼ v′Ω22·1v χ
2
n−1−(p−q), and Ω22·1 = (TΣ−1T ′)−1.

Lemma C.6. Let μ ∈ R
p and Σ be a symmetric, positive definite p× p matrix.

Let T = [R′
0, R

′
1]

′ be a (p+1)×(p+1) orthogonal matrix such that R0 ∈ R
q×(p+1)

and set

S =

(
1 μ′

μ Σ+ μμ′

)
, Ω = TST ′ =

(
R0SR

′
0 R0SR

′
1

R1SR
′
0 R1SR

′
1

)
=

(
Ω00 Ω01

Ω10 Ω11

)
,

ΣT = T

(
0 0
0 Σ

)
T ′ =

(
R0

R1

)
[0, Ip]

′Σ[0, Ip]
(
R′

0 R′
1

)
=

(
Σ00 Σ01

Σ10 Σ11

)
.
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If Σ11 := R1[0, Ip]
′Σ[0, Ip]R

′
1 is regular, then the Schur complement of Ω11 in

Ω is related to the Schur complement of Σ11 in ΣT by Ω00 − Ω01Ω
−1
11 Ω10 =

Σ00 − Σ01Σ
−1
11 Σ10 + μ̃μ̃′/(1 + ν), where μ̃ = (R0 − Σ01Σ

−1
11 R1)(1, μ

′)′ and ν =
(1, μ′)R′

1Σ
−1
11 R1(1, μ

′)′.

Proof. First note that Ωij = Σij +Ri(1, μ
′)′(1, μ′)Rj , for i, j ∈ {0, 1}. Abbrevi-

ate μ̃i = Ri(1, μ
′)′, for i = 0, 1 and ν = μ̃′

1Σ
−1
11 μ̃1 and use the Sherman-Morrison

formula to write

Ω00 − Ω01Ω
−1
11 Ω10 = Σ00 + μ̃0μ̃

′
0 − (Σ01 + μ̃0μ̃1)(Σ11 + μ̃1μ̃

′
1)

−1(Σ10 + μ̃1μ̃
′
0)

= Σ00 + μ̃0μ̃
′
0 − (Σ01 + μ̃0μ̃

′
1)

(
Σ−1

11 − Σ−1
11 μ̃1μ̃

′
1Σ

−1
11

1 + ν

)
(Σ10 + μ̃1μ̃

′
0)

= Σ00 − Σ01Σ
−1
11 Σ10

+ μ̃0μ̃
′
0 − μ̃0μ̃

′
1Σ

−1
11 Σ10 − Σ01Σ

−1
11 μ̃1μ̃

′
0 − μ̃0μ̃

′
1Σ

−1
11 μ̃1μ̃

′
0

+Σ01
Σ−1

11 μ̃1μ̃
′
1Σ

−1
11

1 + ν
Σ10 + μ̃0μ̃

′
1

Σ−1
11 μ̃1μ̃

′
1Σ

−1
11

1 + ν
Σ10 +Σ01

Σ−1
11 μ̃1μ̃

′
1Σ

−1
11

1 + ν
μ̃1μ̃

′
0

+ μ̃0μ̃
′
1

Σ−1
11 μ̃1μ̃

′
1Σ

−1
11

1 + ν
μ̃1μ̃

′
0

= Σ00 − Σ01Σ
−1
11 Σ10 + μ̃0(1− ν)μ̃′

0 + μ̃0
ν2

1 + ν
μ̃′
0

+ μ̃0

(
ν

1 + ν
− 1

)
μ̃′
1Σ

−1
11 Σ10 +Σ01Σ

−1
11 μ̃1

(
ν

1 + ν
− 1

)
μ̃′
0

+Σ01
Σ−1

11 μ̃1μ̃
′
1Σ

−1
11

1 + ν
Σ10

= Σ00 − Σ01Σ
−1
11 Σ10

+
(
μ̃0μ̃

′
0 − μ̃0μ̃

′
1Σ

−1
11 Σ10 − Σ01Σ

−1
11 μ̃1μ̃

′
0 +Σ01Σ

−1
11 μ̃1μ̃

′
1Σ

−1
11 Σ10

)
/(1 + ν)

= Σ00 − Σ01Σ
−1
11 Σ10 +

μ̃μ̃′

1 + ν
,

where μ̃ = μ̃0 − Σ01Σ
−1
11 μ̃1.

Lemma C.7. Let k, n be positive integers such that k < n − 1. If X is a
random n × k matrix whose rows are i.i.d. distributed according to N (μ,Σ),
where μ ∈ R

k and Σ is positive definite, then

1

n
ι′(In − PX)ι ∼

ξ

ξ + ζ
,

where ξ and ζ are independent and distributed according to ξ ∼ χ2
n−k and ζ ∼

χ2
k(λn), with non-centrality parameter λn = nμ′Σ−1μ.

Remark. Lemma C.7 is a slight variation of Lemma A.2 in Leeb [17].

Proof. Note that PX = PX̄ , where X̄ = XΣ−1/2 has i.i.d. rows following the

N (Σ−1/2μ, In) distribution. Writing ˆ̄μn = X̄ ′ι/n and ˆ̄Σn = X̄ ′(In − Pι)X̄/n =
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X̄ ′X̄/n− ˆ̄μn ˆ̄μ
′
n, for the sample mean and sample covariance matrix of the trans-

formed data, we have, at least on an event of probability one,

1

n
ι′(In − PX)ι = 1− ˆ̄μ′

n(
ˆ̄Σn + ˆ̄μn ˆ̄μ

′
n)

−1 ˆ̄μn

= 1−
[
ˆ̄μ′
n
ˆ̄Σ−1
n

ˆ̄μ− (ˆ̄μ′
n
ˆ̄Σ−1
n

ˆ̄μn)
2

1 + ˆ̄μ′
n
ˆ̄Σ−1
n ˆ̄μn

]

=
1

1 + ˆ̄μ′
n
ˆ̄Σ−1
n ˆ̄μn

.

Since n ˆ̄Σn has a standard Wishart distribution with n−1 degrees of freedom and
is independent of ˆ̄μn, we get from Mardia, Kent and Bibby [19, Theorem 3.4.7]

that, conditional on ˆ̄μn, the quantity ˆ̄μ′
n
ˆ̄Σ−1
n

ˆ̄μn = n‖ ˆ̄μn‖2(ˆ̄μn/‖ ˆ̄μn‖)′(n ˆ̄Σn)
−1 ×

(ˆ̄μn/‖ ˆ̄μn‖) has the same distribution as n‖ ˆ̄μn‖2/ξ, where ξ ∼ χ2
n−k is indepen-

dent of ˆ̄μn. The proof is finished upon noting that ζ := n‖ ˆ̄μn‖2 = ‖X̄ ′ι/
√
n‖2 ∼

χ2
k(nμ

′Σ−1μ) and that 1/(1 + ζ/ξ) = ξ/(ξ + ζ).

Lemma C.8. Let qn ≤ pn + 1 < n be positive integer sequences such that
lim supn pn/n < 1, and let Δn be a non-negative real sequence of order o(qn/n).
Moreover, let sn and bn be as in Theorem 2.1. Then a non-central F -distributed
random variable Fqn,n−pn−1(λn) with qn and n− pn − 1 degrees of freedom and
non-centrality parameter λn = Δn(n− pn − 1 + qn) satisfies

s−1/2
n (Fqn,n−pn−1(λn)− 1)−

√
nΔnbn

w−−−−→
n→∞

{
N (0, 1), if qn → ∞,

(2q)−1/2χ2
q −

√
q/2, if qn = q, ∀n ∈ N.

Remark. This result is elementary and follows from basic properties of the
non-central χ2 distribution [cf. 16, Chapter 29.5]. For the convenience of the
reader we include a proof nonetheless. The proof also nicely resembles the main
steps of the much more involved argument needed to treat the non-Gaussian
cases of Theorem 2.1 and Theorem 3.1.

Proof. Let Y1, . . . , Yqn , X1, . . . , Xn−pn−1 be i.i.d. standard normal and let μ =
(μ1, . . . , μqn)

′ ∈ R
qn such that μ′μ = λn. Then Fqn,n−pn−1(λn) can be repre-

sented as

Fqn,n−pn−1(λn) ∼

∑qn
i=1(Yi + μi)

2/qn∑n−pn−1
j=1 X2

j /(n− pn − 1)
.

Therefore,

s−1/2
n (Fqn,n−pn−1(λn)− 1)−

√
nΔnbn

∼ s−1/2
n

1
qn

∑qn
i=1 Y

2
i − 1

n−pn−1

∑n−pn−1
j=1 X2

j + 2
qn

∑qn
i=1 Yiμi +

μ′μ
qn

1
n−pn−1

∑n−pn−1
j=1 X2

j

−
√
nΔnbn



2638 L. Steinberger

= s−1/2
n

⎛
⎝ 1

qn

qn∑
i=1

Y 2
i − 1

n− pn − 1

n−pn−1∑
j=1

X2
j

⎞
⎠ (

1 +OP((n− pn)
−1/2)

)

+
(
1 +OP((n− pn)

−1/2)
) 2

qn
√
sn

qn∑
i=1

Yiμi

+
λn

qn
√
sn

(
1 +OP((n− pn)

−1/2)
)
−
√
nΔnbn.

For the mixed term 2
qn

√
sn

∑qn
i=1 Yiμi we note that it has mean zero and variance

equal to 4(q2nsn)
−1λn = 4(qnsn)

−1Δn(n/qn)(n − pn − 1 + qn)/n = o(1), since
Δn = o(qn/n), by assumption, and qnsn = 2(1 + qn/(n − pn − 1)) ≥ 2. So
the mixed term converges to zero in probability. For the non-centrality term

λn

qn
√
sn
(1 +OP((n− pn)

−1/2))−√
nΔnbn we first note that

√
nΔnbn =

nΔn

qn
√
sn

n− pn − 1 + qn
n

=
λn

qn
√
sn

,

so that

λn

qn
√
sn

(
1 +OP((n− pn)

−1/2)
)
−

√
nΔnbn =

λn

qn
√
sn

OP((n− pn)
−1/2)

=
n

qn
Δn

n− pn − 1 + qn
n

(qnsn)
−1/2OP(

√
qn/(n− pn)) = oP(1),

because qn/(n − pn) ≤ n/(n − pn) = (1 − pn/n)
−1 is bounded in view of our

assumption that lim supn pn/n < 1. The same assumption also guarantees that
n− pn → ∞ as n → ∞, so it remains to establish the appropriate convergence
of

s−1/2
n

⎛
⎝ 1

qn

qn∑
i=1

Y 2
i − 1

n− pn − 1

n−pn−1∑
j=1

X2
j

⎞
⎠

= s−1/2
n

⎛
⎝ 1

qn

qn∑
i=1

(Y 2
i − 1)− 1

n− pn − 1

n−pn−1∑
j=1

(X2
j − 1)

⎞
⎠

=

√
n− pn − 1

n− pn − 1 + qn

1√
2qn

qn∑
i=1

(Y 2
i − 1) (C.7)

−
√

qn
n− pn − 1 + qn

1√
2(n− pn − 1)

n−pn−1∑
j=1

(X2
j − 1). (C.8)

First, we consider the case where qn → ∞. Define the vectors

Zn :=

( 1√
2qn

∑qn
i=1(Y

2
i − 1)

1√
2(n−pn−1)

∑n−pn−1
j=1 (X2

j − 1)

)
and vn :=

⎛
⎝

√
n−pn−1

n−pn−1+qn

−
√

qn
n−pn−1+qn

⎞
⎠ .
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By independence and the CLT, Zn converges weakly to a bivariate standard
normal distribution as n → ∞ and ‖vn‖2 = 1. Thus, v′nZn → N (0, 1), weakly,
as n → ∞, by compactness of the unit circle. If qn = q ∈ N does not depend
on n, then the expression in (C.8) converges to zero in probability and the
expression in (C.7) is distributed as (1 + o(1))[(2q)−1/2χ2

q −
√
q/2].
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