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Abstract: Continuous goodness-of-fit testing is a classical problem in
statistics. Despite having low power for detecting deviations at the tail of
a distribution, the most popular test is based on the Kolmogorov-Smirnov
statistic. While similar variance-weighted statistics such as Anderson-Dar-
ling and the Higher Criticism statistic give more weight to tail deviations,
as shown in various works, they still mishandle the extreme tails.

As a viable alternative, in this paper we study some of the statistical
properties of the exact Mn statistics of Berk and Jones. In particular we
show that they are consistent and asymptotically optimal for detecting a
wide range of rare-weak mixture models. Additionally, we present a new
computationally efficient method to calculate p-values for any supremum-
based one-sided statistic, including the one-sided M+

n ,M−
n and R+

n , R−
n

statistics of Berk and Jones and the Higher Criticism statistic. Finally, we
show that Mn compares favorably to related statistics in several finite-
sample simulations.
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1. Introduction

Let x1, x2, . . . , xn be a sample of n i.i.d. observations of a real-valued one-
dimensional random variable X. The classical continuous goodness-of-fit (GOF)
problem is to assess the validity of a null hypothesis that X follows a known
(and fully specified) continuous distribution function F , against an unknown
and arbitrary alternative G,

H0 : X ∼ F vs. H1 : X ∼ G with G �= F. (1.1)

Goodness-of-fit is one of the most fundamental hypothesis testing problems
(Lehmann and Romano, 2005). Most GOF tests for continuous distributions
can be broadly categorized into two groups. The first comprises of tests based
on some distance metric between the null distribution F and the empirical
distribution function F̂n(x) =

1
n

∑
i 1(xi ≤ x). These include, among others, the

tests of Kolmogorov-Smirnov (KS), Cramér-von Mises, Anderson-Darling (AD),
Berk-Jones (BJ), as well as the Higher Criticism (HC) and Phi-divergence tests
(Anderson and Darling, 1954; Berk and Jones, 1979; Jager and Wellner, 2007).
The second group considers the first few moments of the random variableX with
respect to an orthonormal basis of L2(R). Notable representatives are Neyman’s
smooth test (Neyman, 1937), and its more recent data-driven versions, where the
number of moments is determined in an adaptive manner, see Ledwina (1994)
and Rainer, Thas and Best (2009).

Despite the abundance of GOF tests, KS is nonetheless the most commonly
used in practice. It has several desirable properties, including consistency, good
power for detecting a shift in the median of the distribution (Janssen, 2000) and
the availability of simple procedures to compute its p-value. However, it suffers
from a well known limitation – it has little power for detecting deviations at the
tails of the distribution, which is important in a variety of practical situations.
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One scenario is the detection of rare contaminations, whereby only a few of the
n observations are contaminated and arise from a different distribution. A spe-
cific example is the rare-weak model (Ingster, 1997; Donoho and Jin, 2004) and
its generalization to sparse mixture models (Cai and Wu, 2014). Another exam-
ple involves high dimensional variable selection or multiple hypothesis testing
problems under sparsity assumptions (Walther, 2013).

Given the popularity of the KS test, a natural question is how can it be
modified to have tail sensitivity, and what are the properties of the resulting test.
In this paper we make several contributions regarding these questions. We start
in Section 2 by viewing the KS and the variance-weighted AD and HC statistics
under a common framework, as different ways to measure the deviations of
order statistics from their expectations. As described in Section 3, this leads us
to study a different GOF statistic, based on the following principle: Rather than
looking for the largest (possibly weighted) deviation, it looks for the deviation
which is most statistically significant. Independently of our work, equivalent
GOF tests were recently suggested by several different authors, including Mary
and Ferrari (2014); Gontscharuk, Landwehr and Finner (2016); Kaplan and
Goldman (2014). This statistic is also closely related to the work of Aldor-
Noiman et al. (2014) who instead of a GOF test, derived a method to construct
confidence bands for a Normal Q-Q plot. It turns out, however, that all of these
proposals are in fact equivalent to GOF testing based on theMn statistic defined
in a paper by Berk and Jones (1979). The Mn statistic was derived based on an
earlier work by the authors on relatively optimal combinations of test statistics
(Berk and Jones, 1978). The Rn statistic (often called the Berk-Jones statistic)
was then proposed as an approximation to Mn, which is simpler to compute.
However, with today’s computers, this approximation is no longer necessary and
the Mn statistic can be computed directly.

On the theoretical front, in Section 4 we analyze some statistical properties
of the M+

n ,M−
n and Mn. Theorem 4.1 presents the asymptotic distribution of

these statistics under the null hypothesis. This theorem was recently proven
by Gontscharuk and Finner (2016), based on an analysis of the HC statistic
(Gontscharuk, Landwehr and Finner, 2016). In a supplementary note, we present
an alternative proof, based on classical results from the theory of standardized
empirical processes (Eicker, 1979; Jaeschke, 1979). Next, we use this asymptotic
distribution to prove asymptotic consistency of Mn against any fixed alternative
G �= F , as well as against series of converging alternatives Gn → F provided
that the convergence in the supremum norm ‖Gn − F‖∞ is sufficiently slow.
Then, following the work of Cai and Wu (2014) we show that Mn is adaptively
optimal for detecting a broad family of sparse mixtures.

In a second contribution, we devise in Section 5 an O(n2) algorithm to com-
pute p-values for any supremum-based one-sided test. Particular examples in-
clude HC as well as the one-sided M±

n and R±
n statistics of Berk and Jones.

Finally, in Section 6 we compare the power of Mn to other tests under the
following settings: i) a change in the mean or variance of a standard Gaussian
distribution; and ii) rare-weak sparse Gaussian mixtures; These results showcase
scenarios where Mn has improved power compared to common tests. For other
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examples involving real data and concrete applications, see Aldor-Noiman et al.
(2014); Li and Siegmund (2015); Kaplan and Goldman (2014).

2. The Kolmogorov-Smirnov, Anderson-Darling and higher
criticism statistics

Let us first introduce some notation. For a given sample x1, . . . , xn, we denote
by x(i) the i-th sorted observation (i.e. x(1) ≤ x(2) ≤ . . . ≤ x(n)), by ui = F (xi),
and by u(i) = F (x(i)) where F denotes the null distribution. Finally, we denote

the empirical distribution by F̂n(x) =
1
n

∑
i 1(xi ≤ x).

The standard definition of the KS test statistic is based on a (two-sided) L∞
distance over a continuous variable x ∈ R,

Kn :=
√
n sup

x∈R

∣∣∣F̂n(x)− F (x)
∣∣∣ . (2.1)

Although Eq. (2.1) involves a supremum over x ∈ R, in what follows we instead
use an equivalent discrete formulation, whereby the two-sided KS statistic is the
maximum of a pair of discrete one-sided statistics, Kn := max(K−

n ,K+
n ), where

K−
n :=

√
nmax

i

(
u(i) −

i− 1

n

)
, K+

n :=
√
nmax

i

(
i

n
− u(i)

)
. (2.2)

By the definition of F̂n, under the null hypothesis that all xi ∼ F we have

nF̂n(x) ∼ Binomial(n, F (x)) ∀x ∈ R.

Hence, E[F̂n(x)] = F (x) and V ar[F̂n(x)] =
1
nF (x)(1− F (x)). The latter varies

significantly throughout the range of x, attaining a maximum at the median of
the distribution and smaller values near the tails.

Anderson and Darling (1952) were among the first to suggest different weights
to deviations at different locations. Based on a weight function ψ : [0, 1] → R.
they proposed a weighted L2 statistic

ADn,ψ =

∫ +∞

−∞
n

(
F̂n(x)− F (x)

)2

ψ(F (x))f(x)dx , (2.3)

and a lesser-known weighted L∞ statistic, defined as

ADsup
n,ψ = sup

x∈R

√
n|F̂n(x)− F (x)|

√
ψ(F (x)) . (2.4)

Specifically, Anderson and Darling (1952) suggested to use the weight function
ψ(x) = 1

x(1−x) which standardizes the variance of F̂n(x).

Closely related to Eq. (2.4) is the Higher Criticism statistic, whose two vari-
ants below can be viewed as one-sided GOF test statistics,

HC2004
n :=

√
n max

1≤i≤α0·n

i
n − u(i)√

u(i)(1− u(i))
(Donoho and Jin, 2004), (2.5)
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HC2008
n :=

√
n max

1≤i≤α0·n

i
n − u(i)√
i
n (1−

i
n )

(Donoho and Jin, 2008). (2.6)

Indeed, the HC2004
n test with α0 = 1 is equivalent to a one-sided variant of the

ADsup
n,ψ test with ψ(x) = 1/x(1− x).

2.1. Order statistics of uniform random variables

By the probability integral transform, if X ∼ F with F a continuous cdf, then
Y = F (X) follows a uniform distribution Y ∼ U [0, 1]. Hence, under the null, the
transformed values ui = F (xi) are an i.i.d. sample from the U [0, 1] distribution
and the sorted values u(i) = F (x(i)) are their order statistics. In particular, the
distribution of the i-th order statistic, U(i), is given by

U(i) ∼ Beta(i, n− i+ 1), (2.7)

with the following mean and variance

E[U(i)] =
i

n+ 1
V ar(U(i)) =

i(n− i+ 1)

(n+ 1)2(n+ 2)
. (2.8)

We now relate the KS and HC tests to U [0, 1] order statistics. Up to a small
O(1/

√
n) correction, the one sided KS statistic of Eq. (2.2) is the maximal

deviation of the n different uniform order statistics from their expectations,

K+
n = max

i

√
n

(
E[U(i)]− u(i)

)
+O

(
1√
n

)
. (2.9)

The variance of each U(i) is different, with a maximum at i = n/2. Hence the
largest deviation tends to occur near the center. Importantly, such deviations
can mask small, but statistically significant, deviations at the tails, leading to
poor tail sensitivity (Mason and Schuenemeyer, 1983; Calitz, 1987).

In contrast, up to a small correction term, the HC2008 statistic normalizes
the difference E[U(i)]− u(i) by its standard deviation,

HC2008
n = max

i

√
n

i/n− u(i)√
i/n(1− i/n)

= max
i

E[U(i)]− u(i)

stdev[U(i)]
(1 +O(1/n)) , (2.10)

and the HC2004 / ADsup statistics perform a similar normalization. Such nor-
malizations are common when comparing Gaussian variables with different vari-
ances. Indeed, at indices 1 
 i 
 n, the distribution of U(i) is close to Gaussian.
However, this is not the case when i is fixed and n → ∞ (Keilson and Sumita,
1983). In particular, for any n ≥ 2 the distribution of U(1) is monotone and
heavily skewed towards zero. In section 6.1 we demonstrate and explain analyt-
ically why the normalization (2.10) can adversely affect the detection power of
HC.
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3. The exact Berk-Jones statistics

The discussion above demonstrates that both the KS and HC statistics do not
uniformly calibrate the deviations of u(i) over the entire range i ∈ {1, . . . , n}.
In this paper we study the Mn,M

+
n and M−

n statistics, whose key underlying
principle can be described as looking for the deviation E[U(i)] − u(i) which is
most statistically significant. In details, for each transformed order statistic u(i),
we first compute a one-sided p-value, according to its null distribution of
Beta(i, n− i+ 1). This p-value is given by

p(i) := Pr
[
Beta(i, n− i+ 1) < u(i)

]
. (3.1)

Then, in analogy to KS, we define the one-sided M−
n ,M+

n and two-sided Mn

statistics by

M+
n := min

1≤i≤n
p(i), M−

n := min
1≤i≤n

(
1− p(i)

)
and Mn := min{M+

n ,M−
n }. (3.2)

In contrast to the KS statistic, whose range is [0,∞) and for which large values
lead to a rejection of the null, the Mn statistic is always in [0, 1], with small
values indicating a bad fit to the null hypothesis. Note that p(i) = Iu(i)

(i, n −
i+1), where Ix(α, β) is the regularized incomplete Beta function. This function
is commonly available in standard mathematical packages, hence the numerical
evaluation of the statistics Mn and M±

n is straightforward.
Independently of our work, test procedures of the form Mn < c have been

recently suggested in several different papers (Mary and Ferrari, 2014; Kaplan
and Goldman, 2014; Gontscharuk, Landwehr and Finner, 2016). However, a
close examination reveals that the definitions in Eq. (3.2) are in fact equivalent
to those proposed by Berk and Jones (1979). In contrast to our motivation, their
derivation of Mn followed a different path, building upon their earlier work on
relatively optimal combinations of test statistics (Berk and Jones, 1978).

Berk and Jones (1979) also defined the Rn, R
+
n and R−

n statistics, as approx-
imations to the Mn,M

+
n and M−

n statistics. At the time, this was necessary
because computers and software to calculate the tails of a Beta distribution
were not as widespread as today. As a result, the approximate statistics became
known as the Berk-Jones statistics, whereas the exact Mn statistics seem to
have received far less attention. With today’s widespread availability of com-
puters, direct calculation of the exact statistics poses no difficulty, and their
approximation is no longer necessary.

In the following sections we derive the asymptotic null distribution of the
Mn,M

+
n and M−

n statistics, present an O(n2) numerical procedure to compute
exact p-values for M+

n and M−
n , and empirically compare their detection power

to other GOF tests in several simulations.

3.1. Confidence bands

Often, one is interested not only in the magnitude of the most statistically
significant deviation from the null hypothesis, as can be measured by Mn or
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other statistics, but also in gaining insight into the nature of the deviations
throughout the entire range of the sample set. One common practice is to draw
a Q-Q scatter plot of the points {(F−1( i

n+1 ), x(i))}ni=1. From Eq. (2.8) it follows

that under the null F (x(i)) = u(i) ≈ i
n+1 , and hence the Q-Q plot should be

concentrated around the x = y diagonal.
Similar to Owen (1995), who constructed α-level confidence bands around

the diagonal based on the Rn statistic, one can instead use the Mn statistic.
Let cα ∈ [0, 1] be the Mn threshold that corresponds to an α-level test. i.e.

Pr[Mn < cα|H0] = α.

By definition (3.2), Mn > cα if and only if the transformed order statistics
all satisfy bi < u(i) < Bi where bi and Bi are the cα and 1 − cα quantiles
of the Beta(i, n − i + 1) distribution, respectively. Upon making the inverse
transformation x(i) = F−1(u(i)), this yields confidence bands for the entire Q-Q
plot. In the Gaussian case, these confidence bands are precisely those of Aldor-
Noiman et al. (2014). For a related construction of confidence bands and further
discussion, see Duembgen and Wellner (2014).

4. Theoretical properties of the exact Berk-Jones statistics

The asymptotic null distribution of the M+
n ,M−

n and Mn statistics is given by
the following theorem.

Theorem 4.1. Under the null hypothesis, for any fixed x > 0,

Pr

[
M±

n <
x

2 logn log log n

∣∣∣∣H0

]
n→∞−−−−→ 1− e−x, (4.1)

Pr

[
Mn <

x

2 logn log logn

∣∣∣∣H0

]
n→∞−−−−→ 1− e−2x. (4.2)

This result was recently proved by Gontscharuk and Finner (2016). Their
proof is based on a detailed analysis of the local levels of the HC statistic
(Gontscharuk, Landwehr and Finner, 2016). In a supplementary note we present
a different proof, which approximates the distribution of each U(i) by a Gaussian
variable and then adapts known results from the theory of standardized empiri-
cal processes. We also use this approximation technique to prove the asymptotic
optimality of Mn for detecting sparse mixture models, as described below.

Using the asymptotic distribution, one can construct asymptotic α-level tests
and prove the consistency of tests based on the Mn statistic. In fact, in the fol-
lowing subsection we show that Mn is consistent even for a series of converging
alternatives Gn

n→∞−−−−→ F , provided that this convergence is sufficiently slow.
Similar properties hold for KS and are considered desirable for any GOF statis-
tic (Lehmann and Romano, 2005, Chapter 14). In Section 4.2 below, we show
that the Mn statistic is asymptotically optimal for detecting deviations from a
Gaussian distribution for a wide class of rare-weak contamination models.
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4.1. Asymptotic consistency of Mn

Next, we study the asymptotics of Mn under various alternatives. First, we
consider the case of a fixed alternative.

Theorem 4.2. Let X1, . . . , Xn
i.i.d.∼ G �= F . Then, for any ε > 0

Pr

[
Mn(F (X1), . . . , F (Xn)) <

1 + ε

4‖G− F‖2∞
· 1
n

∣∣∣H1

]
n→∞−−−−→ 1 . (4.3)

Combining Theorems 4.1 and 4.2, we obtain the following key result.

Corollary 4.1. Mn is consistent.

In other words, as n → ∞ the Mn statistic perfectly distinguishes between
the null hypothesis F and any fixed alternative G �= F . In fact, as the following
corollary shows, Mn even distinguishes between F and a series of converging
alternatives {Gn}∞n=1 such that Gn → F , provided that this convergence is
sufficiently slow.

Corollary 4.2. For any fixed ε > 0, a test based on the Mn statistic is consistent
over all alternatives {Gn}∞n=1 satisfying

√
n‖Gn − F‖∞

√
logn log log n −→ ∞ . (4.4)

We note that Berk and Jones (1979) have investigated the limiting behavior
of Rn and Mn and showed that under specific conditions on the alternative
distribution (Berk and Jones, 1979, Theorem 4.1) both R+

n and − 1
n logM+

n

converge to a constant which depends on the alternative distribution. These
results were greatly extended by Jager and Wellner (2007) for a family of GOF
statistics based on phi-divergences. In contrast, our Theorem 4.2 merely gives
a stochastic upper bound on Mn, but one that does not require the alternative
distribution to satisfy any particular properties.

4.2. Sparse mixture detection

Motivated by the works of Donoho and Jin (2004) and Cai and Wu (2014),
we now study the properties of Mn under the following class of sparse mixture

models. Suppose that under the null hypothesis Xi
i.i.d.∼ F , whereas under the

alternative a small fraction εn of the variables are contaminated and have a
different distribution Gn. The corresponding hypothesis testing problem is

H0 : Xi
i.i.d.∼ F vs. H1 : Xi

i.i.d.∼ (1− εn)F + εnGn . (4.5)

Such models have been analyzed, among others, by Ingster (1997), Donoho
and Jin (2004) and Cai and Wu (2014). Let us briefly review some results
regarding these models, first for the Gaussian mixture model, where F = N (0, 1)
and Gn = N(μn, 1),

H0 : Xi
i.i.d.∼ N (0, 1) vs. H1 : Xi

i.i.d.∼ (1− εn)N (0, 1) + εnN (μn, 1) . (4.6)
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Recall that for n � 1, the maximum of n i.i.d. standard Gaussian variables is
sharply concentrated around

√
2 logn. Thus, for any fixed εn = ε, as n → ∞,

contamination strengths μn >
√
2 logn(1 + δ) are perfectly detectable by the

maximum statistic maxxi. Similarly, for any fixed μn = μ, sparsity levels εn �
n−1/2 visibly shift the overall mean of the samples, and hence as n → ∞, can be
perfectly detected by the sum statistic

∑
xi. These cases lead one to consider

the scaling εn = n−β , μn =
√
2r log n and examine the asymptotic detectability

in the (r, β) plane (Ingster, 1997). Since any point (r, β) with r > 1 or β < 0.5 is
easily detectable, the interesting region is where both 0 < r < 1 and 0.5 < β < 1.

For the model (4.6), if εn and μn are known, both H0 and H1 are simple
hypotheses, and the optimal test is the Likelihood Ratio (LR). Its performance
was studied by Ingster (1997), who found a sharp detection boundary in the
(r, β) plane, given by

rmin(β) =

{
β − 0.5 0.5 < β ≤ 0.75,
(1−

√
1− β)2 0.75 ≤ β < 1.

(4.7)

Namely, as n → ∞, the sum of type-I and type-II error rates of the LR test
tends to 0 or 1 depending on whether (r, β) lies above or below this curve.

While the LR test is optimal, it may be inapplicable as it requires precise
knowledge of the model parameters μ and ε. Importantly, both the Higher Crit-
icism statistic based on Eq. (2.5) and the approximate Berk-Jones test Rn were
proven to achieve the optimal asymptotic detection boundary without such
knowledge (Donoho and Jin, 2004, Theorems 1.2, 1.6). Thus, both statistics
are adaptively optimal for the sparse Gaussian mixture detection problem in an
asymptotic sense. In what follows, we prove that Mn is also adaptively optimal.

Recently, Cai and Wu (2014) studied more general sparse mixtures of the
form (4.5) where the null distribution is Gaussian and εn = n−β , but Gn is not
necessarily Gaussian. The following is a simplified version of their Theorem 1,
describing the asymptotic detectability under this model.

Theorem 4.3. Let Gn be a continuous distribution with density function gn.
If the following limit exists for all u ∈ R

h(u) := lim
n→∞

log
(√

2πgn(u
√
2 logn)

)
logn

(4.8)

then the hypothesis testing problem (4.5) with F = N (0, 1) and εn = n−β has
an asymptotic detection threshold given by

β� =
1

2
+max

(
0, sup

u∈R

{
h(u) +

1

2
min(1, u2)

})
. (4.9)

Namely, for any β < β� the error rate of the likelihood ratio test tends to zero
as n → ∞.

In their paper, Cai and Wu (2014) proved that HC is adaptively optimal
under the conditions of Theorem 4.3. As we now show,Mn has the same adaptive
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optimality properties, in particular for the Gaussian mixture model of Eq. (4.6).
We note that for finite sample sizes Mn may have considerably higher power
compared to HC as we show in Section 6.

Theorem 4.4. Let Gn be a continuous distribution satisfying Eq. (4.8) and let

X1, . . . , Xn
i.i.d.∼ (1− n−β)N (0, 1) + n−βGn.

If β < β∗ where β∗ is given by Eq. (4.9), then there is some ε > 0 such that

Pr

[
Mn <

1

(logn)
1+ε

]
n→∞−−−−→ 1.

where N (0, 1) is taken as the null distribution.

The proof is in the appendix. Combining this result with Theorem 4.1 gives

Corollary 4.3. For any ε > 0 and β < β∗, the test

Mn <
1

logn(log logn)1+ε

perfectly separates, as n → ∞, the null distribution N (0, 1) from a sparse-
mixture alternative of the form (1− n−β)N (0, 1) + n−βGn. Namely, inside the
asymptotic detectability region, the error rate of the test tends to zero.

5. Computing p-values

For the classical one-sided and two-sided KS statistics, there are many methods
to compute the corresponding p-values, see Durbin (1973); Marsaglia, Tsang
and Wang (2003); Brown and Harvey (2008a,b). Most of these methods, how-
ever, are particular to KS and inapplicable to other GOF statistics. Notable
exceptions include (Noé, 1972; Friedrich and Schellhaas, 1998; Khmaladze and
Shinjikashvili, 2001) whose recursion formulas can compute the p-value of any
supremum-based two-sided (or one-sided) statistic using O(n3) operations and
the recent algorithm of Moscovich and Nadler (2016) that runs in O(n2 log n)
steps. For another recent work with time complexity O(n3), see Barnett and
Lin (2014).

In this section we present an O(n2) algorithm to compute p-values of any
supremum-based one-sided test statistic, including M+

n ,M−
n , R+

n , R
−
n and the

Higher Criticism. Furthermore, it may be used to obtain approximations of the
p-value of two-sided statistics.

To describe our approach, note that by Eq. (3.1),

Pr
[
M+

n ≥ c|H0

]
= Pr

[
∀i : p(i) ≥ c|H0

]
= Pr

[
∀i : Ln

i (c) ≤ u(i) ≤ 1|H0

]
, (5.1)

where Ln
i (c) denotes the inverse of the regularized incomplete Beta function,

satisfying
Pr [Beta(i, n− i+ 1) < Ln

i (c)] = c.
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Procedures to compute Ln
i (c) are available in most mathematical packages.

Note that under the null, the n unsorted variables are uniformly distributed,

Ui
i.i.d.∼ U [0, 1], and hence their joint density equals 1 inside the n-dimensional

box [0, 1]n. Given that there are n! distinct permutations of n indices, the joint
probability density of the random vector of sorted values (U(1), . . . , U(n)) is

f(U(1), . . . , U(n)) =

{
n! if 0 ≤ U(1) ≤ . . . ≤ U(n) ≤ 1,
0 otherwise.

From this it readily follows that

Pr
[
M+

n ≥ c|H0

]
= n!V ol{(U(1), . . . , U(n)) | ∀i : Ln

i (c) ≤ U(i) ≤ U(i+1)}

= n!

∫ 1

Ln
n(c)

dU(n)

∫ U(n)

Ln
n−1(c)

dU(n−1) . . .

∫ U(3)

Ln
2 (c)

dU(2)

∫ U(2)

Ln
1 (c)

dU(1) .

(5.2)

Eq. (5.2) is the key to fast calculation of p-values forM+
n or other one-sided tests.

The idea is to evaluate this multiple integral, from right to left. The first integral
yields a polynomial of degree 1 in U(2), the next integral yields a polynomial of
degree 2 in U(3) and so on. While we have not found simple explicit formulas
for the resulting polynomials, their numerical integration is straightforward.
We store d + 1 coefficients for the d-th degree polynomial, and its numerical
integration takes O(d) operations. Hence, the total time complexity is O(n2).

Still, there are some numerical difficulties with this approach: A näıve im-
plementation suffers from a fast accumulation of numerical errors and breaks
down completely at n ≈ 150. Nonetheless, as described in the appendix, with
a modified procedure and using extended precision (80-bit) floating point num-
bers, this accumulation of errors is significantly attenuated, allowing accurate
calculation of one-sided p-values for up to n ≈ 50, 000 samples. The actual run-
ning time of our freely available C++ implementation is about one second for
n = 4000 samples using a present-day PC.

The following theorem provides simple upper and lower bounds for the p-
value of the two-sided Mn, in terms of its one-sided p-values,

Theorem 5.1. For any c ∈ [0, 1], let qc := Pr[M+
n ≤ c | H0]. Then,

2qc − q2c ≤ Pr[Mn ≤ c | H0] ≤ 2qc. (5.3)

Furthermore, as n → ∞,

Pr [Mn ≤ c |H0]
n→∞−−−−→ 2qc − q2c . (5.4)

Remark 5.1. As mentioned above, our algorithm can compute the p-value of any
supremum-type one-sided test statistic. The only difference lies in the coefficients
Ln
i (c) of Eq. (5.2), which depend on the specific test statistic. For example, the

HC2008 test of Eq. (2.6) satisfies

Pr
[
HC2008 < c|H0

]
= Pr

[
∀i : i

n − c
√

i
n2

(
1− i

n

)
< U(i) ≤ U(i+1)

∣∣∣∣∣H0

]
.



2340 A. Moscovich et al.

Fig 1. Power comparisons of two-sided tests for detecting lack-of-fit to a standard Gaussian
distribution (at significance level α = 1%) with n = 100 samples. (left panel) change in the
mean of the distribution; (right panel) change in the variance.

Thus, for this statistic, Ln
i (c) =

i
n − c

√
i
n2

(
1− i

n

)
.

Remark 5.2. Historically, an equation similar to (5.2) was derived by Daniels
(1945), in an entirely different context. His formula was used in later works to
derive closed form expressions for the asymptotic distribution of the KS test
statistic. See Durbin (1973) for a survey.

Remark 5.3. To the best of our knowledge, the only other O(n2) algorithm for
computing p-values of L∞-type one-sided test statistics is that of Kotel′nikova
and Khmaladze (1982). Their method is based on a different recursive formula,
which involves large binomial coefficients and also requires a careful numerical
implementation.

6. Simulation results

6.1. Deviations from a standard Gaussian distribution

We consider a null hypothesis that Xi
i.i.d.∼ N (0, 1), and two alternatives: a shift

in the mean, Xi
i.i.d.∼ N (μ, 1), or a change in the variance Xi

i.i.d.∼ N (0, σ2). The
left and right panels of Figure 1 compare the power of Mn, KS, AD and ADsup

(=two-sided HC) under these two alternatives at a significance level of α = 1%.
For detecting a change in the mean, the Mn test is on par with KS, but

the AD test outperforms both. The ADsup test has close to zero power in this
benchmark. For detecting a change in the variance, which strongly affects the
tails, Mn has a higher detection power throughout the entire range of σ. In
contrast, ADsup performs poorly, and has power close to zero when σ < 1.

As we now show, the poor performance of ADsup/HC stems from its specific
normalization of the deviations at the extreme indices u(1), u(2), etc. To this end,

recall that under the null, Pr
[
u(1) < x

]
= 1− (1− x)n. Hence, the probability



Exact BJ statistics 2341

that the first order statistic is smaller than 1/cn log logn, for some constant
c > 0 is given by

Pr

[
u(1) <

1

cn log logn

]
=

1 + o(1)

c log logn
.

For such values of u(1), the corresponding HC deviation at the first index is

√
n

1
n − u(1)√

u(1)(1− u(1))
>

√
c log logn(1 + o(1)).

It is now instructive to plug in some specific number into the above equations.
In particular, for n = 100 samples as in Figure 1, a value c = 65.48 gives
that with probability of 1% the deviation of the first order statistic is at least√
c log logn ≈ 10.
Now suppose we conduct an HC test at a false alarm level of α = 1%.

The above calculation has two important implications: First, the finite sample
threshold of the HC test at n = 100 must clearly satisfy tα > 10. This value
is significantly larger than its asymptotic value of

√
2 log log n(1 + o(1)) ≈ 1.74

(see Theorem A.1). Since the decay of 1/ log logn to zero is extremely slow, the
above illustrates the very slow convergence of the ADsup or HC distribution
to its asymptotic limit. Second, such a high threshold prevents detection of
significant deviations near the center of the distribution, as indeed is shown
empirically in Figure 1. As an example, a significant deviation from the null
of u(n/2) = 1/4 which corresponds to about 5.8 standard deviations cannot be
detected by the HC test at level α = 1%.

We remark that HC’s problematic handling of u(1) was already noted by
Donoho and Jin (2004), and discussed in several recent works (Walther, 2013; Li
and Siegmund, 2015; Gontscharuk, Landwehr and Finner, 2015, 2016). Finally,
we note that in our numerical example, removing u(1) from the HC test does not
resolve the problem, since the next extreme order statistics u(2), u(3) etc., also
have a non-negligible probability to induce very large HC values. In contrast,
the Mn statistic puts all of these deviations on an equal scale.

6.2. Detecting Sparse Gaussian mixtures

Next, we consider the problem of detecting a sparse Gaussian mixture of the
form (4.6), where the parameter μ is assumed positive. We hence compare the
following four one-sided test statistics: maxXi,

∑
Xi, HC

2004 and M+
n .

Figure 2 compares the resulting Receiver Operating Characteristic (ROC)
curves for two choices of ε and μ, both with n = 10, 000 samples. The optimal
curve is that of the likelihood-ratio test, which unlike the other statistics, is
model specific and requires explicit knowledge of the values of ε and μ.

While asymptotically as n → ∞, both HC2004 and M+
n achieve the same

performance as that of the optimal LR test, for finite values of n, as seen in
the figure, the gap in detection power may be large. Moreover, for some (μ, ε)
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Fig 2. ROC curves for the rare-weak Gaussian mixture model with n = 10, 000 samples, and
with sparsity and contamination levels: ε = 0.01, μ = 1.5 (left); ε = 0.001, μ = 3 (right).

Fig 3. (Best viewed in color) Comparison of tests for detecting rare-weak Gaussian mixtures
(1− ε)N (0, 1) + εN (μ, 1) vs. N (0, 1). Colored blobs represent regions where the misdetection
rate of the second-best test divided by that of the best test was larger than 1.1. The dark
centers signify regions where this ratio was larger than 1.5. The gray band delineates the zone
where misdetection is in the range 0.1% − 80%. The dotted line is the asymptotic detection
boundary (4.7) when substituting ε = n−β , μ =

√
2r logn. Left panel: n = 1, 000; right panel:

n = 10, 000.

values, HC2004 achieves a higher ROC curve, whereas for others M+
n is better.

A natural question thus follows: For a finite number of samples n, as a function
of the two parameters ε and μ, which of these four tests has greater power?
To study this question, we made the following extensive simulation: for many
different values of (μ, ε), we empirically computed the detection power of the
four tests mentioned above at a significance level of α = 5%, both for n = 1000
and for n = 10, 000 samples. For each sparsity value ε and contamination level
μ we declared that a test T1 was a clear winner if it had a significantly lower
misdetection rate, namely if minj=2,3,4 Pr[Tj = H0|H1]/Pr[T1 = H0|H1] > 1.1.

Figure 3 shows the regions in the (μ, ε) plane where different tests were de-
clared as clear winners. First, as the figure shows, at the upper left part in the
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(μ, ε) plane,
∑

Xi is the best test statistic. This is expected, since in this region
ε is relatively large and leads to a significant shift in the mean of the distribu-
tion. At the other extreme, in the lower right part of the (μ, ε) plane, where ε
is small but μ is large, very few samples are contaminated and here the HC2004

test statistic works best, with the max statistic being a close second. In the
intermediate region, which would naturally be characterized as the rare/weak
region, it is the M+

n test that has a higher power. Second, while not shown in
the plot, we note that the M+

n test had similar power to that of the R+
n test.

Finally, in this simulation the HC2008 test performed worse than at least one of
the other tests for all values of (μ, ε).

Appendix A: Auxiliary lemmas

A.1. Asymptotics of the Beta distribution

As is well known, when both α, β → ∞, the Beta(α, β) distribution approaches
N (μ, σ2), where μ and σ are the mean and standard deviation of the Beta ran-
dom variable. The following lemma quantifies the error in this approximation.
For other approximations, see for example Peizer and Pratt (1968); Pratt (1968).

Lemma A.1. Let fα,β be the density of a Beta(α, β) random variable and let
gt(α, β) be its value at t standard deviations from the mean. i.e.

gt(α, β) = fα,β(μα,β + σα,β · t).

For any fixed t, as both α, β → ∞,

gt(α, β) =
e−t2/2

√
2π · σα,β

× exp

[
1√

α+ β + 1

(√
α

β
−

√
β

α

)
t

]
(A.1)

× exp

[
O

(
β

(α+ β)α
+

α

(α+ β)β

)
t2

]

× exp

[
O

(
1√
α
+

1√
β

)
t3

]
×

(
1 +O

(
1

α
+

1

β

))
.

Remark A.1. For any fixed t, as α, β → ∞ all error terms tend to zero, hence
demonstrating that the distribution of non-extreme order statistics converges to
a Gaussian. However, for this approximation to be accurate, all correction terms
must be small, which may require huge sample sizes. As an example, with t = 2
standard deviations and α = n1/4, to have |t3|/√α < 0.1 we need n > 1.7×1015

samples, far beyond the reach of almost any scientific study.

Remark A.2. A closer inspection of the proof below shows that Lemma A.1
continues to hold even if t = t(α, β) → ∞, provided that α, β → ∞ and

t ·max
(√

α
(α+β)β ,

√
β

(α+β)α

)
→ 0 . (A.2)

This shall prove to be useful later on.
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Proof of Lemma A.1. For convenience we denote

A := α− 1, B := β − 1, n := α+ β − 1 = A+B + 1 .

In terms of these variables, the mean and variance of Beta(α, β) are

μ =
A+ 1

n+ 1
, σ2 =

(A+ 1)(B + 1)

(n+ 1)2(n+ 2)
,

whereas its density is f(x) = n!
A!B!x

A(1− x)B . At x = μ+ σt, we obtain

f(μ+ σt) =
n!

A!B!
μA(1− μ)B

(
1 + σ

μ t
)A (

1− σ
1−μ t

)B

. (A.3)

Using Stirling’s approximation, that n! =
√
2πn(n/e)n(1 + O(1/n)), and the

fact that σ =
√

AB/n3(1 +O(1/A+1/B)), we obtain that as both A,B → ∞,

n!

A!B!
μA(1− μ)B =

1√
2π · σ

(
1 +O

(
1

A
+

1

B

))
.

Next, we write the remaining terms in (A.3),

(
1 + σ

μ t
)A (

1− σ
1−μ t

)B

= exp
[
A ln(1 + σ

μ t) +B ln(1− σ
1−μ t)

]
. (A.4)

Note that as A,B → ∞, both σ/μ and σ/(1−μ) tend to zero. Hence, for either
a fixed t, or t = t(α, β) slowly growing to ∞ such that Eq. (A.2) holds, we
may replace the logarithms in Eq. (A.4) by their Taylor expansion with small
approximation errors

(
1 + σ

μ t
)A (

1− σ
1−μ t

)B

= exp
[
σt

(
A
μ − B

1−μ

)
− σ2t2

2

(
A
μ2 + B

(1−μ)2

)]
(A.5)

× exp
[
O

(
Aσ3

μ3 + Bσ3

(1−μ)3

)
t3

]
.

Simple algebra gives

σt
(

A
μ − B

1−μ

)
= t√

n+2

(√
A+1
B+1 −

√
B+1
A+1

)
.

Similarly,
σ2t2

2

(
A
μ2 + B

(1−μ)2

)
= t2

2

(
1 +O

(
B
nA + A

nB

))
.

Finally, as A,B → ∞, the cubic term in Eq. (A.5) is of order O
(

1√
A
+ 1√

B

)
t3.

Combining all of these results concludes the proof of the lemma.

We present a simple corollary of Lemma A.1, which shall prove useful below
in studying the asymptotic behavior of Mn.
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Corollary A.1. let {αn} be a sequence of numbers converging to infinity. Let
μn, σ

2
n and fn denote the mean, variance and density of a Beta(αn, n− αn + 1)

distribution, respectively. Furthermore, let g(n) be any positive function satis-
fying g(n) = o(min{αn, n − αn}). Then, for large values of n we have a lower
bound on the density near the mean,

fn(μn + σn · t) ≥ e−t2/2

√
2π · σn

(
1− t3√

g(n)
− 1

g(n)

)
. (A.6)

Proof. Follows from an inspection of the various error terms in Eq. (A.1).

A.2. Supremum of the standardized empirical process

The standardized empirical process plays a central role in our analysis of the
Mn statistic. We begin with its definition followed by several known results
regarding the magnitude and location of its supremum.

Definition A.1. Let X1, . . . , Xn be i.i.d. random variables from some continu-
ous distribution F and let F̂n(x) =

1
n

∑
i 1(Xi ≤ x) denote their empirical cdf.

The normalized empirical process is defined as

Vn(x) =
√
n

F̂n(x)− F (x)√
F (x)(1− F (x))

for 0 < F (x) < 1 . (A.7)

Similarly, the standardized empirical process is

V̂n(x) =
√
n

F̂n(x)− F (x)√
F̂n(x)(1− F̂n(x))

for 0 < Fn(x) < 1 . (A.8)

Of particular interest to us is the supremum of V̂n. Theorem 1 of Eicker (1979)
gives the asymptotic distribution of this supremum, see also Csörgő et al. (1986):

Theorem A.1. Let U1, . . . , Un
i.i.d.∼ U [0, 1]. As n → ∞,

Pr

[
sup

U(1)<u<U(n)

V̂n(u) <
√

2 log log n+
log log logn

2
√
2 log log n

+
1√

2 log log n
· t

]
→ e−e−t/

√
π.

Furthermore, the next lemma, which follows from the main Theorem of
Jaeschke (1979), implies that this supremum is rarely attained at one of the
extreme order statistics.

Lemma A.2. Let k > 0 and let I be the union of intervals containing the first
and last logk n order statistics, I = (U(1), U(logk n)] ∪ [U(n−logk n), U(n)). Then

Pr

[
sup
u∈I

V̂n(u) < sup
U(1)<u<U(n)

V̂n(u)

]
n→∞−−−−→ 1 . (A.9)
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Appendix B: Proofs of theorems

B.1. Proof of Theorem 4.2

Let t0 ∈ R be some point that satisfies

|G(t0)− F (t0)| = ‖G− F‖∞ .

Without loss of generality, we assume that F (t0) < G(t0) and derive an upper
bound on M+

n (in the opposite case the same upper bound would be obtained
on M−

n ). Let i∗ denote the number of random variables Xi smaller than t0.
Since for all i, Pr [Xi < t] = G(t), the random variable i∗ follows a binomial
distribution,

i∗ ∼ Binomial(n,G(t0)) .

Since F (t0) < G(t0), for any fixed 0 < λ < 1,

Pr

[
i∗

n+ 1
> λG(t0) + (1− λ)F (t0)

]
n→∞−−−−→ 1 .

This implies that with probability tending to one,

i∗
n+ 1

− F (t0) > λ (G(t0)− F (t0)) . (B.1)

We show that this implies Eq. (4.3) of the theorem. To this end, recall that

M+
n ≤ p(i∗) = Pr

[
Beta(i∗, n− i∗ + 1) < U(i∗)

]
.

By definition, X(i∗) < t0 and therefore U(i∗) := F (X(i∗)) < F (t0). Thus

M+
n < Pr [Beta(i∗, n− i∗ + 1) < F (t0)]

= Pr

[
i∗

n+ 1
− Beta(i∗, n− i∗ + 1) >

i∗
n+ 1

− F (t0)

]
. (B.2)

Hence, from (B.1) follows that with probability tending to one,

M+
n < Pr

[
i∗

n+ 1
− Beta(i∗, n− i∗ + 1) > λ (G(t0)− F (t0))

]

< Pr

[∣∣∣∣ i∗
n+ 1

− Beta(i∗, n− i∗ + 1)

∣∣∣∣ > λ (G(t0)− F (t0))

]
.

Recall that the expectation of Beta(i∗, n − i∗ + 1) is i∗/(n + 1) and that for
any 1 ≤ i∗ ≤ n its standard deviation is smaller than 1/2

√
n. Therefore, by

Chebyshev’s inequality

M+
n <

1

4nλ2‖G− F‖2∞
.

Setting λ = 1/
√
1 + ε concludes the proof. �
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B.2. Proof of Theorem 4.4

We start with two technical lemmas.

Lemma B.1. Let μ and σ2 denote the mean and variance of a Beta(i, n− i+1)
random variable. For any x ∈ [0, 1],

μ− x

σ
=

√
n

i
n − x√
i
n (1−

i
n )

(
1 +O

(
1

n

))
.

Proof. Follows by straightforward algebraic manipulations.

Lemma B.2. Let ε > 0 and a > 0 be constants. Let f : R → R be a non-negative
function that satisfies the following conditions,

1.
∫
f(x)dx = 1.

2. f(x) ≥ 1√
2π

e−x2/2 (1− ε) in the range x ∈ [−a, a].

Then for any t ∈ [0, a],∫ −t

−∞
f(x)dx ≤ 1√

2π

1

t
e−t2/2 +

1√
2π

1

a
e−a2/2 + ε.

Proof.∫ −t

−∞
f(x)dx ≤ 1−

∫ a

−t

f(x)dx ≤ 1− (1− ε)

∫ a

−t

1√
2π

e−
1
2x

2

dx. (B.3)

A simple bound on the Gaussian tail is given by∫ ∞

t

e−x2/2dx ≤
∫ ∞

t

x

t
e−x2/2dx =

1

t
e−t2/2. (B.4)

Therefore,∫ a

−t

1√
2π

e−x2/2dx = 1−
∫ ∞

a

1√
2π

e−x2/2dx−
∫ −t

−∞

1√
2π

e−x2/2dx

≥ 1− 1√
2π

e−a2/2

a
− 1√

2π

e−t2/2

t
.

Plugging this bound into Eq. (B.3) concludes the proof.

We are now ready to present the main part of the proof. We base our result
on the proof of Theorem 4 by Cai and Wu (2014). They show that under the
alternative, there exists a fixed 0 < s < 1 such that

Pr
[
Vn(

√
2s logn) >

√
(2 + δ) log logn

]
n→∞−−−−→ 1 , (B.5)

where Vn is the normalized empirical process of Eq. (A.7).
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Let i∗ = |{j |Xj >
√
2s log n}| be the (random) number of observations above√

2s log n. Then, from Eq. (B.5) follows that with high probability,

√
n

i∗/n− U(i∗)√
U(i∗)(1− U(i∗))

>
√

(2 + δ) log logn . (B.6)

Let μ∗ and σ2
∗ denote the mean and variance of a Beta(i∗, n − i∗ + 1) random

variable and let

τ∗ :=
μ∗ − U(i∗)

σ∗

be the z-score of U(i∗). With a change of variables t = (x− μ∗)/σ∗, we obtain

p(i∗) =

∫ −τ∗

−μ∗/σ∗

f∗(μ∗ + σ∗t) · σ∗dt ≤
∫ τ∗

−∞
f∗(μ∗ + σ∗t) · σ∗dt.

By Lemma B.1,

τ∗ = V̂n(U(i∗))(1 +O(1/n)). (B.7)

For any ε1 > 0, the following statements hold with probability > 1− ε1 for large
values of n:

1. log12 n < i∗ < n− log12 n (from Lemma A.2).
2. τ∗ < logn (from Theorem A.1 and Eq. (B.7)).

By Corollary A.1, for any t ∈ [− log n, logn], if n is large enough, then

f∗(μ∗ + σ∗ · t) ≥
e−t2/2

√
2π · σ∗

(
1− 1

log2 n

)
.

Hence, we may apply Lemma B.2 with a = logn and obtain that the following
holds with high probability,

p(i∗) ≤
1√
2π

1

τ∗
e−

1
2 τ

2
∗ +

1√
2π

1

logn
e− log2 n/2 +

1

log2 n
(B.8)

≤ 1√
2π

1

τ∗
e−

1
2 τ

2
∗ +

2

log2 n
.

From (B.6) it follows that τ∗ >
√

(2 + δ) log logn(1 +O(1/n)), and therefore

Pr

[
Mn ≤ p(i∗) <

1 + o(1)√
(2 + δ) log logn (log n)

1+δ/2

]
n→∞−−−−→ 1 .

Setting ε = δ/2 concludes the proof. �
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B.3. Proof of Theorem 5.1

Lemma B.3. The null distributions of M+
n and M−

n are identical.

Proof. Assume w.l.o.g. that U [0, 1] is the null distribution and let U1, . . . , Un be
distributed according to the null. It is easy to show that M+

n (U1, . . . , Un) =
M−

n (1 − U1, . . . , 1 − Un). The claim follows from the fact that the vectors
(U1, . . . , Un) and (1− U1, . . . , 1− Un) have the same distribution.

The right inequality in Eq. (5.3) follows directly from the union bound and
the last lemma.

Pr[Mn ≤ c | H0] ≤ Pr[M+
n ≤ c | H0] + Pr[M−

n ≤ c | H0] = 2qc .

We now prove the left inequality in Eq. (5.3). Let U1, . . . , Un
i.i.d.∼ U [0, 1] and

denote the joint density of their order statistics by U = (U(1), . . . , U(n)). Denote
the events M+

n > c and M−
n > c by A and B respectively. According to propo-

sition 3.11 from Karlin and Rinott (1980), the random vector U is multivariate
totally positive of order 2. It is easy to show that the indicator functions 1A(U)
and 1Bc(U) are monotone-increasing in R

n, hence by Karlin and Rinott (1980,
Theorem 4.2), we have

E[1A(X)1Bc(X)] ≥ E[1A(X)]E[1Bc(X)].

Equivalently, Pr [A ∧Bc] ≥ Pr [A] · Pr [Bc]. Therefore,

Pr [Mn > c] = Pr [A ∧B] = Pr [A]− Pr [A ∧Bc]

≤ Pr [A]− Pr [A] Pr [Bc] = Pr [A] Pr [B] = (1− qc)
2.

From this follows the left inequality of Eq. (5.3). Finally, Eq. (5.4) follows from
the asymptotic distributions of M+

n ,M−
n and Mn given in Theorem 4.1. �

Appendix C: One-sided p-value computation

Let x1, . . . , xn be n observations with a one-sided value M+
n (x1, . . . , xn) = c. A

direct approach to compute the corresponding p-value is to recursively evaluate
the n− 1 integrals in Eq. (5.2)

f0(t) = 1, f1(t) =

∫ t

L1

f0(x)dx, . . . , fn(t) =

∫ t

Ln

fn−1(x)dx, (C.1)

where for notational simplicity we use the shorthand Li for L
n
i (c). The p-value

of the M+
n test is then given by

Pr
[
M+

n < c
∣∣∣H0

]
= 1− n!fn(1) . (C.2)

By definition, the various functions fd in Eq. (C.1) are polynomials of increasing

degree, fd(x) =
∑d

k=0 cd,kx
k, whose coefficients cd,0, . . . , cd,d are sums of vari-

ous products of L1, . . . , Ld. The second column of Table 1 lists explicit symbolic
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Table 1

Comparison of symbolic expressions for fn(1) resulting from direct integration vs.
computation using translated polynomials. Li is shorthand for Ln

i (c).

n straightforward integration translated polynomials
1 1− L1 1− L1

2 1
2
− L1 − 1

2
L2
2 + L1L2

1
2
(1− L1)

2 − 1
2
(L2 − L1)

2

3 1
6
− 1

2
L1 − 1

2
L2
2 + L1L2 − 1

6
L3
3

1
6
(1− L1)

3 − 1
2
(L2 − L1)

2 (1− L3)

− 1
2
L1L2

3 − 1
2
L2
2L3 + L1L2L3 − 1

6
(L3 − L1)

3

4 1
24

− 1
6
L1 +

(
1
2
L1L2 − 1

4
L2
2

)
1
24

(1− L1)
4 − 1

4
(L2 − L1)

2 (1− L3)
2

−L1L2L3 + 1
2
L2
2L3 + 1

2
L1L2

3 − 1
6
(L3 − L1)

3 (1− L4)− 1
24

(L4 − L1)
4

− 1
6
L3
3 + L1L2L3L4 − 1

2
L2
2L3L4 + 1

4
(L2 − L1)

2 (L4 − L3)
2

− 1
2
L1L2

3L4 + 1
6
L3
3L4 − 1

2
L1L2L2

4

+ 1
4
L2
2L

2
4 + 1

6
L1L3

4 − 1
24

L4
4

expressions for the resulting fn(1) for small values of n. Clearly, the number
of terms in the exact symbolic representation grows rapidly with n, and unfor-
tunately we have not found a simple closed-form formula for its coefficients.
Nonetheless, one can iteratively evaluate the coefficients of the polynomials
{fd}nd=1 numerically, since

fd(t) =

∫ t

Ld

fd−1(x)dx =

∫ t

Ld

d−1∑
k=0

cd−1,kx
kdx =

d∑
k=1

cd−1,k−1

k
tk −

d∑
k=1

cd−1,k−1

k
Lk
d .

Thus, at each iteration we store the numerical values of cd,0, . . . , cd,d and update
them according to the following formula

cd,0 = −
d∑

k=1

cd−1,k−1

k
Lk
d and ∀k ≥ 1 : cd,k =

cd−1,k−1

k
. (C.3)

While seemingly straightforward to evaluate, a näıve implementation using stan-
dard (80-bit) long double floating-point accuracy suffers from a fast accumula-
tion of numerical errors and breaks down completely at n ≈ 150. The heart of
the problem is the formula for the constant term cd,0 of fd. As seen from Eq.
(C.3), at each iteration the term cd+1,0 accumulates errors from all previous
coefficients {cd,j}dj=0. These errors propagate to the higher order coefficients in
the next iteration, and are again amplified when computing cd+2,0, etc.

Computation using translated polynomials. To attenuate the accumu-
lation of numerical errors we perform the calculations in a different basis for the
space of degree d polynomials. Instead of the standard basis, for each degree d
we use a basis of translated monomials (x+ td,k)

k, where the constants td,k are
yet to be determined,

fd(x) = cd,0 +

d∑
k=1

cd,k (x+ td,k)
k
. (C.4)
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As in (C.1), f0(t) = 1, which is represented as c0,0 = 1. Using the representation
(C.4), each integration step yields

fd(t) =

∫ t

Ld

fd−1(x)dx = cd−1,0(t− Ld)

+

d∑
k=2

cd−1,k−1

k
(t+ td−1,k−1)

k −
d∑

k=2

cd−1,k−1

k
(Ld + td−1,k−1)

k
.

Given the above form we define td,k as follows,

td,1 = −Ld, and td,k = td−1,k−1 ∀k ∈ {2, . . . , d}.

Then, the coefficients of the translated polynomial fd satisfy

cd,0 = −
d∑

k=2

cd−1,k−1

k
(Ld + td−1,k−1)

k
and cd,k =

cd−1,k−1

k
for k = 1, . . . , d.

(C.5)

In contrast to (C.3), in this update rule the constant term cd,0 does not depend
on the term cd−1,0 of the previous iteration. Thus, the error accumulation in
this recursion is slower than in (C.3), and empirically, the update rule (C.5)
is significantly more stable. In summary, numerical integration of (C.5), using
extended double-precision (80-bit), allows accurate calculation of one-sided p-
values for up to n ≈ 50, 000 samples. C++ source code for this procedure is
freely available at http://www.wisdom.weizmann.ac.il/~amitmo.
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