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Abstract: We study confidence regions and approximate chi-squared tests
for variable groups in high-dimensional linear regression. When the size
of the group is small, low-dimensional projection estimators for individual
coefficients can be directly used to construct efficient confidence regions and
p-values for the group. However, the existing analyses of low-dimensional
projection estimators do not directly carry through for chi-squared-based
inference of a large group of variables without inflating the sample size by
a factor of the group size. We propose to de-bias a scaled group Lasso for
chi-squared-based statistical inference for potentially very large groups of
variables. We prove that the proposed methods capture the benefit of group
sparsity under proper conditions, for statistical inference of the noise level
and variable groups, large and small. Such benefit is especially strong when
the group size is large.
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1. Introduction

We consider the linear regression model

y = Xβ∗ + ε, (1.1)

where X = (x1, . . . ,xp) ∈ R
n×p is a design matrix, y ∈ R

n is a response vector,
ε ∼ Nn(0, σ

2In) with an unknown noise level σ, and β∗ = (β∗
1 , . . . , β

∗
p)

T ∈ R
p is

the vector of unknown true regression coefficients. We are interested in making
statistical inference about a group of coefficients β∗

G = (β∗
j , j ∈ G)T . For small
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p, the F -distribution, which is approximately chi-squared with proper normal-
ization, provides classical confidence regions for β∗

G and p-values for testing β∗
G.

We want to construct approximate versions of such procedures for potentially
very large groups in high-dimensional models where p is large, possibly much
larger than n.

The study of asymptotic inference for parameter estimates in high dimen-
sional regression has experienced a flurry of research activities in recent years.
Many attempts have been made to assess the model selected by high dimen-
sional regularizers; for example, some early work was done in Knight and Fu
(2000), sample splitting was considered in Wasserman and Roeder (2009) and
Meinshausen, Meier and Bühlmann (2009), and subsampling was considered
in Meinshausen and Bühlmann (2010) and Shah and Samworth (2013). See
Bühlmann and van de Geer (2011) for more detailed account of some of these
methods. Leeb and Potscher (2006) proved that the sampling distribution of
statistics based on selected models is not estimable. Berk, Brown and Zhao
(2010) proposed conservative approaches. Alternative approaches were proposed
in Lockhart et al. (2014) and Meinshausen (2014).

Recent works in Zhang and Zhang (2014), van de Geer et al. (2014) and Ja-
vanmard and Montanari (2014a) among others are more relevant to the line of
research we have adopted in the current work, which we describe in some de-
tail. For the effect of a preconceived variable, Zhang and Zhang (2014) pointed
out the feasibility of regular statistical inference at the parametric n−1/2 rate
by correcting the bias of a regularized estimator of the entire coefficient vec-
tor, such as the Lasso, and proposed a low-dimensional projection estimator
(LDPE) to carry out the task. The basic idea is to project the residual of the
regularized estimator to the direction of a certain score vector which is approx-
imately orthogonal to all variables other than the preconceived one. Such bias
correction, which has been called de-biasing, is parallel to correcting the bias
of nonparametric estimators in semiparametric inference (Bickel et al., 1993).
In a general setting, Zhang (2011) developed an alternative formulation of the
LDPE and provided formulas for the direction of the least favorable submodel
and the Fisher information bound for the asymptotic variance. In linear regres-
sion, the least favorable submodel more explicitly connects the Lasso estimator
of the score vector to column-by-column estimation of the precision matrix for
random designs (Cai, Liu and Luo, 2011; Sun and Zhang, 2013). Bühlmann
(2013) developed and studied methods to correct the bias of ridge regression.
Belloni, Chernozhukov and Hansen (2014) considered estimation of treatment
effects with a large number of controls. van de Geer et al. (2014) proved that
the LDPE attains the Fisher information bound under a sparsity condition on
the precision matrix and made a connection between the Lasso estimation of
the score vector and the inversion of the Karush-Kuhn-Tucker (KKT) conditions
through the precision matrix. Moreover, van de Geer et al. (2014) extended their
results to generalized linear models (GLMs) with an innovative way of analyzing
such models. Javanmard and Montanari (2014a) proved that when a quadratic
programming method of Zhang and Zhang (2014) is used to estimate the score
vector, the LDPE attains the Fisher information bound for Gaussian designs
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without requiring sparsity condition on the precision matrix; see Subsection 2.2
for further discussion.

In a separate work, Javanmard and Montanari (2014b) considered inference
with lower sample size requirements when the design is known to be standard
Gaussian. Sun and Zhang (2012a), Ren et al. (2013) and Jankova and van de
Geer (2014) considered extensions to graphical models and precision matrix
estimation.

It is possible to directly extend the above described de-biasing method to the
case of grouped variables. In fact, the LDPE provides

√
n
(
β̂G − β∗

G

)
= N|G|

(
0, σ2VG,G

)
+RemG (1.2)

along with a known covariance structure VG,G and a remainder term that sat-
isfies ‖RemG‖∞ � ‖β∗‖0(log p)/

√
n (Zhang and Zhang, 2014). However, this

does not directly provide a sharp error bound for the �2- or equivalently chi-
squared-based group inference for large groups. As Var(χ|G|) ≈ 1/2, the trivial

bound ‖RemG‖2 � |G|1/2‖β∗‖0(log p)/
√
n = o(1) for group inference leads to

an extra factor |G| in the sample size requirement. Thus, the group inference
problem is unsolved when one is unwilling to impose such a strong condition
on n. Our goal is to construct β̂G satisfying ‖RemG‖2 = o(1) in an expansion
of the form (1.2) with potentially very large |G|. The impact of such a result is
certainly beyond the specific problem under consideration.

Our approach is based on the natural idea that group sparsity can be ex-
ploited in statistical inference of variable groups. To this end, we propose to
use a linear estimator to correct the bias of a scaled group Lasso estimator.
This combines and extends the ideas of the group Lasso (Yuan and Lin, 2006)
and bias correction (Zhang and Zhang, 2014), and will be shown to capture
the benefit of group sparsity in both high-dimensional estimation as in Huang
and Zhang (2010) and in bias correction. We note that the type of statistical
inference under consideration here is regular in the sense that it does not re-
quire model selection consistency, and that it attains asymptotic efficiency in the
sense of Fisher information without being super-efficient. A characterization of
such inference is that it does not require a uniform signal strength condition on
informative features, e.g. a lower bound on the non-zero |βj | above an inflated
noise level due to model uncertainly, known as the “beta-min” condition.

Since our proposed method relies upon a group regularized initial estimator,
in the following we provide a brief discussion of the literature on the topic. The
group Lasso (Yuan and Lin, 2006) can be defined as

β̂(ω) = argmin
β

Lω(β), Lω(β) =
‖y −Xβ‖22

2n
+

M∑
j=1

ωj‖βGj
‖2, (1.3)

where {Gj , , 1 ≤ j ≤ M} forms a partition of the index set {1, . . . , p} of vari-
ables. It is worthwhile to note that when the group effects are being regular-
ized, the choice of the basis XGj = (xk, k ∈ Gj) within the group may not
play a prominent role, so that the design is often “pre-normalized” to satisfy
XT

Gj
XGj/n = IGj×Gj as in Yuan and Lin (2006). The group Lasso and its vari-
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ants have been studied in Bach (2008), Koltchinskii and Yuan (2008), Obozin-
ski, Wainwright and Jordan (2008), Nardi and Rinaldo (2008), Liu and Zhang
(2009), Huang and Zhang (2010), and Lounici et al. (2011) among many others.
Huang and Zhang (2010) characterized the benefit of group Lasso in �2 estima-
tion, versus the Lasso (Tibshirani, 1996), under the assumption of strong group
sparsity ; see (2.1) in Section 2. Huang et al. (2009) and Breheny and Huang
(2011) developed methodologies for concave group and bi-level regularization.
We refer to Huang, Breheny and Ma (2012) for further discussion and additional
references

Estimation of the scale parameter, or the noise level σ, is also an important
aspect of high dimensional regularized regression. Due to scale invariance, it is
natural to let the groupwise weights in (1.3) be proportional to the scale parame-
ter σ. Thus, a consistent estimate of σ also becomes necessary for truly adaptive
estimation of the parameters. For the Lasso problem, Antoniadis (2010) and Sun
and Zhang (2010, 2012b) proposed a scaled Lasso that estimates both the scale
parameter σ and coefficient vector β∗, which is closely related to the earlier
proposals of Zhang (2010) and Städler, Bühlmann and Geer (2010). It turns
out that this scaled Lasso and the square-root Lasso (Belloni, Chernozhukov
and Wang, 2011) yield the same estimator of β although the estimation of σ
is not considered in Belloni, Chernozhukov and Wang (2011). For group regu-
larization, Bunea, Lederer and She (2014) proposed a square-root group Lasso
for adaptive estimation of the coefficient vector β. In this paper, we study a
scaled group Lasso for simultaneous estimation of both β and σ with a different
weighted �2,1 penalty and prove the benefit of grouping in the estimation of the
scale parameter in terms of convergence rates.

This paper is organized as follows. In Section 2, we describe a general pro-
cedure for statistical inference of groups of variables and provide theoretical
guarantees for our results. In Section 3, we study the scaled group Lasso needed
for the construction of estimators in Section 2. In Section 4, we present some sim-
ulation results to demonstrate the feasibility and performance of the proposed
methods. In Section 5 we provide a brief summary of our results and discuss
future directions of research. Proofs of some technical results are relegated to
the Appendix.

We use the following notation throughout the paper. For vectors u ∈ R
d, the

�p norm is denoted by ‖u‖p = (
∑d

k=1 |uk|p)1/p, with ‖u‖∞ = max1≤k≤d |uk| and
‖u‖0 = #{j : uj �= 0}. For matrices A, the Moore-Penrose pseudo inverse is de-

noted by A†, the spectrum norm is denoted by ‖A‖S = max‖u‖2=‖v‖2=1 u
TAv,

the Frobenius norm by ‖A‖F = {trace(ATA)}1/2, and the nuclear norm by
‖A‖N = max‖B‖S=1 trace(B

TA). Given A ⊂ {1, · · · , p}, for any vector u ∈ R
p,

uA ∈ R
|A| denotes a vector with corresponding components from u, XA ∈

R
n×|A| denotes the sub-matrix of X with corresponding columns as indicated

by the set A,X−A denotes the sub-matrix ofX with column indices belonging to
the complement of A, R(XA) denotes the column space spanned by columns of
XA, QA = XA(X

T
AXA)

†XT
A denotes the orthogonal projection to R(XA), and

Q⊥
A = Ip×p − QA. Additionally, E and P denote respectively the expectation

and probability measure.
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2. Group inference

We present our results in seven subsections. Subsection 2.1 describes the group
structure of the regression problem in detail and the notion of strong group spar-
sity. Subsection 2.2 provides a brief account of the bias correction procedure for
statistical inference of a single variable. Subsection 2.3 proposes an extension of
the bias correction idea to group inference. Subsection 2.4 justifies the proposed
group inference methodology in an ideal setting and states a working assump-
tion for more general settings. Subsection 2.5 provides optimization methods for
construction of group inference procedures under the working assumption. Sub-
section 2.6 provides sufficient conditions for the feasibility of the optimization
scheme considered in Subsection 2.5. Subsection 2.7 discusses convexations of
the optimization problem and summarizes the overall scheme.

2.1. Group structure and strong group sparsity

We assume an inherent and pre-specified non overlapping group structure of the
feature set. Put precisely, assume that {1, · · · , p} = ∪M

j=1Gj such that Gj∩Gk =

∅. Define dj = |Gj | for all j so that
∑M

j=1 dj = p. For any index set T ⊂
{1, · · · ,M}, we define GT = ∪j∈TGj . In the following, we allow the quantities
n, p,M, dj ’s etc. to all grow to infinity.

In light of this group structure, further results on consistency of group reg-
ularized estimators of β∗ will be based on a weighted mixed �2,1 norm, defined

as
∑M

j=1 ωj‖uGj‖2 for u = (uGj ; 1 ≤ j ≤ M) ∈ R
p with uGj ∈ R

|Gj |, where

ω = (ω1, · · · , ωM ) ∈ R
M with ωj > 0 for all j. This norm will be used both

as penalty and as a key loss function. Weighted mixture norm of this type pro-
vides suitable description of the complexity of the unknown β when the following
strong group sparsity condition of Huang and Zhang (2010) holds.

Strong group sparsity: With the given group structure {Gj , j = 1, . . . ,M} as
a partition of {1, . . . , p}, there exists a group-index set, S∗ ⊂ {1, · · · ,M}, such
that

|S∗| ≤ g, |GS∗ | ≤ s, supp(β∗) ⊂ GS∗ = ∪j∈S∗Gj . (2.1)

In this case, we say that the true coefficient vector β∗ is (g, s) strongly group
sparse with group support S∗.

Our aim is to make chi-squared-type statistical inference about the effect of
a group G of variables, including confidence regions and p-values for XGβ

∗
G

and β∗
G. As will be clear from our analysis, the methodologies proposed in this

paper will allow the size of the group G to grow unboundedly up to |G| = o(n).
Moreover, the group G of interest does not have to be congruent with the group
structure {Gj , j = 1, . . . ,M}. In fact, each of the |G| variables in G could belong
to any of the M different pre-specified groups of variables so that

XGβ
∗
G =

∑
k:Gk∩G 	=∅

XGk∩Gβ
∗
Gk∩G.
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Thus we can rewrite the regression problem (1.1) as

y = XGβ
∗
G +

∑
Gk 	⊆G

XGk\Gβ
∗
Gk\G + ε = μ∗

G +
∑

Gk 	⊆G

μ∗
Gk\G + ε, (2.2)

where for any A ⊂ {1, · · · , p}, μ∗
A = XAβ

∗
A. In the simplest case, when the

variable group of interest G matches the group structure in the sense that,

XGβ
∗
G =

∑
Gk∩G 	=∅

XGk
β∗
Gk

, (2.3)

(e.g. G = Gj0 for some 1 ≤ j0 ≤ M), (2.2) could be simplified as,

y = XGβ
∗
G +

∑
Gk∩G=∅

XGk
β∗
Gk

+ ε = μ∗
G +

∑
Gk∩G=∅

μ∗
Gk

+ ε.

2.2. Bias correction for a single coefficient

In high-dimensional regression, regularized estimators have been extensively
studied and proven to be consistent for the estimation of the entire mean vec-
tor Xβ and coefficient vector β under various loss functions. However, since
such estimators are typically nonlinear and biased, their sampling distribution
is typically intractable. Zhang and Zhang (2014) proposed to correct the bias of

a regularized estimator β̂
(init)

with an LDPE of the following form:

β̂j = β̂
(init)
j + zT

j

(
y −Xβ̂

(init))/
zT
j xj , (2.4)

where zj is a certain score vector depending on X only. Here we provide a brief
review of some ideas involved in this methodology to prepare their extension to
group inference.

The basic idea of the LDPE can be briefly explained as follows. In the low-
dimensional regime where rank(X) = p ≤ n, we may pick zj = x⊥

j as the
projection of xj to the orthogonal complement of the column space of X−j =
(xk, k �= j), i.e. zT

j X−j = 0 and zT
j xj = ‖z⊥

j ‖22 > 0. For this choice zj = x⊥
j ,

the β̂j in (2.4) is identical to the least squares estimator (x⊥
j )

Ty/(x⊥
j )

Txj ,
and thus is unbiased regardless of the choice of the initial estimator. In the
high dimensional case where p > n, x⊥

j is no longer a valid choice of zj as

the condition zT
j X−j = 0 forces zj = 0 when X is in general position. When

zT
j X−j �= 0, the linear estimator β̂

(lin)
j = zT

j y/z
T
j xj has unbounded bias for the

estimation of βj even if we assume the sparsity condition ‖β‖0 = 1. However,

the linear estimator is used in (2.4) to project the residual y −Xβ̂
(init)

to the
direction of zj for the purpose of bias correction, and the full strength of the

unbiasedness property zT
j X−j = 0 is not necessary to reduce the bias of β̂

(init)

to an acceptable level.
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The performance of a score vector zj can be measured by a bias factor ηj
and a noise factor τj defined as follows,

ηj = ‖zT
j X−j‖∞/‖zj‖2, τj = ‖zj‖2/|zT

j xj |.

This can be seen from the following error decomposition for the LDPE in (2.4),

β̂j − βj = zT
j ε/z

T
j xj + τjRemj , (2.5)

in which zT
j ε/z

T
j xj ∼ N(0, τ2j σ

2) and an �∞-�1 split leads to∣∣Remj

∣∣ = ∣∣zT
j X−j(β̂

(init)
− β∗)−j

∣∣/‖zj‖2 ≤ ηj
∥∥β̂(init)

− β∗∥∥
1
. (2.6)

Thus, when |Remj | = oP(1), statistical inference for βj can be carried out with

a consistent estimate of σ. For example, when ηj �
√
log p and ‖β̂

(init)
−β∗∥∥

1
�

‖β∗‖0
√

(log p)/n,

n � (‖β‖0 log p)2 ⇒ (β̂j − β∗
j )/(σ̂τj) ≈ (β̂j − β∗

j )/(στj) ≈ N(0, 1)

It is worthwhile to mention here that τj and ηj are both explicitly available
given zj , so that the validity of the above scheme requires no stronger assump-
tions than an �1 error bound for the estimation of β and a consistent estimate

of σ. A scaled Lasso estimator can be used as {β̂
(init)

, σ̂}, which satisfies∣∣∣∣ σ̂σ∗ − 1

∣∣∣∣+ ( log pn

)1/2
‖β̂

(init)
− β∗‖1 = OP

(
‖β∗‖0 log p

n

)
, (2.7)

with σ∗ = ‖y−Xβ∗‖2/
√
n and s = ‖β∗‖0 (Sun and Zhang, 2012b), provided an

�1 restricted eigenvalue or compatibility condition on the design (Bickel, Ritov
and Tsybakov, 2009; van de Geer and Bühlmann, 2009). Thus, the remaining
issue is to find a score vector zj with sufficiently small a bias factor ηj and a
noise factor τj .

For random designs with a Gram matrix Σ = E(XTX/n) that is invertible,
Zhang (2011) provided the direction of the least favorable submodel β = βju
as

uo
j = Σ−1ej

/(
Σ−1)j,j = argmin

u

{
uTΣu : eTj u = 1

}
,

with ej being the j-th canonical unit vector, and defined an ideal, efficient zj

as

zo
j = Xuo

j .

As the j-th element of uo
j equals 1, this can be written as a linear regression

model

xj = X−jγ−j + zo
j (2.8)

with γ−j = (γ1,j , · · · , γj−1,−j , γj+1,j , · · · , γp,j)T = (−uo
j)−j ∈ R

p−1.
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Given a design matrix X, Zhang and Zhang (2014) proposed two choices of
zj for the LDPE in (2.4). The first proposal of zj takes a point in the Lasso
path in the linear regression of xj against X−j :

zj = xj −X−j γ̂−j , γ̂−j = argmin
b

{
‖xj −X−jb‖22/2n+ λj‖b‖1

}
. (2.9)

For p ≤ n, we may take λj = 0, so that zj = x⊥
j and the β̂j in (2.4) is the least

squares estimator of βj . For p > n, (2.9) provides a relaxed projection of xj via
the Lasso, and the KKT conditions for zj automatically provides

τj ≤ 1/‖zj‖2, ηj = ‖zT
j X−j‖∞/‖zj‖2 = nλj/‖zj‖2,

which implies ηj =
√
2 log p with a scaled λj satisfying λj =

√
‖zj‖22(2 log p)/n2.

The second proposal of zj , closely related to the first one in (2.9) and given
in the discussion section of Zhang and Zhang (2014), was a constrained variance
minimization scheme

zj = argmin
z

{
‖z‖22 : |zTxj/n| = 1, ‖zTX−j/n‖∞ ≤ λ′

j

}
. (2.10)

This quadratic program, which provides τj = ‖zj‖2/n, can be understood as

minimize τ2j subject to ηj ≤ λ′
j/τj ≈

√
2 log p.

A variant of the optimization in (2.10), studied in Javanmard and Montanari
(2014a) is

z̃j = Xm̂, m̂ = argmin
m

{
mT Σ̂m : ‖Σ̂m− ej‖∞ ≤ λ′′

j

}
. (2.11)

Since z̃T
j xj/n = 1− λ′′

j and (2.10) is neutral in the sign of z, (2.11) and (2.10)
are equivalent with z̃j/(1 − λ′′

j ) = zj when λj = λ′′
j /(1 − λ′′

j ) and zj is the

solution with zT
j xj = n.

2.3. Bias correction for a group of variables

In this subsection we propose a multivariate extension of the methodologies
described in Subsection 2.2.

The algebraic extension of (2.4) to the grouped variable scenario is straight-
forward. For the estimation of β∗

G, a formal vectorization of the estimator is

β̂G = β̂
(init)

G + (ZT
GXG)

†ZT
G(y −Xβ̂

(init)
), (2.12)

where ZG ∈ R
n×|G|, depending on X only, can be viewed as a “score matrix”.

Recall that for any matrix A, A† is its Moore-Penrose pseudo inverse. For the
estimation of μ∗

G = XGβ
∗
G, a variation of (2.12) is

μ̂G = μ̂
(init)
G + (ZGQG)

†ZT
G(y −Xβ̂

(init)
), (2.13)
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where μ̂
(init)
G = XGβ̂

(init)

G and QG is the orthogonal projection to the column
space XG.

The extension of the error decomposition (2.5) to (2.12) and (2.13) is also
algebraic but requires a mild condition due to the need to factorize out a mul-
tivariate version of the noise factor. We carry out this task in the following
proposition.

Proposition 1. Let ZG ∈ R
n×|G|, QA and PG,0 be the orthogonal projections to

R(XA) and R(ZG) respectively, PG be the orthogonal projection to R(PG,0QG),

β̂G be as in (2.12), μ̂G = XGβ̂G, μ
∗
A = XAβ

∗
A, μ̂

(init)
A = XAβ

(init)
A , and

RemG =
∑

Gk 	⊆G

PG

(
μ̂

(init)
Gk\G − μ∗

Gk\G

)
=
∑

Gk 	⊆G

(
PGQGk\G

)(
μ̂

(init)
Gk\G − μ∗

Gk\G

)
.

(2.14)

(i) Suppose rank(ZT
GXG) = |G|. Then, rank(PGXG) = |G|, PG = PG,0, and

β̂G = β̂
(init)

G + (PGXG)
†PG

(
y −Xβ̂

(init)
)
= β∗

G + (PGXG)
† (PGε− RemG) .

(2.15)

(ii) Suppose rank(PG) = rank(XG). Then, (2.13) holds and

μ̂G = μ̂
(init)
G + (PGQG)

†PG

(
y −Xβ̂

(init)
)
= μ∗

G + (PGQG)
† (PGε− RemG) .

(2.16)

Consequently,

(PGQG)(μ̂G − μ∗
G) = (PGXG)(β̂G − β∗

G) = PGε− RemG. (2.17)

In particular, when μ∗
G = 0,

PGε− RemG = PGμ̂G = PG

(
y −

∑
Gk 	⊆G

μ̂
(init)
Gk\G

)
. (2.18)

The first equations of (2.15) and (2.16) assert the scale invariance of the
proposed estimator in the choice of ZG in the sense that it depends in ZG only
through the projection PG.

The condition rank(PG) = rank(XG), slightly weaker than the condition
rank(ZT

GXG) = |G|, requires ZT
GXG to have the same kernel as XG. If this

condition fails to hold, there will be no bias correction in a certain direction

a = XGbG �= 0 in the sense that aT μ̂G = aT μ̂
(init)
G .

In Proposition 1, the matrices (PGXG)
† and (PGQG)

† and can be viewed
as multivariate noise factors respectively for statistical inference of β∗

G and μ∗
G,

and the remainder term RemG can be viewed as standardized bias.



1838 R. Mitra and C.-H. Zhang

For any estimator σ̂ for the noise level and measurable function h : R(PG) →
R,

h
(
(PGQG)(μ̂G − μ∗

G)/σ̂
)
= h

(
(PGXG)(β̂G − β∗

G)/σ̂
)

(2.19)

is an approximate pivotal quantity with approximate distribution h(PGε/σ)
whenever

sup
−∞<t<∞

∣∣∣P{h((PGε− RemG)/σ̂
)
≤ t
}
− P

{
h
(
PGε/σ

)
≤ t
}∣∣∣ = o(1). (2.20)

From this point of view, the proposed method is generic. If a pivotal quantity
(2.19) with a specific h(·) suits the aim of a statistical experiment, statistical

inference can be carried out if certain estimator {β̂
(init)

, σ̂} and score matrix
ZG can be found to satisfy (2.20).

As we are interested in chi-squared type inference, the right choice of h(·) is
h(v) = ‖v‖2. This choice yields elliptical confidence regions for β∗

G and μ∗
G via

(2.19). For testing the hypothesis H0 : βG = 0, (2.18) provides the test statistic

TG =
1

σ̂

∥∥∥∥∥∥PG

⎛⎝y −
∑

Gk 	⊆G

μ̂
(init)
Gk\G

⎞⎠∥∥∥∥∥∥
2

(2.21)

as an approximation of ‖PGε/σ‖2. Let kG = rank(PG). It is worthwhile to note
that

‖PGε‖2/σ −
√

kG → N(0, 1/2) (2.22)

when kG → ∞. Thus, without further investigation of possible stochastical
cancellation between PGε and RemG, (2.20) for h(v) = ‖v‖2 and kG ≥ 1
amounts to √

kG
∣∣σ̂/σ − 1

∣∣+ ∥∥RemG/σ
∥∥
2
= oP(1). (2.23)

As ‖PGε‖22/σ2 has the χ2
kG

distribution, (2.23) implies⎧⎪⎪⎪⎨⎪⎪⎪⎩
supt

∣∣∣P{‖(PGXG)(β̂G − β∗
G)‖22 ≤ σ̂t

}
− P

{
χ2
kG

≤ t
}∣∣∣→ 0,

supt

∣∣∣P{‖(PGQG)(μ̂G − μ∗
G)‖22 ≤ σ̂t

}
− P

{
χ2
kG

≤ t
}∣∣∣→ 0,

μ∗
G = 0 ⇒ supt

∣∣∣P{T 2
G ≤ t

}
− P

{
χ2
kG

≤ t
}∣∣∣→ 0.

(2.24)

When kG = rank(PG) → ∞, we can apply central limit theorem (2.22) to
approximate the χ2

kG
distribution.

The problem, as before, is to choose {β̂
(init)

, σ̂} and ZG to guarantee (2.23)
for the given h(·). For definiteness, we will pick in the sequel the following scaled
version of the group Lasso estimator (1.3):

{β̂
(init)

, σ̂} = argmin
β,σ

{
‖y −Xβ‖22

2nσ
+

σ

2
+

M∑
j=1

ωj‖βGj
‖2
}
. (2.25)
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This estimator, which aims to take advantage of the group sparsity (2.1), will be
considered carefully in Section 3, so that we can move on to the more pressing
issue of finding a proper ZG. Still, we would like to mention that this choice of

{β̂
(init)

, σ̂} and h(·) will in no way confine the scope of the proposed method,
as Proposition 1 and (2.20) are completely general.

2.4. An ideal solution and a working assumption

To study the feasibility of the approach outlined above in Subsection 2.3, we
first consider, parallel to (2.8), an ideal ZG as the noise matrix in the following
multivariate regression model,

XG = X−GΓ−G,G + Zo
G. (2.26)

This regression model is best explained in the context of random design where

Γ−G,G =
{
E(XT

−GX−G)
}−1

E(XT
−GXG). (2.27)

To this end, we consider in the following theorem random design matricesX hav-
ing iid sub-Gaussian rows satisfying EX = 0, E(XTX/n) = Σ with a positive-
definite Σ, and

(Sub-Gaussianity) sup
b 	=0

E exp

(
(eTi Xb)2

v0b
TΣb

+
1

v0

)
≤ 2 (2.28)

with a certain constant v0 > 1, where ei ∈ R
n is the ith canonical unit vector

in R
n.

Theorem 1. Let 0 < c∗ ≤ c∗ and 1 < A∗ < A∗ be fixed constants and

{β̂
(init)

, σ̂} be a solution of (2.25) with ωj/A
∗ ≤ ‖XGj/

√
n‖Sω∗,j ≤ ωj/A∗,

where ω∗,j = n−1/2(
√

|Gj | +
√
2 logM). Suppose X satisfies condition (2.28)

with c∗ ≤eigenvalues(Σ) ≤ c∗. Let Zo
G be as in (2.26) with the Γ−G,G in (2.27)

and β̂G be as in (2.12) with ZG = Zo
G. Suppose y − Xβ∗ ∼ Nn(0, σ

2In ) and
β∗ satisfies the (g, s) strong group sparsity condition (2.1) with

maxj≤M |Gj |
n

+
|G|
n

→ 0,
s+ g logM

n1/2

(
|G|1/2
n1/2

+ max
Gk 	⊆G

ω′
k

ω∗,k

)
→ 0, (2.29)

where ω′
k = n−1/2

(√
|G|+ |Gk \G|+

√
logM

)
. Then, P{rank(PG) = |G|} → 1,

(2.24) holds, and

(PGQG)(μ̂G − μ∗
G)/σ̂ = (PGXG)(β̂G − β∗

G)/σ̂ = Nn(0,PG ) + oP(1). (2.30)

Theorem 1, whose proof is merged with that of Theorem 4 and provided

in Subsection 2.6, asserts that with a combination of the {β̂
(init)

, σ̂} in (2.25)
and the ideal ZG = Zo

G in (2.26), bias correction provides valid asymptotic
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chi-squared-type statistical inference for the group effect μ∗
G ∈ R

n and the
coefficient group β∗

G ∈ R
|G|. However, this theorem requires a sub-Gaussian

design and the knowledge of Zo
G.

To extend this approach to more general settings with unknown Zo
G or even

deterministic X, we follow a strategy parallel to the one described in Subsection
2.2: We may directly approximate Zo

G via a regularized multivariate regression
in (2.26) or mimic properties of Zo

G with a regularized optimization scheme.
The question is to make a right choice of the regularization on ZG to match

properties one can reasonably expect from {β̂
(init)

, σ̂}. To this end, we extract,

as the following working assumption, some properties of {β̂
(init)

, σ̂} which are
proven and used in our analysis under the conditions of Theorem 1.

Working assumption: Suppose that we have estimators β̂
(init)

and σ̂ of a
(g, s) strong group sparse signal β∗ and scale parameter σ respectively satisfying

∣∣∣∣ σ̂σ∗ − 1

∣∣∣∣+ 1

n1/2

M∑
j=1

ω∗,j
σ

∥∥∥XGj β̂
(init)

Gj
−XGjβ

∗
Gj

∥∥∥
2
= OP

(
s+ g logM

n

)
,

(2.31)

where ω∗,j =
√

|Gj |/n +
√

(2/n) logM , σ∗ = ‖Xβ∗ − y‖2/
√
n is an oracle

estimate of the noise level σ, and Gj, s and g are as in (2.1).

The above working assumption still aims to take advantage of the group
sparsity (2.1) as the mixed prediction error and the complexity measure s +
g logM dictate. However, compared with the more specific (2.25), it provides
a direction for regularizing a proper ZG for any estimator satisfying (2.31),
possibly with deterministic designs.

Under the strong group sparsity (2.1), error bounds in the �2 and mixed �2,1
norms for group regularized methods have been established in the literature as
we reviewed in the introduction. In Section 3, we contribute to this literature by
obtaining �2 as well as weighted mixed �2 norm error bounds of the group Lasso
and its scaled version (2.25). We will also provide a faster rate of convergence
of the scale parameter σ under strong group sparsity, which is crucial to our
analysis. In particular, we will prove in Section 3 that the error bound for

β̂
(init)

in (2.31) is attainable under proper conditions on the design matrix if
the group Lasso is used with a proper estimate of σ, and the error bounds for

both β̂
(init)

and σ̂ in (2.31) are attainable if the scaled group Lasso is used; see
Corollaries 1 and 2 and Theorem 7.

It is worthwhile to point out that the working assumption exhibits the benefit
of strong group sparsity, compared with a reasonable working assumption based
on the �0 sparsity condition ‖β∗‖0 ≤ s as given in (2.7). In general, the error
bounds in (2.31) and those in (2.7) do not strictly dominate each other. However,
if in both the scenarios, s is of similar order and g � s, then (2.31) dominates
the rates necessary for univariate inference as given in (2.7).
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An alternative possibility is to use an �1 regularized estimate of Γ−G,j in the
univariate regression of xj against X−G for all individual j ∈ G. This has been
considered in van de Geer (2014). However, the advantage of such a scheme is

unclear compared with directly using (β̂j , j ∈ G)T with the β̂j in (2.4). It is
worthwhile to mention that the central limit theorem for (2.4) came with large
deviation bounds to justify Bonferroni adjustments (Zhang and Zhang, 2014),
so that (2.4) and its variations can be used to test H0 : β∗

G = 0 versus an

alternative hypothesis on ‖β∗
G‖∞, especially when an �1 regularized β̂

(init)
is

used as in van de Geer et al. (2014). However, we are interested in extensions
of traditional F - or chi-squared tests for �2 alternatives and taking advantage
of the group sparsity of β∗. Such methods require control of �2 and groupwise
weighted �2 error and accordingly, a proper choice ZG to match the working
assumption.

2.5. An optimization strategy

In this subsection we propose a multivariate extension of the optimization strat-
egy (2.10) to match an initial estimator satisfying the working assumption (2.31)
in the bias correction scheme (2.12).

It follows from Proposition 1 that the estimator (2.12) depends on the result-
ing ZG only through the orthogonal projection PG to the range of ZG under a
necessary assumption for the bias correction scheme to work, as we commented
below Proposition 1. Moreover, it follows from (2.14) and (2.17) that the de-
sired PG, which depends on X only, must be close to QG and approximately
orthogonal to QGk\G for all k with Gk �⊆ G.

Let Q be the projection to R(X). In the low-dimensional case of rank(X) =
p < n, we may set PG = Q

∏
Gk 	⊆G Q⊥

Gk\G, so that (2.12) is the least squares

estimator of βG with RemG = 0 in (2.14) and (2.15), and T 2
G/|G| is the F -

statistic for testing H0 : βG = 0 when σ̂ is the degree adjusted estimate of noise
level based on the residuals of the least squares estimator. Of course, we need
to relax the requirement of the orthogonality condition PGQGk\G = 0 for all
Gk �⊆ G in the high-dimensional case.

Analytically, the key is to prove the upper bound ‖RemG/σ‖2 = oP(1) in
(2.23). To this end we use the formula in (2.14) and the working assumption in
(2.31) to obtain

‖RemG‖2 ≤
(
max
Gk 	⊆G

Mkω
−1
∗,k‖PGQGk

‖S
) ∑

Gk 	⊆G

ω∗,k‖μ̂(init)
Gk

− μGk
‖2

= OP

(
s+ g logM

n1/2

)(
max
Gk 	⊆G

Mkω
−1
∗,k‖PGQGk

‖S
)
, (2.32)

where

ω∗,k =
√

|Gk|/n+
√

(2/n) logM and Mk = max
‖XGk

uGk
‖2=1

‖XGk\GuGk\G‖2.
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We note that Mk = 1 when XT
Gk

XGk
/n = Idk×dk

. Since (s+ g logM)/n is the

order of the mixed �2,1 error bound for β̂, we may treat

ηG = max
Gk 	⊆G

Mkω
−1
∗,k‖PGQGk

‖S

as a scalar bias factor. The error bound in (2.32) motivates the following exten-
sion of (2.10):

PG = argmin
P

{
‖PQ⊥

G‖S : P = P2 = PT , ‖PGQGk\G‖S ≤ ω′
k ∀ Gk �⊆ G

}
.

(2.33)

We say that PG is a feasible solution of (2.33) if it satisfies all the constraints.
The optimization problem (2.33) is a generalization of (2.10) and provides geo-
metric insights. As (PGQG)

† is a multivariate noise factor for the inference of
μ∗

G, we may define τG = ‖(PGQG)
†‖S as a scalar noise factor. The quantity

‖PGQ
⊥
G‖S , which is the so-called ‘gap’ between the subspaces spanned by PG

and QG, equals (1− τ−2
G )1/2. Thus, minimizing ‖PGQ

⊥
G‖S is equivalent to min-

imizing the noise factor τG. This minimization is done subject to upper-bounds
on the components ‖PGQGk\G‖S of the bias factor. Thus, (2.33) is an extension
of (2.10) as we discussed immediately after (2.10). When p < n and ω′

k = 0, PG

in (2.33) is the projection to the orthogonal complement of
∑

Gk 	⊆G R(XGk\G)

in R(X), or equivalently the linear space
(∏

Gk 	⊆G Q⊥
Gk\G

)
R(X).

In the following theorem, we provide a summary of the analysis we have
carried out above.

Theorem 2. Let PG be a feasible solution of (2.33) satisfying ‖PGQ
⊥
G‖S < 1,

and β̂G be as in (2.12) with ZG = PG and certain {β̂
(init)

, σ̂} satisfying (2.31).
Suppose ε ∼ Nn(0, σ

2In ), rank(XG) = |G|, and

|G|
n

→ 0,
s+ g logM

n1/2

(
|G|1/2
n1/2

+ max
Gk 	⊆G

Mk
ω′
k

ω∗,k

)
→ 0, (2.34)

with the Mk in (2.32). Then, (2.24) and (2.30) hold.

Proof of Theorem 2. Since ‖PGQ
⊥
G‖S < 1, we have rank(PGXG) = rank(XG) =

|G|, so that the condition of Proposition 1 (i) holds, which implies the condition
of Proposition 1 (ii) with kG = |G|. It follows from (2.31), (2.32), (2.34) and the
feasibility ofPG in (2.33) that (2.23) holds, which implies (2.24) and (2.30). Note
that (2.31) and (2.34) imply |σ/σ̂ − 1| = oP(|G|−1/2)+OP(n

−1/2) = oP(|G|−1/2)
in the proof for the first component of (2.23).

A modification of (2.33), which removes the factors Mk in condition (2.34),
is to re-parameterize the effect of the k-th group by writing

XGk
βGk

= X̃Gk∩GβGk∩G +XGk\Gβ̃Gk\G,
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where X̃Gk∩G = Q⊥
Gk\GXGk∩G and β̃Gk\G is a solution of XGk\Gβ̃Gk\G =

QGk\GXGk
βGk

. We recall that QGk\G is the orthogonal projection to the col-
umn space of XGk\G. As this within-group re-parameterization retains βGk∩G

and XGk\G,

y = X̃GβG +
∑

Gk 	⊆G

QGk\GμGk
+ ε = X̃GβG +

∑
Gk 	⊆G

XGk\Gβ̃Gk\G + ε,

where X̃G is the n×|G| matrix given by X̃GvG =
∑M

k=1

(
Q⊥

Gk\GXGk∩G

)
vG∩Gk

.

As X̃Gk∩G is orthogonal to XGk\G, we have Mk = 1 after re-parametrization.
Moreover, the strong group sparsity condition supp(β∗) ⊂ GS∗ and the working
assumption (2.31) are invariant under the re-parameterization. We note that

X̃G = XG when XT
Gk

XGk
/n = IGk×Gk

for all k with 0 < |Gk \ G| < |Gk|. Let
Q̃G be the projection to the column space of X̃G. The optimization scheme and
statistical methods are changed accordingly as follows:

PG = argmin
P

{
‖PQ̃

⊥
G‖S : P = P2 = PT , ‖PGQGk\G‖S ≤ ω′

k ∀ k
}
,

β̂G = (PGX̃G)
†PG

⎛⎝y −
∑

Gk 	⊆G

QGk\Gμ̂
(init)
Gk

⎞⎠ , when rank(PGX̃G) = |G|,

(2.35)

TG =
1

σ̂

∥∥∥∥∥∥PG

⎛⎝y −
∑

Gk 	⊆G

QGk\Gμ̂
(init)
Gk

⎞⎠∥∥∥∥∥∥
2

.

With {XG,QG} replaced by {X̃G, Q̃G}, our analysis yields the following theo-
rem.

Theorem 3. Let PG, β̂G and TG be given by (2.35) with ‖PGQ̃
⊥
G‖S < 1.

Suppose ε ∼ Nn(0, σ
2In ), rank(XG) = |G|, and (2.31) and (2.34) hold with

Mk = 1. Then, (2.24) and (2.30) hold with {XG,QG} replaced by {X̃G, Q̃G}.
Remark 1. It is worthwhile to note that Theorems 2 and 3 only require a feasible

solution satisfying ‖PGQ
⊥
G‖S < 1 and ‖PGQ̃

⊥
G‖S < 1 respectively, which can

be directly verified for any given PG. Still, the optimality criterion on PG aims
to have smaller confidence regions and more powerful tests through (2.24). In

practice, it suffices to find a feasible solution with ‖PGQ
⊥
G‖S or ‖PGQ̃

⊥
G‖S

reasonably bounded away from 1. As the optimization problems in (2.33) and
(2.35) are still somewhat abstract for the moment, in the following we prove
the feasibility of PG in (2.33) for sub-Gaussian designs and describe penalized
regression methods to find feasible solutions of (2.33) and (2.35).

2.6. Feasibility of relaxed orthogonal projection for random designs

In this subsection, we discuss the existence of feasible solutions of the optimiza-
tion in (2.33) for a sub-Gaussian design matrix satisfying (2.28) with EX = 0
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and a positive-definite population Gram matrix E(XTX/n) = Σ. The feasibil-
ity is established under the assumption of the groupwise regression model as
described in (2.26).

We group the effects in the linear regression model (2.26) as follows:

XG = X−GΓ−G,G + Zo
G =

M∑
k=1

XGk\GΓGk\G,G + Zo
G, (2.36)

where Γ−G,G = Σ−1
−G,−GΣ−G,G. Under this model assumption, Zo

G is the true
residual after projection ofXG onto the range ofX−G. Let P

o
G be the orthogonal

projection to the column space of Zo
G,

Po
G = Zo

G

(
(Zo

G)
TZo

G

)†
(Zo

G)
T . (2.37)

The following theorem establishes the distributional convergence results in (2.24)

and (2.30) for β̂G by establishing the feasibility of Po
G as a solution of the op-

timization scheme in (2.33).

Theorem 4. Suppose the sub-Gaussian condition (2.28) holds with

0 < c∗ ≤ eigen(Σ) ≤ c∗ and fixed {v0, c∗, c∗}.

Let ω′
k = ξn−1/2

(√
|G|+ |Gk \G|+

√
log(M/δ)

)
.

(i) Let λmin be the smallest eigenvalue of {Σ−1/2
G,G (Σ−1)G,GΣ

−1/2
G,G }1/2, and let

ξn−1/2
(√

|G|+
√

log(M/δ)
)
≤ ηn, and an = λmin(1−ηn)/(1+ηn). Then, there

exist numerical constants ε0 ∈ (0, 1) and ξ0 < ∞ such that when ξ ≥ ξ0v0 and
ηn ≤ ε0,

P

{
(2.33) has a feasible solution PG with

rank(PG) = rank(PGXG) = |G| and ‖PGQ
⊥
G‖S ≤

√
1− a2n

}
≥ 1− δ.

(2.38)

(ii) Suppose the strong sparsity condition the sample size condition (2.29) hold

and that {β̂
(init)

, σ} is as in Theorem 1. Then, the working assumption (2.31)
holds.
(iii) Suppose the working assumption (2.31) and the sample size condition (2.29)
hold. Then, (2.24) and (2.30) hold.

Theorem 4 removes the requirement of the knowledge of Zo
G in Theorem 1. It

shows the existence of at least one feasible solution of (2.33) and that for such a
choice of PG, the χ2 based inference can be carried out as in (2.24) and (2.30).
However, (2.33) is not a convex program. In Subsection 2.7 we will describe
group Lasso programs as convexation of (2.33).

The proof of Theorem 4 requires the following lemma on the probabilistic
control of the spectral norm of the product of two random matrices with sub-
Gaussian rows. As an extension of that result, spectral norm control of the
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product of two orthogonal projection matrices is also obtained. These proba-
bilistic bounds in Lemma 1 are of independent interest. See Remark 2 for more
details.

Lemma 1. Let Bk be deterministic matrices with with p rows and rank(Bk) =
rk for k = {1, 2}. Let Pk be the projection to the range of XBk and

Ω1,2 = ((BT
1 ΣB1)

†)1/2BT
1 ΣB2((B

T
2 ΣB2)

†)1/2.

Let r = rank(Ω1,2) and 1 ≥ λ1 ≥ · · · ≥ λr > 0 be the nonzero singular values of
Ω1,2. Define λmin = λrI{r = r1 = r2}. Suppose (2.28) holds. Then, there exists

a numerical constant C0 > 1 such that when C0v0
√

t/n+ (r1 + r2)/n < ε0 < 1,

P

{
‖((BT

1 ΣB1)
†)1/2BT

1 (X
TX/n)B2((B

T
2 ΣB2)

†)1/2 −Ω1,2‖S ≤ ε0

}
≥ 1− e−t,

(2.39)

and

P

{
‖P1P2‖S ≤ λ1(1 + ε0)

1− ε0
, ‖P1P

⊥
2 ‖2S ≤ 1−

(
λmin(1− ε0)

1 + ε0

)2
}

≥ 1− e−t.

(2.40)

Moreover, λ1 < 1 iff rank(B1,B2) = r1 + r2 and λmin > 0 iff rank(BT
1 B2) =

r1 = r2.

We have moved the proof of Lemma 1 to the Appendix to avoid a distraction
from the main results of this section. Based on Lemma 1, we prove Theorems 1
and 4 as follows.

Proofs of Theorems 1 and 4. By (2.37), Po
G is the orthogonal projection to the

range of Zo
G = XBo

G with Bo
G = (Σ−1)∗,G(Σ

−1)−1
G,G. By definition, QGk\G

is the projection to the range of XGk\G = XBGk\G and QG to the range of
XG = XBG, where BGk\G and BG are 0-1 diagonal matrices projecting to the

indicated spaces. Define Ω = Σ
−1/2
G,G

{
(Σ−1)G,G}1/2. We have BT

Gk\GΣBo
G =

ΣGk\G,∗B
o
G = 0, BT

GΣBo
G = ΣG,∗B

o
G = (Σ−1)G,G = (Bo

G)
TΣBo

G and

(BT
GΣBG)

−1/2BT
GΣBo

G

(
(Bo

G)
TΣBo

G

)−1/2
= Σ

−1/2
G,G

{
(Σ−1)G,G}1/2

= Ω ∈ R
|G|×|G|.

Moreover, Ω = Σ
−1/2
G,G

{
(Σ−1)G,G}1/2 is a |G| × |G| matrix of rank |G| and

the smallest singular value of Ω is λmin. Thus, by (2.40) of Lemma 1 and the
definition of ω′

k and an,

P

{
‖PGQGk\G‖S ≤ ω′

k ∀k ≤ M, ‖PGQ
⊥
G‖S ≤

√
1− a2n

}
≥ 1− δ.

This yields (2.38). Moreover, (2.38) also holds when PG = Po
G or equivalently

ZG = Zo
G is used as in Theorem 1. As part (ii) of Theorem 4 restates Theorem 7
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in Section 3, it remains to prove maxGk\G 	=∅ Mk = OP(1) in view of Theorem 2.
To this end, we notice that due to the condition |Gk| + g logM � n, (2.39)
of Lemma 1 with B1 = B2 implies ‖XT

AXA/n − ΣA,A‖S = oP(1) for both
A = Gk and A = Gk \G and all k with Gk \G �= ∅, so that maxGk\G 	=∅ Mk =
oP(1) +O(1).

Remark 2. Since Lemma 1 is a crucial ingredient for Theorems 1 and 4, we
highlight a few key points. Let us write p = p1 + p2 and Ip = [Ip×p1 Ip×p2 ].
Consider the choices: B1 = Ip×p1 and B2 = Ip×p2 . Also consider the partition
X = [X1 X2] so that Xi = XBi. Writing

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ11 ∈ R

p1×p1 ,Σ12 ∈ R
p1×p2 ,Σ22 ∈ R

p2×p2 ,

it follows that cov(X1,X2) = Σ12. For such choices, Lemma 1 gives,

‖Σ−1/2
11

(
XT

1 X2/n−Σ12

)
Σ

−1/2
22 ‖S ≤ C

√
t/n+ (p1 + p2)/n (2.41)

with probability at least 1− e−t. This result provides a spectral norm bound on
the cross-product of two correlated random matrices with sub-Gaussian rows.
The probability bound in (2.41) is a generalization of a similar result for product
of two mutually independent random matrices with iid N(0, 1) entries, given in
Proposition D.1 in the supplement to Ma (2013). Control of spectral norm of
product of random and deterministic matrices have been studied as well; see Ver-
shynin (2011), Rudelson and Vershynin (2013) etc. In particular, spectral norm
concentration of product of a fixed projection matrix and a random matrix have
been derived in (Rudelson and Vershynin, 2013, Remark 3.3). In comparison,
our results in (2.40) studies product of two projection matrices with their range
being column spaces of correlated random matrices with sub-Gaussian rows.

2.7. Finding feasible solutions and construction of tests

While (2.38) of Theorem 4 guarantees a feasible solution of (2.33), the practi-
cality of the optimization scheme (2.33) has not yet been addressed. We discuss
here penalized multivariate regression methods for finding feasible solutions of
(2.33) and (2.35). As the only difference between (2.33) and (2.35) is the re-

spective use of XG and X̃G, we provide formulas here only for (2.33), with the
understanding that formulas for (2.35) can be generated in the same way with

XG replaced by X̃G.
The optimization problem in (2.33) is carried out over the non-convex space of

orthogonal projection matrices. In the following, we provide a convex program
for obtaining such orthogonal projection matrices under the linear regression
framework of (2.36). In model (2.36), a general formulation of the penalized
multivariate regression is

Γ̂−G,G = argmin
Γ−G,G

⎧⎪⎨⎪⎩ 1

2n

∥∥∥∥∥∥XG −
∑

Gk 	⊆G

XGk\GΓGk\G,G

∥∥∥∥∥∥
2

F

+R(Γ−G,G)

⎫⎪⎬⎪⎭ , (2.42)
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where ‖ · ‖F is the Frobenius norm and R(Γ−G,G) is a penalty function. Define

ZG = XG −
∑

Gk 	⊆G

XGk\GΓ̂Gk\G,G, PG = ZG(Z
T
GZG)

−1ZT
G. (2.43)

Our main interest is to find a feasible solution of (2.33) and (2.35), not to
estimate Γ−G,G. The following weighted group nuclear penalty matches the
dual of the constraint in (2.33) and (2.35):

R(Γ−G,G) =
∑

Gk 	⊆G

ξω′′
k

n1/2

∥∥∥XGk\GΓGk\G,G

∥∥∥
N
. (2.44)

Recall that nuclear norm of a matrix A, denoted ‖A‖N , is the sum of absolute
values of the singular values of A. It follows from the KKT conditions for (2.42)
with (2.44) that ∥∥∥QGk\GZG/

√
n
∥∥∥
S
≤ ξω′′

k . (2.45)

If we set ω′′
k = ωk in (2.44), condition (2.34) follows from

|G|
n

→ 0,
s+ g logM

n1/2

(
|G|1/2
n1/2

+ ξ‖(ZT
GZG/n)

−1/2‖S
)

→ 0, (2.46)

provided maxGk 	⊆G Mk = O(1) in the case of Theorem 2. Moreover, as in van de
Geer (2014), under the assumption λmin(ZG) > c > 0, only (s+ g logM)/n1/2+
|G|/n → 0 suffices.

When the group sizes are not too large, one may consider replacing the
weighted group nuclear penalty with a weighted group Frobenius penalty:

R(Γ−G,G) =
∑

Gk 	⊆G

ξω′′
k

n1/2

∥∥∥XGk\GΓGk\G,G

∥∥∥
F
. (2.47)

The KKT conditions for (2.42) with (2.47) yield∥∥∥QGk\GZG/
√
n
∥∥∥
S
≤
∥∥∥QGk\GZG/

√
n
∥∥∥
F
≤ ξω′′

k ,

so that (2.46) is still valid. However, this second layer of inequality indicates
that the resulting procedure may not be as efficient as the (2.44) penalty. In any
case, as discussed in Remark 1, it is reasonable to proceed with the computed
ZG as long as the resulting ‖PGQ

⊥
G‖S is not too close to 1. One important

benefit of the formulation of the groupwise penalty as in (2.47) is that it can
be conveniently computed using the standard group Lasso algorithms; see Yuan
and Lin (2006), Huang, Breheny and Ma (2012) etc. As we will show in Section
4, group Lasso performs well for empirical studies. We summarize our proposal
and main results as follows.

Summary: Statistical inference for groups of variables can be carried out as
follows:
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• Given (y,X) and a group structure {Gj : 1 ≤ j ≤ M}, construct the initial
estimates (β̂

(init)
, σ̂) via the scaled group Lasso (2.25) or any alternative

leading to (2.31).
• Given a variable group G of interest, construct relaxed projection estimate

PG = ZG(Z
T
GZg)

−1ZT
G by the penalized procedure (2.42) and (2.43) with

the penalty function (2.44) or (2.47).
• Carry out statistical inference according to (2.24) and (2.30)

Benefit of group sparsity: Existing sample size condition for statistical
inference of a univariate parameter at n−1/2 rate requires,

n � ‖β∗‖20(log p)2.

See for exampe Zhang and Zhang (2014); van de Geer et al. (2014); Javanmard
and Montanari (2014a). As discussed below (1.2), direct application of these
results to approximate chi-square group inference requires an extra factor |G|:

n � |G| × ‖β∗‖20(log p)2.

If the true parameter β∗ is (g, s) strong group sparse with s � ‖β∗‖0, the sample
size conditions in (2.34), (2.29) and (2.46) clearly demonstrate the benefit of
group sparsity by incorporating the smaller estimation error bound as in Huang
and Zhang (2010) and removing the extra |G|. In particular, our sample size
requirement becomes the much weaker

n �
(
s+ g log p

)2
for approximate chi-square inference when |G| � minGk 	⊆G{|Gk|+log(M/δ)} in

(2.29) or ξ‖(ZT
GZG/n)

−1/2‖S = O(1) in (2.46).

3. Verification of working assumption

The analysis in the preceding section established the benefits of grouping in
constructing �2 type statistical inference procedures for variable groups. One
key aspect of our analysis was the working assumption in (2.31). These results
showed a faster convergence rate for the scale parameter estimate and the co-
efficient parameter estimate. As promised, in this section we will establish the
bona fides of (2.31) under the strong group sparsity assumption in (2.1).

Generally, for high dimensional regression problems, certain regularity con-
ditions on the the design matrix is required for estimation as well as prediction
consistency. In the following Subsection 3.1, we discuss similar assumptions on
the design matrix X that ensure the consistency results in (2.31). We also de-
rive estimation and prediction consistency result for the non-scaled group Lasso
problem in (1.3) in Theorem 5 as an illustration. The main result of this section
is Theorem 6 and Corollary 1 in Subsection 3.2 and Theorem 7 in Subsection 3.3
that establish the working assumption (2.31).
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3.1. Group Lasso and conditions on the design matrix

In the Lasso problem, performance bounds of the estimator are derived based
on various conditions on the design matrix, for example, the restricted isometry
property (Candes and Tao, 2005), the sparse Riesz condition (Zhang and Huang,
2008), the restricted eigenvalue condition (Bickel, Ritov and Tsybakov, 2009;
Koltchinskii, 2009), the compatibility condition (van de Geer, 2007; van de Geer
and Bühlmann, 2009), and cone invertibility conditions (Ye and Zhang, 2010).
van de Geer and Bühlmann (2009) showed that the compatibility condition is
weaker than the restricted eigenvalues condition for the prediction and �1 loss,
while Ye and Zhang (2010) showed that both conditions can be weakened by
cone invertibility conditions. In the following, we define grouped versions of such
conditions, which will be used in our study.

Let us first define a groupwise mixed norm cone for T ⊂ {1 · · · ,M} and ξ ≥ 0
as

C (G)(ξ,ω, T ) =
{
u :
∑

j∈T cωj‖uGj‖2 ≤ ξ
∑

j∈Tωj‖uGj‖2 �= 0
}
. (3.1)

Let T ∗ = {1 · · · ,M} and T ⊆ T ′ ⊆ T ∗. Following Nardi and Rinaldo (2008)
and Lounici et al. (2011), the restricted eigenvalue (RE) is defined as

RE(G)(ξ,ω, T, T ′) = inf
u

{
‖Xu‖2√
n‖uGT ′ ‖2

: u ∈ C (G)(ξ,ω, T )

}
. (3.2)

For the weighted �2,1 norm, the groupwise compatibility constant (CC) can be
defined as

CC(G)(ξ,ω, T ) = inf
u

{‖Xu‖2
(∑

j∈T ω2
j

)1/2
√
n
∑

j∈T ωj‖uGj‖2
: u ∈ C (G)(ξ,ω, T )

}
. (3.3)

We note that RE(G)(ξ,ω, T, T ) and the somewhat larger CC(G)(ξ,ω, T ) are
aimed at the prediction and the weighed �2,1 estimation errors, while the smaller

RE(G)(ξ,ω, T, T ∗) is aimed at the �2 estimation error.
We also introduce the notion of groupwise cone invertibility factor and its

sign-restricted version. For q ≥ 1, the cone invertibility factor (CIF) is defined
as

CIF(G)
q (ξ,ω, T, T ′) = inf

u∈C (G)(ξ,ω,T )

maxj

[
ω−1
j ‖XT

Gj
Xu‖2

] (∑
j∈T ω2

j

)1/q
n
(∑

j∈T ′ ω2
j (‖uGj‖2/ωj)q

)1/q .

(3.4)

We note that
(∑

j∈T ′ ω2
j (‖uGj‖2/ωj)

q
)1/q

= ‖u‖2 when T ′ = T ∗ and q = 2.
Define

C
(G)
− (ξ,ω, T ) =

{
u : u ∈ C (G)(ξ,ω, T ), uT

Gj
XT

Gj
Xu ≤ 0 ∀j ∈ T c

}
, (3.5)
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as a sign-restricted cone. We extend the CIF to the groupwise sign-restricted
cone invertibility factor (SCIF) as

SCIF(G)
q (ξ,ω, T, T ′) = inf

u∈C
(G)
− (ξ,ω,T )

maxj

[
ω−1
j ‖XT

Gj
Xu‖2

] (∑
j∈T ω2

j

)1/q
n
(∑

j∈T ′ ω2
j (‖uGj‖2/ωj)q

)1/q .

(3.6)

Similar to the RE and CC, CIF
(G)
1 (ξ,ω, T, T ) and SCIF

(G)
1 (ξ,ω, T, T ) are

aimed at the prediction and weighted �2,1 losses, while CIF(G)
q (ξ,ω, T, T ∗) and

SCIF(G)
q (ξ,ω, T, T ∗) is aimed at the weighted loss

(∑M
j=1 ω

2
j (‖uGj‖2/ωj)

q
)1/q

.
We note that the weighted �2,q norm is identical to the �2 norm for q = 2. For

u ∈ C
(G)
− (ξ,ω, T ),

‖Xu‖22
/
max

j
(ω−1

j ‖XT
Gj

Xu‖2) ≤
∑

j∈Tωj‖uGj‖2 ≤ ‖uGT
‖2
(∑

j∈Tω
2
j

)1/2
by the sign restriction and the Cauchy-Schwarz inequality, so that

{RE(G)(ξ,ω, T, T )}2 ≤ {CC(G)(ξ,ω, T )}2 ≤ SCIF
(G)
1 (ξ,ω, T, T ),

RE(G)(ξ,ω, T, T ∗)CC(G)(ξ,ω, T ) ≤ SCIF
(G)
2 (ξ,ω, T, T ∗). (3.7)

For u ∈ C (G)(ξ,ω, T ), SCIF(G)
q (ξ,ω, T, T ′) can be replaced by

(ξ + 1) CIF(G)
q (ξ,ω, T, T ′)

in (3.7), as

‖Xu‖22
/
max

j
(ω−1

j ‖XT
Gj

Xu‖2) ≤
∑
j

ωj‖uGj‖2 ≤ (1 + ξ)
∑
j∈T

ωj‖uGj‖2.

Thus, if a restricted eigenvalue condition as in {RE(G)(ξ,ω, T )}2 > κ0 holds

with a fixed κ0, then all the other quantities in (3.7) and (ξ+1) CIF(G)
q (ξ,ω, T )

are bounded from below by κ0, q ∈ {1, 2}. It follows that the cone invertibility
factors provide error bounds of sharper form than (3.2), in view of Theorem 5
below and Theorem 3.1 of Lounici et al. (2011).

In the following Theorem 5 we provide the prediction, �2 and mixed norm
consistency results for the non-scaled group Lasso problem defined in (1.3) under
the SCIF condition.

Theorem 5. Let β̂ = β̂(ω) be a solution of (1.3) with data (X,y) and β∗ be
a vector with supp(β∗) ⊆ GS∗ for some S∗ ⊂ T ∗ = {1, · · · ,M}. Let ξ > 1 and
define

E =

{
max

1≤j≤M

‖XT
Gj

(y −Xβ∗)‖2
ωjn

≤ ξ − 1

ξ + 1

}
. (3.8)
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Then in the event E, we have

‖Xβ̂ −Xβ∗‖22/n ≤
{2ξ/(ξ + 1)}2

∑
j∈S∗ ω2

j

SCIF
(G)
1 (ξ,ω, S∗, S∗)

, (3.9)

and for all q ≥ 1{ M∑
j=1

ω2
j

(‖β̂Gj
− β∗

Gj
‖2

ωj

)q}1/q

≤
{2ξ/(ξ + 1)}

(∑
j∈S∗ ω2

j

)1/q
SCIF(G)

q (ξ,ω, S∗, T ∗)
. (3.10)

Moreover, if y −Xβ∗ ∼ Nn(0, σ
2In ) and

ωj ≥ Aσ‖XGj‖S
{
|Gj |1/2 +

√
2 log(M/δ)

}
/n for some 0 < δ < 1,

and A ≥ (ξ + 1)/(ξ − 1), then

P(E) > 1− δ. (3.11)

Theorem 5 asserts that the prediction loss ‖Xβ̂−Xβ∗‖22/n, the �2 loss ‖β̂−
β∗‖22 and the mixed norm loss

∑M
j=1 ωj‖β̂Gj

− β∗
Gj

‖2 are all of the order∑
j∈S∗ω

2
j � (s+ g logM)/n

when the SCIF can be treated as constant and maxj ‖XGj/
√
n‖S = OP(1). This

result illustrates the benefit of the group Lasso as compared to Lasso. The results
in Theorem 5 are not entirely new. In fact, for the group Lasso problem (1.3), the
same convergence rate can be derived from the �2 consistency result in Huang
and Zhang (2010). While the result of Huang and Zhang (2010) is derived under
a sparse eigenvalue condition on the design matrix X, our results are based on
the weaker sign-restricted cone invertibility condition and cover the weighted
�2,q loss for q > 2. The proof of Theorem 5 is relegated to the Appendix.

3.2. A scaled group Lasso

In the optimization problem (1.3), scale-invariance considerations have not been
taken into account. Usually the individual penalty level ωj ’s could be chosen
proportional to the scale σ as a remedy. This issue has been discussed and
studied, pertaining to the Lasso problem, in the literature. See Huber (2011),
Städler, Bühlmann and Geer (2010), Antoniadis (2010), Sun and Zhang (2010),
Belloni, Chernozhukov and Wang (2011), Sun and Zhang (2012b), Sun and
Zhang (2013) and many more. For the group Lasso problems, this issue has
been tackled via the square-root group Lasso formulation in Bunea, Lederer
and She (2014). Here we follow the the prescription from Antoniadis (2010) and
define an optimization problem,

(β̂, σ̂) = argmin
β,σ

Lω(β, σ), (3.12)

where Lω(β, σ) =
‖y −Xβ‖22

2nσ
+

(1− a)σ

2
+

M∑
j=1

ωj‖βGj
‖2. (3.13)
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Following Sun and Zhang (2010) we define an iterative algorithm for the esti-
mation of {β, σ},

σ̂(k+1) ← ‖y −Xβ̂
(k)

‖2/
√
(1− a)n,

ω′ ← σ̂(k+1)ω,

β̂
(k+1)

← argminβ Lω′(β),

(3.14)

where Lω′(β) was as defined in (1.3). Due to the convexity of the joint loss
function Lω(β, σ), the solution of (3.12) and the limit of (3.14) give the same
estimator. Moreover, if the minimization of σ is first taken with the unknown β
in (3.12), the second minimization of minσ Lω(β, σ) over β becomes the square-
root group Lasso problem of Bunea, Lederer and She (2014) when ωj ∝ |Gj |1/2.
As the aim of this paper is statistical inference of group effects, the formulation
in (3.12) explicitly provides a needed estimate of σ. Moreover, we use a differ-
ent penalty ωj ∝ |Gj |1/2 +

√
2 log(M/δ) to benefit from group sparsity in the

estimation of both β and σ and in prediction as well.
The constant a ≥ 0 provides control over the degrees of freedom adjustments.

For simplicity, we take a = 0 for all subsequent discussions. It is clear that that
with a = 0 and ω′ = σ̂ω, one has σ̂Lω(β, σ̂) = Lω′(β)+ σ̂2/2. The algorithm in
(3.14) suggests a profile optimization approach. The following lemma is similar
to Proposition 1 in Sun and Zhang (2012b) and characterizes the solution via
partial derivative of the profile objective.

Lemma 2. Let β̂(ω) denote a solution of the optimization problem in (1.3).

Then, β̂(σω) is a minimizer of Lω(β, σ) in (3.13) for given σ, and the profile

loss function Lω(β̂(σω), σ) is convex and continuously differentiable in σ with

∂

∂σ
Lω(β̂(σω), σ) =

1

2
− ‖y −Xβ̂(σω)‖22

2nσ2
. (3.15)

Moreover, the algorithm in (3.14) converges to a minimizer (β̂, σ̂) in (3.12)

satisfying β̂ = β̂(σ̂ω), and the estimator β̂ and σ̂ are scale equivariant in y.

The proof of Lemma 2 is relegated to the Appendix. We now present the
consistency theorem which extends Theorem 5 by providing convergence results
for the estimate of scale. Define

μ(ω, ξ) =
2ξ
∑

j∈S∗ ω2
j

SCIF
(G)
1 (ξ,ω, S∗, S∗)

, τ− =
2μ(ω, ξ)(ξ − 1)

ξ + 1
, τ+ =

τ−
2

+ μ(ω, ξ).

Let md,n be the median of the beta(d/2, n/2− d/2) distribution and define

ω∗,j ≥
√
mdj ,n +

√
2 log(M/δ)

(n ∨ 2)− 3/2
, A∗ =

(ξ + 1)/(ξ − 1)√
{1− 2μ(ω∗, ξ)(ξ + 1)/(ξ − 1)}+

,

where ω∗ is the vector with elements ω∗,j and dj = |Gj |. We will show that√
mdj ,n ≤ (dj/n)

1/2 + n−1/2 in the proof of the following theorem.
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Theorem 6. Let {β̂, σ̂} be a solution of the optimization problem (3.13) with
data (X,y) and β∗ be a vector with supp(β∗) ⊂ GS∗ for some S∗ ⊂ T ∗ =
{1, · · · ,M}. Let ξ > 1.

(i) Suppose SCIF
(G)
1 (ξ,ω, S∗, S∗) > 0 in (3.6) and τ+ < 1. Define the following

event

E =

{
max

1≤j≤M

‖XT
Gj

(y −Xβ∗)‖2
ωjnσ∗/

√
1 + τ−

<
ξ − 1

ξ + 1

}
, (3.16)

where σ∗ = ‖y −Xβ∗‖2/
√
n is the oracle noise level. Then in the event E, we

have

σ∗
√
1 + τ−

≤ σ̂ ≤ σ∗
√
1− τ+

, (3.17)

‖Xβ̂ −Xβ∗‖22/n ≤
(σ∗)2{2ξ/(ξ + 1)}2

∑
j∈S∗ ω2

j

(1− τ+)SCIF
(G)
1 (ξ,ω, S∗, S∗)

, (3.18)

and for all q ≥ 1{ M∑
j=1

ω2
j

(‖β̂Gj
− β∗

Gj
‖2

ωj

)q}1/q

≤
σ∗{2ξ/(ξ + 1)}

(∑
j∈S∗ ω2

j

)1/q
√
1− τ+SCIF

(G)
q (ξ,ω, S∗, T ∗)

. (3.19)

(ii) Suppose the regression model in (1.1) holds with Gaussian error, y−Xβ∗ ∼
Nn(0, σ

2In ). Suppose ωj ≥ A‖XGj/
√
n‖Sω∗,j with A ≥ A∗. Then,

P(E) ≥ 1− δ (3.20)

with the event E in (3.16). Moreover, if
√
nμ(ω, ξ) → 0, then

√
n (σ̂/σ − 1)

D−→ N(0, 1/2). (3.21)

Theorem 6, whose proof is again relegated to the Appendix, provides explicit
rates and constants for mixed �q norm estimation of β∗ and estimation of scale

parameter σ. When ωj � ω∗,j and SCIF
(G)
1 (ξ,ω, S∗) � 1, we have∑

j∈Tω
2
j � μ(ω, ξ) �

{
s+ g log(M/δ)

}/
n.

It also establishes the veracity of the working assumption in (2.31). The following
Corollary 1 provides a more succinct summary to make clear the connection of
Theorem 6 to (2.31).

Corollary 1 (Verification of working assumption for deterministic designs). Let

{β̂, σ̂} be as in (3.13) with a penalty level satisfying ωj/A
∗ ≤ ‖XGj/

√
n‖Sω∗,j ≤

ωj/A∗. Suppose the design matrix X satisfy the condition ‖XGj/
√
n‖2S ≤ c∗

and that the sign-restricted cone invertibility condition holds in the sense of
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SCIF(G)
q (ξ,ω, S∗, S∗) > c∗ for some fixed c∗ > 0. Suppose y−Xβ∗ ∼Nn(0, σ

2In )
and supp(β∗) ⊆ GS∗ with |GS∗ |+ |S∗| log(M/δ) ≤ a0n. Then, for certain con-
stants {a∗, C} depending on {c∗, c∗, ξ, A∗} only,

max

{∣∣∣1− σ̂

σ∗

∣∣∣ , ‖Xβ̂ −Xβ∗‖22
nσ2

,
M∑
j=1

‖β̂Gj
− β∗

Gj
‖2

σ/ωj
,

M∑
j=1

‖XGj (β̂Gj
− β∗

Gj
)‖2

n1/2σ/ωj

}
≤ C {|GS∗ |+ |S∗| log(M/δ)}

/
n (3.22)

with probability at least 1− δ whenever a0 ≤ a∗.

Corollary 1 touches upon the mixed prediction loss
∑M

j=1 ωj‖XGj β̂Gj
−

XGjβ
∗
Gj

‖2 the first time in this section. The reason for this omission is two
fold. Firstly,

{ M∑
j=1

ω2
j

(‖XGj (β̂Gj
− β∗

Gj
)‖2

n1/2ωj

)q}1/q

≤ max
j≤M

∥∥∥∥XGj√
n

∥∥∥∥
S

{ M∑
j=1

ω2
j

(‖β̂Gj
− β∗

Gj
‖2

ωj

)q}1/q

so that (3.10) and (3.19) automatically generate the corresponding bounds for
the mixed prediction error under the respective conditions. Secondly, upper
bounds for the mixed prediction loss can be obtained by reparametrization
within the given group structure as in the following corollary.

Corollary 2. Let XGj =UGjΛGjV
T
Gj

be the SVD of XGj with ΛGj ∈R
|Gj |×|Gj |.

Define b by bGj = ΛGjV
T
Gj

βGj
and U by Ub =

∑M
j=1 UGjbGj . Then,

{ M∑
j=1

ω2
j

(‖XGj β̂Gj
−XGjβ

∗
Gj

‖2
ωj

)q}1/q

=

{ M∑
j=1

ω2
j

(‖b̂Gj − b∗Gj
‖2

ωj

)q}1/q

≤
2σ∗ξ

(∑
j∈S∗ ω2

j

)1/q
√
1− τ+SCIF

(G)
q (ξ,ω, S∗, S∗)

for all q ≥ 1 when the conditions for (3.19), including the definition of the
estimator and the SCIF, hold with X, β and β∗ replaced by U, b and b∗ respec-
tively.

Remark 3. Corollary 1 can be viewed as a scaled version of the main results of
Huang and Zhang (2010) although here the regularity condition of the design is
of a weaker form and smaller penalty levels are allowed.
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3.3. Random designs

In this subsection, we verify the working assumption for sub-Gaussian designs by
checking the groupwise cone invertibility condition. Our analysis also provides
lower bounds for the groupwise restricted eigenvalue and compatibility constant.
We first state in the following theorem the main result for random designs.

Theorem 7 (Verification of working assumption for random designs). Let 0 <

c∗ ≤ c∗ and 0 < δ < 1 < A∗ < A∗ be fixed constants and {β̂, σ̂} be a solution of
(3.13) with

ωj/A
∗ ≤ ‖XGj‖S

{√
dj +

√
2 log(M/δ)

}/
n ≤ ωj/A∗.

Let σ∗ = ‖y−Xβ∗‖2/
√
n. Suppose X satisfies the sub-Gaussian condition (2.28)

with c∗ ≤eigenvalues(Σ) ≤ c∗, y − Xβ∗ ∼ Nn(0, σ
2In ), and supp(β∗) ⊆ GS∗

with

max
1≤j≤M

(
|Gj |+ log(M/δ)

)
I{|S∗|>0} + |GS∗ |+ |S∗| log(M/δ) ≤ a0n. (3.23)

Then, there exist constants a∗ and C depending on {c∗, c∗, A∗, A
∗} only such

that

max

{∣∣∣1− σ̂

σ∗

∣∣∣, ‖Xβ̂ −Xβ∗‖22
nσ2

,

M∑
j=1

‖β̂Gj
− β∗

Gj
‖2

σ/ωj
,

M∑
j=1

‖XGj (β̂Gj
− β∗

Gj
)‖2

n1/2σ/ωj

}
≤ C {|GS∗ |+ |S∗| log(M/δ)}

/
n (3.24)

with probability at least 1− δ whenever a0 ≤ a∗.

Theorem 7 justifies the working assumption for sub-Gaussian designs. It
demonstrates the benefit of the strong group sparsity as the sample size condi-
tion (3.23) is typically weaker than the usual ‖β∗‖0{1+ log(p/δ)} ≤ a0n for the
Lasso when supp(β) = GS∗ . We omit its proof as it is a direct consequence of
Theorem 6 and Proposition 2 below. We preface the presentation of Proposition
2 by first defining the following quantities.

Let q > 1 and f = (f1, . . . , fM )T with fj > 0. Define

ρq(s) = inf
u

sup
v

{
vT (XTX/n)u

‖v‖(q/(q−1))‖u‖(q)
: supp(u) = supp(v) = GB ,

min
|B\S|≤1

‖fS‖22 < s

}
(3.25)

with weighted �2,q norm ‖v‖(q) =
(∑M

j=1f
2
j

(
‖vGj‖2/fj

)q)1/q
, and
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θq(s, t) = sup

{
vT (XTX/n)u

‖v‖(q/(q−1))‖u‖(q)
: supp(u) = GB1 , supp(v) = GB2 ,

|Bk \ Sk| ≤ 1, ‖fS1
‖22 < s, ‖fS2

‖22 < t,B1 ∩B2 = ∅
}
.

(3.26)

Under the norm ‖·‖(q), 1/ρq(s) is the maximum operator norm of n(XT
GB

XGB
)−1

in R
|GB |, and θ(s, t) is the maximum operator norm of XT

GB2
XGB1

/n. In partic-

ular, ρ2(s) is the smallest eigenvalue of XT
GB

XGB
/n under the given constraints

on the support set GB . Let aq = (1− 1/q)/q1/(q−1). For ξ > 0, T ⊂ {1, . . . ,M},
t0 =

∑
j∈T f2

j , x0 ≥ 1, 1 ≤ y0 ≤ x0/aq and m ∈ {1, 2}, define quantities

Cq(ξ, x0, y0) = ξ +
(
1 + aqy0 − x0

)
+
x
−1/q
0 and

κq,m(ξ, t0, x0, y0) = ρq(x0t0)−mθq(x0t0, y0t0)y
1/q−1
0 Cq(ξ, x0, y0). (3.27)

Proposition 2. (i) Suppose ωj = Cnfj for some constant Cn not depending
on j. Then,

RE(G)(ξ,ω, T, T ′) ≥ κ
1/2
2,2 (ξ, t0, x0, y0)/{1 + δ′

(
1 + ξ)/2}, (3.28)

CC(G)(ξ,ω, T ) ≥ κ
1/2
2,2 (ξ, t0, x0, y0) (3.29)

CIF(G)
q (ξ,ω, T, T ′) ≥ κq,1(ξ, t0, x0, y0)

(x0 +maxj f2
j /t0)

1/q{1 + δ′
(
1 + ξ)a

1−1/q
q }

, (3.30)

with δ′ = 0 for T ′ = T and δ′ = 1 for T ′ = T ∗, and for 1 ≤ q ≤ 2

min
(
SCIF(G)

q (ξ,ω, T, T ′),
CIF(G)

q (ξ,ω, T, T ′)

(1 + ξ)−1

)
≥ κ2,1(ξ, t0, x0, y0)

1 + δ′
(
1 + ξ)a

1−1/q
q

. (3.31)

(ii) Suppose X satisfies the sub-Gaussian condition (2.28) with c∗ ≤eigen(Σ) ≤
c∗ and

ωj/A
∗ ≤ Cn‖XGj/

√
n‖S

{√
|Gj |+

√
2 log(M/δ)

}
≤ ωj/A∗

where {c∗, c∗, A∗, A
∗} are positive constants. Let δ′ = 0 for T ′ = T and δ′ = 1

for T ′ = T ∗. For any ε0 ∈ (0, 1), there exists a0 depending on {ε0, c∗, c∗, A∗, A
∗}

only such that

SCIF(G)
q (ξ,ω, T, T ′) ≥ (1− ε0)λmin(Σ)

/{
1 + δ′

(
1 + ξ)a1−1/q

q

}
, 1 ≤ q ≤ 2.

with at least probability 1 − δ whenever (3.23) holds. Moreover, the inequality

also holds with SCIF(G)
q (ξ,ω, T, T ′) replaced by

{
RE(G)(ξ,ω, T, T ′)

}2
for q = 2,

by
{
CC(G)(ξ,ω, T )

}2
for q = 1 and T ′ = T , or by (1 + ξ)CIF(G)

q (ξ,ω, T, T ′).
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Fig 1. Normal QQ plot for the test statistic for σ̂ in (3.21) in Theorem 6 with n = 1000, p =
{200, 2000}, g = 2, s = 8. The results are produced with 100 replications of the scaled group
Lasso. The red dotted line is fitted through 1st and 3rd sample quantiles.

4. Simulation results

In this section we provide a few simulation results in support of our theory
developed in Sections 2 and 3. As a prelude, we first show the performance of
the scaled group Lasso procedure in a simulation experiment.

4.1. Normality of estimate of the scale parameter

We consider two simulation designs with (n = 1000, p = 200) and (n = 1000, p =
2000) design matrices with the elements of the design matrix generated inde-
pendently from N(0, 1). We assume that the true parameter β∗ has an inherent
grouping with total set of p parameters divided into groups of size dj = 4. In
the design (n = 1000, p = 200) we have total number of groups M = 50 and
in (n = 1000, p = 2000), M = 500. For both scenarios, the true parameter β∗

is assumed to be (g = 2, s = 8) strong group sparse with its non-zero coeffi-
cients in {−1, 1}. Both simulation designs have a N(0, σ2) error added to the
true regression model Xβ∗ with σ = 1. We also assume that the design matrix
is groupwise orthogonalized in the sense of XT

Gj
XGj/n = IGj×Gj , j = 1, . . . ,M .

In estimation of σ we employ the scaled group Lasso procedure as shown in
(3.14). The groupwise penalty factors ωj ’s are chosen to equal to λ(

√
dj/n +√

(2/n) log(M)) for some fixed λ > 0. The implementation of group Lasso
procedure is via the R package grpreg.

In the design setup with (n = 1000, p = 200), the estimate of σ̂ averaged over
a 100 replications is 0.997 with a standard deviation of 0.02. In the design setup
with (n = 1000, p = 2000), the estimate of σ̂ averaged over a 100 replications
is 1.0002 with a standard deviation of 0.02. Additionally Figure 1 shows the
Gaussian QQ plots of the test statistic

√
2n (σ̂/σ − 1).

4.2. Asymptotic distribution of regression parameters

We also seek the empirical validation of the asymptotic convergence of the group
βGj

as described in our theoretical results. For bias correction we take the
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Fig 2. The left panel considers test for a Small group. It shows chi-squared QQ plot for the
test statistic TG with n = 1000, p = 200, g = 10, s = 40. The theoretical quantiles were drawn
from χ2

4 random variable. The group being tested has size 4. The right panel considers test

for a Large group. It shows normal QQ plot for the test statistic (T 2
G − |G|)/

√
2|G| with

n = 1000, p = 200, g = 2, s = 40. Here the group size of the test group is 20.

penalty function in (2.42) to be the Frobenius norm and apply group Lasso
based optimization. We also consider a new simulation design which is similar
to the earlier design with (n = 1000, p = 200) and σ = 1. We will consider two
different schemes for empirical analysis for asymptotic convergence.

Small group sizes

The true parameter β∗ is simulated to be (s = 40, g = 10) strong group sparse
with its nonzero values in the interval [2, 3]. More specifically, β∗ is grouped
into groups of sizes dj = 4 for all j. We construct the test statistic of μGj

as

in (2.21) for one of the nonzero groups. The left panel of Figure 2 provides χ2
4

based QQ plot for the sample quantiles of our test statistic.

Large group sizes

The true parameter β∗ is simulated to be (s = 40, g = 2) strong group sparse
with its nonzero values between [2, 3]. More specifically, β∗ is grouped into 10
groups each of sizes dj = 20 for all j. We let the sparsity of the true parameter
β∗ to be s = 40 contained within 2 separate groups. Again, we construct the
test statistic of μGj

as in (2.21) for one of the nonzero groups. The right panel
of Figure 2 shows the QQ plot for this group’s size- normalized test statistic
as defined in (2.22). As the figure suggests, for large group sizes asymptotic
normality of the group test statistic is empirically supported.

4.3. Comparison with other methods

In this subsection we compare the performance of our group Lasso methods
with other recent methods developed for inference in high dimensional models.
In particular we consider three different classes of methods.
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Table 1

Comparison of true positive and false positive rates for three different choices of block
correlation ρ and three choices of signal parameter τ . The scale parameter σ = 1 in all

cases. The results are based on 100 replications for testing the nonzero group (for TP) and
first zero group (FP). Performance of all the tests are good for the strong signal (τ= 1).

For the weak signal τ = 0.1, group Lasso clearly out-performs other methods.

Design
Proposed Method Projection Based Multi sample-split

Group Bound
Chi-squared Normal Lasso Ridge Lasso Group Lasso

(g, s), (ρ, τ) FP TP FP TP FP TP FP TP FP TP FP TP FP TP

(1, 5), (0, 0.1) 0.04 0.11 0.04 0.11 0 0.02 0 0 0 0 0 0 0 0

(1, 5), (0, 0.5) 0 1 0 1 0 1 0.01 0.2 0 0.72 0 0.23 0 0

(1, 5), (0, 1) 0 1 0 1 0 1 0 1 0 1 0 1 0 0

(1, 5), (0.5, 0.1) 0.03 0.3 0.03 0.3 0 0.06 0 0 0 0 0 0 0 0

(1, 5), (0.5, 0.5) 0 1 0 1 0 1 0 0.71 0 0.99 0 0.47 0 0.02

(1, 5), (0.5, 1) 0 1 0 1 0 1 0 1 0 1 0 1 0 0.97

(1, 5), (0.9, 0.1) 0.02 0.45 0.02 0.45 0 0.02 0.2 0.02 0 0.32 0 0 0 0

(1, 5), (0.9, 0.5) 0 1 0 1 0 1 0 0.07 0 0.22 0 0.01 0 0.12

(1, 5), (0.9, 1) 0 1 0 1 0 0.98 0 0.81 0 0.86 0 0.32 0 1

(1, 20), (0.9, 0.1) 0 1 0 1 0 0.38 0 0.01 0 0.05 0 0.00 0 0.04

Projection based: For the projection based methods, we consider two cases.
1) The Ridge estimation based testing with correction for projection bias
that was developed in Bühlmann (2013). 2) The Lasso relaxed projection
followed by bias correction idea developed in Zhang and Zhang (2014)
which is similar to the de-sparsified Lasso in van de Geer et al. (2014).
These methods are adapted for testing of groups of variables adjustment
of individual p-values; see Dezeure et al. (2014).

Sample split based: The idea of single sample splitting was developed in
Wasserman and Roeder (2009) which involves splitting the sample into
two parts. The first part is used to select variables and the second to con-
struct p-values for the selected variables in the first model. The final step
is to adjust the p-values for control of the familywise error rate (FWER).
Due to the variability of the p-values for different splittings, Meinshausen,
Meier and Bühlmann (2009) proposed multi sample-splitting idea which
involves running the single sample splitting B times and aggregating the
B adjusted p-values. We employ the multi sample-splitting with two dif-
ferent variable selection procedures: Lasso and group Lasso. For Lasso, the
groupwise p-value is obtained by Bonferroni adjustments.

Group bound: The final procedure we consider is the group bound method
developed in Meinshausen (2014). One advantage of this method is that
it doesn’t require any assumptions on the design matrix.

Implementation of all the above methods are available in the R package hdi;
see also Dezeure et al. (2014).

Simulation Design: We consider a very simple simulation design where the
design matrix X ∈ R

n×p is assumed to have iid rows with each row following
N(0,Σ), where Σ is assumed to be a correlation matrix having a block diagonal
structure with block size k = 5. We take n = 100 and p = 200 so that Σ has
M =40 blocks. Within each block, the correlation is assumed to be ρ. For our
simulations, we consider three possible choices of ρ namely {0, 0.5, 0.9}.
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The true parameter β is assumed to have the group structure as defined by
the block structure of X. Moreover we assume only the first group has nonzero
signals with all of them having the same value τ > 0. Thus β∗ is of the form,

β∗ = (τ, τ, τ, τ, τ︸ ︷︷ ︸
group 1

, 0, 0, 0, 0, 0︸ ︷︷ ︸
group 2

, · · · , 0, 0, 0, 0, 0︸ ︷︷ ︸
group 40

)

Thus in all these cases, the true signal β∗ is (g = 1, s = 5) strong group sparse.
We consider three choices of the signal parameter τ : {0.1, 0.5, 1}.

We also consider an additional scenario, where we take k = 20 so that number
of groups M = 10 (The last line of Table 1). For this case we only compare the
performance for signal strength τ = 0.1 which highlights the performance of
group Lasso.

The responses are simulated by y = Xβ∗+ε where ε ∼ N(0, σ). We take the
true scale parameter σ = 1 in all simulation designs and estimate σ via scaled
group Lasso. For application of the group Lasso based testing, we take the group
weights equal to ωj = 5(

√
dj/n +

√
(2/n) log(M)) where M = 40 and dj = 5

for group sizes=5 and dj = 20 for group sizes=20.
In Table 1, we provide a comparison of the true positive (TP) and false

positive (FP) rates for 100 replications. It is clear from the table that group
Lasso performs comparably or better than all the other methods. The false
positive rates of all the methods are either 0 or close to zero for most of the
designs. The true positive (TP) rate (power) of group Lasso method clearly
dominates those of the other methods especially when the signal is not strong:
τ = 0.1. One rationale for this would be the accumulation of small signals in the
�2 norm for the group that is used for the group Lasso. For group bound method,
clearly the performance becomes comparable to group Lasso as the blockwise
correlation ρ is increased. This phenomenon is also observed for group Lasso
procedure to a certain extent.

5. Summary and discussion

We have considered statistical inference of variable groups in a high-dimensional
linear regression setup. In particular we show the benefit of grouping in con-
structing chi-squared-type procedures for group inference. We construct such
procedures via bias correction and group Lasso based relaxed projection. We
show the validity of such approximate chi-squared-type inference under sample
size conditions that could be potentially much weaker than the requirements for
Lasso based procedures. This particular scaling also offers us valid statistical
inference for a group of possibly unbounded number of variables.

A key step of our methodology concerns the nonconvex optimization scheme
(2.33) over the set of orthogonal projection matrices. To the best of our knowl-
edge, solution of an optimization problem as in (2.33) is not yet well studied,
either algorithmically or analytically. However, we have proposed a convexation
of (2.33) via a multivariate group Lasso with a weighted nuclear or Frobenius
norm penalty, which provides feasible solutions for the optimization problem. As
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discussed in Remark 1, our theoretical results only requires feasibility solutions
of the optimization scheme. As the multivariate group Lasso with Frobenius
norm penalty can be carried out using the group Lasso program, an interest-
ing direction of research would be to develop efficient algorithm for the group
nuclear norm penalty.

Since our results can be directly applied to statistical inference for groups of
variables with possibly unbounded sizes, application of our procedures for sparse
nonparametric additive models (Ravikumar et al., 2009) would be another future
direction of research.

Appendix

This appendix provides proof of

Proof of Proposition 1. (i) Since both ZG and XG are n× |G| matrices,

|G| = rank(ZT
GXG) ≤ rank(XG) ∧ rank(ZG) ≤ |G| ∧ n,

so that rank(PG) = rank(PGXG) = |G| and PG = PG,0. It follows that

PGXG(PGXG)
†PG = PG. As Z

T
GXG is a |G| × |G| invertible matrix,

PGXG(Z
T
GXG)

−1ZT
G = PG.

Since rank(PGXG) = |G|, we are allowed to cancel PGXG to obtain

(PGXG)
†PG = (ZT

GXG)
†ZT

G.

This proves the first equality in (2.15). The second equality in (2.15) then follows
from

(PGXG)
†PG

(
XGβ

∗
G −XGβ̂

(init)

G

)
= β∗

G − β̂
(init)

G ,

(2.2) and its estimated version, and the definition of the remainder term.
(ii) Let Z1 = PGZG. AsPG = PGPG,0 is the orthogonal projection toR(Z1),

ZT
GXG = ZT

GPG,0QGXG = ZT
1 PGQGXG and rank(XG) = rank(PGQG) =

rank(ZT
1 XG), so that

(ZT
GXG)

† = (ZT
1 PGQGXG)

† = X†
G(PGQG)

†(ZT
1 )

†.

Consequently, as QG(PGQG)
† = (PGQG)

† = (PGQG)
†PG and (ZT

1 )
†ZT

G =
PG, we have

μ̂G − μ̂
(init)
G = XG(Z

T
GXG)

†ZT
G

(
y −Xβ̂

(init)
)

= XGX
†
G(PGQG)

†(ZT
1 )

†ZT
G

(
y −Xβ̂

(init)
)

= (PGQG)
†PG

(
y −Xβ̂

(init)
)
.

This gives (2.16). As QG(Z
T
GQG)

†ZT
G = (PGQG)

†PT
G by the same proof, (2.13)

also holds. Finally, (2.18) follows from (2.14) and (2.2).
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Proof of Lemma 1. Let uj , 1 ≤ j ≤ rk, be the eigenvectors of BT
kΣBk corre-

sponding to positive eigenvalues and Uk = (u1, . . . ,urk). Let

Zk = XBk((B
T
kΣBk)

†)1/2Uk ∈ R
n×rk .

We have EZk = 0, E(ZT
kZk/n) = Irk×rk , E(Z

T
1 Z2/n) = UT

1 Ω1,2U2, and

sup
‖b‖2≤1

E exp

(
(eTi Zkb)

2

v0
+

1

v0

)
≤ 2, k = 1, 2.

Moreover, Pk = Zk(Z
T
kZk)

†ZT
k and ‖UT

1 Ω1,2U2‖S = ‖Ω1,2‖S ≤ 1.
For 1 ≤ j ≤ k ≤ 2 and any vectors vk ∈ R

rk with ‖vk‖2 = 1,

vT
j

(
ZT

j Zk/n− EZT
j Zk/n

)
vk =

1

n

n∑
i=1

{
(eTi Zjvj)(e

T
i Zkvk)− vT

j E(Z
T
j Zk/n)vk

}
is an average of iid variables with

E exp

(
(eTi Zjvj)(e

T
i Zkvk)− vT

j E(Z
T
j Zk/n)vk

v0

)

≤
{

2∏
k=1

√
E exp

(
(eTi Zkvk)2/v0

)}
e1/v0

≤ 2.

Since the size of an ε-net of the unit ball in R
rk is bounded by (1 + 2/ε)rk ,

the Bernstein inequality implies that for r∗ = r1 + r2 and a certain numerical
constant C0,

P

{
‖ZT

j Zk/n− E(ZT
j Zk/n)‖S >C0v0 max

(√
t/n+ r∗/n, t/n+ r∗/n

)}
≤ e−t/3.

This yields (2.39) as ‖UT
1 ΔU2‖S = ‖Δ‖S for all Δ of proper dimension.

Suppose rank(Pk) = rk. Let r0 = rank(P1P2) and 1 ≥ λ̂1 ≥ · · · ≥ λ̂r0 > 0 be

the (nonzero) singular values of P1P2. We have ‖P1P2‖S = λ̂1 and ‖P1P
⊥
2 ‖S =

‖P1 −P2‖S =

√
1− λ̂2

min with λ̂min = λ̂r0I{r0 = r1 = r2}. By definition,

P1P2 = Z1(Z
T
1 Z1)

−1ZT
1 Z2(Z

T
2 Z2)

−1ZT
2 .

Since (ZT
kZk)

−1/2ZT
k are unitary maps from the range of Pk to R

rk , the singular
values of P1P2 is the same as those of

(ZT
1 Z1)

−1/2ZT
1 Z2(Z

T
2 Z2)

−1/2.

Now suppose that ‖ZT
j Zk/n − E(ZT

j Zk/n)‖S ≤ C0v0
√

t/n+ r/n ≤ ε0 < 1
for 1 ≤ j ≤ k ≤ 2. Recall that 1 ≥ λ1 ≥ · · · ≥ λr > 0 are the nonzero singular
values of Ω1,2 and λmin = λrI{r = r1 = r2}. As E(ZT

kZk/n) = Irk×rk , we have



Group inference 1863

rank(Pk) = rk. Moreover, as E(ZT
1 Z2/n) = UT

1 Ω1,2U2 with unitary maps U1

and U2, the Weyl inequality implies that

λ̂1 ≤ λ1(1 + ε0)

1− ε0
, λ̂min ≥ λmin(1− ε0)

1 + ε0
.

Thus, (2.40) holds. As the conditions for λ1 < 1 and λmin > 0 follow from the
positive-definiteness of Σ, the proof is complete.

Proof of Theorem 5. The KKT conditions for the group Lasso asserts that

1

n
XT

Gj
(y −Xβ̂) = ωjβ̂Gj

/‖β̂Gj
‖2, β̂Gj

�= 0,

1

n
‖XT

Gj
(y −Xβ̂)‖2 ≤ ωj , β̂Gj

= 0.

(A.1)

Let h = β̂ − β∗. It follows that in the event E

‖XT
Gj

Xh‖2
ωjn

=
‖XT

Gj
(Xβ̂ − y + ε)‖2

ωjn
≤ 1 +

‖XT
Gj

ε‖2
ωjn

≤ 2ξ

ξ + 1
. (A.2)

It also follows from (A.1) that in the event E

hT
Gj

XT
Gj

Xh/n

= hT
Gj

XT
Gj

(Xβ̂ − y + ε)/n

≤
{
ωj‖hGj‖2 + |hT

Gj
XT

Gj
ε|/n, j ∈ S∗,

−ωj‖hGj‖2 + |hT
Gj

XT
Gj

ε|/n, j �∈ S∗,

≤
{
ωj‖hGj‖22ξ/(ξ + 1), j ∈ S∗,

−ωj‖hGj‖22/(ξ + 1), j �∈ S∗.
(A.3)

Summing the above inequality over j, we have

‖Xh‖22/n ≤ 2ξ

ξ + 1

∑
j∈S∗

ωj‖uGj‖2 −
2

ξ + 1

∑
j 	∈S∗

ωj‖uGj‖2.

This and (A.3) implies h ∈ C
(G)
− (ξ,ω, S∗). Thus, by (3.6) and (A.2)

‖Xh‖22/n
≤ {2ξ/(ξ + 1)}

∑
j∈S∗

ωj‖β̂Gj
− β∗

Gj
‖2

≤ {2ξ/(ξ + 1)}max
j

ω−1
j ‖XT

Gj
Xh‖2

∑
j∈S∗ω

2
j /{nSCIF

(G)
1 (ξ,ω, S∗, S∗)}

≤ {2ξ/(ξ + 1)}2
∑

j∈S∗ω
2
j /{nSCIF

(G)
1 (ξ,ω, S∗, S∗)}.

Similarly, (3.6) and (A.2) yield
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j=1ω

2
j (‖hGj‖2/ωj)

q
)1/q

≤
(∑

j∈S∗ω
2
j

)1/q
max

j
ω−1
j ‖XT

Gj
Xh‖2/{SCIF(G)

q (ξ,ω, S∗)}

≤ {2ξ/(ξ + 1)}
(∑

j∈S∗ω
2
j

)1/q{SCIF(G)
q (ξ,ω, S∗, T ∗)}.

Finally, we prove (3.11). Let QGj
be the orthogonal projection to the range of

XGj . As ε ∼ Nn(0, σ
2In), ‖QGj

ε/σ‖22 ∼ χ2
d′
j
with d′j = rank(QGj

) ≤ dj . Thus,

it follows from the Gaussian concentration inequality that for any 0 < δ < 1,
with probability at least 1− δ,

‖XT
Gj

ε‖2/(σ‖XGj‖S) ≤ ‖QGj
ε/σ‖2 ≤

√
n
{√

dj +
√

2 log(1/δ)
}
.

The result in (3.11) follows by an application of the union bound.

Proof of Lemma 2. For η ≥ 0 define

Lω(β, σ, η) =
‖y −Xβ‖22

2nσ
+

σ

2
+

M∑
j=1

ωj‖βGj
‖1+η
2 +

ησ2

2

and β̂(σω, η) = argminβ Lω(β, σ, η). As Lω(β, σ, η) is convex in (β, σ), the

profile loss Lω(β̂(σω, η), σ, η) is convex in σ for all η ≥ 0. Note that for η > 0

∂

∂σ
Lω(β̂(σω, η), σ, η)

=

{
∂

∂θ
Lω(θ, σ, η)

∣∣∣
θ=β̂(σω,η)

}T
∂β̂(σω, η)

∂σ
+

∂

∂t
Lω(β̂(σω), t, η)

∣∣∣
t=σ

= 1/2− ‖y −Xβ̂(σω, η)‖22/(2nσ2) + ησ

as all derivatives involved are continuous. Moreover, as Lω(β, σ) = Lω(β, σ, 0)
is strictly convex in Xβ,

lim
η→0+

∂

∂σ
Lω(β̂(σω, η), σ, η) → 1/2− ‖y −Xβ̂(σω)‖22/(2nσ2).

Consequently,

Lω(β̂(σ2ω), σ2)− Lω(β̂(σ1ω), σ1) = lim
η→0+

∫ σ2

σ1

{ ∂

∂σ
Lω(β̂(σω, η), σ, η)

}
dσ

=

∫ σ2

σ1

{
1/2− ‖y −Xβ̂(σω)‖22/(2nσ2)

}
dσ.

All other claims follow from the joint convexity of Lω(β, σ) and the strict con-
vexity of the loss function in Xβ.
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Proof of Theorem 6. We follow the proof in Sun and Zhang (2012b). Let t ≥
σ∗/

√
1 + τ− and hGj = β̂Gj

(tω) − β∗
Gj

. As the oracle noise level is (σ∗)2 =

‖y −Xβ∗‖22/n, we have

(σ∗)2 − ‖y −Xβ̂(tω)‖22/n = (Xh)T (2ε−Xh)/n

= (Xh)T (ε+ y −Xβ̂(tω))/n. (A.4)

Suppose E happens so that ‖XT
Gj

ε‖2/n ≤ tωj(ξ − 1)/(ξ + 1). It follows that

∣∣(Xh)T ε/n
∣∣ =

∣∣∣∣∣∣
M∑
j=1

hT
Gj

XT
Gj

ε/n

∣∣∣∣∣∣ ≤ ξ − 1

ξ + 1

M∑
j=1

tωj‖hGj‖2.

Moreover, the KKT condition implies

∣∣∣hTXT (y −Xβ̂(tω))/n
∣∣∣ =

∣∣∣∣∣∣
M∑
j=1

hT
Gj

XT
Gj

(y −Xβ̂(tω))/n

∣∣∣∣∣∣ ≤
M∑
j=1

tωj‖hGj‖2.

As (Xh)T (2ε−Xh)/n ≤ 2(Xh)T ε/n, inserting these inequalities to (A.4) yields

−
(
ξ − 1

ξ + 1
+ 1

) M∑
j=1

tωj‖hGj‖2 ≤ σ∗2 − ‖y −Xβ̂(tω)‖22/n

≤ 2
ξ − 1

ξ + 1

M∑
j=1

tωj‖hGj‖2.

A rescaled version β̂(tω) can be written as

β̂(tω)

t
= argmin

b

⎧⎨⎩‖y/t−Xb‖22
2n

+

M∑
j=1

ωj‖bGj‖2

⎫⎬⎭
as the group Lasso estimator with target β∗/t and noise vector ε/t. As t ≥
σ∗/

√
1 + τ−, the condition of Theorem 5 is satisfied with the rescaled noise ε/t,

so that

t−1
M∑
j=1

ωj‖hGj‖2 =

M∑
j=1

ωj‖β̂Gj
(tω)/t− β∗

Gj
/t‖2 < μ(ω, ξ).

As τ− = 2μ(ω, ξ)(ξ − 1)/(ξ+1) and τ+ = μ(ω, ξ){(ξ − 1)/(ξ+1)+ 1}, we have

−τ+t
2 = −

(
ξ − 1

ξ + 1
+ 1

)
t2μ(ω, ξ) < σ∗2 − ‖y −Xβ̂(tω)‖22/n

< 2
ξ − 1

ξ + 1
t2μ(ω, ξ) = τ−t

2.
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The upper bound above for t = σ∗/
√
1 + τ− implies

t2 − ‖y −Xβ̂(tω)‖22/n < t2 − σ∗2 + τ−t
2 = 0,

so that σ̂ > t = σ∗/
√
1 + τ− by Lemma 2. Similarly, the lower bound yields

σ̂ < σ∗/
√
1− τ+.

As σ̂ > σ∗/
√
1 + τ−, the error bounds in Theorem 5 holds for {y/σ̂,β∗/σ̂,

β̂/σ̂}, which implies (3.18) and (3.19) due to σ̂ < σ∗/
√
1− τ+. When (1.1) holds

with Gaussian error, |σ̂/σ∗ − 1| = oP (μ(ω, ξ)) = oP (n
−1/2) by (3.17) and the

condition on μ(ω, ξ), so that (3.21) follows from the central limit theorem for
σ∗/σ ∼ χn/

√
n.

It remains to prove (3.20). Let u∗ = ε/‖ε‖2, QGj
be the orthogonal pro-

jection to the range of XGj , d′j = rank(QGj
), and f(u∗) = ‖QGj

u∗‖2. As
f(u∗) = 1 for n = 1, we assume n ≥ 2 without loss of generality. The vec-
tor u∗ is uniformly distributed in the sphere S

n−1 and f(u∗) is a unit Lip-
schitz function of u∗ with median

√
md′

j ,n
≤ √

mdj ,n. As σ∗ = ‖ε‖2/
√
n,

‖XT
Gj

(y −Xβ∗)/(nσ∗)‖2/‖XGj/
√
n‖S ≤ f(u∗). Thus, for t > 0 and n ≥ 2,

P

{
‖QGj

u∗‖2 ≥ √
mdj ,n +

t√
n− 3/2

}
≤ e(4n−6)−2

P

{
N(0, 1) > t

}
≤ e−t2/2

by the Lévy concentration inequality as in Lemma 17 of Sun and Zhang (2013). It
follows that P(E) ≥ 1−δ by the union bound when (ξ−1)ωj/{(ξ+1)

√
1 + τ−} ≥

‖XGj/
√
n‖Sω∗,j . Now, consider ωj = A‖XGj/

√
n‖Sω∗,j . Let τ∗ = 2μ(ω∗, ξ)(ξ−

1)/(ξ + 1). It follows from (3.1) and (3.6) that μ(ω, ξ) = A2μ(ω∗, ξ), so that
τ− = A2τ∗. Consequently,

(ξ − 1)ωj

(ξ + 1)
√
1 + τ−‖XGj/

√
n‖Sω∗,j

=
(ξ − 1)A

(ξ + 1)
√
1 +A2τ∗

≥ 1

if and only if A ≥ {(ξ + 1)/(ξ − 1)}
/
{1 − {(ξ + 1)/(ξ − 1)}2τ∗}1/2 = A∗.

Finally, we note that
√
mdj ,n ≤ Ef(u∗) + e(4n−6)−2

E|N(0, 1/(n − 3/2))|/2 ≤
(dj/n)

1/2 + n−1/2.

Proof of Proposition 2. (i) We prove that for every u ∈ C (G)(ξ,ω, T ), there ex-
ists a non-increasing nonnegative function h(x) and x0t0 ≤ t1 < x0t0 +maxj f

2
j

such that

‖uGT
‖q(q) =

∑
j∈T f2

j (‖uGj‖2/fj)q ≤
∫ t0
0

hq(x)dx, (A.5)

‖u‖q(q) =
∫∞
0

hq(x)dx ≤
{
1 +

(
1 + ξ)a

1−1/q
q

}( ∫ t0
0

hq(x)dx
)1/q

, (A.6)

maxj≤M

[∥∥XGjXu
∥∥
2
/(nfj)

]
t
1/q
1 ≥ κq,1(ξ, t0, x0, y0)

( ∫ t1
0

hq(x)dx
)1/q

, (A.7)

maxj≤M

[
‖XT

Gj
Xu‖2/(nfj)

] ∫ t1
0

h(x)dx ≥ κ2,1(ξ, t0, x0, y0)
∫ t1
0

h2(x)dx, (A.8)

‖Xu‖22/n ≥ κ2,2(ξ, t0, x0, y0)
∫ t1
0

h2(x)dx. (A.9)
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Moreover, for u ∈ C
(G)
− (ξ,ω, T ),

maxj≤M

[
‖XT

Gj
Xu‖2/(nfj)

] ∫ t0

0

h(x)dx ≥ κ2,1(ξ, t0, x0, y0)

∫ t1

0

h2(x)dx.

(A.10)

In fact, as ωj ∝ fj , (3.28) and (3.29) follow from (3.2), (3.3), (A.5), (A.6)
and (A.9), (3.30) follows from (3.4), (A.5), (A.6) and (A.7), and (3.31) follows
from (3.6), (A.5), (A.6) and (A.10). As these steps of the proof are similar, we
only provide the following example:

SCIF(G)
q (ξ,ω, T, T ∗) ≥ inf

h

t
1/q
0 κ2,1(ξ, t0, x0, y0)

∫ t1
0

h2(x)dx∫ t0
0

h(x)dx
( ∫∞

0
hq(x)dx

)1/q ≥ κ2,1(ξ, t0, x0, y0)

1 +
(
1 + ξ)a

1−1/q
q

for 1 ≤ q ≤ 2 with an application of the Hölder inequality.
Let us prove (A.5)-(A.10) for a fixed u ∈ C (G)(ξ,ω, T ). Relabelling the

groups if necessary, we assume without loss of generality that ‖uGj‖2/fj ≥
‖uGj+1‖2/fj+1 for all 1 ≤ j < M . Let s0 = 0 and sj =

∑j
�=1 f

2
� for 1 ≤ j ≤ M .

Define h(x) = ‖uGj‖2/fj for sj−1 < x ≤ sj , 1 ≤ j ≤ M , and h(x) = 0 for
x > sM . The identities in (A.5) and (A.6) follow from∫ sj

sj−1

hq(x)dx = f2
j (‖uGj‖2/fj)q. (A.11)

As t0 =
∑

j∈T f2
j and h(x) is nondecreasing in (0,∞),

∑
j∈T f2

j (‖uGj‖2/fj)q ≤∫ t0
0

hq(x)dx. This gives the inequality in (A.5). It follows from (A.5) and the

identity in (A.6) that
∫∞
0

h(x)dx ≤ (1 + ξ)
∫ t0
0

h(x)dx, so that by the shifting
inequality (Cai, Wang and Xu, 2010; Ye and Zhang, 2010, Eq. (62))(∫ ∞

t0

hq(x)dx
)1/q

≤ (aq/t0)
1−1/q

∫ ∞

0

h(x)dx≤
(
1 + ξ)(aq/t0)

1−1/q

∫ t0

0

h(x)dx.

Thus, the inequality in (A.6) follows with an application of the Hölder inequality.
The proof of (A.7) is a discrete version that of (A.6). Let

g1 = inf
{
j ≥ 0 : sj ≥ x0t0

}
, t1 = sg1 ,

with the convention inf ∅ = M + 1, and for k > 1,

gk = inf
{
j ≥ gk−1 : sj ≥ tk−1 + y0t0

}
, tk = sgk .

Recall that t0 =
∑

j∈T f2
j , x0 ≥ 1 and y0 ≤ x0/aq. It follows from (A.11) that

gk∑
j=1

f2
j (‖uGj‖2/fj)q =

∫ tk

0

hq(x)dx, k ≥ 1. (A.12)
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As h(x) is non-increasing in x and (tk − tk−1)∧ (t1/aq) ≥ y0t0, another applica-
tion of the shifting inequality (Cai, Wang and Xu, 2010; Ye and Zhang, 2010,
Eq. (63)) yields∑

k≥2

(∫ tk

tk−1

hq(x)dx
)1/q

≤
∑
k≥2

(y0t0)
1/q−1

∫ tk−aqy0t0

tk−1−aqy0t0

h(x ∨ t1)dx

= (y0t0)
1/q−1

∫ ∞

t1−aqy0t0

h(x ∨ t1)dx

≤ (y0t0)
1/q−1

(
ξ

∫ t0

0

h(x)dx+
(
t0 − (t1 − aqy0t0)

)
+
h(t1)

)
≤

(∫ t1

0

hq(x)dx
)1/q(

ξy
1/q−1
0 +

(
t0 + aqy0t0 − t1

)
+
(y0t0)

1/q−1t
−1/q
1

)
≤

(∫ t1

0

hq(x)dx
)1/q(

ξy
1/q−1
0 +

(
1 + aqy0 − x0

)
+
y
1/q−1
0 x

−1/q
0

)
=

(∫ t1

0

hq(x)dx
)1/q(

ρq − κq,1(ξ, t0, x0, y0)
)/

θq(x0t0, y0t0). (A.13)

Let B1 = {1, . . . , g1} and Bk = {gk−1 + 1, . . . , gk} for k ≥ 2. Let

v = argmax
w

{
wTXTXGB1

uGB1
/n : supp(w) ⊆ GB1 , ‖w‖(q/(q−1)) = 1

}
.

As
∑g1−1

j=1 f2
j ≤ x0t0, it follows from (3.25) and (A.12) that

vTXTXGB1
uGB1

/n ≥ ρq(x0t0)‖uGB1
‖(q) =

(∫ t1

0

hq(x)dx
)1/q

ρq(x0t0).

By (3.26),
∣∣vTXTXGBk

uGBk

)∣∣ ≤ θq(x0t0, y0t0)
∥∥uGBk

∥∥
(q)

, so that by (A.12)

and (A.13),

vT (XTX/n)u ≥
(∫ t1

0

hq(x)dx
)1/q

ρq(x0t0)−
∑
k>1

θq(x0t0, y0t0)
∥∥uGBk

∥∥
(q)

=
(∫ t1

0

hq(x)dx
)1/q

ρq(x0t0)−
∑
k>1

θq(x0t0, y0t0)
(∫ tk

tk−1

hq(x)dx
)1/q

≥
(∫ t1

0

hq(x)dx
)1/q

κq,1(ξ, t0, x0, y0).

This yields (A.7) via

vT (XTX/n)u ≤
∑

j∈B1
f2
j

(
‖vGj‖2/fj

)
maxj≤M

∥∥XGjXu
∥∥
2
/(nfj)

≤ ‖v‖(q/(q−1))

(∑
j∈B1

f2
j

)1/q
maxj≤M

∥∥XGjXu
∥∥
2
/(nfj)

= t
1/q
1 maxj≤M

∥∥XGjXu
∥∥
2
/(nfj).



Group inference 1869

For q = 2, ρq(s) is the group-sparse eigenvalue of the Gram matrix as ex-
plained below (3.26), so that ρ2(s) is attained with vGB

= uGB
/‖uGB

‖2. This
gives (A.8) with the following modification of the proof of (A.7):

vT (XTX/n)u ≤
∑

j∈B1
f2
j

(
‖uGj‖2/fj

){
maxj≤M

∥∥XGjXu
∥∥
2
/(nfj)

}/
‖uGB1

‖2

≤
∫ t1

0

h(x)dx
(∫ t1

0

h2(x)dx
)−1/2

maxj≤M

∥∥XGjXu
∥∥
2
/(nfj).

Similarly, (A.9) follows from

‖Xu‖22/n ≥ ‖XGB1
uGB1

‖22/n+ 2uT
GB1

XT
GB1

(
Xu−XGB1

uGB1

)
/n

≥ κ2,2(ξ, t0, x0, y0)

∫ t1

0

h2(x)dx.

Finally, for u ∈ C
(G)
− (ξ,ω, T ), we have (A.10) via (A.5) and

(XGB1
uGB1

)T (Xu)/n ≤
∑

j∈Tu
T
Gj

XGjXu/n

≤
∑

j∈T fj‖uGj‖2 max
j

∥∥XGjXu
∥∥
2
/(nfj).

(ii) Let fj = ωj/Cn. Consider the event c∗(1−ε0) ≤ ‖XGj/
√
n‖S ≤ (1+ε0)c

∗

for all j ≤ M , in which fj � |Gj |1/2 +
√

2 log(M/δ). Let g∗ = max
{
|B| :

|B \ S| ≤ 2, ‖fS‖22 < (x0 ∨ y0)t0
}
be the largest number of groups involved in

the definition of ρ−(x0t0) and θ(x0t0, y0t0), and s∗ = max
{
|GB | : |B \ S| ≤

2, ‖fS‖22 < (x0 ∨ y0)t0
}
be the largest number of variables involved. As fj �

|Gj |1/2 +
√

2 log(M/δ) and (x0, y0) is fixed, we have

s∗ + 2g∗ log(M/δ) � t0 +max
j

f2
j � n∗

with n∗ = maxj≤M

{
|Gj |+ log(M/δ)

}
+ |GT |+ |T | log(M/δ).

The conclusion follows from part (i) and Lemma 1. Let

Ωn =
{
c∗(1− ε0) ≤ ‖XGj/

√
n‖S ≤ (1 + ε0)c

∗ ∀j,

ρ2(x0t0) ≤ (1− ε0/2)λmin(Σ), θ2(x0t0, y0t0) ≥ (1 + ε0)c
∗
}
.

Let B1 and B2 be the orthogonal projections to the subspace of vectors v ∈ R
p

with support sets GB1 and GB2 respectively, t = (2g∗ + 2) log(M/δ) and ε0 =
C1

√
t/n+ s∗/n with a sufficiently large C1. Since {s∗ + 2g∗ log(M/δ)}/n is

small for small a0, Lemma 1 yields P
{
Ωn

}
≤
(
M
g∗

)2
e−t ≤ (δ/M)2. For x0 = aqy0

and sufficiently large y0, κ2,m(ξ, t0, x0, y0) ≥ ρ2(x0t0)(1 − ε0/2) in Ωn. The
conclusions of part (ii) then follow from part (i).
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