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Abstract: When describing adequately complex data structures one is
often confronted with the fact that mean as well as variance (or more gen-
erally dispersion) is highly influenced by some covariates. Drawbacks of
the available methods is that they are often based on approximations and
hence a theoretical study should deal with also studying these approxi-
mations. This however is often ignored, making the statistical inference
incomplete. In the proposed framework of double generalized modelling
based on proper dispersion models we avoid this drawback and as such
are in a good position to use recent results on Bregman divergence for es-
tablishing theoretical results for the proposed estimators in fairly general
settings. We also study variable selection when there is a large number
of covariates, with this number possibly tending to infinity with the sam-
ple size. The proposed estimation and selection procedure is investigated
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via a simulation study, that includes also a comparative study with com-
petitors. The use of the methods is illustrated via some real data applica-
tions.
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1. Introduction

1.1. From generalized linear models to quasi-likelihood and
pseudo-likelihood

Within the framework of univariate regression modelling techniques, the gen-
eralized linear model (GLM) holds a prominent place ([58]). Generalized lin-
ear models allow to model responses which are not normally distributed, us-
ing methods closely analogous to linear methods for normal data ([53]). They
assume an exponential family distribution for the response variable and are
more general than normal linear methods in that a mean-variance relation-
ship appropriate for the data can be accommodated and an appropriate scale
can be chosen for modelling the mean on which the action of the covariates
is approximately linear. Once the mean-variance relationship is specified, the
variance is assumed known up to a constant of proportionality, the dispersion
parameter.

For many years, the focus has been on modelling and estimating the mean
structure of the data while treating the dispersion parameter as a constant
since GLMs automatically allow for dependence of the variance on the mean
through the distributional assumptions. While there is often strong motivation
for using exponential family distributions on the grounds of interpretability, the
observed data may however exhibit greater variability than the one which is
implied by the mean-variance relationship. Then the loss of efficiency in esti-
mating the mean parameters, using constant dispersion models when the dis-
persion is varying, may be substantial. This has trigged the development of
more flexible models than GLMs, by additional modelling of the dispersion as a
function of covariates. When only the mean varies with the covariates, the con-
ditional distribution function, of the response given the covariates, is considered
to belong to the exponential family. The usual likelihood theory then allows
for showing the basic properties of statistical inference. When the dispersion
function however is also varying with the covariates, this road can no longer be
taken.

Quasi-likelihood ([72]) provides one simple approach to do statistical infer-
ence in the presence of over-dispersion, where the exponential family assumption
is dropped and only a model for the mean is given with the response variance
a function of the mean up to a multiplicative constant. However, this approach
does not allow over-dispersion to be modelled as a function of covariates. An
extension of quasi-likelihood which allows this is the extended quasi-likelihood
(EQL) of [57], but in general extended quasi-likelihood estimators may not be
consistent ([22]). Alternatively, generalized least squares estimating equations
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for the mean parameters can be combined with normal score estimating equa-
tions for the variance parameters. Such a procedure is referred to as pseudo-
likelihood ([21]). [64] considers modelling the mean and variance in a paramet-
ric class of models which allows normal, inverse Gaussian and gamma response
distributions, and a quasi-likelihood extension is also proposed which uses a
similar approach to pseudo-likelihood for estimation of variance parameters.
[65, 66] consider extensions of residual maximum likelihood (REML) estimation
of variance parameters to double generalized linear models where dispersion pa-
rameters are modelled linearly in terms of covariates after transformation by a
link function.

An approach related to EQL is the double exponential family of distributions
introduced in [26]. Starting from such a double exponential family of distribu-
tions [33] and [19] allow the dispersion parameter to vary with the covariates,
and consider (robust for the second reference) statistical inference for mean
and dispersion functions. Their modelling which is essentially nonparametric
in nature, allows for a flexible unknown dispersion pattern (over-dispersion,
under-dispersion, ...). This is in contrast with papers that focus (for exam-
ple) specifically on overdispersion. See [16] and [82] among others. Other recent
work includes hierarchical modelling of mean and variance. See [13, 14]. We will
shortly refer to such approaches as model-based approaches.

Estimating equation approaches (pseudo-likelihood approaches) and model-
based approaches (EQL, double-exponential families, hierarchical modelling...)
have both serious drawbacks when it comes to establishing asymptotic properties
of proposed estimators in a fairly general setting.

Inference about mean and variance functions using estimating equations
has the drawback that there is no fully specified model, making it difficult
to deal with characteristics of the predictive distribution for a future response,
other than its mean and variance. Model-based approaches for modelling over-
dispersion include exponential dispersion models and related approaches ([40],
[64]). Moreover, if an exponential dispersion family with a given variance func-
tion exists, then the EQL is the log-likelihood function based on a saddle point
approximation to that family ([53], [42]). [47] notice that the unnormalized EQL
and Efron’s [26] unnormalized double-exponential family are equivalent up to
some constant terms and therefore both approaches lead to identical inferences.
Hence both approaches share the drawback mentioned above.

In contrast, the framework that we will adopt in this work for flexibly mod-
elling of mean and variance/dispersion functions is based on the proper disper-
sion regression models introduced by [40]. Proper dispersion regression models
do not suffer the drawbacks of extended quasi-likelihood which occur because
the extended quasi-likelihood is not a proper log-likelihood function. They pro-
vide a convenient framework for modelling as they retain the parsimony and
interpretability of GLMs, while allowing, if necessary, the flexible dependence of
the link transformed mean and variance parameters on predictors (covariates).
This framework allows us to get to our first goal: properly establishing statisti-
cal inference properties in general flexible regression settings. Such a theoretical
underpinning has been lacking largely in the literature so far.
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1.2. Variable selection in joint mean and dispersion modelling

A second goal is to address the problem of variable selection, i.e. the selection
of a reasonably small subset of informative covariates that are associated with
a response in a particular dispersion model. The selection of informative co-
variates plays a key role in many practical applications and is often required in
applications with high-dimensional data, i.e. data sets with a potentially large
number of covariates, and remains an important and challenging issue in statis-
tics. For GLMs there is a variety of variable selection techniques available in the
literature. The more traditional methods such as Akaike’s information criterion
(AIC), Mallows Cp and the Bayesian information criterion (BIC) are practically
useful and easy to implement as they use a fixed penalty on the size of a model.
They are generally adequate for a small number of covariates.

In the context of joint modelling of the mean and the dispersion in GLMs
variable selection was dealt with recently in [71]. Nevertheless, these methods
follow stepwise and subset selection procedures, making them computationally
intensive and often unstable ([11]), when the number of variables is large. For
high-dimensional problems with a number of variables much larger that the
number of observations, the use of penalization, or regularization, has become
a common approach, where an increasingly frequent goal is to simultaneously
select important variables and estimate their effects. It has led to the develop-
ment of several penalized variable selection procedures for GLMs (parametric
and nonparametric). Quadratic penalization on the regression coefficients as the
one used by [52] is more stable but as it only shrinks coefficients and doesn’t
reduce them to 0, it fails to produce parsimonious models. See [4] for a study
on penalization methods in extended generalized linear models. [48] propose an
�0 like penalized likelihood approach for variable selection and estimation in
generalized linear models. [59] discuss a natural GLM extension of the Lasso

(GLasso), and [60] propose a Forward-lasso with adaptive shrinkage for GLMs.
[38] relies on a scad penalization for variable selection in generalized linear mod-
els.

However, in all papers above, the dispersion parameter is treated as constant
(i.e. not varying with covariates). With dispersion models, problems related to
variable selection become even more serious, since not only the location param-
eters but also the dispersion parameters of the response distribution are asso-
ciated with a set of predictor variables. Both joint mean-dispersion modelling
and variable selection are therefore areas of great interest. The contribution of
the current paper can be summarized as follows:

(i) We provide a unifying framework for estimation of and variable selection
in jointly the mean and dispersion in a context of generalized proper dis-
persion models.

(ii) Subsequently we provide a solid theoretical framework for establishing
estimation and variable selection consistency.

In recent years there have been many papers dealing with joint estimation of
mean and variance, but a good theoretical treatment was missing. Not only
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we fill this gap, but we also deal with variable selection. The main advantage
of our approach is that we provide a solid theoretical framework that allows
to establish the necessary statistical properties of the estimation and selection
procedure. In addition the unifying framework deals with many special cases in
one single track.

The paper is further organized as follows. In Section 2 we briefly describe
the necessary elements about dispersion models, including how joint modelling
of mean and dispersion is dealt with. This section also highlights the main dif-
ferences with existing approaches. Section 3 then easily passes on to the setting
when covariates are observed. Apart from estimating the unknown mean and
dispersion we are also concerned with selecting at the same time the (few) signif-
icant covariates in a large number of observed covariates. Within the proposed
framework we can nicely rely on the notion of Bregman divergence, to establish
statistical estimation and variable selection properties, in Section 4. Issues of
practical implementations to solve the optimization problems involved, in par-
ticular algorithms for doing so, are discussed in Section 5. The finite-sample
performance of the proposed estimation and variable selection procedure is in-
vestigated in a simulation study in Section 6. We illustrate the use of the meth-
ods on some real data applications in Section 7. Finally, in Section 8 we discuss
further extensions and research perspectives.

2. Proper dispersion models, and joint modelling of mean and
dispersion

In this section we introduce the framework of proper dispersion models mostly
in a general non-regression setting (no covariates included), with exception of
Section 2.2 which is about the specific case of generalized linear models in a
univariate regression setting. In Section 3 we then consider fully the regression
setting and the framework of generalized proper dispersion models.

2.1. Brief review on exponential dispersion models

Following [40] a regular reproductive exponential dispersion model, denoted by
ED(μ, φ) is defined via the density function

f(y; θ, φ) = a(y, φ) exp

{
1

φ
(yθ − κ(θ))

}
, (2.1)

where a(y;φ) and κ(θ) are known functions and θ and φ are the parameters
of the model. This model generalizes the exponential family model in which
θ is the canonical parameter and φ is known. The function κ(·) is called the
cumulant function, and in a regular model this function is twice continuously
differentiable.
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We say that the model satisfies the Bartlett identities of order 1 and 2, if, for
Y ∼ ED(μ, φ) with probability density f(·; θ, φ), we have respectively

E

[
∂

∂θ
ln f(Y ; θ, φ)

]
= 0 (2.2)

and E

[
∂2

∂θ2
ln f(Y ; θ, φ)

]
= −E

[
∂

∂θ
ln f(Y ; θ, φ)

]2
. (2.3)

If the model satisfies the Bartlett identity of order 1, then

μ ≡ E(Y ) = κ′(θ), (2.4)

where for simplicity of presentation we assume θ ∈ IR, and where κ′(θ) denotes
the derivative of κ(θ). If in addition the Bartlett identity of order 2 holds, then
it follows that

Var(Y ) = φκ′′ ((κ′)−1(μ)
)
.

A special case of regular reproductive exponential dispersion models are the
family of Tweedie models which are exponential dispersion models for which the
variance of Y is proportional to

V (μ) = μp with p �∈ (0, 1). (2.5)

Emphasizing the dependence on p we denote a Tweedie model for a given p, as
Y ∼ EDp(μ, φ). It is important to note that Tweedie distributions are closed
under scale transformations, i.e. if Y ∼ EDp(μ, φ), then cY ∼ EDp(cμ, c

2−pφ)
for any c > 0. The most important examples of elements of the Tweedie family
are normal, Gamma and inverse Gaussian distributions, that correspond respec-
tively with the cases p = 0, p = 2 and p = 3. Other interesting subclasses of
distributions in the class of Tweedie family are: (i) the Poisson distributions
(with p = 1); (ii) the compound Poisson distributions (with 1 < p < 2) for
which the domain is [0,∞[ having a nonzero probability mass at the point zero
accompanied with a skewed continuous distribution on ]0,∞[; (iii) the stable
Tweedie distributions with p ≤ 0 or p > 2, of which the inverse Gaussian is
an example (case p = 3). In this paper we restrict to the case of continuous
distributions, but readers are referred to Section 8.3 for extensions to discrete
distributions or mixtures of continuous and discrete distributions (such as the
subclasses (i) and (ii)).

Exponential dispersion models are on their turn special cases of dispersion
models, which we briefly review in Section 2.3.

2.2. Generalized linear models and double generalized linear models

In a regression setting the aim is to explain the impact of a covariate, say X, on
the response vector Y . For simplicity of presentation we restrict, in this section,
to the simplest case of a univariate covariate. See Section 3 for a more general
multivariate setting.
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In generalized linear models, the conditional distribution of Y given X = x,
with x ∈ IR, is assumed to be of the form (2.1) but with now θ depending on x
(i.e. a function of x). More precisely, the conditional density function of Y given
X = x is of the form

fY |X(y; θ(x), φ) = a(y, φ) exp

{
1

φ
(yθ(x)− κ(θ(x)))

}
, (2.6)

leading to

μ(x) ≡ E(Y |X = x) = κ′(θ(x)) and Var(Y |X = x) = φκ′′ ((κ′)−1(μ(x))
)
.

(2.7)
In a generalized linear model it is further assumed that the influence of X on

the mean of Y is linear after having applied a link function g, i.e.

g(μ(x)) = θ(x) = θ0 + θ1x, (2.8)

and estimation of the mean function μ(x) resorts in estimation of the parameters
θ0 and θ1. Obviously, in an exponential model with canonical parameter g−1 = κ
(see (2.4) and (2.7)).

So far, the parameter φ in (2.1) and (2.6) is assumed to be a nuisance param-
eter, but one that describes correctly the scaling properties of the distribution.

[26] introduced an extra parameter ζ into the exponential model (2.1) to
allow for more modelling flexibility in the variance (dispersion). He considered
the double exponential family probability density given by

fDE(y; θ, φ, ζ) = C(θ, ζ)ζ−1/2 {f(y; θ, φ)}1/ζ
{
f(y; (κ′)−1(y), φ)

}1−1/ζ
, (2.9)

where C(θ, ζ) is a normalizing constant, and ζ > 0. It is typical in double
exponential models to approximate this constant by 1 (see [26]). See also Section
2.3.

In a context of double generalized linear models, the essential idea is to allow
the scale parameter φ to be influenced by the covariate x, i.e. φ becomes a
function of x. Again, via the interference of a link function h, this effect is
assumed to be linear, i.e.

h(φ(x)) = γ(x) = γ0 + γ1x. (2.10)

For the rest of this section we will present all material in a simplified (non-
regression) setting, but when writing, for example g(μ) = θ and h(φ) = γ one
should keep the dependence on covariates in mind.

2.3. Proper dispersion models

Dispersion models were originally introduced by [40] and further studied in [41],
the book [42] and [43]. We first introduce some notations and definitions. Let
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Ω ⊆ IR be an open interval. A function d : Ω×Ω → IR is called a unit deviance
if

d(y, y) = d(μ, μ) = 0, ∀y, μ ∈ Ω, d(y, μ) > 0, ∀y �= μ.

A unit deviance d is called regular if d(y, μ) is twice continuously differentiable
with respect to (y, μ) on Ω× Ω and satisfies

∂2d(y, μ)

∂μ2

∣∣∣∣
y=μ

> 0, ∀μ ∈ Ω.

Then the unit variance function V : Ω → IR+ is defined by

V (μ) =
2

∂2d(y,μ)
∂μ2

∣∣∣
y=μ

. (2.11)

A dispersion model is defined via the probability density function

f(y; θ, φ) = b(y, φ) exp

{
− 1

2φ
d(y, μ)

}
, (2.12)

where the position parameter μ belongs to Ω (and μ depends on θ), and φ > 0 is
the dispersion parameter. If Y has density function f(·; θ, φ) in (2.12) we denote
Y ∼ DM(μ, φ).

One assumes that b(y, φ) is twice continuously differentiable, with respect to
y and d(y, μ) is twice continuously differentiable with respect to (y, μ). If the
dispersion model satisfies the Bartlett identities of order 1 and 2 (see (2.2) and
(2.3)), then this implies that d(·, ·) should satisfy

E

[
∂

∂μ
d(Y, μ)

]
= 0 (2.13)

and E

[
∂2

∂μ2
d(Y, μ)

]
=

1

2φ
E

[
∂

∂μ
d(Y, μ)

]2
. (2.14)

The identities (2.13) and (2.14) in fact hold for any dispersion model for which
the above differentiability assumptions are verified, as stated in Proposition 3.1
of [67].

When the factor b(y, φ) in (2.12) factorizes as c(φ)a(y) then the corresponding
dispersion model is called a proper dispersion model. It is crucial in this that
the factor c(φ) does not depend on μ.

If in addition the factor a(y) equals the inverse of the square root of the

unit variance function defined in (2.11), i.e. a(y) = {V (y)}−1/2
then the model

defined via the resulting probability density function, namely

f(y;μ, φ) = c(φ) {V (y)}−1/2
exp

{
− 1

2φ
d(y, μ)

}
, y ∈ Ω, (2.15)
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Table 1

PD(μ, σ2) model examples. I0(·) denotes the modified Bessel function, i.e.

I0(z) =

∞∑
k=0

( 1
4
z2)k

(k!)2
.

model Ω c(φ) V (y) d(y, μ)
with φ = σ2

Normal IR 1√
2πφ

1 (y − μ)2

N (μ, σ2)

Gamma IR+

1
φ

1
φ e

− 1
φ

Γ
(

1
φ

) y2 2
{

y
μ
− ln

(
y
μ

)
− 1

}
Γ(φ, θ), θ = μφ

Inverse normal IR+
1√
2πφ

y3
(y−μ)2

μ2y

IN (μ, σ2)

Lognormal IR+
1√
2πφ

y2 (ln(y)− ln(μ))2

LN (θ, σ2), θ = ln(μ)

von Mises [0, 2π) e
1
φ

2πI0

(
1
φ

) 1 2(1− cos(y − μ))

vM(μ, σ2)

simplex (0, 1) 1√
2πφ

y3(1− y)3
(y−μ)2

y(1−y)μ2(1−μ)2

S−(μ, σ2)

is called a regular proper dispersion model, denoted by PD(μ, σ2), where φ = σ2,
d is a regular unit deviance and

1

c(φ)
=

∫
Ω

{V (y)}−1/2
exp

{
− 1

2φ
d(y, μ)

}
dy,

to ensure to have a proper density function in (2.15). Several usual distributions
belong to the PD(μ, σ2) models, namely the normal, Gamma, inverse normal,
log-normal, von Mises and simplex distributions. See Table 1 for the details, as
well as [41], [7] and [67], among others.

For a regular proper exponential dispersion model (see (2.1)), for which

d(y, μ) = −2(yθ − κ(θ)), (2.16)

the quantity b(y, φ) in (2.12) is of the form (see [42])

b(y, φ) = {2πφV (y)}−1/2
ρ(φ). (2.17)

For the normal and the inverse Gaussian families ρ(φ) = 1, while for the
gamma families

ρ(φ) = (2π)1/2
αα exp(−α)

Γ(α)
,

with α = 1/φ.
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The range of applicability of (2.17) can be extended by the saddle point
approximation to exponential dispersion models with dispersion parameter φ
close to zero (i.e. the case of small scale asymptotics), by using that (see e.g.
expression (3.44) on page 103 in [42] and Proposition 2.3 in [67])

b(y, φ) = {2πφV (y)}−1/2 {1 +O(φ)} . (2.18)

Recall that for the Tweedie distributions one has: if Y ∼ EDp(μ, φ), then cY ∼
EDp(cμ, c

2−pφ) for any c > 0. Consequently, for p < 2 and p �∈ (0, 1), by
multiplying Y ∼ EDp(μ, φ) with a small number c the dispersion parameter of
the resulting Tweedie distribution will tend to zero (since c2−p tends to zero as c
tends to zero). Analogously, for Tweedie distributions with p > 2, a mulplication
of Y with a large c results into a Tweedie distribution with dispersion parameter
closer to zero (since c2−p tends to zero as c tends to infinity).

For the Gamma distribution, the saddle point approximation consists in re-
placing Γ(1/φ)) with its Stirling’s formula approximation so that

αα exp(−α)

Γ(α)
=

1√
2π φ

{1 +O(φ)} .

A double exponential model (see (2.9)) involves essentially the approximation

b(y, φ) ≈ {2πφV (y)}−1/2
, (2.19)

which then results in not having a proper distribution function to work with,
leading to the drawback for statistical inference, mentioned in the introduction.

2.4. Proper dispersion models and joint modelling of mean and
dispersion

If one is interested in joint modelling of mean and dispersion in the context of a
PD(μ, σ2) model, then we consider two monotonic differentiable link functions
g(·) and h(·) say, where g links the parameter θ with the mean (μ) and where
h links the parameter γ, say, with the dispersion (φ), i.e.

g(μ) = θ and h(φ) = γ.

The interest is then in joint estimation of θ and γ.
Suppose now that Y ∼ PD(μ, σ2) where μ depends on θ and φ (= σ2) on γ.

The logarithm of the probability density function (see (2.15)) is

ln f(y;μ, φ) = ln c(φ)− 1

2
lnV (y)− 1

2φ
d(y, μ). (2.20)

Following [64] in his ideas on double generalized linear models, we look upon
this as a double dispersion model, in which one considers a first submodel that
corresponds to θ (the parameter associated to the mean) for γ fixed; and a
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second submodel that corresponds to γ (the parameter associated to the dis-
persion φ) for θ fixed. For the first submodel, the mean submodel, the response
variable is Y , and for the second submodel, called the dispersion submodel, the
response variable is D = d(Y, μ) (known as soon as μ is known). For a PD
model with c(φ) = 1/

√
2πφ, it follows that if μ is fixed then the considered form

for ln f(Y ;μ, φ) coincides with that of a Gamma distribution Γ(2, 2φ) (with the
parametrization as in Table 1) for D = d(Y, μ).

Given Y1, . . . , Yn, a sample of independent and identically distributed (i.i.d.)
observations from Y , one can, based on (2.20) form the log-likelihood function,
which is given by

n∑
i=1

{
ln c(φ)− 1

2
lnV (Yi)−

1

2φ
d(Yi, μ)

}
. (2.21)

For estimation of θ one then considers (2.21) with γ (and thus φ) fixed (given).
For estimation of γ, (2.21) is considered with θ (and thus μ) fixed, which results
in looking at Di = d(Yi, μ) as the response variables.

Estimation of θ and γ is then done in two separate steps: maximization
of (2.21) with respect to μ, with γ fixed, to estimate μ (and hence θ); and
maximization of (2.21) with respect to φ, with μ fixed, to estimate φ (and
hence γ). This leads to the maximum likelihood estimators of (μ, φ) under this
framework of double dispersion models. Of crucial importance however is that it
is justified that the two maximization problems can be carried out independent
of each other. This is indeed the case in our modelling framework since from
the Bartlett identities or order 1 and 2, as stated in (2.13) and (2.14) it follows
that

E

[
∂2

∂μ∂φ
ln f(Y ;μ, φ)

]
= 0, (2.22)

which leads to block diagonality of the Fisher information matrix for the joint
maximum likelihood estimation of (θ, γ) (or equivalently (μ, φ)). The parameters
μ and φ are thus orthogonal in the sense of [17, 18]. See also [44]. It is this
property that allows us to have an iterative algorithm combining the mean and
dispersion submodel iteration.

2.5. Quasi-likelihood and extended quasi-likelihood

Let us remark that, contrary to the framework of generalized linear models, the
maximum likelihood estimator for PD models does not necessary coincide with
the quasi-likelihood maximum estimator.

Let us first briefly review the basics of quasi-likelihood. Suppose that for a
response variable Y we know

E(Y ) = μ and Var(Y ) = σ2V (μ),
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where V (·) is a know function of μ. With this knowledge on the first and second
(central) moments of Y , it is to be noted that the quantity

u(Y ;μ) ≡ Y − μ

σ2V (μ)
(2.23)

is such that

E (u(Y ;μ)) = 0

E(u2(Y ;μ)) = Var (u(Y ;μ)) =
1

σ2V (μ)
= −E

[
∂u(Y ;μ)

∂μ

]
which constitutes thus similar properties as the log-likelihood score ∂

∂θ ln f(Y ;
θ, φ). See for example (2.2) and (2.3).

The quasi-likelihood is then obtained by integrating this analogue of the score
function:

Q(μ; y) =

∫ μ

y

y − s

σ2V (s)
ds,

and its corresponding quasi-likelihood score is given in (2.23). Note that, for a
proper dispersion model, the associated score quantity is given by (see (2.20))

∂

∂μ
ln f(y;μ, φ) = − 1

2φ

∂

∂μ
d(y, μ), (2.24)

which does not necessarily lead to the same estimator as based on the quasi-
likelihood score in (2.23). However, in our modelling framework where the
Bartlett identities of order 1 and 2 are satisfied (see (2.13) and (2.14)), the
dispersion model score function (2.24) replaces the quasi-score (2.23) appear-
ing in the conventional quasi-likelihood estimating equation, and leads to the
generalized quasi-score function of [50] (see equation (3) therein). The general-
ized quasi-likelihood estimator obtained by using such a generalized quasi-score
function is consistent. For the Normal, Gamma, and Inverse normal model,
quasi-likelihood and generalized quasi-likelihood lead to the same estimator, as
is easily seen from Table 2. However for the other distributions this is not the
case.

When a dispersion parameter is involved, [57] suggest, in the context of an
exponential dispersion model, to use (see (2.18))

Q+(μ, φ; y) = −1

2
ln{2πφ(γ)V (y)} − 1

2

d(y, μ(θ))

φ(γ)
, (2.25)

with the dependence of μ on θ and of φ on γ emphasized, and where

d(y, μ) = −2

∫ μ

y

y − s

σ2V (s)
ds,

is the deviance function. The quantity Q+(μ, φ; y) is called the extended quasi-
likelihood.



Joint mean and dispersion estimation and variable selection 1643

Table 2

Mean and variance for PD(μ, σ2) model examples with partial derivative of d. I0(·) and

I1(·) denote modified Bessel functions: I0(z) =

∞∑
k=0

( 1
4
z2)k

(k!)2
and I1(z) =

1
2
z

∞∑
k=0

( 1
4
z2)k

k! Γ(k + 2)
.

model
∂d(y,μ)

∂μ
mean variance

Normal −2(y − μ) μ φ
N (μ, σ2)

Gamma 2
{

1
μ
− y

μ2

}
μ μ2φ

Γ(φ, θ), θ = μφ

Inverse normal 2
μ2 − 2y

μ3 μ μ3φ

IN (μ, σ2)

Lognormal − 2
μ
(ln(y)− ln(μ)) μeφ/2

(
eφ − 1

)
μ2eφ

LN (θ, σ2), θ = ln(μ)

von Mises −2 sin(y − μ) μ 1−
I1

(
1
φ

)
I0

(
1
φ

)
vM(μ, σ2)

simplex −2
(y−μ)(μ2+y−2μy)

y(1−y)μ3(1−μ)3
μ no closed form expression

S−(μ, σ2) available

Two remarks are important here. Firstly, the expression for Q+ is inherent to
exponential dispersion models, and hence inherently relies on the approximation
(2.19). Secondly, as for the quasi-likelihood, the extended quasi-likelihood not
necessarily leads to the same score function as obtained via (2.24). However, for
proper dispersion models one has to use the generalized quasi-score function of
[50] to end up with an equivalent expression as in (2.25).

3. Generalized Proper Dispersion Models: estimation and variable
selection

We now fully turn to the regression setting in which the aim is to explain the
impact of vectors of covariates X = (X1, . . . , Xp)

T , and Z = (Z1, . . . , Zq)
T (of

dimensions p and q respectively) on respectively the mean and the dispersion of
the response Y . The main difference with the non-regression setting in Section
2 is that now the modelling concerns the conditional distribution function of
Y given the set of covariates vectors (X,Z) = (x, z), with x = (x1, . . . , xp)

T

z = (z1, . . . , zq)
T instead of unconditional distributions in the previous section.

Note that the two covariate vectors X and Z may contain common covariates
(i.e. have overlap) or may even both contain all measured covariates (a case of
p = q). In real data analyses, an important question is which covariates should
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be placed in the mean-dependence part and which ones should be placed in
the dispersion-dependence part. Since in our setting, nothing prevents for the
covariate vectors X and Z to be the same or to partially overlap, we can put
all the covariates in both parts, and as long as we are not in a hyper-high-
dimensional setup, we may apply our variable selection procedure to make the
appropriate choice. See also Section 8.4 for some further discussion.

Suppose that Y given (X,Z) = (x, z) has a proper dispersion conditional
density function given by

fY |(X,Z)(y;μ(x), φ(z)) = c(φ(z)) {V (y)}−1/2
exp

{
− 1

2φ(z)
d(y, μ(x))

}
, y ∈ Ω.

(3.1)
We denote this conditional model as (Y |(X,Z) = (x, z)) ∼ PD(μ(x), σ2(z)).

Analogously as in generalized linear models, we assume that by considering
appropriate link functions the dependence on the covariates is linear, i.e.

g(μ(x)) = xTβ and h(φ(z)) = zTγ,

where β and γ are the vectors of unknown regression parameters, of dimensions
p and q respectively. In case of inclusion of intercept terms (introducing then
X0 = 1 and Z0 = 1) the dimensions become p+ 1 and q + 1. The interest is in
joint estimation of β and γ.

Consider the triple (Y,X,Z) of random variables for which fY |(X,Z)(y;μ(x),
φ(z)) is as in (3.1). Given an i.i.d. sample ((Y1,X1,Z1), . . . , (Yn,Xn,Zn)) from
(Y,X,Z), withXj = (X1j , . . . , Xpj)

T , and Zj = (Z1j , . . . , Zqj)
T , the conditional

log-likelihood function is then given by

�(β,γ) =

n∑
i=1

{
ln c(φ(Zi))−

1

2
lnV (Yi)−

1

2φ(Zi)
d(Yi, μ(Xi))

}
. (3.2)

For estimation of β the focus is on (3.2) with γ (and thus φ(Zi)) fixed. For es-
timation of γ, one considers (3.2) with β (and thus μ(Xi)) given, which results
in looking at Di = d(Yi, μ(Xi)) as the response variables.

Remark 3.1. Recall that the score function for β is the partial derivative of
the proper dispersion log-likelihood with respect to β holding γ fixed. When γ is
fixed, however, the following remark facilitates the generalized extension of the
quasi-likelihood function. For a datum point (Yi,Xi,Zi) denote μi = μ(Xi) and
φi = φ(Zi), and define the pseudo response value associated to this ith datum

point as Ỹi = μi − φi ·
(

ḋ(Yi,μi)/2

var(−ḋ(Yi,μi)/2)

)
. Herein ḋ and d̈ denote respectively

the first and second order partial derivative of the unit deviance d with respect
to the second argument μ. Note that the second order Bartlett identity for μi

gives E
(
d̈(Yi, μi)/2

)
= var(−ḋ(Yi, μi)/2)/φi. For exponential dispersion models

one has Yi = Ỹi, while it is easy to see that for proper dispersion models the
log-likelihood score for β with γ fixed is a quasi-likelihood score associated to the
pseudo response vector Ỹ = (Ỹ1, . . . , Ỹn)

T .
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Apart from estimating the effect of a covariate on the response, we also want
to determine at the same time which of the (many) covariates have a signif-
icant effect. We therefore aim to develop an efficient penalized log-likelihood
to select important explanatory variables, among the sets X = (X1, . . . , Xp)

T ,
and Z = (Z1, . . . , Zq)

T that make a significant contribution to the joint mean
and dispersion of PD(μ(x), σ2(z)) models. Similar in spirit to [30], we define the
penalized log-likelihood function by

J(β,γ) = �(β,γ)−
p∑

j=0

pλ1(tj |βj |)−
q∑

j=0

pλ2(uj |γj |), (3.3)

where pλk
(·), k = 1, 2, is a nonconcave penalizing function that is indexed by

a regularization parameter λk > 0. These parameters are preferably chosen by
a data-driven criterion (such as (generalized) cross-validation). See also Section
5.2. The sequences (tj)j=0,...,p and (uk)k=0,...,q are known (given) nonnegative
weights allowing a different amount of regularization for each of the covariates
involved in the regression. For more details, see Section 5.

In practical settings, many variables are introduced and the number of these
can depend on the sample size. As in [30] and [4], we therefore allow for p and
q to possibly depend on n, that is p = pn and q = qn. Maximization of J(β,γ),
alternating again between fixing β and γ leads to the penalized maximum log-
likelihood estimators. Due to the inclusion of penalty functions, the solution of
these optimization problems will simultaneously select a significant variable and
estimate its associated parameter coefficient.

To select a good penalty function [2] (see also [29]) proposed three principles
that a good penalty function should satisfy: unbiasedness, sparsity and continu-
ity. [29] constructed a new penalty function (scad) which results in an estimator
that achieves an oracle property: that is, the estimator has the same limiting
distribution as an estimator which knows the true model a priori. The smoothly
clipped absolute deviation (scad) penalty, which is defined by

p′λ(β) = λ

{
I(β ≤ λ) +

aλ− β

(a− 1)λ
I(β > λ)

}
,

for some a > 2 and β > 0, where I(·) is the indicator function, satisfies the
above mentioned three properties. See also [4] for a discussion on appropriate
choices of penalty functions that yield variable selection procedures.

Variable selection for joint mean and dispersion using (3.3), with scad or
lasso penalties has been studied in the literature for an inverse Gaussian dis-
tribution in [73], and for a lognormal distribution in [74]. It should be noted
though that for fitting the lognormal distribution into the framework of a proper
dispersion model the settings as in Table 1 are needed, for example to ensure the
Fisher-orthogonality property. The expressions used in [74] are different though.
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4. Theoretical results

Penalization methods are characterized by loss functions measuring data fits and
penalty terms constraining model parameters. The commonly used quadratic
loss minimizing the sum-of-squares error is equivalent to assuming a Gaussian
distributed error term and leads to a least squares algorithm for maximum like-
lihood estimation. However it is not suitable for maximum likelihood estimation
in more general generalized linear and nonlinear models.

We study in this section the asymptotic properties of the penalized likeli-
hood estimators introduced previously. We consider the situations where the
number of parameters is either fixed or tends to ∞ with increasing sample size
n. We show in particular how model selection and estimation in generalized
proper dispersion models can be bridged within the unified framework of pe-
nalized Bregman divergence obtained by replacing the negative log-likelihood
or generalized quasi-likelihood in the conventional penalized likelihood or quasi-
likelihood regression with Bregman divergence (see (4.1) for the definition).

We noted before that for proper dispersion models the mean submodel pa-
rameter β and the dispersion submodel parameter γ are orthogonal. Such a
property implies in particular that the maximum likelihood estimators of β and
γ can be obtained separately. Holding γ fixed at the current estimate γ̂, the
estimate of β is obtained by solving the associated generalized quasi-score es-
timating equation (see Remark 3.1), using φ(γ̂) as the prior weight. Holding β

fixed at the current estimate β̂ the estimate of γ is obtained by fitting a gamma
exponential model log-likelihood function for the dispersion parameter. Iterat-
ing between holding β fixed and γ fixed leads then to the penalized maximum
likelihood estimators β̂ and γ̂ which maximize the objective function (3.3).

The above remark can be now used to show in particular how model selection
and estimation in generalized proper dispersion models can be bridged within
the unified framework of penalized Bregman divergence obtained by replacing
the negative log-likelihood or generalized quasi-likelihood in the conventional
penalized likelihood or quasi-likelihood regression with Bregman divergence.

There is a rich literature on connection of Bregman divergence and probability
distributions. In one study [8] showed the bijection between regular exponential
family distributions and the Bregman divergence. The connection of Bregman
divergence and Tweedie distributions has been briefly remarked by [15], and has
been specifically studied in a recent report by [77].

Bregman divergences are introduced by Bregman in 1967. By definition, for
any real valued differentiable concave function q, the Bregman divergence of τ
from ν is given by [8]

B(ν, τ) = q(ν)− q(τ)− (ν − τ)q′(τ). (4.1)

It is equal to the tail of the first-order Taylor expansion of q(ν) at τ . Major
classes of cost functions can be generated by the Bregman divergence with ap-
propriate functions q (see e.g. [8] and [79]. They enjoy convex duality properties.
Conversely, for a given B-loss, [79] derived an explicit formula for solving the
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generating q function. The concavity of q ensures that Bregman divergences
are non-negative quantities, i.e. B(ν, τ) ≥ 0 and equality holds only for ν = τ .
However, in general they do not possess the symmetry property, nor do they
enjoy a triangular inequality. Hence, they cannot be considered as metrics or
distances in the strict sense.

As noted in Remark 3.1 for proper dispersion models the log-likelihood score
for β with γ fixed is a quasi-likelihood score associated to the pseudo response
vector Ỹ. [79] verified that this (negative) quasi-likelihood function belongs to
the Bregman divergence and derived the generating q-function,

q(μ) =

∫ μ

μ0

t− μ

V (t)
dt (4.2)

where μ0 is a fixed constant such that the integral is well-defined and where V
is the variance function of a proper regular dispersion model.

To unify the notation, we will denote hereafter θ = (β,γ) the generic vector of

unknown parameters, of dimension mn = pn+qn+2 and θ̂ = (β̂, γ̂) will denote
the penalized maximum likelihood estimator. Let θ0 denote the true value of θ.
We will assume that the vector θ0 may be sparse and has the representation θ0 =

(θ
(1)
0 ,θ

(2)
0 ) where, without any loss in generality, θ

(1)
0 consists of the nonzero

components of θ0 and θ
(2)
0 regroups the possibly zero components of θ0. Let sn

denote the number of nonzero components of θ0, i.e. the dimension of the vector

θ
(1)
0 . Note that sn = s1n+s2n, where skn, for k = 1, 2, is the number of nonzero

components for respectively the mean and the dispersion part. Similarly to [30]
define, for k = 1, 2,

akn = max
1≤j≤skn

{
|p′λkn

(|θ0j |)|
}

bkn = max
1≤j≤skn

{
|p′′λkn

(|θ0j |)|
}
,

where λkn > 0 is a regularization parameter depending on the sample size n.
See (3.3).

The following theorem guarantees, with probability tending to 1, the existence
of a consistent local maximizer θ̂ of the penalized log-likelihood function in
(3.3) and states that θ̂ is a

√
n/mn-consistent estimator of θ0. The proof of the

theorem is given below.

Theorem 4.1. Assume akn = O(n−1/2) and bkn → 0, for k = 1, 2, as n → ∞.
Assume further m4

n/n → 0, max(λ1n, λ2n) → 0, (n/mn)
1/2 min(λ1n, λ2n) →

∞ and minj=1,...,sn(|θ0j |)/max(λ1n, λ2n) → ∞ as n → ∞. Then, under the
regularity conditions stated in the Appendix, there exists, with probability tending
to one, a local maximizer θ̂ of the penalized log-likelihood function in (3.3) such

that ‖θ̂ − θ0‖2 = OP ((mn/n)
1/2).

The model selection consistency of the local maximizer θ̂ is given in Theo-
rem 4.2 below, the proof of which follows.

Theorem 4.2. Under the same regularity conditions as those required in The-
orem 4.1 and if m5

n/n → 0, max(λ1n, λ2n) → 0, (n/mn)
1/2 min(λ1n, λ2n) → ∞,
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minj=1,...,sn(|θ0j |)/max(λ1n, λ2n) → ∞ as n → ∞ and for k = 1, 2

lim inf
n→∞

lim inf
t→0+

p′λkn
(t)

λkn
> 0,

then the local maximizer θ̂ = (θ̂
(1)

, θ̂
(2)

) in Theorem 4.1 satisfies θ̂
(2)

= 0 with
probability tending to 1.

Remark 4.1. When mn (and therefore sn) are fixed and do not depend on n,
the above results can be derived under weaker conditions, using Theorem 1 of [39]
on penalized estimating functions and their condition C.1 which is insured by
the results of [7] on estimating equations for proper dispersion models. However,
since these results do not extend to the case where mn and sn may diverge to
infinity, we have not pursued this approach in the paper.

Proof of Theorem 4.1. We assume that the regularity conditions stated
in the Appendix hold. Note that if γ0 is the true vector of dispersion pa-
rameters, an oracle with the knowledge of γ0 would estimate the mean re-
gression coefficients vector β0 by maximizing the penalized objective function

�(β,γ0)−
∑p

j=1 pλ1(βj) with respect to β. Denote by β̃(γ0) the corresponding
“estimator”. Given that the Bartlett identities are true for the proper dispersion
models considered in this paper, the parameters β and γ are orthogonal and
the estimation of β is insensitive to γ in the sense of [44]. It follows that the

maximum penalized log-likelihood estimator β̂ of β is asymptotically indepen-
dent of γ̂ and, when the conclusions of Theorem 4.1 are true is consistent at
either a parametric rate (when pn is fixed) or at a rate (sn/n)

1/2 for a particular

chosen λ1n. In particular (sn/n)
1/2‖β̃ − β̂‖∞ → 0 as n → ∞. This shows that

the marginal profile penalized maximum likelihood estimator of γ defined as
the maximizer of �(β̃λ1n

(γ),γ)−
∑qn

j=1 pλ2n(|γj |) is asymptotically equal to the
maximum penalized likelihood estimator γ̂ and can be reached with the same
iterative scheme as the one adopted for the iterative estimation of the parame-
ters in Section 4. According to the above, it is therefore sufficient to prove the
conclusion of Theorem 4.1, separately for each vector component of θ̂, i.e. β̂
and γ̂.
We have seen that γ̂ the marginal profile penalized maximum likelihood estima-
tor of γ estimator, is a penalized Bregman divergence estimator with q function,
the function q2 associated to a regular Gamma-like exponential dispersion fam-
ily and as such it satisfies condition A6 of [80], while the scad penalty satisfies
condition A8. The conditions stated for the proof of Theorem 1, when restricted
to the design and the link function regarding the dispersion part, are the same
as those of the remaining items stated in condition A of [80]. The conclusion
of our Theorem 4.1 for the estimator γ̂ follows then as a direct application of
Theorem 1 of [80].

Regarding now the consistency properties of β̂ these follow using similar
arguments to the above. Indeed when γ is fixed to its estimated value γ̂, the
estimator of β, based on the pseudo-response vector Ỹ appears again as a
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penalized Bregman divergence estimator with generating function q1(·) the one
given in (4.2). It is easy to see that for proper dispersion models this q-function
also satisfies condition A6 of [80], and that the remaining conditions on the
design and link function of the mean submodel are a subset of the conditions
sated in condition A of [80]). Therefore our Theorem 4.1 is true as a corollary
of Theorem 1 of the above cited authors. �
Proof of Theorem 4.2. We again assume that the regularity conditions stated
in the Appendix hold. The proof of Theorem 4.2 is also a corollary of Theorem

2 part (i) of [80] once the conditions lim infn→∞ lim inft→0+

p′
λkn

(t)

λkn
> 0, for

k = 1, 2, are verified. For the choices made for the asymptotic behavior of the
penalty parameters λkn, k = 1, 2 and the fact that the penalty functions are the
same scad penalty, the condition is true (see, e.g. [29]) and this completes the
proof of Theorem 4.2. �

Remark 4.2. An important issue is in general the multiplicity of local mini-
mizer of the penalized loss. On this issue, one may follow the same route as in
[4] for the scad penalty, using, instead of the scad, a δ-approximation to the
scad penalty in the neighborhood of the origin, in a similar spirit to the local
linear approximation used by [29]. Such an approximation ensures the existence
of an appropriate local maximizer with the same asymptotic behavior.

5. Computation

To ensure the practicality of the statistical methodology for estimation and
variable selection in generalized proper dispersion models discussed in Section
3, we propose in this section a simple algorithm to solve the corresponding
penalized maximum log-likelihood problem. In the following we focus on the
maximization problem with non convex penalties

(β̂, γ̂) = argmax
(β,γ)

J(β,γ), (5.1)

where the penalized log-likelihood function is given by expression (3.3), with
the loss �(β,γ) the conditional log-likelihood function defined in (3.2). The
designs matrices XD and ZD both contain a column of 1’s for the intercepts with
corresponding coefficients β0 and γ0, but their other columns are assumed to
have zero-mean, as it is standard practice. Concerning the weights tj ’s and uk’s
in (3.3), taking t0 = u0 = 0 allows to not penalize for the intercepts. Taking the
remaining weights proportional to the standard deviations of the corresponding
columns of the design matrices ensures that the penalty is applied equally to all
covariates in an equivariant manner.

We have seen that optimization of the p+q+2 dimensional problem (5.1) re-
duces to two separate optimization problems of dimensions p+1 and q+1. As a
consequence the unknown parameters β and γ can be respectively estimated by
alternating between an extended generalized penalized quasi-likelihood estima-
tion procedure for β in the mean submodel and a standard penalized exponential
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family log-likelihood estimation procedure for γ in the corresponding dispersion
submodel. To see this recall from (2.20) that for the parameter γ we need to
maximize

ln c(φ)− 1

2φ
d(y, μ),

with respect to φ. When working with c(φ) = (
√
2πφ)−1/2ρ(φ), it is then easily

verified, keeping in mind (2.16) and (2.17), that this is equivalent with consider-
ing for the random variable D = d(Y, μ) a regular exponential dispersion model

with parameter θ = − 1

φ
and cumulant function

κD(θ) = − ln(−θ)− 2 ln ρ
(
−1

θ

)
with first and second derivative functions

κ′
D(θ) = −1

θ
− 2ψ

(
−1

θ

) 1

θ2

and κ′′
D(θ) =

1

θ2
− 2ψ′(−1

θ

) 1

θ4
+ 4ψ

(
−1

θ

) 1

θ3
, (5.2)

where ψ = ρ′/ρ. This leads to (for μ given), δ = E(D) = κ′
D

(
− 1

φ

)
. We obtain

the unit variance function for the dispersion model by VD(δ) = κ′′
D(δ). Further,

we denote the unit variance function for the mean submodel by VM (μ). In the
particular case of the Gamma distribution a similar approach to this can be
found in [64].

From a computational point of view, Taylor expansions of the relevant Breg-
man divergence loss functions (see also [35]), show that the optimizations in the
two submodels are equivalent in finding the estimates of β and γ by solving iter-
atively the following approximate Fisher scoring interlinked weighted penalized
least squares problems:

min
β

⎧⎨⎩(aM −XDβ)
TWM (aM −XDβ) +

p∑
j=1

pλ1(tj |βj |)

⎫⎬⎭ , (5.3)

min
γ

{
(aD − ZDγ)

TWD(aD − ZDγ) +

q∑
k=1

pλ2(sk|γk|)
}
, (5.4)

whereXD and ZD are the design matrices for the mean and dispersion submodel,
and where WM and WD are the diagonal matrices of working weights, for the
mean and the dispersion respectively, defined by:

WM = diag

{[
∂g(μi)

∂μ

]−2
1

φiVM (μi)

}
, WD = diag

{[
∂h(φi)

∂φ

]−2
VD(δi)

2φ4
i

}
,

where the ith components of the working vectors aM and aD are respectively
defined by

aMi = xT
i β +

∂g(μi)

∂μ
(ỹi − μi), aDi = zTi γ +

∂h(φi)

∂φ

φ2
i

VD(δi)
(Di − δi).
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It is understood that all terms in the above iterations are evaluated at their
previous iteration values. In general, the initial values for each of the parameters
are set to be the un-penalized maximum likelihood estimates. See also Remark
5.2.

Therefore the proposed penalized approximate Fisher scoring algorithm con-
sists of two layers of loops. For each parameter, the outer layer is the Iteratively
Reweighted Least Squares (IRLS) strategy which at each iteration approximates
the objective function in (5.1) by the penalized objective function (5.3) (or
(5.4)). After obtaining the minimizer of the penalized objective function the
next iteration begins by updating the working response vector and weights. The
outer loop continuous until convergence. The inner layer is dedicated to obtain-
ing the minimizer of the penalized weighted least squares objective function by
a thresholding based iterative procedure that we will now describe.

5.1. A general iterative thresholding algorithm

We will start by describing an efficient iterative shrinkage and thresholding al-
gorithm to solve a class of non-smooth and nonconvex optimization problems,
covering the important special case of the penalized weighted least squares mini-
mization problem introduced in this section. Without loss of generality consider
a weighted least squares penalized problem of the form

min
β∈Rp

{
1

2
‖XDβ − y‖2W + Pλ(β)

}
(5.5)

where XD = [x1, . . . ,xp] is the n × p design matrix, W = diag(w1, . . . , wn)
is a diagonal matrix with positive entries, defining the norm ‖u‖2W := uTWu,
y ∈ R

n is the response vector and Pλ(β) represents a non-smooth and nonconvex
penalty that is separable, i.e. Pλ(β) =

∑p
j=1 rλ(tj |βj |) with tj , j = 1, . . . , p

some given scaling weights, rλ(·) a scalar penalty function with penalty λ as a

regularization parameter. Without loss of generality (changing XD → W1/2XD

and y → W1/2y in equation (5.5)) we consider the case of minimizing

min
β∈Rp

{
1

2
‖XDβ − y‖22 + Pλ(β)

}
, (5.6)

where now ‖ · ‖2 is the standard Euclidian norm of Rn.
However note that, in our context, the above outer loop iterative reweighing

depends on both the data and the parameter values at the previous iteration
and therefore introduces some difficulties. This explains why, instead of the
classical penalization on the components of β, we propose during the itera-
tions an adaptive rescaling of the penalties by simply replacing λ in Pλ by a

component-specific λ̃ = (λ‖w1/2
1 x1‖2, λ‖w1/2

2 x2‖2, . . . , λ‖w1/2
p xp‖2)T to match

the continuously changing scale of the covariates. The algorithmic consequences
for the optimization procedure are straightforward.
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In the simplified case where the design matrix is orthogonal i.e. XT
DXD = Ip,

like for wavelet denoising (see [3]), changing y → z := XT
Dy the loss part in the

objective function in (5.6) becomes ‖β − z‖22 and is a strictly convex function
of β that is also separable. In such a case, to solve the minimization problem
(5.6) we only need to deal with the univariate case

min
β

{
(β − z)2

2
+ rλ(t|β|)

}
. (5.7)

When rλ(·) is a (closed) convex function, the solution of (5.7) is unique, and
defines the proximal mapping or proximal operator of rλ given by:

Proxrλ(z) = argmin
u

{
(u− z)2

2
+ rλ(t|u|)

}
. (5.8)

While proximal operators are well studied for convex functionals, the noncon-
vex case has been of interest to researchers recently (see [36]). Very often, even
when rλ(·) is nonconvex, problem (5.7) results in a unique solution and allows us
to define an appropriate proximal map. The resulting proximal operator allows
then to solve the optimization problem (5.6) by a generalized gradient projec-
tion algorithm of similar flavor as the one described, in the infinite-dimensional
case, by [10] (see the equation (3) therein). In fact the algorithm works by gen-

erating a sequence of iterates {β(k), k = 0, 1, . . . } and is tailored to the following
problem which can be set up and solved efficiently at each iteration

argmin
ξ

{
1

2
‖ξ − β(k) +XT

DXDβ
(k) −XT

Dy‖22 + Pλ(ξ)

}
. (5.9)

Under appropriate conditions, we will see later that this iterative algorithm
converges to a global minimizer of problem (5.6). With a proper scaling of
the design matrix XD, one may also include a relaxation parameter ω > 0
into the iterations, which is an efficient way, in certain cases, to accelerate the
convergence.

Remark 5.1. Instead of using the generalized projection method described above
for solving the optimization problem (5.6), one may be tempted to use a kind
of majorization-minimization (MM) approach (see [46]) via surrogate function-
als as proposed in [20] in the functional case where one replaces the objective
function in (5.6) with

Φ(ξ,β) =
1

2
‖XDβ − y‖22 + Pλ(β) +

C

2
‖ξ − β‖2 + 1

2
‖XDβ −XDξ‖22,

and defines an iteration through β(k+1) = argminξ Φ(ξ,β(k)). Indeed this pro-

duces decreasing values of the original objective function but one has to solve “a
fixed-point” problem at each iteration (see [61]). When the �1 penalty is used,
such an iterative procedure can be shown to converge to a global optimum even if
XD is not of full rank. It has been proposed in different forms ([63], [20]) and is
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strongly advocated for large-data problems. However, in the nonconvex case as
is the one we are looking at in this subsection, this fixed-point equation becomes
an inclusion with a discontinuous operator, and hence, there is no guarantee of
convergence.

A critical step of the iterative algorithm that we propose is the computation
of the proximal map for far more flexible penalties in the algorithmic design
including nonconvex ones (see [3]). For the scad penalty adopted in this paper
the proximal mapping has a closed-form expression. To simplify the notation,
the proximal mapping we are trying to compute is the one which solves the
minimization problem

Proxrλ,s
(z) = argmin

u

{
(u− z)2

2
+ s · rλ(t|u|)

}
= argmin

u

{
(u− tz)2

2
+ s · t2rλ(|u|)

}
(5.10)

= Proxrλ,st2
(tz),

where rλ(|u|) is the scad penalty function, t a given nonnegative weight and s
a step size for the algorithm. Recall that the scad penalty function is given, for
some a > 2, by

rλ(v) = λ

∫ |v|

0

min

(
1,

(aλ− x)+
(a− 1)λ

)
dx.

We can now recast problem (5.10) into the following three problems:

u1 = argmin
u

{
(u− tz)2

2
+ λs · t2 · |u|

}
s.t. |u| ≤ λ (5.11)

u2 = argmin
u

{
(u− tz)2

2
− u2 − 2aλst2|u|+ (λst2)2

2(a− 1)

}
s.t.λ < |u| ≤ aλ (5.12)

u3 = argmin
u

{
(u− tz)2

2
+

(a+ 1)(st2)2λ2

2

}
s.t. aλ ≤ |u|. (5.13)

Considering that a > 2 we easily obtain

u1 = sign(z)min(λ,max(0, t|z| − s · t2λ)) (5.14)

u2 = sign(z)min(aλ,max(λ,
|z|(a− 1)/(st)− aλ

(a− 2)/(s · t2) )) (5.15)

u3 = sign(z)max(aλ, t|z|). (5.16)

which show that the proximal mapping is just the scad thresholding operator.
In our case p < n and to avoid unnecessary complications, we assume here
that the design matrix XD has full column rank. Therefore the matrix XT

DXD is
nonsingular and the scad proximal map is a contraction which shows that the
algorithm converges to a stationary point of the original optimization problem.
Using the results of [10] with the notation adopted in this subsection, whenever
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any singular value of XD, say ν(XD), is such that 1
a−1 ≤ ν(XD)

2 ≤ 2a−3
a−1 the

stationary point is a global minimizer and therefore leads to a unique estimator
even when the penalty is nonconvex provided that the proximal map is contin-
uous at ξ. When such a condition on XD is not satisfied, and assuming that the
weight matrix W remains bounded during the iterations, we can always rescale
XD and y by dividing them by κ > ‖XD‖2 = νmax(XD) and by using λ/κ2 as a
regularization parameter for the scad penalty. This doesn’t affect the iterative
solution.

5.2. Choosing the regularization parameter

As for any regularization problem, choosing proper data-driven regularization
parameters in (3.3) is very important. The penalty functions in expressions (5.3)
and (5.4) involve two penalty parameters λ1 and λ2 that control the amount
of regularization. K-fold cross-validation and generalized cross-validation pro-
cedures are popular methods for choosing these tuning parameters, but they
are rather complicated and computationally intensive. Instead we use, as in
[13], a BIC driven Grid Search (BICGS). We first specify a K1 ×K2 grid Λ1 ×
Λ2 = {

(
λ
(i)
1 , λ

(j)
2

)
, i = 1, . . . ,K1; j = 1, . . . ,K2} within a rectangle [0, λ1max]×

[0, λ2max] with λ1max (respectively λ2max) large enough to kill all estimated
components of β (respectively of γ). We then run the previously described al-

gorithm for every value of (λ1, λ2) in the grid to get a solution path
(
β̂, γ̂

)(k)

,

k = 1, . . . ,K1 ×K2, and finally, use BIC as model comparison criterion to find
the optimal estimate. The number of grid points K1 and K2 are pre-specified.
In our implementation the grid points in Λ1 and Λ2 are uniform in the log scale.
We estimate the prediction accuracy of each estimated model by evaluating the

corresponding conditional likelihood loss �
(
(β̂, γ̂)(k)

)
given by expression (3.2)

to which we add a BIC correction term to obtain the criterion

BICGS(λ
(k)
1 , λ

(k)
2 ) = −2�

(
(β̂, γ̂)(k)

)
+

(
DF(β̂

(k)
) + DF(γ̂(k))

)
logn,

where DF is the degrees of freedom function. For the scad penalty, DF is
approximately the number of nonzero components in the estimate. The optimal
estimate is then chosen from the original solution path by minimizing the BICGS
criterion.

Remark 5.2. When the objective function is (Bregman divergence) strictly con-
vex, the estimated coefficients in the iterations vary continuously with the penalty
parameters and produce a path of solutions regularized by the couple (λ1, λ2). In
our case this (strict convexity) is not exactly true all the time, but we have no-
ticed that starting with initial values for the parameters-to-be-estimated given
by the un-penalized maximum likelihood estimators and assuming the coefficient
paths to be continuous (which is true for example for a SCAD penalty with
a=3.7) then using the estimates from the previous values of the regularization
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parameters λ1 and λ2 as the initial values for the next values of the regulariza-
tion parameters doesn’t affect the results in a significant way. Therefore, for all
the numerical results in this paper, we have followed this approach.

6. Simulation study and comparison

The focus of most multiple regression methodologies center around the condi-
tional mean. However, the understanding of the variability of the data, measured
by the conditional variance is very important in many applications. With the
methodologies presented in this paper we are able to deal with this under various
model settings. In this simulation study we consider subsequently

• in Section 6.1 a Gaussian heteroscedastic model with a sparsity scenario for
both the mean and the variance:

• in Section 6.2 a skewed distribution, namely a two parameter inverse Gaussian
distribution which arises in a variety of applications;

• in Section 6.3 joint modelling of mean and dispersion with the simplex dis-
tribution, which is often used for modelling outcomes with continuous
proportions (percentages, rates or proportions confined in the unitary in-
terval).

For the Gaussian sparsity model setting of Section 6.1 we can compare the
performances of the proposed methods with that of the few competitors that
are available in the literature.

For all simulation models and settings we consider samples of size n = 200
and summary results of the simulations are based on 150 samples drawn from
the described models.

6.1. Heteroscedastic Gaussian regression: analysis and comparison
with related methods

Recently, regression estimation under the combination of sparsity and het-
eroscedasticity in Gaussian regression models has been addressed by [23] (the
HHR algorithm) and [45] (the HIPPO algorithm). Because of the inherent non-
convexity of the penalized (pseudo-)log-likelihood considered in these works,
the methods proposed therein also alternate between the two parameters, esti-
mating one while keeping the other one fixed. HHR performs a doubly regular-
ized likelihood estimation with lasso penalties to attain sparse estimates for
the mean and variance parameters. HIPPO is closely related to the iterative HHR
algorithm but differs from HHR firstly by the choice of penalty functions used:
HIPPO uses the lasso procedure with heteroscedasticity adjusted penalties using
the square-root lasso procedures of [1] or [9] for the mean parameters and the
scad penalty for the variance. Secondly, HIPPO only carries out two iterations
as opposed to HHR that continues to iterate with the updated mean and variance
parameters until convergence.
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Unfortunately, we failed to have available the HIPPO code of [45]. We have
therefore used the square-root Lasso procedure as implemented in the R-
package flare (see [49]) to perform the first stage of the HIPPO algorithm that
selects the mean parameters and adopted the convenient part of the HHR code
to perform stage 2 for the variance parameter. For HHR we have used the R-code
provided by the authors of that paper. [9] have shown that for a Gaussian or sub-
Gaussian regression model with constant but unknown variance, the square-root
lasso with a deterministic value of the penalty parameter that depends only on
known parameters achieves near-oracle performance for estimation and model
selection of the mean. However, experiments with the optimal λ provided by
the square-root lasso as implemented in flare ([49]) seems to be suboptimal
and we have used instead in our implementation of HIPPO the value advocated
by [9].

In this subsection, we conduct a small scale simulation study to investigate
and compare the finite-sample performances of

• the proposed method, named BREG hereafter;
• the HHR procedure;
• our implementation of the HIPPO procedure as described above,

under a Gaussian heteroscedastic high-dimensional (sparsity) regression model.
The hyper parameters for HHR are chosen by AIC and by Belloni’s methods,

and for HIPPO by BIC. Our choice on the use of AIC for the HHR procedure is
justified by the results of [23] who compared AIC to BIC using Monte Carlo
simulations and found that AIC in HHR is preferred for prediction accuracy and
inclusion of relevant variables for sample sizes as the ones we are using here.
For BREG we always use (in this section and the next one) the BIC procedure
described in Section 5.2.

It is well known that the lasso procedure estimates the nonzero coefficients
of the regression vector with a bias towards zero. To attenuate these effects,
whatever method is used, we hereafter apply a two-steps procedure that applies
first the method (HHR, HIPPO or BREG) with the appropriate penalties, but then,
after selection, discards from the regression matrix the columns that correspond
to vanishing coefficients and applies the methods with the new regression matrix
(so only estimation, without model selection). Such bias removing methods have
also been used for example by [54].

Data in the heteroscedastic Gaussian setting are simulated according to

Yi ∼ N (μi, σ
2
i ), i = 1, . . . , n,

using for the Yi’s, the μi’s and the σi’s the following model, borrowed from [23]
and also used in [45]:

Yi = β0 +

p∑
j=1

Xijβj + exp
{
γ0 +

q∑
j=1

Xijγj

}
εi, (6.1)

with p = q = 100, β0 = 2, γ0 = 1 and

β[12] = (3, 3, 3, 1.5, 1.5, 1.5, 0, 0, 0, 2, 2, 2),
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Table 3

Criteria used for evaluating the estimation and variable selection performances of a method.

Evaluation criteria
S the average number of variables selected
FP the average number of false positives

(i.e. truly zero coefficients/variables that were selected)
FN the average number of false negatives

(i.e. truly nonzero coefficients/variables that were not selected)
ME the average model error (and its standard deviation)

Table 4

Heteroscedastic Gaussian regression model. Estimation and variable selection ability,
according to the criteria in Table 3. True (or aimed at) values are indicated in the top row.

S FP FN ME

method
(10
10

) (0
0

) (0
0

)
(as small as possible)

HHR

β 71.83 61.83 0.0 2.21 (1.25)
γ 6.48 1.0 4.52 3.57 (1.09)

HIPPO-like
β 12.66 3.2 0.54 9.88 (4.06)
γ 1.79 0.52 8.73 6.17 (0.43)

BREG

β 9.3 0.03 0.73 2.08 (2.5)
γ 9.62 1.81 2.18 2.77 (.95)

for the 12 next components of β following it’s first, and

γ[15] = (1, 1, 1, 0, 0, 0, 0.5, 0.5, 0.5, 0, 0, 0, 0.75, 0.75, 0.75),

for the next 15 components of γ following it’s first. The remaining components
of β and γ up to p are 0. Hence under this model the number of truly nonzero
coefficients in both the mean and the variance is ten. The covariates Xj are
jointly normal with covariance matrix the identity matrix, and the errors εi are
independent and have a standard normal distribution. For each method and
each parameter (mean parameter β and variance parameter γ), we report on
the evaluation criteria listed in Table 3.

A summary of the simulation results, over the 150 independent runs, is pre-
sented in Table 4. Figures 1 and 2 illustrate graphically the results displayed in
Table 4 concerning the overall runs performances of HIPPO, HHR and BREG.

From Table 4 and Figures 1 and 2 we observe that from the selection point
of view, the HIPPO-like procedure has a satisfactory performance, at least for β.
In addition, it outperforms HHR which gives very poor results, especially with
respect to the false positives. But the model error for the mean is very large,
probably due to the under estimation of the dispersion part. These results are
consistent with those of Table 2 in [45]. Both methods, HHR and HIPPO, are
outperformed by BREG for all criteria.
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Fig 1. Boxplots concerning the number of variables selected for the mean (left panel) and for
the variance (right panel), for each method. True values are indicated by the dashed horizontal
lines.

Fig 2. Boxplots reporting on the estimation error (ME) for the mean (left panel) and for the
variance (right panel), for each method.

6.2. Simulation study with the two parameter inverse Gaussian
distribution

In this section we investigate the performance of the proposed BREG method
in the setting of the inverse Gaussian distribution, where now the data are
simulated from the inverse normal regression model (see Table 1)

Yi ∼ IN (μi, σ
2
i ), i = 1, . . . , n,
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Table 5

Inverse Gaussian regression model. Estimation and variable selection ability, according to
the criteria in Table 3. True (or aimed at) values are indicated in the top row.

S FP FN ME

parameter
(4
4

) (0
0

) (0
0

)
(as small as possible)

β 3.84 0.83 0.24 0.59 (1.05)
γ 3.91 0.042 0.13 0.27 (0.49)

Table 6

Inverse Gaussian regression model. Average over simulation runs of the estimated (and
selection) mean and dispersion parameters with their standard deviations in parenthesis.

coefficients true values averaged estimates

β0 2 2.043 (0.426)
β1 1 0.923 (0.364)
β2 1 0.922 (0.355)
β5 1 0.954 (0.362)

γ0 1 1.009 (0.118)
γ1 1 0.970 (0.252)
γ2 1 0.919 (0.307)
γ5 1 0.973 (0.278)

with

log(μi) = β0 +

p∑
j=1

Xijβj and log(φi) = γ0 +

q∑
j=1

Zijγj (6.2)

where E(Yi|Xi) = μi, Var(Yi|Zi) = σ2
i μ

3
i , φi = σ2

i , p = q = 15, β0 = 2, γ0 = 1
and

β[5] = (1, 1, 0, 0, 1)

for the 5 next components of β following it’s first, and

γ[5] = (1, 1, 0, 0, 1)

for the next 5 components of γ following the first component. The remaining
components of β and γ up to p = q = 15 are 0. Note that the number if nonzero
coefficients in both log(μi) and log(φi) is 4. The covariates (components of
Xi and Zi) are jointly uniform on [−1, 1] with covariance matrix equal to the
identity matrix. A summary of the simulation results obtained over the 150
simulation runs is displayed in Table 5. Table 6 displays the averages of the
estimated mean and dispersion parameters over the 150 simulation runs for the
corresponding selections in Table 5.

From Tables 5 and 6, we can make the following observations. For the inverse
Gaussian dispersion model the performance of the BREG variable selection is
slightly better for the dispersion part than for the mean part, when looking
at the model error criterion (ME) and model complexity. However, in terms of
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Table 7

Simplex model. Estimation and variable selection ability, according to the criteria in
Table 3. True (or aimed at) values are indicated in the top row.

S FP FN ME

parameter
(4
4

) (0
0

) (0
0

)
(as small as possible)

β 4.05 0.05 0 0.0018 (0.002)
γ 4.02 0.03 0.01 0.14 (0.15)

Table 8

Simplex model. Average over simulation runs of the estimated (and selected) mean and
dispersion parameters with their standard deviations in parenthesis.

coefficients true values averaged estimates

β0 2 1.997 (0.026)
β1 1 0.998 (0.019)
β2 1 1.003 (0.018)
β5 1 1.000 (0.018)

γ0 1 0.971 (0.092)
γ1 1 0.999 (0.211)
γ2 1 1.048 (0.202)
γ5 1 1.019 (0.191)

selecting the right coefficients the behavior is similar for both the mean and
the dispersion. As far as estimation of the parameters is concerned the bias is
negligible, as can be seen from Table 6.

6.3. Simulation study with the simplex distribution

In this subsection we conduct a simulation study where the proportional data Yi,
i = 1, . . . , n, were generated independently according to a simplex distribution

Yi ∼ S−(μi, σ
2
i ), i = 1, . . . , n,

with log(μi) and log(φi) with φi = σ2
i as in (6.2). Furthermore, the vectors

of coefficients β and γ, as well as the vectors of covariates Xi and Zi are as
in Section 6.2. The simulation results, obtained over the 150 simulation runs,
are summarized in Table 7. Table 8 reports on the summary statistics of the
parameter estimates from the proposed BREG method.

From Table 7, we learn that the performances in selection and estimation of
both mean and dispersion structures are relatively similar and that the selection
of the true nonzero population coefficients is efficient. Table 8 indicates that
the estimated coefficients of each structure are very close in average to their
population values. In summary, our procedure seems to be efficient even for
proportional data with heterogeneous dispersion.
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7. Real Data Applications

7.1. Ophthalmological data

In this subsection we analyse the ophthalmological data on the use of intra-
ocular gas in retinal repair surgeries ([55]), with a special focus on heterogeneous
dispersion. A primary analysis of the data assuming homogeneous dispersion
was done by [68] and heterogenous dispersion in [69]. Briefly, the study was to
investigate the decay course of the intra-ocular gas in retinal repair surgeries
prospectively in 31 patients. The gas was injected into the eye before surgery
and patients were followed three to eight (average of 5) times over a three-month
period. The response variable Y is the percent of gas left in the eye recorded as
proportion (a percent). The question is if the disappearance of the gas is related
not only to time but also to other covariates such as the concentration of the
gas used. The sample size n = 31 is relatively small here, but the data have
a longitudinal structure (several measurements per patient). To fit these data
with our procedure we have adopted for hereafter an independence correlation
for the longitudinal structure.

Following the original analysis of [68] we model the mean effects model as

logit(μij) = β0+β1 log(tij)+β2 log
2(tij)+β3xij , , i = 1, . . . ,m; j = 1, . . . , ni,

where tij is the time covariate of days after the gas injection for individual i,
and xij is the covariate of gas concentration levels equal to −1, 0 or 1, corre-
sponding to the concentration levels of 15%, 20% and 25%, respectively. For
each individual i, i = 1, . . . ,m, let Yi = (Yi1, . . . , Yini)

T and let Xi be the
matrix of dimension ni × 4 whose jth row is (1, log(tij , log

2(tij), xij). Let then
y = (YT

1 , . . . ,Y
T
m)T be the vector obtained by stacking the vectors Yi together

and let XD be the n × 4 matrix given by X = [XT
1 X

T
2 · · ·XT

m]T where n =∑m
i=1 ni. The mean predictor is then given by Xβ, with βT = (β0, β1, β2, β3).

To address the heterogeneity of proportions in the two covariates of time and
concentration level we use a heterogeneous simplex dispersion model with the
following dispersion structure

log(σ2
ij) = γ0 + γ1 log(tij) + γ2 log

2(tij) + γ3xij , , i = 1, . . . ,m; j = 1, . . . , ni,

which leads to a dispersion predictor of the form Xγ, with γT = (γ0, γ1, γ2, γ3).
We ran our model selection and estimation algorithm BREG and found the

selected coefficients and their estimates as listed in Table 9.
In Figure 3 we present the estimated standardised Pearson residuals ε̂ij :=

(Yij− μ̂ij)/σ̂ij against the estimated mean values. The residuals seem to behave
reasonably well as expected. The plot seems to be in agreement with the residual
plot in panel A of Figure 3 given in the paper by [69].

For the mean structure our selection results are similar to those of [68] who
found that the quadratic time term log2(tij) is significant and that the linear
time log(tij) is not significant. However we differ in that the gas concentration
covariate is found in [68] to be marginally unsignificant, at the significance level
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Table 9

Ophthalmological data. Estimates for the selected coefficients in the heterogeneous simplex
dispersion model.

parameters and estimations

β0 2.7003
β2 −0.3171
β3 0.4057

γ0 6.1546
γ1 −0.4580
γ3 −0.4932

Fig 3. Scatterplot of scaled residuals versus the fitted mean values in the selected simplex
regression model for the Ophthalmological data.

0.05, while it is selected by our procedure. Notice also that our retained coef-
ficient estimations slightly differ which may be due to the fact that they are
using an AR(1) dependence in their longitudinal structure, which is possible
due to the fact that their method is based on generalized estimating equa-
tions.

There is a better agreement for the dispersion coefficients: the selected coeffi-
cients not only coincide but the estimated values are also close, when compared
to the results reported in [69].

7.2. Diabetes data

In this section we illustrate our procedure on a real data example modelled
with a heteroscedastic Gaussian regression model. We consider the diabetes
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Table 10

Estimates for the selected coefficients in the heteroscedastic Gaussian dispersion model for
the diabetes data.

mean structure dispersion structure
parameters and estimation parameters and estimation

β0 151.660 γ0 3.940
β1 0.000 γ1 0.000
β2 −241.870 γ2 −2.400
β3 471.530 γ3 0.000
β4 346.780 γ4 0.000
β5 0.000 γ5 0.000
β6 0.000 γ6 0.000
β7 0.000 γ7 0.000
β8 0.000 γ8 0.000
β9 640.840 γ9 0.000
β10 0.000 γ10 0.000

data reported on in [27]. The data consist of a response variable Y which is
a quantitative measure of diabetes progression one year after baseline and of
ten covariates (age, sex, body mass index, average blood pressure and six blood
serum measurements). This results in p = 11 covariates (including an intercept)
while there are n = 442 observations. Furthermore we assume that the data are
Gaussian, independent with mean μi, i = 1, . . . , n and variance φi, i = 1, . . . , n,
modelled as μi = β0 +

∑10
j=1 Xijβj and log(φi) = γ0 +

∑10
j=1 Xijγj .

We applied our BREG procedure for analyzing these data. The unknown tun-
ing parameters are chosen, as before, using the BIC principle. The estimated
regression coefficients are presented in Table 10.

From Table 10, we see that our procedure identified five nonzero regression
coefficients in the mean model. The covariates 1, 5, 6, 7, 8 and 10 have no impact
on the mean of the concentration Y . Further, only the covariate 2 affects the
variance.

In Figure 4 we present the rescaled residuals ε̂i := (Yi−Xiβ̂)/

√
φ̂i against the

estimated mean values. They look homoscedastic and similar to those displayed
in Figure 2 of the paper by [70] who applied an adaptive lasso procedure on
the same data.

8. Further extensions and discussion

Although in the paper we restrict to a parametric setting and focus on continu-
ous distributions, the methodology presented can be extended to more flexible
settings, which could be needed when dealing with more complex data. In Sec-
tions 8.1, 8.2 and 8.3 we briefly describe some extensions. A detailed study of
these are part of future research. Subsection 8.4 contains some further discus-
sions on the proposed methodology.
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Fig 4. Scatterplot of scaled residuals versus the fitted mean values in the selected heteroscedas-
tic Gaussian model for the Diabetes data set.

8.1. Nonparametric and semiparametric inference

Suppose that we are in a univariate setting, with a response variable Y and
one covariate X, but are no longer assuming a parametric linear structure as
in (2.8) and (2.10). In a nonparametric flexible modelling setting the mean
predictor function η(x) will be assumed to be well approximated by a linear
combination of mμ given basis functions {Bμ,1(·), . . . , Bμ,mμ(·)}:

η(x) ≈
mμ∑
	=1

αμ,	Bμ,	(x). (8.1)

The unknown function η(·) does not need to belong to the space spanned by
the basis functions, but for mμ large enough the function should be well ap-
proximated by the linear combination above. A common setting to deal with
this modelling bias is to take a B-splines basis with a large enough number of
knots (i.e. dimension mμ). Often the number of knots grows with the sample size
n, and possible overfitting is dealt with by introducing a penalty function that
watches over the regularity of the estimated function (avoiding the extreme case
of interpolation of the data). Estimation of η(·) then translates into estimation

of the vector of unknown coefficients αμ =
(
αμ,1, . . . , αμ,mμ

)T
.

Similarly, in a nonparametric setting the unknown dispersion function γ(·) in
(2.10) is approximated by, a possible other set of (mγ in number) basis functions,
denoted by {Bγ,1(·), . . . , Bγ,mγ (·)}:

γ(x) ≈
mγ∑
	=1

αγ,	Bγ,	(x), (8.2)
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and the estimation task with respect to the dispersion function is equivalent to

estimating the vector of unknown coefficients αγ =
(
αγ,1, . . . , αγ,mγ

)T
.

One can then proceed similarly as in Sections 3–5, but now for the vectors of
coefficients αμ and αγ .

8.2. Generalized Additive Dispersion Models (GADM)

Passing to a multivariate setting as in Section 3, with covariates X = (X1, . . . ,
Xp)

T , and Z = (Z1, . . . , Zq)
T , an approach towards a fully nonparametric set-

ting is to model the multivariate mean and dispersion functions as

η(x) = g(μ(x)) = η1(x1) + . . .+ ηp(xp) (8.3)

γ(z) = h(φ(z)) = γ1(z1) + . . .+ γq(zq). (8.4)

Each of the p+ q univariate functions (η	 and γ	) would then be approximated
as in (8.1) and (8.2):

ηj(x) ≈
m(j)

μ∑
	=1

α
(j)
μ,	B

(j)
μ,	(x) for j = 1, . . . , p

γj(x) ≈
m(j)

γ∑
	=1

α
(j)
γ,	B

(j)
γ,	(x) for j = 1, . . . , q.

The parameters to be estimated are now

αμ =

((
α
(1)
μ,1, . . . , αμ,m

(1)
μ

)T

, . . . ,
(
α
(p)
μ,1, . . . , αμ,m

(p)
μ

)T
)T

αγ =

((
α
(1)
γ,1, . . . , αγ,m

(1)
γ

)T

, . . . ,
(
α
(p)
γ,1, . . . , αγ,m

(q)
γ

)T
)T

. (8.5)

By stacking all involved known basis functions in a big design matrix, the
problem to be studied can be written equivalently as in the linear setting of
Section 3. For the variable selection task, it is important to mention that the
inclusion or not of a covariate, in the mean and/or in the dispersion model, is
to be brought back to a vector of coefficients, instead of to a real-valued pa-
rameter. This then leads to utilization of grouped penalization methods. Then
approaches similar in spirit to these in, for example, [6] and [5] are to be fol-
lowed. Therefore, when analyzing such Generalized Additive Dispersion Models
(GADM), the penalized extended generalized quasi-likelihood function to be
minimized is similar to expression (3.3) but with a group structure for β and γ
(or αμ and αγ in the setting of this section), following the structure of subse-
quences in (8.5), and with absolute values in the penalties pλ1j , for j = 0, . . . , p,
and pλ2j , for j = 0, . . . , q (respectively), replaced by the L2 norm of the group
coefficients (for example, for the jth covariate in the mean part, the group
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coefficients
(
α
(j)
μ,1, . . . , αμ,m

(j)
μ

)T
). The penalty per group is indexed by a regu-

larization parameter λ1j (j is the group number) for the mean part and λ2j for
the dispersion part. The framework and algorithms used in our paper can thus
easily be extended to include this setup.

The minimization problem defining the proximal operator in the scalar case
is now replaced by its vector version

argminα(‖α−w‖2/2) + pλ(s‖α‖),

with w a given vector of the same dimension as α. This extends the definition of
the proximal operator to vector-valued arguments as in [10]. The resulting multi-
variate proximal (scad thresholding) operator is the solution to the single-group
group lasso, just as the univariate scad-thresholding operator is the solution
to the single-variable scad problem considered before. This leads to a similar
algorithm with multivariate thresholding replacing univariate thresholding.

Note that the methodology described briefly here could even be applied in
a context of the so-called Generalized Additive Models for Location Scale and
Shape (GAMLSS), of [62]. This would, as a byproduct, provide an approach
towards variable selection in such models.

Finally, a semiparametric approach would consist of modelling some of the
covariates, in the mean and/or the dispersion, via a parametric function and
others via an additive part. The same methodology continues to hold. See for
example [32].

8.3. Discrete distributions

Among the distributions that lead to proper dispersion models are also the
Binomial distribution, the Poisson distribution, and the Tweedie compound
Poisson distributions, among others. Compound Poisson distributions are of
special interest to actuarial sciences and insurance, specifically because there is
a nonzero probability mass at zero. Although the methodology described in the
paper can also in theory deal with these cases, specific issues such as dealing with
the exact zero values requires a special treatment. Typically one adds a small
positive number to the zero value (see e.g. [57] and [24, 25]). The normalizing
constant in the compound Poisson distribution also has a non attractable form
(an infinite sum). See also [81].

8.4. Further discussions

In this subsection we provide further discussions on some issues related to our
proposed methodology.

8.4.1. Misspecified or unknown link function for the dispersion

In the statistical models discussed in this paper two link functions are appearing:
the link function g(·) that links the mean function μ(·) to the function that is
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assumed to be linear in the covariates, and the link function h(·) that links the
scale function φ(·) to obtain the target function γ(·). The link function for the
mean is often dictated by the nature of the response variable (for example, logit
link for binary response data, probit link function for multinomial data, and
logarithmic link for count data).

The link function for dispersion, denoted by h, is generally a known monotonic
differentiable function. The log link h(v) = log(v) is often used following what
was done for the dispersion for double generalized linear models (see Section
2.2). In our simulation study and in both real data applications this is also the
link function that we used for the dispersion. Possible alternatives for the link
function for the dispersion are the power link functions h(v) = vp where p is
assumed to be known (see dlink in dglm).

A first interesting question is what happens when the link function h for the
scale parameter φ is misspecified. Using a misspecified link function for disper-
sion will probably lead to a loss in estimation efficiency for the mean regression
parameters but the question on asymptotic consistency for the mean parameter
β is legitimate. One may follow an approach similar to Fahrmeir’s maximum
likelihood estimation in misspecified generalized linear models (see [28]) or the
one used by [75], to define the corresponding generalized quasi-likelihood score
function (2.24) with misspecified variance function obtained by replacing the
unknown dispersion function with a known function. A proper analysis of the
effect of a misspecified link for the dispersion on the estimates of the regression
parameters is an interesting topic for future research. However, we believe that
under mild regularity conditions on the regularity and uniform boundedness of
the resulting dispersion φ, and given that the asymptotic independence of the
mean and dispersion parameters still remains under such a misspecification, the
existence and the asymptotic consistency of the maximum penalized likelihood
or quasi-likelihood estimator of β are still true. To illustrate this we have con-
ducted a limited simulation in the Gaussian case (see Section 6.1) comparing
the performance of the BREG estimator based on the correct log-link dispersion
that was used for simulating the data to a BREG estimator based on a misspeci-
fied square-root like link (see [37]) (called BREGl). A summary of the simulation
results, over the 150 independent runs, is presented in Table 11. We have used
the same random seed as the one used for the simulation results reported in
Table 4, so the results for the BREG estimator are the same. As one can see from
Table 11 and Figures 5 and 6 (left-most and right-most boxplots) the results
regarding the mean parameter (in terms of estimation as well as variable se-
lection) are still very good. The biased estimation in the variance parameters
might however lead to incorrect inference about the mean in small to moderate
samples.

A second follow-up question with respect to the link function for the disper-
sion, is what to do in case of unknown link function h. Indeed, as correctly noted
by a referee, in some situations, complete specification of the link function for
the dispersion φ function may not be realistic. Inspired by similar approaches
for estimating nonparametrically an unknown smooth variance function in het-
eroscedastic regression (see e.g. [12], [56], [76]), a possible way to deal with this
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Table 11

Heteroscedastic Gaussian regression model. Estimation and variable selection ability,
according to the criteria in Table 3. True (or aimed at) values are indicated in the top row.

S FP FN ME

method
(10
10

) (0
0

) (0
0

)
(as small as possible)

BREG

β 9.3 0.03 0.73 2.08 (2.5)
γ 9.62 1.81 2.18 2.77 (.95)

BREGc

β 6.93 0.05 3.12 13.87 (9.04)
γ 6.23 1.84 5.61 4.65 (0.85)

BREGl

β 10.02 0.02 0 0.28 (0.14)
γ 6.62 3.45 6.83 5.17 (0.27)

problem would be to fit the data with a possible misspecified dispersion link
function, and use the resulting deviance residuals for the mean submodel to
estimate nonparametrically under positivity and monotonicity constraints the
unknown dispersion function (see e.g. [51]). This then may serve as a guide for
adopting an appropriate parametric dispersion link function. Pursuing such an
approach is outside the scope of this paper.

8.4.2. Correlated covariates in the vectors X and/or Z

Note that in Section 3 the covariate vectors X and Z may have overlap, or
may even completely cöıncide (for example all possible covariates are included
in both vectors). The conditions for estimation consistency and for variable
selection consistency of our algorithms depend only on the full ranks of the de-
sign matrices XD and ZD, but their degree of correlation conditions the global
convexity of the penalized Bregman divergence and may affect the convergence
of our algorithm and the identification of active and non active components
through the penalty cutoff. Note for example Condition 5 in the Appendix. To
illustrate the possible impact of a correlation structure between the covariates
in the vectors X and/or Z we conducted, following the suggestion of a referee,
a limited simulation where the covariates of X and of Z are correlated with an
AR(1) correlation structure with correlation coëfficient ρ = 0.5. We compared
the results, referred to as BREGc, to those obtained for BREG when there is no
correlation between any of the entries of X and of Z. The results are displayed
in Table 11 and Figures 5 and 6 (see the left-most and the middle boxplots).
As expected, since the penalty parameter is connected to the degree of corre-
lation between the covariates there is a degradation in the number of selected
components especially in the variance part which is the more sensitive of the
two.
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Fig 5. Boxplots concerning the number of variables selected for the mean (left panel) and for
the variance (right panel), for the BREG estimator with the correct link function (boxplot on
the left) and an incorrect power-link function, denoted by the estimator BREGl (boxplot on the
right) for the dispersion. True values are indicated by the dashed horizontal lines.

Fig 6. Boxplots reporting on the estimation error (ME) for the mean (left panel) and for the
variance (right panel), for the BREG estimator with the correct link function (boxplot on the
left) and with an incorrect power-link function, denoted by the estimator BREGl (boxplot on
the right) for the dispersion.

8.4.3. Discussion on alternative penalty functions

In theory it is possible to use different penalty functions. Note that the condi-
tions in Theorems 4.1 and 4.2 allow for general penalty functions, as long as
they satisfy the conditions stated in the theorems. In this work we favor the
scad penalty for variable selection to filter non-relevant predictors both in the
mean and in the dispersion. This penalty satisfies the theoretical conditions
and moreover we manage to deal with two important implementation issues: (i)
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the choices of parameters in the definition of the penalty function; and (ii) the
occurence of multiplicity of local minimizers of the penalized loss.

As suggested by a referee, it would be interesting to investigate the use of
the minimax concave penalty (MCP) introduced by [78] for variable selection
for both mean and dispersion. However there are several important details that
must be worked out before implementing MCP. It is true that, with a shape pa-
rameter appropriately chosen for the MCP penalty, condition A8 of [80] remains
satisfied, and together with the regularity conditions stated in the Appendix this
ensures that penalized Bregman divergence with an MCP penalty is a viable
variable selection procedure for which Theorems 4.1 and 4.2 hold. However, the
issue of multiplicity of local minimizers of the penalized loss is more involved
that this issue commented on for a scad penalty in Remark 4.2. To guarantee
that a local linear approximation-like algorithm converges to a global minimum
is more involved with MCP and requires some extra conditions on its shape
parameter that depend on the design matrices of both the mean and the dis-
persion. Moreover, it is known that in the univariate case, MCP is equivalent
to the firm-thresholding rule of [31] and therefore suffers from the drawback
in that it requires two threshold values (one for ‘keep’ or ‘shrink’ and another
for ‘shrink’ or ‘kill’), thus making the data-driven procedure for the selection
of regularization parameters more computationally expensive, especially when
used twice, for the mean and for the dispersion. If a way is found to overcome
this drawback, the use of MCP will be feasible since the MCP penalty leads also
to a proximal map that has a closed-form expression (see [34]) and that could
be easily used in the iterative algorithm exposed in Section 5. Implementation
of penalized Bregman divergence procedures using the MCP is thus of interest,
but requires additional future research work.

Appendix: Regularity conditions

We first introduce some extra notation. Let q1(·) be the generating concave func-
tion of the Bregman divergence associated to the generalized quasi-likelihood
score associated to pseudo response vector Ỹ described in Remark 3.1 and let
q2(·) the generating concave function associated to the log-likelihood of the
regular exponential model associated to the distribution of the unit deviance
when the mean vector of the proper dispersion model is known. We impose
some technical regularity conditions which may not be the weakest possible but
which allow us to derive the desired results.

Conditions

1. The true value θ0 is in the interior of the parameter space and
supsn ‖θ0‖1 < ∞.

2. The random vectors X and Z are uniformly bounded and the correspond-
ing design densities are bounded below by a positive constant.

3. E(XT
DXD) and E(ZT

DZD) exist and are non singular.
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4. The link functions g and h are continuously bi-differentiable, and such
that g(1)(·) �= 0 and h(1)(·) �= 0.

5. The eigenvalues of the matrices −E(q
(2)
1 (μ(X))/[g(1)(μ(X))]2XT

DXD) and

−E(q
(2)
2 (φ(Z))/[h(1)(φ(Z))]2ZT

DZD) are uniformly bounded away from 0.
6. There exists some δ > 0 such that E(|Y |δ+2|(X,Z) = (x, z)) is uniformly

bounded.
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[77] Y. K. Yýlmazand A. T. Cemgil. (2012). Alpha/beta divergences and
Tweedie models. Technical Report arXiv:1209.4280.

[78] C.H. Zhang (2010). Nearly unbiased variable selection under minimax con-
cave penalty. The Annals of Statistics, 38: 894–942. MR2604701

[79] C.M. Zhang, Y. Jiang and Z. Shang. (2009). New aspects of Bregman diver-
gence in regression and classification with parametric and nonparametric
estimation. Canadian Journal of Statistics, 37: 119–139. MR2509465

[80] C. Zhang, Y. Jiang and Y. Chai. (2010). Penalized Bregman divergence for
large-dimensional regression and classification. Biometrika, 97: 551–566.
MR2672483

[81] Y. Zhang. (2013). Likelihood-based and Bayesian methods for Tweedie
compound Poisson linear mixed models. Statistics and Computing, 23:743–
757. MR3247830

[82] W. Zhao, R. Zhang, Y. Lv and J. Liu. (2014). Variable selection for varying
dispersion beta regression model. Journal of Applied Statistics, 41 (1): 95–
108. MR3291202

http://www.arxiv.org/abs/1209.4280
http://www.ams.org/mathscinet-getitem?mr=2604701
http://www.ams.org/mathscinet-getitem?mr=2509465
http://www.ams.org/mathscinet-getitem?mr=2672483
http://www.ams.org/mathscinet-getitem?mr=3247830
http://www.ams.org/mathscinet-getitem?mr=3291202

	Introduction
	From generalized linear models to quasi-likelihood and pseudo-likelihood
	Variable selection in joint mean and dispersion modelling

	Proper dispersion models, and joint modelling of mean and dispersion
	Brief review on exponential dispersion models
	Generalized linear models and double generalized linear models
	Proper dispersion models
	Proper dispersion models and joint modelling of mean and dispersion
	Quasi-likelihood and extended quasi-likelihood

	Generalized Proper Dispersion Models: estimation and variable selection
	Theoretical results
	Computation
	A general iterative thresholding algorithm
	Choosing the regularization parameter

	Simulation study and comparison
	Heteroscedastic Gaussian regression: analysis and comparison with related methods
	Simulation study with the two parameter inverse Gaussian distribution
	Simulation study with the simplex distribution

	Real Data Applications
	Ophthalmological data
	Diabetes data

	Further extensions and discussion
	Nonparametric and semiparametric inference
	Generalized Additive Dispersion Models (GADM)
	Discrete distributions
	Further discussions
	Misspecified or unknown link function for the dispersion
	Correlated covariates in the vectors X and/or Z
	Discussion on alternative penalty functions


	Appendix: Regularity conditions
	Acknowledgements
	References

