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Abstract: We consider a population of N individuals, of which we observe
the number of actions until time t. For each couple of individuals (i, j),
j may or not influence i, which we model by i.i.d. Bernoulli(p)-random
variables, for some unknown parameter p ∈ (0, 1]. Each individual acts
autonomously at some unknown rate μ > 0 and acts by mimetism at some
rate proportional to the sum of some function ϕ of the ages of the actions
of the individuals which influence him. The function ϕ is unknown but
assumed, roughly, to be decreasing and with fast decay. The goal of this
paper is to estimate p, which is the main characteristic of the graph of
interactions, in the asymptotic N → ∞, t → ∞. The main issue is that
the mean field limit (as N → ∞) of this model is unidentifiable, in that
it only depends on the parameters μ and pϕ. Fortunately, this mean field
limit is not valid for large times. We distinguish the subcritical case, where,
roughly, the mean number mt of actions per individual increases linearly
and the supercritical case, where mt increases exponentially. Although the
nuisance parameter ϕ is non-parametric, we are able, in both cases, to
estimate p without estimating ϕ in a nonparametric way, with a precision
of order N−1/2 +N1/2m−1

t , up to some arbitrarily small loss. We explain,
using a Gaussian toy model, the reason why this rate of convergence might
be (almost) optimal.
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1. Introduction and main results

1.1. Setting

We consider some unknown parameters p ∈ (0, 1], μ > 0 and ϕ : [0,∞) �→ [0,∞).
For N ≥ 1, we consider an i.i.d. family (πi(dt, dz))i=1,...,N of Poisson measures
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on [0,∞) × [0,∞) with intensity measure dtdz, independent of an i.i.d. family
(θij)i,j=1,...,N of Bernoulli(p)-distributed random variables. We also consider the
system of equations, for i = 1, . . . , N ,

Zi,N
t =

∫ t

0

∫ ∞

0

1{z≤λi,N
s }π

i(ds, dz),

where λi,N
t = μ+

1

N

N∑
j=1

θij

∫ t−

0

ϕ(t− s)dZj,N
s . (1)

Here and in the whole paper,
∫ t

0
means

∫
[0,t]

and
∫ t−
0

means
∫
[0,t)

. The solution

((Zi,N
t )t≥0)i=1,...,N is a family of N counting processes (that is, a.s. integer-

valued, càdlàg and non-decreasing). The following well-posedness result is more
or less well-known, see e.g. Brémaud-Massoulié [9] and [13] (we will apply di-
rectly the latter reference).

Proposition 1. Assume that ϕ is locally integrable and fix N ≥ 1. The system
(1.1) has a unique càdlàg (Ft)t≥0-adapted solution ((Zi,N

t )t≥0)i=1,...,N such that∑N
i=1 E[Z

i,N
t ] < ∞ for all t ≥ 0, where Ft = σ(πi(A) : A ∈ B([0, t]×[0,∞)), i =

1, . . . , N) ∨ σ(θij : i, j = 1, . . . , N).

Let us provide a brief heuristic description of this process. We have N indi-
viduals and Zi,N

t stands for the number of actions of the i-th individual until
t. We say that j influences i if and only if θij = 1 (with possibly i = j).

Each individual i acts, at time t, with rate λi,N
t . In other words, each individ-

ual has an autonomous rate of action μ as well as a subordinate rate of action
N−1

∑N
j=1 θij

∫ t

0
ϕ(t − s)dZj,N

s , which depends on the number of actions of the

individuals that influence him, with a weight N−1 and taking into account the
age of these actions through ϕ. If for example ϕ = a1[0,K], then the subordi-
nate rate of action of i is simply a/N times the total number of actions, during
[t−K, t], of all the individuals that influence him.

As is well-known, a phase-transition occurs for such a model, see Hawkes-
Oakes [18] (or [13] for such considerations on large networks): setting Λ =∫∞
0

ϕ(t)dt,

• in the subcritical case where Λp < 1, we will see that Z1,N
t increases lin-

early with time, at least on the event where the family (θij)i,j=1,...,N behaves
reasonably;

• in the supercritical case where Λp > 1, we will see that Z1,N
t increases

exponentially fast with time, at least on the event where the family (θij)i,j=1,...,N

behaves reasonably.

The limit theorems, and thus the statistical inference, completely differ in
both cases, so that the present paper contains essentially two independent parts.

We will not study the critical case where Λp = 1 because it is a very particular
case. However, it would be very interesting to understand what happens near
the critical case. Our results say nothing about this problem.
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1.2. Assumptions

Recalling that Λ =
∫∞
0

ϕ(s)ds, we will work under one of the two following
conditions: either for some q ≥ 1,

μ ∈ (0,∞), Λp ∈ (0, 1) and

∫ ∞

0

sqϕ(s)ds < ∞ (H(q))

or

μ ∈ (0,∞), Λp ∈ (1,∞) and

∫ t

0

|dϕ(s)| increases at most polynomially.

(A)
In many applications, ϕ is smooth and has a fast decay, so that, except in the
critical case, either H(q) is satisfied for all q ≥ 1 or A is satisfied.

1.3. References and fields of application

Hawkes processes have been introduced by Hawkes [17] and Oakes-Hawkes [18]
have found a noticeable representation of such processes in terms of Galton-
Watson trees. Since then, there has been a huge literature on Hawkes processes,
see e.g. Daley and Vere-Jones [12] for an introduction, Massoulié [24], Brémaud-
Massoulié [9] and [13] for stability results, Brémaud-Nappo-Torrisi [10], Zhu
[35, 36] and [3] for limit theorems, etc. Hawkes processes are used in various
fields of applications:

• earthquake replicas in seismology, see Helmstetter-Sornette [19], Kagan [23],
Ogata [26], Bacry-Muzy [5],

• spike trains for brain activity in neuroscience, see Grün et al. [15], Okatan
et al. [27], Pillow et al. [28], Reynaud et al. [31, 32],

• genome analysis, see Reynaud-Schbath [30],
• various fields of mathematical finance, see Aı̈t-Sahalia et al. [1], Bauwens-

Hautsch [6], Hewlett [20], Bacry et al. [2], Bacry-Muzy [4, 5],
• social networks interactions, see Blundell et al. [8] and Zhou et al. [34].
Concerning the statistical inference for Hawkes processes, only the case of

fixed finite dimension N has been studied, to our knowledge, in the asymptotic
t → ∞ (for possibly more general shapes of interaction). Some parametric and
nonparametric estimation procedures for μ and ϕ have been proposed, with or
without rigorous proofs. Let us mention Ogata [25], Bacry-Muzzy [5], [2], the
various recent results of Hansen et al. [16] and Reynaud et al. [30, 31, 32], as
well as the Bayesian study of Rasmussen [29].

1.4. Goals and motivation

In many applications, the number of individuals is very large (think of neurons,
financial agents or of social networks). Then we need some estimators in the
asymptotic where N and t tend simultaneously to infinity. This problem seems
to be completely open.
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We assume that we observe (Zi,N
s )i=1,...,N,s∈[0,t] (or (Z

i,N
s )i=1,...,N,s∈[0,2t] for

convenience), that is all the actions of the individuals on some (large) time
interval.

In our point of view, we only observe the activity of the individuals, we do
not know the graph of interactions. A very similar problem was studied in [32],
although in fixed finite dimension N . Our goal is to estimate p, which can be
seen as the main characteristic of the graph of interactions, since it represents
the proportion of open edges. We consider μ and ϕ as nuisance parameters,
although this is debatable. In the supercritical case, we will be able to estimate
p without estimating μ nor ϕ. In the subcritical case, we will be able to recover
p estimating only μ and the integral Λ of ϕ. In any case, we will not need to
provide a nonparametric estimation of ϕ, and we believe it is a very good point:
it would require regularity assumptions and would complicate a lot the study.

The main goal of this paper is to provide the basic tools for the statistical
estimation of Hawkes processes when both the graph size and the observation
time increase. Of course, this is only a toy model and we have no precise idea of
real world applications, although we can think e.g. of neurons spiking: they are
clearly numerous (so N is large), we can only observe their activities (each time
they spike), and we would like to have an idea of the graph of interactions. See
again [32] for a more convincing biological background. Think also of financial
agents: they are also numerous, we can observe their actions (each time they
buy or sell a product), and we would like to recover the interaction graph.

1.5. Mean field limit

We quickly describe the expected chaotic behavior of ((Zi,N
t )t≥0)i=1,...,N as

N → ∞. We refer to Sznitman [33] for an introduction to propagation of chaos.
Extending the method of [13, Theorem 8], it is not hard to check, assuming
that

∫∞
0

ϕ2(s)ds < ∞, that for each given k ≥ 1 and T > 0, the sample

((Zi,N
t )t∈[0,T ])i=1,...,k goes in law, as N → ∞, to a family ((Y i

t )t∈[0,T ])i=1,...,k

of i.i.d. inhomogeneous Poisson processes with intensity (λt)t≥0, unique locally

bounded nonnegative solution to λt = μ+
∫ t

0
pϕ(t− s)λsds.

On the one hand, approximate independence is of course a good point for
statistical inference. On the other hand, the mean-field limit (i.e. the (Y i

t )t≥0’s)
depends on p and ϕ only through (λt)t≥0 and thus through pϕ, which is a
negative point: the mean-field limit is unidentifiable. The situation is however
not hopeless because roughly, the mean-field limit does not hold true for the
whole sample (Zi,N )i=1,...,N and is less and less true as time becomes larger and
larger.

1.6. Main result in the subcritical case

For N ≥ 1 and for ((Zi,N
t )t≥0)i=1,...,N the solution to (1.1), we introduce Z̄N

t =

N−1
∑N

i=1 Z
i,N
t . We mention in the following remark, that we will prove later,
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that the number of actions per individual increases linearly in the subcritical
case.

Remark 2. Assume H(1). Then for all ε > 0,

lim
(N,t)→(∞,∞)

Pr
(∣∣∣ Z̄N

t

t
− μ

1− Λp

∣∣∣ ≥ ε
)
= 0.

We next introduce

EN
t =

Z̄N
2t − Z̄N

t

t
, VN

t =
N∑
i=1

(Zi,N
2t − Zi,N

t

t
− EN

t

)2

− N

t
EN
t ,

WN
Δ,t = 2ZN

2Δ,t −ZN
Δ,t, where ZN

Δ,t =
N

t

2t/Δ∑
k=t/Δ+1

(
Z̄N
kΔ − Z̄N

(k−1)Δ −ΔEN
t

)2

.

In the last expression, Δ ∈ (0, t) is required to be such that t/(2Δ) ∈ N∗.

Theorem 3. We assume H(q) for some q > 3. For t ≥ 1, we put Δt =
t/(2�t1−4/(q+1)	): it holds that t/(2Δt) ∈ N

∗ and that Δt ∼ t4/(q+1)/2 as t → ∞.
There is a constant C depending only on p, μ, ϕ and q such that for all ε ∈ (0, 1),
all N ≥ 1, all t ≥ 1,

Pr
(∣∣∣EN

t − μ

1− Λp

∣∣∣ ≥ ε
)
≤ C

ε

( 1

N
+

1√
Nt

+
1

tq

)
,

Pr
(∣∣∣VN

t − μ2Λ2p(1− p)

(1− Λp)2

∣∣∣ ≥ ε
)
≤ C

ε

(√N

t
+

1√
N

)
,

Pr
(∣∣∣WN

Δt,t −
μ

(1− Λp)3

∣∣∣ ≥ ε
)
≤ C

ε

( 1

N
+

N

t2
+

1√
t1−4/(q+1)

)
.

We will easily deduce the following corollary.

Corollary 4. We assume H(q) for some q > 3. For t ≥ 1, we put Δt =
t/(2�t1−4/(q+1)	). There is a constant C depending only on p, μ, ϕ and q such
that for all ε ∈ (0, 1), all N ≥ 1, all t ≥ 1,

Pr
(∥∥∥Ψ(

EN
t ,VN

t ,WN
Δt,t

)
− (μ,Λ, p)

∥∥∥ ≥ ε
)
≤C

ε

( 1√
N

+

√
N

t
+

1√
t1−4/(q+1)

)

≤2C

ε

( 1√
N

+

√
N

t1−4/(q+1)

)
,

where Ψ = 1DΦ with D = {(u, v, w) ∈ R
3 : w > u > 0 and v ≥ 0} and

Φ : D �→ R
3 defined by

Φ1(u, v, w) = u

√
u

w
, Φ2(u, v, w) =

v + [u− Φ1(u, v, w)]
2

u[u− Φ1(u, v, w)]
,

Φ3(u, v, w) =
1− u−1Φ1(u, v, w)

Φ2(u, v, w)
.

We did not optimize the dependence in q: in many applications, H(q) holds
for all q ≥ 1.
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1.7. Main result in the supercritical case

For N ≥ 1 and for ((Zi,N
t )t≥0)i=1,...,N the solution to (1.1), we set Z̄N

t =

N−1
∑N

i=1 Z
i,N
t . We will check later the following remark, which states that the

mean number of actions per individual increases exponentially in the supercrit-
ical case.

Remark 5. Assume A and consider α0 > 0 defined by p
∫∞
0

e−α0tϕ(t)dt = 1.
Then

for all η > 0, lim
t→∞

lim
N→∞

Pr
(
Z̄N
t ∈ [e(α0−η)t, e(α0+η)t]

)
= 1.

We next introduce

UN
t =

[ N∑
i=1

(Zi,N
t − Z̄N

t

Z̄N
t

)2

− N

Z̄N
t

]
1{Z̄N

t >0} and PN
t =

1

UN
t + 1

1{UN
t ≥0}.

Theorem 6. Assume A and consider α0 > 0 defined in Remark 5. For all
η > 0, there is a constant Cη > 0 (depending only on p, μ, ϕ, η) such that for all
N ≥ 1, all t ≥ 1, all ε ∈ (0, 1),

Pr
(
|PN

t − p| ≥ ε
)
≤ Cηe

ηt

ε

(√N

eα0t
+

1√
N

)
.

1.8. Detecting subcriticality and supercriticality

In practise, we may of course not know if we are in the subcritical or supercritical
case.

Proposition 7. (i) Under H(1), there are some constants 0 < c < C depending
only on p, μ, ϕ such that for all N ≥ 1, all t ≥ 1, Pr(log(Z̄N

t ) ≥ (log t)2) ≤
C(e−cN + t1/2e−(log t)2).

(ii) Under A, for all η > 0, there is a constant Cη depending only on p, μ, ϕ, η
such that for all N ≥ 1, all t ≥ 1, Pr(log(Z̄N

t ) ≤ (log t)2) ≤ Cηe
ηt(N−1/2 +

e−α0t).

It is then not hard to check that, with the notation of Corollary 4 and The-
orem 6, under H(q) (for some q > 3) or A, the estimator

p̂Nt = 1{log(Z̄N
t )<(log t)2}Ψ3(EN

t/2,VN
t/2,WN

Δt/2,t/2
) + 1{log(Z̄N

t )>(log t)2}PN
t ,

which is based on the observation of (Zi,N
s )s∈[0,t],i=1,...,N , converges in proba-

bility to p, with the same speed of convergence as in Corollary 4 (under H(q)
for some q > 3) or as in Theorem 6 (under A).

1.9. About optimality

In Subection 2.3, we will see on a toy model that there is no real hope to
find an estimator of p with a better precision than N−1/2 + N1/2m−1

t , where
mt is something like the mean number of jumps per individual during [0, t].
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Consequently, we believe that the precision we found in Corollary 4 is almost
optimal, since thenmt  t by Remark 2 and since we reach the precisionN−1/2+
N1/2tα−1 for any α > 0 (if ϕ has a fast decay), so that the loss is arbitrarily
small. Similarly, the precision found in Theorem 6 is rather satisfying, since then
mt  eα0t by Remark 5 and since we reach the precision eηt(N−1/2+N1/2e−α0t)
for any η > 0, so that the loss is, here also, arbitrarily small.

The main default of the present paper is that the constants in Corollary 4 and
in Theorem 6 strongly depend on the parameters μ,Λ, p. They also depend on
q in the subcritical case. In particular, it would be quite delicate to understand
how they behave when approaching, from below or from above, the critical case.

1.10. About the modeling

There are two main limitations in our setting.
Assuming that the θij ’s are i.i.d. is of course a strong assumption. What we

really need is that the family (θij)i,j=1,...,N satisfies similar properties as those
shown in Subsection 4.1 (in the subcritical case) and in Subsection 5.1 (in the
supercritical case). This clearly requires that the family (θij)i,j=1,...,N is not too

far from being i.i.d., and it does not suffice that limN→∞ N−2
∑N

i,j=1 θij = p.
However, we believe that all the conclusions of the present paper are still true
if one assumes that (θij)1≤i≤j≤N is i.i.d. and that θji = θij for all 1 ≤ i <
j ≤ N , which might be the case in some applications where the interactions are
symmetric. A rigorous proof would require some work but should not be too
hard. We will study this problem numerically at the end of the paper.

Assuming that we observe all the population is also rather stringent. It would
be interesting to study what happens if one observes only (Zi,N

s )i=1,...,K,s∈[0,t],
for some K large but smaller than N . It is not difficult to guess how to adapt
the estimators to such a situation (see Section 7 for precise formulae). The
theoretical analysis would require a careful and tedious study. Again, we will
discuss this numerically.

1.11. Notation

We denote by Prθ the conditional probability knowing (θij)i,j=1,...,N . We intro-
duce Eθ, Varθ and Covθ accordingly.

For two functions f, g : [0,∞) �→ R, we introduce (if it exists) (f 
 g)(t) =∫ t

0
f(t − s)g(s)ds. The functions ϕ�n will play an important role in the paper.

Observe that, since
∫∞
0

ϕ(s)ds = Λ,
∫∞
0

ϕ�n(s)ds = Λn. We adopt the conven-
tions ϕ�0(s)ds = δ0(ds) and ϕ�0(t−s)ds = δt(ds). We also adopt the convention
that ϕ�n(s) = 0 for s < 0.

All the finite constants used in the upperbounds are denoted by C, the posi-
tive constants used in the lowerbounds are denoted by c and their values change
from line to line. They are allowed to depend only on μ, p and ϕ (and on q
under H(q)), but never on N nor on t. Any other dependence will be indicated
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in subscript. For example, Cη is a finite constant depending only on μ, p, ϕ and
η (and on q under H(q)).

1.12. Plan of the paper

In the next section, we try to give the main reasons why our estimators should
be convergent, which should help the reader to understand the strategies of
the proofs. We also briefly and formally introduce a Gaussian toy model in
Section 2.3 to show that the rates of convergence we obtain are not far from
being the best we can hope for. In Section 3, we prove Proposition 1 (strong
existence and uniqueness of the process) and check a few more or less explicit

formulae concerning (Zi,N
t )i=1,...,N,t≥0 of constant use. Section 4 is devoted to

the proof of Theorem 3 and Corollary 4 (main results in the subcritical case).
Theorem 6 (main result in the supercritical case) is proved in Section 5. We
check Proposition 7 in Section 6. Finally, we illustrate numerically the results
of the paper and some possible extensions in the last section.

2. Heuristics

This section is completely informal and the symbol  means nothing precise.
For example, “Zi,N

t  Eθ[Z
i,N
t ] for t large” should be understood as “we hope

that Zi,N
t /Eθ[Z

i,N
t ] tends to 1 as t → ∞ in probability or in another sense.”

2.1. The subcritical case

We assume that Λp ∈ [0, 1) and try to explain roughly the asymptotics of

(Zi,N
t )i=1,...,N,t≥0 and where the three estimators EN

t , VN
t and WN

Δ,t come from.

We introduce the matrices AN (i, j) = N−1θij and QN = (I − ΛAN )−1, which

exists with high probability because Λp < 1. We also set �N (i) =
∑N

j=1 QN (i, j)

and cN (i) =
∑N

j=1 QN (j, i).

Fixing N and knowing (θij)i,j=1,...,N , we expect that Zi,N
t  Eθ[Z

i,N
t ] for t

large by a law of large numbers. Next, it is not hard to check that Eθ[Z
i,N
t ] = μt+

N−1
∑N

j=1 θij
∫ t

0
ϕ(t − s)Eθ[Z

j,N
s ]ds. Assume that γN (i) = limt→∞ t−1

Eθ[Z
i,N
t ]

exists for each i = 1, . . . , N . Then, using that
∫ t

0
ϕ(t − s)sds  Λt for t large,

we find that the vector γN must solve γN = μ1N + ΛANγN , where 1N is
the N -dimensional vector with all coordinates equal to 1. This implies that
γN = μ(I−ΛAN )−11N = μ�N . We thus expect that Zi,N

t  Eθ[Z
i,N
t ]  μ�N (i)t.

Based on this and setting �̄N = N−1
∑N

i=1 �N (i), we expect that Z̄N
t  μ�̄N t

for large values of t, whence ẼN
t := t−1Z̄N

t  μ�̄N .

Knowing (θij)i,j=1,...,N , Z1,N
t should resemble, roughly, a Poisson process,

so that it should approximately hold true that Varθ (Z
1,N
t )  Eθ[Z

1,N
t ]. Conse-

quently, N−1
∑N

i=1(Z
i,N
t −Z̄N

t )2 should resemble Var (Z1,N
t ) = Var (Eθ[Z

1,N
t ])+
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E[Varθ (Z
1,N
t )]  Var (Eθ[Z

1,N
t ]) + E[Z1,N

t ], which itself should be approxi-

mately equal to N−1
∑N

i=1(Eθ[Z
i,N
t ]−Eθ[Z̄

N
t ])2+ Z̄N

t  N−1μ2t2
∑N

i=1(�N (i)−
�̄N )2 + Z̄N

t . All in all, we expect that ṼN
t := t−2[

∑N
i=1(Z

i,N
t − Z̄N

t )2 −NZ̄N
t ] 

μ2
∑N

i=1(�N (i)− �̄N )2 for t large.

The temporal empirical variance Δt−1
∑t/Δ

k=1[Z̄
N
kΔ − Z̄N

(k−1)Δ − Δt−1Z̄N
t ]2

should resemble Varθ [Z̄
N
Δ ] if 1 � Δ � t. Thus W̃N

Δ,t := Nt−1
∑t/Δ

k=1[Z̄
N
kΔ −

Z̄N
(k−1)Δ −Δt−1Z̄N

t ]2  NΔ−1
Varθ [Z̄

N
Δ ]. Introducing the martingales M i,N

t =

Zi,N
t − Ci,N

t (where Ci,N is the compensator of Zi,N ), the centered processes

U i,N
t = Zi,N

t − Eθ[Z
i,N
t ], and the N -dimensional vectors UN

t and MN
t with co-

ordinates U i,N
t and M i,N

t , we will see in Section 3 that UN
t = MN

t +AN

∫ t

0
ϕ(t−

s)UN
s ds, so that for large times, UN

t  MN
t +ΛANUN

t and thus UN
t  QNMN

t .

Consequently, we hope that ŪN
t  QNMN

t , where ŪN
t = N−1

∑N
i=1 U

i,N
t

and QNMN
t = N−1

∑N
i=1(QNMN

t )i. A little study shows that the martin-

gales M j,N
t are orthogonal and that [M j,N ,M j,N ]t = Zj,N

t  μ�N (j)t, so

that Varθ (QNMN
t )  μtN−2

∑N
j=1(

∑N
i=1 QN (i, j))2�N (j), which is nothing

but μtN−2
∑N

j=1(cN (j))2�N (j). Finally, Varθ [Z̄
N
t ] = Varθ [Ū

N
t ] thus resem-

bles μtN−2
∑N

j=1(cN (j))2�N (j) and we hope that W̃N
Δ,t  NΔ−1Varθ [Z̄

N
Δ ] 

μN−1
∑N

j=1(cN (j))2�N (j) if 1 � Δ � t.

We need to find the limits as N → ∞ of �̄N ,
∑N

i=1(�N (i) − �̄N )2 and

N−1
∑N

i=1 �N (i)(cN (i))2. It is not easy to make rigorous, but it holds true that

�N (i)  1 + Λ(1− Λp)−1LN (i), where LN (i) =
∑N

j=1 AN (i, j). This comes from∑N
j=1 A

2
N (i, j) =

∑N
j=1 AN (i, j)

∑N
k=1 AN (j, k)  p

∑N
j=1 AN (i, j) = pLN (i),∑N

j=1 A
3
N (i, j)  p2LN (i) for similar reasons, etc. It is very rough, but it will im-

ply that �N (i) =
∑

n≥0 Λ
n
∑N

j=1 A
n
N (i, j)  1+

∑
n≥1 Λ

npn−1LN (i) = 1+Λ(1−
Λp)−1LN (i). Once this is seen (as well as a similar fact for the columns), we get
convinced, NLN being a vector of N i.i.d. Binomial(N, p)-distributed random

variables, that �̄N  1/(1−Λp), that
∑N

i=1(�N (i)− �̄N )2  Λ2p(1−p)/(1−Λp)2

and that N−1
∑N

i=1 �N (i)(cN (i))2  1/(1− Λp)3.

At the end, it should be more or less true that, for t,Δ and N large enough
and in a suitable regime, ẼN

t  μ/(1−Λp), ṼN
t  μ2Λ2p(1− p)/(1−Λp)2, and

W̃N
Δ,t  μ/(1−Λp)3. Of course, all this is completely informal and many points

have to be clarified.

Observe that concerning ṼN
t , we use that Z1,N

t resembles a Poisson process,
while concerning W̃N

Δ,t, we use that Z̄N
t does not resemble a Poisson process.

The three estimators EN
t ,VN

t ,WN
Δ,t we study in the paper resemble much

ẼN
t , ṼN

t , W̃N
Δ,t and should converge to the same limits. Let us explain why we

have modified the expressions. We started this subsection by the observation
that Eθ[Z

i,N
t ]  μ�N (i)t, on which the construction of the estimators relies. A

detailed study shows that, under H(q), Eθ[Z
i,N
t ] = μ�N (i)t + χN

i ± t1−q, for

some finite random variable χN
i . As a consequence, t−1

Eθ[Z
i,N
2t − Zi,N

t ] con-
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verges to μ�N (i) considerably faster (with an error in t−q) than t−1
Eθ[Z

i,N
t ]

(for which the error is of order t−1). This explains our modifications and why
these modifications are crucial.

Let us conclude this subsection with a technical issue. If Λ > 1 (which is not
forbidden even in the subcritical case), there is a positive probability that an
anomalously high proportion of the θij ’s equal 1, so that I−ΛAN is not invertible
and our multivariate Hawkes process is supercritical (on this event with small
probability). We will thus work on an event Ω1

N on which such problems do not
occur and show that this event has a high probability.

2.2. The supercritical case

We now assume that Λp > 1 and explain the asymptotics of (Zi,N
t )i=1,...,N,t≥0

and where the estimator UN
t comes from. We introduce AN (i, j) = N−1θij .

Fixing N and knowing (θij)i,j=1,...,N , we expect that Zi,N
t  HNEθ[Z

i,N
t ],

for some random HN > 0 not depending on i (and with HN almost constant
for N large). This is typically a supercritical phenomenon, that can already be
observed on Galton-Watson processes. Fortunately, we will not really need to
check it nor to study HN , essentially because we will use the ratios Zi,N

t /Z̄N
t ,

which makes disappear HN .

Next, we believe that Eθ[Z
i,N
t ]  γN (i)eαN t for t large, for some vector γN

with positive entries and some exponent αN > 0. Inserting this into Eθ[Z
i,N
t ] =

μt+N−1
∑N

j=1 θij
∫ t

0
ϕ(t− s)Eθ[Z

j,N
s ]ds, we find γN = ANγN

∫∞
0

e−αNsϕ(s)ds.
The vector γN being positive, it is necessarily a Perron-Frobenius eigenvector of
AN , so that ρN = (

∫∞
0

e−αNsϕ(s)ds)−1 is its Perron-Frobenius eigenvalue (i.e.
its spectral radius). We now consider the normalized Perron-Frobenius eigenvec-

tor VN such that
∑N

i=1(VN (i))2 = N and conclude that Zi,N
t  KNVN (i)eαN t

for all i = 1, . . . , N , where KN = [N−1
∑N

i=1(γN (i))2]1/2HN .

As in the subcritical case, the empirical variance N−1
∑N

i=1(Z
i,N
t − Z̄N

t )2

resembles N−1
∑N

i=1(Eθ[Z
i,N
t ]−Eθ[Z̄

N
t ])2+ Z̄N

t  N−1K2
Ne2αN t

∑N
i=1(VN (i)−

V̄N )2+Z̄N
t . We also guess that Z̄N

t  KN V̄NeαN t, where V̄N = N−1
∑N

i=1 VN (i).

Hence we expect, that for t large, UN
t = (Z̄N

t )−2[
∑N

i=1(Z
i,N
t − Z̄N

t )2 −NZ̄N
t ] 

(V̄N )−2
∑N

i=1(VN (i)− V̄N )2.

We now search for the limit of (V̄N )−2
∑N

i=1(VN (i) − V̄N )2 as N → ∞.
Roughly, A2

N (i, j)  p2/N , whence, starting from A2
NVN = ρ2NVN , we see

that ρ2NVN  p2V̄N1N , where 1N is the N -dimensional vector with all coor-
dinates equal to 1. Consequently, VN = (ANVN )/ρN  κNAN1N , where κN =
(p2/ρ3N )V̄N . In other words, VN is almost colinear to LN := AN1N , and NLN

is a vector of N i.i.d. Binomial(N, p)-distributed random variables. It is thus

reasonable to expect that (V̄N )−2
∑N

i=1(VN (i)− V̄N )2  (L̄N )−2
∑N

i=1(LN (i)−
L̄N )2  p−2p(1− p) = 1/p− 1.

All in all, we hope that for N and t large and in a suitable regime, UN
t 

1/p− 1.
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Let us mention that αN  α0 (recall Remark 5) because
∫∞
0

e−αNsϕ(s)ds =

1/ρN , because
∫∞
0

e−α0sϕ(s)ds = 1/p and because ρN  p. This last assertion
follows from the fact that A2

N (i, j)  p2/N , so that the largest eigenvalue of A2
N

should resemble p2, whence that of AN should resemble p.
Of course, all this is not clear and has to be made rigorous. Let us mention

that we will use a quantified version of the Perron-Frobenius of G. Birkhoff [7].
As we will see, the projection onto the eigenvector VN will be very fast (almost
immediate for N very large).

As in the subcritical case, we will have to work on an event Ω2
N , of high

probability, on which the θij ’s behave reasonably. For example, to apply the
Perron-Frobenius theorem, we have to be sure that the matrix AN is irreducible,
which is not a.s. true.

2.3. About optimality: A related toy model

Consider α0 ≥ 0 and two unknown parameters Γ > 0 and p ∈ (0, 1]. For N ≥ 1,
consider an i.i.d. family (θij)i,j=1,...,N of Bernoulli(p)-distributed random vari-

ables, put λi,N
t = N−1Γeα0t

∑N
j=1 θij and, conditionally on (θij)i,j=1,...,N , a fam-

ily (Z1,N
t )t≥0, . . . , (Z

N,N
t )t≥0 of independent inhomogeneous Poisson processes

with intensities (λ1,N
t )t≥0, . . . , (λ

N,N
t )t≥0. We observe (Zi,N

s )s∈[0,t],i=1,...,N and
we want to estimate p in the asymptotic (N, t) → (∞,∞).

This problem can be seen as a strongly simplified version of the one studied
in the present paper, with α0 = 0 in the subcritical case and α0 > 0 in the
supercritical case. Roughly, the mean number of jumps per individual resembles
mt =

∫ t

0
eα0sds, which is of order t when α0 = 0 and eα0t else.

There is classically no loss of information, since α0 is known, if we only observe
(Zi,N

t )i=1,...,N : after a (deterministic and known) change of time, the processes

(Zi,N
t )i=1,...,N become homogeneous Poisson processes with unkown parameters

(conditionally on (θij)i,j=1,...,N ), and the conditional law of a Poisson process
on [0, t] knowing its value at time t does not depend on its parameter.

We next proceed to a Gaussian approximation: we have λi,N
t  Γeα0t[p +√

N−1p(1− p)]Gi and Zi,N
t 

∫ t

0
λi,N
s ds +

√∫ t

0
λi,N
s dsHi, for two independent

i.i.d. families (Gi)i=1,...,N , (Hi)i=1,...,N of N (0, 1)-distributed random variables.
Using finally that (mt)

−1N−1/2 � (mt)
−1 in our asymptotic, we conclude that

(mt)
−1Zi,N

t  Γp + Γ
√

N−1p(1− p)Gi +
√

(mt)−1ΓpHi, of which the law is
N (Γp,N−1Γ2p(1− p) + (mt)

−1Γp).
Our toy problem is thus the following: estimate p when observing a N -sample

(Xi,N
t )i=1,...,N of the N (Γp,N−1Γ2p(1−p)+(mt)

−1Γp)-distribution. We assume
that Γp is known, which can only make easier the estimation of p. As is well-
known the statistic SN

t = N−1
∑N

i=1(X
i,N
t − Γp)2 is then sufficient and is the

best estimator (in all the usual senses), forN ≥ 1 and t ≥ 1 fixed, ofN−1Γ2p(1−
p) + (mt)

−1Γp, so that TN
t = N(Γp)−2(SN

t −m−1
t Γp) is more or less the best

estimator of (1/p − 1). But VarSN
t = 2N−1(N−1Γ2p(1 − p) + (mt)

−1Γp)2,
whence VarTN

t = 2(Γp)−4(N−1/2Γ2p(1 − p) + N1/2(mt)
−1Γp)2. It is thus not
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possible to estimate (1/p−1) with a better precision than N−1/2+N1/2(mt)
−1.

This of course implies that we cannot estimate p with a better precision than
N−1/2 +N1/2(mt)

−1.

3. Well-posedness and explicit formulae

We first give the

Proof of Proposition 1. Conditionally on (θij)i,j=1,...,N , we can apply directly
[13, Theorem 6], of which the assumption is satisfied here, see [13, Remark 5-

(i)]: conditionally on (θij)i,j=1,...,N , there is a unique solution (Zi,N
t )t≥0,i=1,...,N

to (1.1) such that
∑N

i=1 Eθ[Z
i,N
t ] < ∞ for all t ≥ 0. Since now (θij)i,j=1,...,N

can only take a finite number of values, we immediately deduce that indeed∑N
i=1 E[Z

i,N
t ] < ∞ for all t ≥ 0.

We carry on with a classical lemma. Recall that ϕ�0(t − s)ds = δt(ds) by
convention.

Lemma 8. Consider d ≥ 1, A ∈ Md×d(R), m, g : [0,∞) �→ R
d locally bounded

and assume that ϕ : [0,∞) �→ [0,∞) is locally integrable. If mt = gt +
∫ t

0
ϕ(t −

s)Amsds for all t ≥ 0, then mt =
∑

n≥0

∫ t

0
ϕ�n(t− s)Angsds.

Proof. The equation mt = gt +
∫ t

0
ϕ(t − s)Amsds with unkown m has at most

one locally bounded solution. Indeed, consider two such solutions m, m̃, observe
that u = |m − m̃| satisfies ut ≤ |A|

∫ t

0
ϕ(t − s)usds, and conclude that u = 0

by the generalized Gronwall lemma, see e.g. [13, Lemma 23-(i)]. We thus just

have to prove that mt :=
∑

n≥0

∫ t

0
ϕ�n(t − s)Angsds is locally bounded and

solves m = g + Aϕ 
 m. We introduce knt = |A|n
∫ t

0
ϕ�n(s)ds, which is locally

bounded because ϕ is locally integrable and which satisfies kn+1
t ≤ |A|

∫ t

0
kns ϕ(t−

s)ds. We use [13, Lemma 23-(ii)] to conclude that
∑

n≥0 k
n
t is locally bounded.

Consequently, |mt| ≤ sup[0,t] |gs|×
∑

n≥0 k
n
t is locally bounded. Finally, we write

m = g+
∑

n≥1 A
nϕ�n
g = g+Aϕ


∑
n≥0 A

nϕ�n
g = g+Aϕ
m as desired.

We next introduce a few processes.

Notation 9. Assume only that ϕ is locally integrable, fix N ≥ 1 and consider
the solution (Zi,N

t )t≥0,i=1,...,N to (1.1). For each i = 1, . . . , N , we introduce the
martingale (recall that λi,N was defined in (1.1))

M i,N
t =

∫ t

0

∫ ∞

0

1{z≤λi,N
s }π̃

i(ds, dz),

where π̃i(ds, dz) = πi(ds, dz)− dsdz is the compensated Poisson measure asso-

ciated to πi. We also introduce M i,N,∗
t = sup[0,t] |M i,N

s |, as well as the (condi-
tionally) centered process

U i,N
t = Zi,N

t − Eθ[Z
i,N
t ].
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For each t ≥ 0, we denote by ZN
t (resp. MN

t , MN,∗
t , UN

t ) the N -dimensional

vector with coordinates Zi,N
t (resp. M i,N

t , M i,N,∗
t , U i,N

t ). We also set Z̄N
t =

N−1
∑N

i=1 Z
i,N
t , M̄N

t = N−1
∑N

i=1 M
i,N
t and ŪN

t = N−1
∑N

i=1 U
i,N
t .

We refer to Jacod-Shiryaev [22, Chapter 1, Section 4e] for definitions and
properties of pure jump martingales and of their quadratic variations.

Remark 10. Since the Poisson measures πi are independent, the martingales
M i,N are orthogonal. More precisely, we have [M i,N ,M j,N ]t = 0 if i �= j, while

[M i,N ,M i,N ]t = Zi,N
t (because Zi,N

t counts the jumps of M i,N , which are all of

size 1). Consequently, Eθ[M
i,N
s M j,N

t ] = 1{i=j}Eθ[Z
i,N
s∧t ].

We now give some more or less explicit formulas. We denote by 1N the N -
dimensional vector with all entries equal to 1 and we set AN (i, j) = N−1θij for
i, j = 1, . . . , N .

Lemma 11. Assume only that ϕ is locally integrable. We have (recall that
ϕ�0(t− s)ds = δt(ds)):

ZN
t =MN

t + μ1N t+

∫ t

0

ϕ(t− s)ANZN
s ds, (2)

Eθ[Z
N
t ] =μ

∑
n≥0

[∫ t

0

sϕ�n(t− s)ds
]
An

N1N , (3)

UN
t =

∑
n≥0

∫ t

0

ϕ�n(t− s)An
NMN

s ds. (4)

Proof. The first expression is not difficult: starting from (1.1),

Zi,N
t = M i,N

t +

∫ t

0

λi,N
s ds = M i,N

t + μt+

N∑
j=1

AN (i, j)

∫ t

0

∫ s

0

ϕ(s− u)dZj,N
u ds.

Using [13, Lemma 22], we see that
∫ t

0

∫ s

0
ϕ(s − u)dZj,N

u ds =
∫ t

0
ϕ(t − s)Zj,N

s ds,
whence indeed,

Zi,N
t = M i,N

t + μt+

∫ t

0

ϕ(t− s)

N∑
j=1

AN (i, j)Zj,N
s ds,

which is nothing but (2). Taking conditional expectations in (2), we find that

Eθ[Z
N
t ] = μ1N t +

∫ t

0
ϕ(t − s)ANEθ[Z

N
s ]ds and thus also UN

t = MN
t +

∫ t

0
ϕ(t −

s)ANUN
s ds. Since now ϕ is (a.s.) locally integrable, since μ1N t and MN

t are
(a.s.) locally bounded, as well as Eθ[Z

N
t ] and UN

t , (3) and (4) directly follow
from Lemma 8.

4. The subcritical case

Here we consider the subcritical case. We first study the large N -asymptotic of
the matrix QN = (I − ΛAN )−1, which plays a central role in the rest of the
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section. In Subsection 4.2, we finely study the behavior of ϕ�n. In Subsection
4.3, we handle a few computations to be used several times later. Subsections
4.4, 4.5 and 4.6 are devoted to the studies of the three estimators EN

t , VN
t and

WN
Δ,t. We conclude the proofs of Theorem 3 and Corollary 4 in Subsection 4.7.

4.1. Study of a random matrix

We use the following standard notation: for x = (x1, . . . , xN ) ∈ R
N and r ∈

[1,∞), we set ||x||r = (
∑N

i=1 |xi|r)1/r and ||x||∞ = maxi=1,...,N |xi|. For r ∈
[1,∞], we denote by ||| · |||r the operator norm on MN×N (R) associated to
|| · ||r. We recall that

|||M |||1 = sup
j=1,...,N

N∑
i=1

|Mij |, |||M |||∞ = sup
i=1,...,N

N∑
j=1

|Mij |

and that for all r ∈ (1,∞),

|||M |||r ≤ |||M |||1/r1 |||M |||1−1/r
∞ . (5)

Notation 12. We assume that Λp < 1. For each N ≥ 1, we introduce the
N ×N random matrix AN defined by AN (i, j) = N−1θij, as well as the event

Ω1
N =

{
Λ|||AN |||r ≤ a for all r ∈ [1,∞]

}
, where a =

1 + Λp

2
∈ (Λp, 1). (6)

On Ω1
N , the N ×N matrix QN =

∑
n≥0 Λ

nAn
N = (I − ΛAN )−1 is well-defined

and we introduce, for each i = 1, . . . , N , �N (i) =
∑N

j=1 QN (i, j), cN (i) =∑N
j=1 QN (j, i), as well as �̄N = N−1

∑N
i=1 �N (i) and c̄N = N−1

∑N
i=1 cN (i).

We of course have �̄N = c̄N .

Let us remark once for all that, with C = 1/(1− a) < ∞,

Ω1
N⊂

{
|||QN |||r ≤ C for all r ∈ [1,∞]

}
⊂
{

sup
1≤i≤N

max{�N (i), cN (i)} ≤ C
}
, (7)

Ω1
N ⊂

{
1{i=j} ≤ QN (i, j) ≤ 1{i=j} + ΛCN−1 for all i, j = 1, . . . , N

}
. (8)

Indeed, (7) is straightforward since QN =
∑

n≥0 Λ
nAn

N . To check (8), we first

observe that QN (i, j) ≥ Λ0A0
N (i, j) = 1{i=j}. Next, we use that AN (i, j) ≤ N−1

while, if n ≥ 2, An
N (i, j) =

∑N
k=1 AN (i, k)An−1

N (k, j) ≤ N−1
∑N

k=1 A
n−1
N (k, j) ≤

N−1|||An−1
N |||1 ≤ N−1|||AN |||n−1

1 . Thus An
N (i, j) ≤ N−1|||AN |||n−1

1 for all n ≥
1. Hence on Ω1

N , it holds that QN (i, j) ≤ 1{i=j} +N−1
∑

n≥1 Λ
n|||AN |||n−1

1 ≤
1{i=j} +N−1Λ/(1− a) as desired.

Lemma 13. Assume that Λp < 1. It holds that Pr(Ω1
N ) ≥ 1− C exp(−cN).
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Proof. By (5), it suffices to prove that Pr(Λ|||AN |||1 > a) ≤ C exp(−cN) and
Pr(Λ|||AN |||∞ > a) ≤ C exp(−cN). Since |||AN |||∞ = |||At

N |||1 and since At
N

(the transpose of AN ) has the same law as AN , it actually suffices to ver-
ify the first inequality. First, N |||AN |||1 = max{XN

1 , . . . , XN
N }, where XN

i =∑N
j=1 θij is Binomial(N, p)-distributed for each i. Consequently, Pr(Λ|||AN |||1 >

a) ≤ N Pr(XN
1 ≥ Na/Λ) ≤ N Pr(|XN

1 − Np| ≥ N(a/Λ − p)). Since a/Λ >
p, we can use the Hoeffding inequality [21] to obtain Pr(Λ|||AN |||1 > a) ≤
2N exp(−2N(a/Λ− p)2) ≤ C exp(−N(a/Λ− p)2) as desired.

The next result is much harder but crucial.

Proposition 14. Assume that Λp < 1. It holds that

E

[
1Ω1

N

∣∣∣�̄N − 1

1− Λp

∣∣∣2] ≤ C

N2
,

E

[
1Ω1

N

∣∣∣ 1
N

N∑
i=1

�N (i)(cN (i))2 − 1

(1− Λp)3

∣∣∣2] ≤ C

N2
,

E

[
1Ω1

N

∣∣∣
N∑
i=1

(�N (i)− �̄N )2 − Λ2p(1− p)

(1− Λp)2

∣∣∣] ≤ C√
N

.

Proof. Recall that 1N is the N -dimensional vector of which all the coordinates
equal 1. Let �N (resp. cN ) be the vector with coordinates �N (1), . . . , �N (N)
(resp. cN (1), . . . , cN (N)). We also introduce, for all i = 1, . . . , N , LN (i) =∑N

j=1 AN (i, j) and CN (i) =
∑N

j=1 AN (j, i), as well as the corresponding vec-

tors LN and CN . Let us observe that, with obvious notation, �̄N = c̄N and
L̄N = C̄N . Finally, we introduce the vectors

xN = �N−�̄N1N , yN = cN−c̄N1N , XN = LN−L̄N1N , YN = CN−C̄N1N .

We recall that a = (1+Λp)/2 ∈ (0, 1) and we introduce b = (2+Λp)/3 ∈ (a, 1).
Step 1. We introduce the event

AN =
{
||LN − p1N ||2 + ||CN − p1N ||2 ≤ N1/4

}
⊂

{
||XN ||2 + ||YN ||2 ≤ N1/4

}
.

The inclusion comes from the fact that a.s., ||XN ||2 = ||LN − L̄N1N ||2 ≤
||LN − x1N ||2 for any x ∈ R. Since NLN = (ZN

1 , . . . , ZN
N ) with ZN

i i.i.d. and
Binomial(N, p)-distributed, it is very classical that for any α > 0, E[||LN −
p1N ||α2 ] ≤ Cα (uniformly in N), we have similarly E[||CN − p1N ||α2 ] ≤ Cα, so
that

Pr(AN ) ≥ 1− CαN
−α/4.

Step 2. We now check the following points: (i) E[|L̄N − p|2] ≤ CN−2, (ii)
E[||XN ||42] ≤ C, (iii) E[(||XN ||22 − p(1− p))2] ≤ CN−1 and (iv) E[||ANXN ||22] ≤
CN−1.

Point (i) is clear, because L̄N = N−2
∑N

i,j=1 θij is nothing but the empirical

mean of N2 independent Bernoulli(p)-random variables. Points (ii) and (iii)
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are very classical, since N ||XN ||22 is the empirical variance of N independent
Binomial(N, p)-random variables. We now prove (iv):

E[||ANXN ||22] =
N∑
i=1

E

[( N∑
j=1

θij
N

(LN (j)− L̄N )
)2]

=
1

N
E

[( N∑
j=1

θ1j(LN (j)− L̄N )
)2]

by symmetry. We now write E[||ANXN ||22] ≤ 4N−1(IN + JN +KN ), where

IN = E

[
(L̄N − p)2

( N∑
j=1

θ1j

)2]
, JN = E

[(
θ11(LN (1)− p)

)2]
,

KN = E

[( N∑
j=2

θ1j(LN (j)− p)
)2]

.

First, IN ≤ N2
E[(L̄N−p)2] ≤ C by (i). Next, it is obvious that JN ≤ 1 (because

θ11 ∈ {0, 1} and LN (1) ∈ [0, 1]). Finally, the random variables θ1j(LN (j) − p)
being i.i.d. and centered (for j = 2, . . . , N), we may write

KN = (N − 1)E
[(

θ12(LN (2)− p)
)2]

≤ (N − 1)E
[
(LN (2)− p)2

]
≤ C,

since NLN (2) follows a Binomial(N, p)-distribution. This completes the step.
Step 3. We next prove that (i) xN = ΛANxN − ΛrN1N + Λ�̄NXN on Ω1

N ,

where rN = N−2
∑N

i,j=1(θij − p)xN (j) and that (ii) |rN | ≤ N−3/4||xN ||2 on

Ω1
N ∩ AN .
We start from �N = QN1N = (I − ΛAN )−11N , whence �N = 1N + ΛAN �N .

Since �̄N = N−1(�N ,1N ), we see that �̄N = 1 + ΛN−1(AN �N ,1N ) (here (·, ·) is
the usual scalar product on R

N ) and thus

xN =ΛAN �N − ΛN−1(AN �N ,1N )1N

=ΛANxN − ΛN−1(ANxN ,1N )1N + �̄NΛAN1N − �̄NΛN−1(AN1N ,1N )1N .

It only remains to verify that N−1(ANxN ,1N ) = rN , which follows from the

facts that N−1(ANxN ,1N ) = N−2
∑N

i,j=1 θijxN (j), that
∑N

j=1 xN (j) = 0; and

that AN1N −N−1(AN1N ,1N )1N = XN , which is clear since AN1N = LN .

To verify (ii), we observe that rN = N−1
∑N

j=1(CN (j)−p)xN (j), whence, by

the Cauchy-Schwarz inequality, |rN | ≤ N−1||xN ||2||CN−p1N ||2 ≤ N−3/4||xN ||2
on Ω1

N ∩ AN .

Step 4. Let N0 be the smallest integer such that a+ ΛN
−1/4
0 ≤ b. We check

that for all N ≥ N0,
1Ω1

N∩AN
||xN ||2 ≤ C||XN ||2.

Using Step 3 and that ||1N ||2 = N1/2, we write ||xN ||2 ≤ Λ|||AN |||2||xN ||2 +
ΛN−1/4||xN ||2 + Λ|�̄N |||XN ||2. But on Ω1

N , Λ|||AN |||2 ≤ a and |�̄N | ≤ C,
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see (6) and (7). Hence, for N ≥ N0, on Ω1
N ∩ AN , we have ||xN ||2 ≤ (a +

ΛN−1/4)||xN ||2 + C||XN ||2 ≤ b||xN ||2 + C||XN ||2. Since b < 1, the conclusion
follows.

Step 5. We now prove that for N ≥ N0,

E

[
1Ω1

N∩AN

∣∣∣�̄N − 1

1− Λp

∣∣∣2] ≤ C

N2
.

Using Step 3, we know that on Ω1
N ∩ AN , �N = 1N + ΛAN �N , whence

�̄N = 1 +
Λ

N

N∑
i,j=1

AN (i, j)�N (j) = 1 +
Λ

N

N∑
j=1

CN (j)�N (j) = 1 + Λp�̄N + SN ,

where SN = ΛN−1
∑N

j=1(CN (j)− p)�N (j). Consequently, �̄N = (1−Λp)−1(1 +

SN ), and we only have to prove that E[1Ω1
N∩AN

S2
N ] ≤ CN−2. To this end,

we write SN = ΛN−1(aN + bN ), where aN =
∑N

j=1(CN (j) − p)xN (j) and

bN = �̄N
∑N

j=1(CN (j) − p). First, since |�̄N | ≤ C on Ω1
N by (7), we can write

E[1Ω1
N
b2N ] ≤ CE[(

∑N
j=1(CN (j)−p))2] = CN2

E[(C̄N−p)2] ≤ C, the last inequal-

ity coming from Step 2-(i) since C̄N = L̄N . Next, we use the Cauchy-Schwarz
inequality: a2N ≤ ||CN − p1N ||2||xN ||2 ≤ C||CN − p1N ||2||XN ||2 on Ω1

N ∩ AN

by Step 4. Consequently, E[1Ω1
N∩AN

a2N ] ≤ CE[||XN ||22]1/2E[||CN − p1N ||22]1/2.
But E[||XN ||22] ≤ C by Step 2-(ii) and we have seen at the end of Step 1 that
E[||CN − p1N ||22] ≤ C.

Step 6. Here we verify that, still for N ≥ N0,

E

[
1Ω1

N∩AN

∣∣∣ 1
N

N∑
i=1

�N (i)(cN (i))2 − 1

(1− Λp)3

∣∣∣2] ≤ C

N2
.

We write, using that c̄N = �̄N ,

1

N

N∑
i=1

�N (i)(cN (i))2 =
1

N

N∑
i=1

�N (i)(cN (i)− c̄N )2 + (�̄N )3

+
2

N
�̄N

N∑
i=1

�N (i)(cN (i)− c̄N ).

First, since |�̄N | ≤ C on Ω1
N , we have |(�̄N )3− (1−Λp)−3| ≤ C|�̄N − (1−Λp)−1|,

whence E[1Ω1
N∩AN

|(�̄N )3 − (1− Λp)−3|2] ≤ CN−2 by Step 5. It thus suffices to

verify that E[1Ω1
N∩AN

((a′N )2+(b′N )2)] ≤ C, where a′N =
∑N

i=1 �N (i)(cN (i)−c̄N )2

and b′N =
∑N

i=1 �N (i)(cN (i)− c̄N ).

First, b′N =
∑N

i=1 �N (i)yN (i) =
∑N

i=1 xN (i)yN (i) because
∑N

i=1 yN (i) = 0.
Hence |b′N | ≤ ||xN ||2||yN ||2. But on Ω1

N∩AN , we know from Step 4 that ||xN ||2 ≤
C||XN ||2, and it obviously also holds true that ||yN ||2 ≤ C||YN ||2. We thus
conclude that E[1Ω1

N∩AN
(b′N )2] ≤ CE[||XN ||42]1/2E[||YN ||42]1/2 = E[||XN ||42] by
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symmetry. Using finally Step 2-(ii), we deduce that indeed, E[1Ω1
N∩AN

(b′N )2] ≤
C. Next, since |�N (i)| ≤ C on Ω1

N by (7), we can write |a′N | ≤ C||cN−c̄N1N ||22 =
C||yN ||22. We conclude as previously that E[1Ω1

N∩AN
(a′N )2] ≤ C.

Step 7. The goal of this step is to establish that, for all N ≥ N0,

E

[
1Ω1

N∩AN

∣∣∣||xN ||22 −
Λ2p(1− p)

(1− Λp)2

∣∣∣] ≤ C√
N

.

Starting from Step 3, we write

xN−Λ�̄NXN =ΛANxN−ΛrN1N = ΛAN (xN−Λ�̄NXN )+Λ2�̄NANXN−ΛrN1N .

Thus

||xN − Λ�̄NXN ||2 ≤Λ|||AN |||2||xN − Λ�̄NXN ||2 + Λ2|�̄N |||ANXN ||2
+ ΛN−1/2||CN − p1N ||2||xN ||2,

where we used that ||1N ||2 = N1/2 and that |rN | ≤ N−1||CN −p1N ||2||xN ||2 on
Ω1

N ∩ AN , as checked at the end of Step 3. Using now that Λ|||AN |||2 ≤ a < 1
and |�̄N | ≤ C on Ω1

N and that ||xN ||2 ≤ C||XN ||2 on Ω1
N ∩ AN by Step 4, we

conclude that, still on Ω1
N ∩ AN ,

||xN − Λ�̄NXN ||22 ≤ C(||ANXN ||22 + CN−1||CN − p1N ||22||XN ||22).

Since now E[||ANXN ||22] ≤ CN−1 by Step 2-(iv), since E[||XN ||42] ≤ C by Step
2-(ii) and since E[||CN − p1N ||42] ≤ C (see the end of Step 1), we deduce that

E

[
1Ω1

N∩AN
||xN − Λ�̄NXN ||22

]
≤ C

N
.

Next, we observe that
∣∣||xN ||22 − (Λ�̄N )2||XN ||22

∣∣ ≤ ||xN − Λ�̄NXN ||2(||xN ||2 +
Λ|�̄N |||XN ||2) ≤ C||xN −Λ�̄NXN ||2||XN ||2 on Ω1

N ∩AN by Step 4 and since �̄N
is bounded on Ω1

N . Hence

E

[
1Ω1

N∩AN

∣∣∣||xN ||22 − (Λ�̄N )2||XN ||22
∣∣∣] ≤ C√

N
E[||XN ||22]1/2 ≤ C√

N

by Step 2-(ii). To complete the step, it only remains to verify that

dN = E

[
1Ω1

N∩AN

∣∣∣(�̄N )2||XN ||22 − p(1− p)(1− Λp)−2
∣∣∣] ≤ C√

N
.

We naturally write dN ≤ a′′N + b′′N , where

a′′N =E

[
1Ω1

N∩AN

∣∣∣(�̄N )2 − (1− Λp)−2
∣∣∣||XN ||22

]
,

b′′N =(1− Λp)−2
E

[
1Ω1

N∩AN

∣∣∣||XN ||22 − p(1− p)
∣∣∣].
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Step 2-(iii) directly implies that b′′N ≤ CN−1/2. Using that �̄N is bounded on
Ω1

N , we deduce that |(�̄N )2 − (1− Λp)−2| ≤ C|�̄N − (1− Λp)−1|. Thus

a′′N ≤ CE

[
1Ω1

N∩AN

∣∣∣�̄N − (1− Λp)−1
∣∣∣2]1/2E[||XN ||42]1/2.

Step 2-(ii) and Step 5 imply that a′′N ≤ CN−1 ≤ CN−1/2 as desired.
Step 8. It remains to conclude. It clearly suffices to treat the case where

N ≥ N0, because �N (i) and cN (i) are uniformly bounded on Ω1
N by (7), so that

the inequalities of the statement are trivial when N ≤ N0 (if the constant C is
large enough). Since �̄N is (uniformly) bounded on Ω1

N , we have

E

[
1Ω1

N

∣∣∣�̄N − 1

1− Λp

∣∣∣2] ≤ E

[
1Ω1

N∩AN

∣∣∣�̄N − 1

1− Λp

∣∣∣2]+ C Pr((AN )c).

The first term is bounded by CN−2 (by Step 5), as well as the second one (use
the last inequality of Step 1 with α = 8).

Similarly, using Step 6 and that �N (i) and cN (i) are (uniformly) bounded on
Ω1

N , we see that

E

[
1Ω1

N

∣∣∣ 1
N

N∑
i=1

�N (i)(cN (i))2 − 1

(1− Λp)3

∣∣∣2] ≤ C

N2
+ C Pr((AN )c) ≤ C

N2
.

Finally, observe that
∑N

i=1(�N (i)− �̄N )2 = ||xN ||22 is bounded by CN on Ω1
N ,

so that by Step 7,

E

[
1Ω1

N

∣∣∣
N∑
i=1

(�N (i)− �̄N )2 − Λ2p(1− p)

(1− Λp)2

∣∣∣] ≤ C√
N

+ CN Pr((AN )c) ≤ C√
N

.

We used the last inequality of Step 1 with α = 6.

4.2. Preliminary analytic estimates

In view of (3) and (4), it will be necessary for our purpose to study very precisely
the behavior of ϕ�n, which we now do. The following statements may seem rather
tedious, but they are exactly the ones we need. Recall that ϕ�0(t−s)ds = δt(ds)
and that ϕ�n(s) = 0 for s < 0 by convention.

Lemma 15. Recall that ϕ : [0,∞) �→ [0,∞) and that Λ =
∫∞
0

ϕ(s)ds. Assume

that there is q ≥ 1 such that
∫∞
0

sqϕ(s)ds < ∞ and set κ = Λ−1
∫∞
0

sϕ(s)ds.

(i) For n ≥ 0 and t ≥ 0, we have
∫ t

0
sϕ�n(t − s)ds = Λnt − nΛnκ + εn(t),

where
0 ≤ εn(t) ≤ CnqΛnt1−q and εn(t) ≤ nΛnκ.

(ii) For n ≥ 0, for 0 ≤ t ≤ z and s ∈ [0, z], we set βn(t, z, s) = ϕ�n(z −
s) − ϕ�n(t − s). Then

∫ z

0
|βn(t, z, s)|ds ≤ 2Λn and for all 0 ≤ Δ ≤ t and all

z ∈ [t, t+Δ],

∣∣∣
∫ z

0

βn(t, z, s)ds
∣∣∣ ≤ CnqΛnt−q,



1242 S. Delattre and N. Fournier

∫ t−Δ

0

|βn(t, z, s)|ds+
∣∣∣
∫ z

t−Δ

βn(t, z, s)ds
∣∣∣ ≤ CnqΛnΔ−q.

(iii) For m,n ≥ 0, for 0 ≤ t ≤ z, we put

γm,n(t, z) =

∫ z

0

∫ z

0

(s ∧ u)βm(t, z, s)βn(t, z, u)duds.

It holds that 0 ≤ γm,n(t, t+Δ) ≤ Λm+nΔ, for all t ≥ 0, all Δ ≥ 0. Furthermore,
there is a family κm,n satisfying 0 ≤ κm,n ≤ (m + n)κ such that, for all 0 ≤
Δ ≤ t,

γm,n(t, t+Δ) = ΔΛm+n − κm,nΛ
m+n + εm,n(t, t+Δ),

with |εm,n(t, t+Δ)| ≤ C(m+ n)qΛm+ntΔ−q.

Proof. We introduce some i.i.d. random variables X1, X2, . . . with density Λ−1ϕ
and set S0 = 0 as well as Sn = X1 + · · · + Xn for all n ≥ 1. We observe
that, by the Minkowski inequality, E[Sq

n] ≤ nq
E[Xq

1 ] ≤ Cnq, since E[Xq
1 ] =

Λ−1
∫∞
0

sqϕ(s)ds < ∞ by assumption.
To check (i), we use that Sn has for density Λ−nϕ�n, so that we can write

∫ t

0

sϕ�n(t−s)ds =

∫ t

0

(t−s)ϕ�n(s)ds = Λn
E[(t−Sn)+] = Λnt−Λn

E[Sn]+εn(t),

where εn(t) = Λn
E[(Sn − t)1{Sn≥t}]. We clearly have that E[Sn] = nκ, that

εn(t) ≥ 0 and that εn(t) ≤ Λn
E[Sn] = nΛnκ. Finally, εn(t) ≤ Λn

E[Sn1{Sn≥t}] ≤
Λnt1−q

E[Sq
n] ≤ CnqΛnt1−q.

To check (ii), we observe that
∫ z

0
|βn(t, z, s)|ds ≤ 2Λn is obvious because∫∞

0
ϕ�n(s)ds = Λn and that, since E[Sq

n] ≤ Cnq,

∫ ∞

r

ϕ�n(u)du = Λn Pr(Sn ≥ r) ≤ CnqΛnr−q.

We write
∫ z

0
βn(t, z, s)ds =

∫ z

0
ϕ�n(z − s)ds −

∫ t

0
ϕ�n(t − s)ds =

∫ z

t
ϕ�n(u)du,

which implies that |
∫ z

0
βn(t, z, s)ds| ≤

∫∞
t

ϕ�n(u)du ≤ CnqΛnt−q. Next, we

see that
∫ t−Δ

0
|βn(t, z, s)|ds ≤

∫ t−Δ

0
ϕ�n(z − u)du +

∫ t−Δ

0
ϕ�n(t − u)du, which

is bounded by 2
∫∞
Δ

ϕ�n(u)du ≤ CnqΛnΔ−q. Finally, using the two previous

bounds, we find |
∫ z

t−Δ
βn(t, z, s)ds| ≤ |

∫ z

0
βn(t, z, s)ds| + |

∫ t−Δ

0
βn(t, z, s)ds| ≤

CnqΛnt−q + CnqΛnΔ−q ≤ CnqΛnΔ−q because Δ ∈ [0, t] by assumption.
We finally prove (iii) and thus consider 0 ≤ Δ ≤ t and m,n ≥ 0. We start

from

γm,n(t, t+Δ) =

∫ t+Δ

0

∫ t+Δ

0

(s ∧ u)
[
ϕ�m(t+Δ− s)ϕ�n(t+Δ− u)

+ ϕ�m(t− s)ϕ�n(t− u)− ϕ�m(t+Δ− s)ϕ�n(t− u)

− ϕ�m(t− s)ϕ�n(t+Δ− u)
]
duds.
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Using another (independent) i.i.d. family Y1, Y2, . . . of random variables with
density Λ−1ϕ and setting Tm = Y1 + · · · + Ym (or Tm = 0 if m = 0), we may
write

γm,n(t, t+Δ)

=Λm+n
E

[
(t+Δ− Tm)+ ∧ (t+Δ− Sn)++(t− Tm)+ ∧ (t− Sn)+

− (t+Δ− Tm)+ ∧ (t− Sn)+ − (t− Tm)+ ∧ (t+Δ− Sn)+

]
.

This precisely rewrites γm,n(t, t+Δ) = Λm+n
E[((t+Δ−Tm ∨Sn)+− (t−Tm ∧

Sn)+)+], which implies that 0 ≤ γm,n(t, t+Δ) ≤ Λm+nΔ. We next introduce

δm,n(t, t+Δ) = Λm+n
E[(t+Δ− Tm ∨ Sn)− (t− Tm ∧ Sn)],

which equals δm,n(t, t + Δ) = Λm+n(Δ − κm,n), where κm,n = E[|Tm − Sn|]
satisfies 0 ≤ κm,n ≤ κ(m + n). Thus γm,n(t, t + Δ) = Λm+n(Δ − κm,n) +
εm,n(t, t+Δ), where εm,n(t, t+Δ) = γm,n(t, t+Δ)− δm,n(t, t+Δ). Finally, it
is clear that, since 0 ≤ Δ ≤ t,

|εm,n(t, t+Δ)| ≤Λm+n(t+Δ)Pr(Tm ∨ Sn ≥ t+Δ or Tm ∧ Sn ≥ t

or |Tm − Sn| ≥ Δ)

≤2Λm+ntPr(Tm ≥ Δ or Sn ≥ Δ).

This is, as usual, bounded by CΛm+nt(mq + nq)Δ−q.

4.3. Preliminary stochastic analysis

We handle once for all a number of useful computations concerning the processes
introduced in Notation 9.

Lemma 16. We assume H(q) for some q ≥ 1. Recall that Ω1
N and �N were

defined in Notation 12 and that all the processes below have been introduced in
Notation 9.

(i) For any r ∈ [1,∞], for all t ≥ 0,

1Ω1
N
‖Eθ[Z

N
t ]‖r ≤ Ct||1N ||r.

(ii) For any r ∈ [1,∞], for all t ≥ s ≥ 0,

1Ω1
N

∥∥∥Eθ

[
ZN

t − ZN
s

]
− μ(t− s)�N

∥∥∥
r
≤ C(1 ∧ s1−q)||1N ||r.

(iii) For all t ≥ s+ 1 ≥ 1,

1Ω1
N

sup
i=1,...,N

Eθ

[
(Zi,N

t − Zi,N
s )2 + sup

[s,t]

|M i,N
r −M i,N

s |4
]
+ 1Ω1

N
Eθ

[
(Z̄N

t − Z̄N
s )2

]

≤ C(t− s)2.
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Proof. Recall (3), which asserts that Eθ[Z
N
t ] = μ

∑
n≥0[

∫ t

0
sϕ�n(t− s)ds]An

N1N .

Since
∫ t

0
sϕ�n(t − s)ds ≤ tΛn, we get ||Eθ[Z

N
t ]||r ≤ μt

∑
n≥0 Λ

n|||AN |||nr ||1N ||r.
This is clearly bounded, on Ω1

N , by Ct||1N ||r, which proves (i).
Using next Lemma 15-(i), Eθ[Z

N
t ] = μ

∑
n≥0[Λ

nt − nΛnκ + εn(t)]A
n
N1N ,

where 0 ≤ εn(t) ≤ CnqΛn(t1−q ∧ 1). Hence

Eθ[Z
N
t ]− Eθ[Z

N
s ] = μ(t− s)

∑
n≥0

ΛnAn
N1N + μ

∑
n≥0

[εn(t)− εn(s)]A
n
N1N .

But
∑

n≥0 Λ
nAn

N1N = QN1N = �N on Ω1
N . Thus, still on Ω1

N , since s ≤ t and
q ≥ 1,∥∥∥Eθ

[
ZN

t − ZN
s

]
− μ(t− s)�N

∥∥∥
r
≤C(1 ∧ s1−q)

∑
n≥0

nqΛn|||AN |||nr ||1N ||r

≤C(1 ∧ s1−q)||1N ||r.

Since [M i,N ,M i,N ]t = Zi,N
t by Remark 10, the Doob inequality implies that

Eθ[sup[s,t] |M i,N
r −M i,N

s |4
]
≤ CEθ[(Z

i,N
t − Zi,N

s )2]. Also, the Cauchy-Schwarz

inequality tells us that Eθ[(Z̄
N
t − Z̄N

s )2] ≤ N−1
∑N

i=1 Eθ[(Z
i,N
t − Zi,N

s )2] ≤
supi=1,...,N Eθ[(Z

i,N
t − Zi,N

s )2].

Hence we just have to prove that supi=1,...,N Eθ[(Z
i,N
t −Zi,N

s )2] ≤ C(t− s)2.

Recalling that Zi,N
t = U i,N

t + Eθ[Z
i,N
t ], we have to show that, on Ω1

N , (a)

(Eθ[Z
i,N
t ]− Eθ[Z

i,N
s ])2 ≤ C(t− s)2 and (b) Eθ[(U

i,N
t − U i,N

s )2] ≤ C(t− s)2.

To prove (a), we use (ii) with r = ∞ and find that, on Ω1
N , Eθ[Z

i,N
t ] −

Eθ[Z
i,N
s ] ≤ μ(t− s)||�N ||∞ + C||1N ||∞ ≤ C(t− s), since �N is bounded on Ω1

N

and since t− s ≥ 1 by assumption.
To prove (b), we use (4) to write

U i,N
t − U i,N

s =
∑
n≥0

∫ t

0

βn(s, t, r)

N∑
j=1

An
N (i, j)M j,N

r dr,

where we have set βn(s, t, r) = ϕ�n(t − r) − ϕ�n(s − r) as in Lemma 15. We
deduce that

E[(U i,N
t − U i,N

s )2] =
∑

m,n≥0

∫ t

0

∫ t

0

βm(s, t, u)βn(s, t, v)

N∑
j,k=1

Am
N (i, j)An

N (i, k)Eθ[M
j,N
u Mk,N

v ]dvdu.

By Remark 10, Eθ[M
j,N
u Mk,N

v ] = 1{j=k}Eθ[Z
j,N
u∧v]. Using now (ii) with s = 0 and

r = ∞, we see that xj,N
t := Eθ[Z

j,N
t ]− μt�N (j) satisfies supt≥0,j=1,...,N |xj,N

t | ≤
C on Ω1

N . We thus write Eθ[(U
i,N
t − U i,N

s )2] = I + J , where

I =μ
∑

m,n≥0

∫ t

0

∫ t

0

βm(s, t, u)βn(s, t, v)

N∑
j=1

Am
N (i, j)An

N (i, j)(u ∧ v)�N (j)dudv,
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J =
∑

m,n≥0

∫ t

0

∫ t

0

βm(s, t, u)βn(s, t, v)

N∑
j=1

Am
N (i, j)An

N (i, j)xj,N
u∧vdudv.

First, using that xj,N
t is bounded on Ω1

N and that
∫ t

0
|βm(s, t, u)|du ≤ 2Λm,

we find |J | ≤ C
∑

m,n≥0 Λ
m+n

∑N
j=1 A

m
N (i, j)An

N (i, j) = C
∑N

j=1(QN (i, j))2 on

Ω1
N , whence |J | ≤ C

∑N
j=1(1{i=j} +N−1)2 by (8). We conclude that |J | ≤ C ≤

C(t− s)2. Next, we realize that, with the notation of Lemma 15-(iii),

I = μ
∑

m,n≥0

γm,n(s, t)

N∑
j=1

Am
N (i, j)An

N (i, j)�N (j).

But we know that 0 ≤ γm,n(s, t) ≤ Λm+n(t− s), so that

I ≤ μ(t− s)

N∑
j=1

(QN (i, j))2�N (j) ≤ C(t− s),

since �N is bounded on Ω1
N and since, as already seen,

∑N
j=1(QN (i, j))2 is also

bounded on Ω1
N . We conclude that Eθ[(U

i,N
t − U i,N

r )2] ≤ C(t − s) ≤ C(t − s)2

on Ω1
N , as desired.

4.4. First estimator

We recall that EN
t = (Z̄N

2t − Z̄N
t )/t, that the matrices AN and QN and the

event Ω1
N were defined in Notation 12, as well as �N (i) =

∑N
j=1 QN (i, j) and

�̄N = N−1
∑N

i=1 �N (i). The goal of this subsection is to establish the following
estimate.

Proposition 17. Assume H(q) for some q ≥ 1. Then for t ≥ 1,

1Ω1
N
Eθ

[∣∣∣EN
t − μ�̄N

∣∣∣2] ≤ C
( 1

t2q
+

1

Nt

)
.

We start with the following lemma (recall that ŪN was defined in Notation
9).

Lemma 18. Assume H(q) for some q ≥ 1. Then on Ω1
N , for t ≥ 1,

∣∣∣Eθ[EN
t ]− μ�̄N

∣∣∣ ≤ Ct−q and Eθ[|ŪN
t |2] ≤ CtN−1.

Proof. Applying Lemma 16-(ii) with r = 1, we immediately find, on Ω1
N ,

∣∣∣Eθ[EN
t ]− μ�̄N

∣∣∣ ≤ N−1
∥∥∥Eθ

[ZN
2t − ZN

t

t

]
− μ�N

∥∥∥
1
≤ CN−1t−q||1N ||1 = Ct−q.

Next, ŪN
t = N−1

∑
n≥0

∫ t

0
ϕ�n(t− s)

∑N
i,j=1 A

n
N (i, j)M j,N

s ds by (4). Hence
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Eθ[|ŪN
t |2]1/2 ≤ N−1

∑
n≥0

∫ t

0

ϕ�n(t− s)Eθ

[( N∑
i,j=1

An
N (i, j)M j,N

s

)2]1/2
ds

by the Minkowski inequality. But recalling Remark 10, i.e. Eθ[M
j,N
s M l,N

s ] =
1{j=l}Eθ[Z

j,N
s ],

Eθ

[( N∑
i,j=1

An
N (i, j)M j,N

s

)2]
=

N∑
j=1

( N∑
i=1

An
N (i, j)

)2

Eθ[Z
j,N
s ]

≤|||AN |||2n1
N∑
j=1

Eθ[Z
j,N
s ].

We know from Lemma 16-(i) with r = 1 that
∑N

j=1 Eθ[Z
j,N
s ] ≤ CNs on Ω1

N .

Hence, still on Ω1
N ,

Eθ[|ŪN
t |2]1/2 ≤ C

N

∑
n≥0

|||AN |||n1
∫ t

0

√
Nsϕ�n(t− s)ds ≤ Ct1/2

N1/2

∑
n≥0

Λn|||AN |||n1 ,

which is smaller than Ct1/2N−1/2 as desired.

We can now give the

Proof of Proposition 17. It suffices to write

Eθ

[∣∣∣EN
t − μ�̄N

∣∣∣2] ≤ 2Eθ

[∣∣∣EN
t − Eθ[EN

t ]
∣∣∣2]+ 2

∣∣∣Eθ[EN
t ]− μ�̄N

∣∣∣2

and to observe that |EN
t − Eθ[EN

t ]| = |ŪN
2t − ŪN

t |/t ≤ |ŪN
2t |/t+ |ŪN

t |/t, whence
finally

Eθ

[∣∣∣EN
t − μ�̄N

∣∣∣2] ≤ 4

t2
(Eθ[|ŪN

2t |2] + Eθ[|ŪN
t |2]) + 2

∣∣∣Eθ[EN
t ]− μ�̄N

∣∣∣2.
Then the proposition immediately follows from Lemma 18.

4.5. Second estimator

We recall that VN
t =

∑N
i=1[(Z

i,N
2t − Zi,N

t )/t − EN
t ]2 − NEN

t /t where EN
t =

(Z̄N
2t − Z̄N

t )/t, that the matrices AN and QN and the event Ω1
N were defined in

Notation 12, as well as �N (i) =
∑N

j=1 QN (i, j) and �̄N = N−1
∑N

i=1 �N (i). We

also introduce VN
∞ = μ2

∑N
i=1[�N (i)− �̄N ]2.

Proposition 19. Assume H(q) for some q ≥ 1. Then for t ≥ 1, a.s.,

1Ω1
N
Eθ

[∣∣∣VN
t − VN

∞

∣∣∣] ≤ C
(
1 +

N∑
i=1

[
�N (i)− �̄N

]2)1/2(N
tq

+

√
N

t
+

1√
t

)
.

Observe that the term
∑N

i=1[�N (i) − �̄N ]2 will not cause any problem, since
its expectation (restricted to Ω1

N ) is uniformly bounded, see Proposition 14.
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We write |VN
t − VN

∞| ≤ ΔN,1
t +ΔN,2

t +ΔN,3
t , where

ΔN,1
t =

∣∣∣
N∑
i=1

[(Zi,N
2t − Zi,N

t )/t− EN
t ]2 −

N∑
i=1

[(Zi,N
2t − Zi,N

t )/t− μ�̄N ]2
∣∣∣,

ΔN,2
t =

∣∣∣
N∑
i=1

[(Zi,N
2t − Zi,N

t )/t− μ�N (i)]2 −NEN
t /t

∣∣∣,

ΔN,3
t =2

∣∣∣
N∑
i=1

[(Zi,N
2t − Zi,N

t )/t− μ�N (i)][μ�N (i)− μ�̄N ]
∣∣∣.

We next write ΔN,2
t ≤ ΔN,21

t +ΔN,22
t +ΔN,23

t , where

ΔN,21
t =

∣∣∣
N∑
i=1

[
(Zi,N

2t − Zi,N
t )/t− Eθ[(Z

i,N
2t − Zi,N

t )/t]
]2

−NEN
t /t

∣∣∣,

ΔN,22
t =

N∑
i=1

[
Eθ[(Z

i,N
2t − Zi,N

t )/t]− μ�N (i)
]2
,

ΔN,23
t =2

∣∣∣
N∑
i=1

[
(Zi,N

2t − Zi,N
t )/t− Eθ[(Z

i,N
2t − Zi,N

t )/t]
]

×
[
Eθ[(Z

i,N
2t − Zi,N

t )/t]− μ�N (i)
]∣∣∣.

We will also need to write, recalling that U i,N
t = Zi,N

t − Eθ[Z
i,N
t ],

ΔN,21
t =

∣∣∣
N∑
i=1

[
(U i,N

2t − U i,N
t )/t

]2
−NEN

t /t
∣∣∣ ≤ ΔN,211

t +ΔN,212
t +ΔN,213

t ,

where

ΔN,211
t =

∣∣∣
N∑
i=1

{(
(U i,N

2t − U i,N
t )/t

)2

− Eθ

[(
(U i,N

2t − U i,N
t )/t

)2]}∣∣∣,

ΔN,212
t =

∣∣∣
N∑
i=1

Eθ

[(
(U i,N

2t − U i,N
t )/t

)2]
− Eθ[NEN

t /t]
∣∣∣,

ΔN,213
t =

∣∣∣NEN
t /t− Eθ[NEN

t /t]
∣∣∣.

Finally, we will use that ΔN,3
t ≤ ΔN,31

t +ΔN,32
t , where

ΔN,31
t =2

∣∣∣
N∑
i=1

[
(Zi,N

2t − Zi,N
t )/t− Eθ[(Z

i,N
2t − Zi,N

t )/t]
][
μ�N (i)− μ�̄N

]∣∣∣,

ΔN,32
t =2

∣∣∣
N∑
i=1

[
Eθ[(Z

i,N
2t − Zi,N

t )/t]− μ�N (i)
][
μ�N (i)− μ�̄N

]∣∣∣.
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To summarize, we have to bound ΔN,1
t , ΔN,211

t , ΔN,212
t , ΔN,213

t , ΔN,22
t , ΔN,23

t ,

ΔN,31
t and ΔN,32

t . Only the term ΔN,211
t is really difficult.

In the following lemma, we treat the easy terms. We do not try to be optimal
when not useful: for example in (iv) below, some sharper estimate could probably
be obtained with more work, but since we already have a term in N1/2t−1 (see
Lemma 24), this would be useless. We also recall that we do not really try to
optimize the dependence in q: it is likely that t−q could be replaced by t−2q here
and there.

Lemma 20. Assume H(q) for some q ≥ 1. Then a.s. on Ω1
N , for t ≥ 1,

(i) Eθ[Δ
N,1
t ] ≤ C(Nt−2q + t−1),

(ii) Eθ[Δ
N,22
t ] ≤ CNt−2q,

(iii) Eθ[Δ
N,23
t ] ≤ CNt−q,

(iv) Eθ[Δ
N,213
t ] ≤ CN1/2t−3/2,

(v) Eθ[Δ
N,32
t ] ≤ CNt−q.

Proof. We work on Ω1
N during the whole proof.

Using that EN
t = N−1

∑N
i=1[(Z

i,N
2t −Zi,N

t )/t], one easily checks that ΔN,1
t =

N |EN
t − μ�̄N |2. Thus point (i) follows from Proposition 17.

Next, we observe that ΔN,22
t = ||Eθ[(Z

N
2t−ZN

t )/t]−μ�N ||22. Applying Lemma

16-(ii) with r = 2, we conclude that indeed, ΔN,22
t ≤ Ct−2q||1N ||22 = CNt−2q.

We write

ΔN,23
t ≤ 2

∥∥∥(ZN
2t − ZN

t )/t− Eθ[(Z
N
2t − ZN

t )/t]
∥∥∥
1

∥∥∥Eθ[(Z
N
2t − ZN

t )/t]− μ�N

∥∥∥
∞
.

Applying Lemma 16-(ii) with r = ∞, we deduce that ‖Eθ[(Z
N
2t − ZN

t )/t] −
μ�N‖∞ ≤ Ct−q. Lemma 16-(i) with r = 1 gives us that Eθ[‖(ZN

2t − ZN
t )/t −

Eθ[(Z
N
2t − ZN

t )/t]‖1] ≤ 2t−1‖Eθ[Z
N
2t + ZN

t ]‖1 ≤ CN . We thus find that indeed,

Eθ[Δ
N,23
t ] ≤ CNt−q.

Since ΔN,213
t = (N/t)|EN

t −Eθ[EN
t ]| = Nt−2|ŪN

2t −ŪN
t | ≤ Nt−2(|ŪN

2t |+|ŪN
t |),

we deduce from Lemma 18 that Eθ[Δ
N,213
t ] ≤ CNt−2

√
t/N = CN1/2t−3/2.

Finally, starting from ΔN,32
t ≤ 2μ||Eθ[(Z

N
2t −ZN

t )/t]− μ�N ||∞||�N − �̄N1N ||1
and using that, as already seen when studying ΔN,23

t , ‖Eθ[(Z
N
2t − ZN

t )/t] −
μ�N‖∞ ≤ Ct−q, we conclude that ΔN,32

t ≤ Ct−q||�N − �̄N1N ||1 ≤ CNt−q, since
�N is bounded (see (7)) on Ω1

N .

Next, we treat the term ΔN,212
t .

Lemma 21. Assume H(q) for some q ≥ 1. Then a.s. on Ω1
N , for t ≥ 1,

Eθ[Δ
N,212
t ] ≤ Ct−1.

Proof. We work on Ω1
N . Recalling that NEN

t = t−1
∑N

i=1(Z
i,N
2t −Zi,N

t ), we may

write Eθ[Δ
N,212
t ] ≤ t−2

∑N
i=1 ai, where ai = |Eθ[(U

i,N
2t −U i,N

t )2−(Zi,N
2t −Zi,N

t )]|.
We infer from (4) that U i,N

t = M i,N
t +

∑
n≥1

∫ t

0
ϕ�n(t−s)

∑N
j=1 A

n
N (i, j)M j,N

s ds,
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so that U i,N
2t − U i,N

t = M i,N
2t −M i,N

t +Ri,N
t , where

Ri,N
t =

∑
n≥1

∫ 2t

0

βn(t, 2t, s)

N∑
j=1

An
N (i, j)M j,N

s ds.

We have set βn(t, 2t, s) = ϕ�n(2t − s) − ϕ�n(t − s) as in Lemma 15 and the

only thing we will use is that
∫ 2t

0
|βn(t, 2t, s)|ds ≤ 2Λn. Recalling that M i,N is a

martingale with quadratic variation [M i,N ,M i,N ]t = Zi,N
t , see Remark 10, we

deduce that Eθ[(M
i,N
2t −M i,N

t )2] = Eθ[Z
i,N
2t − Zi,N

t ]. Hence

ai = Eθ[(R
i,N
t )2] + 2Eθ[(M

i,N
2t −M i,N

t )Ri,N
t ] = bi + di,

the last equality standing for a definition. We first write

bi =
∑

m,n≥1

∫ 2t

0

∫ 2t

0

βm(t, 2t, s)βn(t, 2t, u)

N∑
j,k=1

Am
N (i, j)An

N (i, k)Eθ[M
j,N
s Mk,N

u ]duds.

But we know that Eθ[M
j,N
s Mk,N

u ] = 1{j=k}Eθ[Z
j,N
s∧u] by Remark 10 and that

Eθ[Z
j,N
s∧u] ≤ Ct on Ω1

N by Lemma 16-(i) (with r = ∞). Hence

bi ≤ Ct
∑

m,n≥1

Λm+n
N∑
j=1

Am
N (i, j)An

N (i, j) = Ct

N∑
j=1

(∑
n≥1

ΛnAn
N (i, j)

)2

.

But
∑

n≥1 Λ
nAn

N (i, j) = QN (i, j) − 1{i=j} ≤ CN−1 on Ω1
N by (8), so that

bi ≤ CtN−1.
Next, we start from

di = 2
∑
n≥1

∫ 2t

0

βn(t, 2t, s)

N∑
j=1

An
N (i, j)Eθ[(M

i,N
2t −M i,N

t )M j,N
s ]ds.

As previously, we see that Eθ[(M
i,N
2t − M i,N

t )M j,N
s ] = 0 if i �= j and that

Eθ[(M
i,N
2t − M i,N

t )M i,N
s ] = Eθ[Z

i,N
2t∧s − Zi,N

t∧s ] ≤ Ct on Ω1
N (by Lemma 16-(i)),

whence
di ≤ Ct

∑
n≥1

ΛnAn
N (i, i) = Ct(QN (i, i)− 1) ≤ CtN−1

on Ω1
N by (8) again. Finally, ai ≤ CtN−1, so that Eθ[Δ

N,212
t ] ≤ t−2

∑N
i=1 ai ≤

Ct−1 on Ω1
N .

We next compute some covariances in the following tedious lemma.

Lemma 22. Assume H(q) for some q ≥ 1. Then a.s., on Ω1
N , for all t ≥ 1, all

k, l, a, b ∈ {1, . . . , N}, all r, s, u, v ∈ [0, t],



1250 S. Delattre and N. Fournier

(i) |Covθ (Zk,N
r , Zl,N

s )| = |Covθ (Uk,N
r , U l,N

s )| ≤ Ct(N−1 + 1{k=l}),

(ii) |Covθ (Zk,N
r ,M l,N

s )| = |Covθ (Uk,N
r ,M l,N

s )| ≤ Ct(N−1 + 1{k=l}),

(iii) |Covθ (Zk,N
r ,

∫ s

0
M l,N

τ− dM l,N
τ )| = |Covθ (Uk,N

r ,
∫ s

0
M l,N

τ− dM l,N
τ )| is smaller

than Ct3/2(N−1 + 1{k=l}),

(iv) |Eθ[M
k,N
r Mk,N

s M l,N
u ]| ≤ CN−1t if #{k, l} = 2,

(v) |Covθ (Mk,N
r M l,N

s ,Ma,N
u M b,N

v )| = 0 if #{k, l, a, b} = 4,
(vi) |Covθ (Mk,N

r Mk,N
s ,Ma,N

u M b,N
v )| ≤ CN−2t if #{k, a, b} = 3,

(vii) |Covθ (Mk,N
r Mk,N

s ,Ma,N
u Ma,N

v )| ≤ CN−1t3/2 if #{k, a} = 2,
(viii) |Covθ (Mk,N

r M l,N
s ,Ma,N

u M b,N
v )| ≤ Ct2 without condition.

Proof. We work on Ω1
N and start with point (i). First, it is clear, since Uk,N

t =

Zk,N
t − Eθ[Z

k,N
t ], that Covθ (Z

k,N
r , Zl,N

s ) = Covθ (U
k,N
r , U l,N

s ). Then we infer
from (4) that

Covθ (U
k,N
r , U l,N

s ) =
∑

m,n≥0

∫ r

0

∫ s

0

ϕ�m(r − x)ϕ�n(s− y)

N∑
i,j=1

Am
N (k, i)An

N (l, j)Covθ (M
i,N
x ,M j,N

y )dydx.

But we know (see Remark 10) that Covθ (M
i,N
x ,M j,N

y ) = 1{i=j}Eθ[Z
i,N
x∧y] ≤

C1{i=j}t by Lemma 16-(i) (with r = ∞). Thus

|Covθ (Uk,N
r , U l,N

s )| ≤Ct
∑

m,n≥0

Λm+n
N∑
i=1

Am
N (k, i)An

N (l, i)

=Ct

N∑
i=1

QN (k, i)QN (l, i).

Recalling (8),
∑N

i=1 QN (k, i)QN (l, i) ≤ C
∑N

i=1(N
−1+1{k=i})(N

−1+1{l=i}) ≤
C(N−1 + 1{k=l}). Point (i) is checked.

For point (ii), we again have Covθ (Z
k,N
r ,M l,N

s ) = Covθ (U
k,N
r ,M l,N

s ) and,
using again (4),

Covθ (U
k,N
r ,M l,N

s ) =
∑
n≥0

∫ r

0

ϕ�n(r − x)
N∑
i=1

An
N (k, i)Covθ (M

i,N
x ,M l,N

s )dx.

Since |Covθ (M i,N
x ,M l,N

s )| ≤ C1{i=l}t as in (i), we conclude that

|Covθ (Uk,N
r ,M l,N

s )| ≤ Ct
∑
n≥0

ΛnAn
N (k, l) = CtQN (k, l) ≤ Ct(N−1 + 1{k=l}).

Point (iii) is checked similarly as point (ii): we just have to verify that

|Covθ (M i,N
x ,

∫ s

0
M l,N

τ− dM l,N
τ )| ≤ C1{i=l}t

3/2. This is obvious if i �= l because
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the martingales M i,N and
∫ ·
0
M l,N

τ− dM l,N
τ are orthogonal, and relies on the fact,

if i = l, that

∣∣∣Covθ
(
M i,N

x ,

∫ s

0

M i,N
τ− dM i,N

τ

)∣∣∣ ≤Eθ[|M i,N
x |2]1/2Eθ

[∣∣∣
∫ s

0

M i,N
τ− dM i,N

τ

∣∣∣2]1/2

≤Ct3/2.

The last inequality uses that Eθ[|M i,N
x |2] = Eθ[Z

i,N
x ] ≤ Ct by Remark 10

and Lemma 16-(i) and that Eθ[|
∫ s

0
M i,N

τ− dM i,N
τ |2] ≤ Ct2. Indeed, we have

[
∫ ·
0
M i,N

τ− dM i,N
τ ,

∫ ·
0
M i,N

τ− dM i,N
τ ]s =

∫ s

0
(M i,N

τ− )2dZi,N
τ− ≤ (M i,N,∗

s )2Zi,N
s , whence

Eθ

[∣∣∣
∫ s

0

M i,N
τ− dM i,N

τ

∣∣∣2] ≤ Eθ[(M
i,N,∗
s )2Zi,N

s ] ≤ Eθ[(M
i,N,∗
s )4]1/2Eθ[(Z

i,N
s )2]1/2,

which is bounded by Ct2 by Lemma 16-(iii).
For point (iv), we assume e.g. that r ≤ s and first note that

Eθ[M
k,N
r Mk,N

s M l,N
u ] = Eθ[M

k,N
r Eθ[M

k,N
s M l,N

u |Fr]] = Eθ[(M
k,N
r )2M l,N

u∧r]

because the martingalesMk,N andM l,N are orthogonal. Since [Mk,N ,Mk,N ]r =

Zk,N
r , we have (Mk,N

r )2 = 2
∫ r

0
Mk,N

τ− dMk,N
τ + Zk,N

r . Since
∫ ·
0
Mk,N

τ− dMk,N
τ and

M l,N are orthogonal, we conclude that Eθ[(M
k,N
r )2M l,N

u∧r] = Eθ[Z
k,N
r M l,N

u∧r] =

Covθ (Z
k,N
r ,M l,N

u∧r). Since k �= l, we conclude using point (ii).
Point (v) is obvious, since when k, l, a, b are pairwise different, the martingales

Mk,N , M l,N , Ma,N and M b,N are orthogonal.
Point (vi) is harder. Recall that #{k, a, b} = 3, so that clearly,

Covθ (M
k,N
r Mk,N

s ,Ma,N
u M b,N

v ) = Eθ[M
k,N
r Mk,N

s Ma,N
u M b,N

v ].

We assume e.g. that r ≤ s and we observe that

Eθ[M
k,N
r Mk,N

s Ma,N
u M b,N

v ] =Eθ[M
k,N
r Eθ[M

k,N
s Ma,N

u M b,N
v |Fr]]

=Eθ[(M
k,N
r )2Ma,N

u∧rM
b,N
v∧r ]

because Mk,N , Ma,N and M b,N are orthogonal. We thus have to prove that
for all r, u, v ∈ [0, t] with u, v ≤ r, |Eθ[(M

k,N
r )2Ma,N

u M b,N
v ]| ≤ CN−2t. We

write (Mk,N
r )2 = 2

∫ r

0
Mk,N

τ− dMk,N
τ + Zk,N

r as in the proof of (iv). The three

martingales
∫ ·
0
Mk,N

τ− dMk,N
τ , Ma,N and M b,N being orthogonal, we find that

Eθ[(M
k,N
r )2Ma,N

u M b,N
v ]=Eθ[Z

k,N
r Ma,N

u M b,N
v ] = Eθ[U

k,N
r Ma,N

u M b,N
v ]. We now

write, starting again from (4),

Eθ[U
k,N
r Ma,N

u M b,N
v ] =

∑
n≥0

∫ r

0

ϕ�n(r − x)

N∑
j=1

An
N (k, j)Eθ[M

j,N
x Ma,N

u M b,N
v ]dx.

But |Eθ[M
j,N
x Ma,N

u M b,N
v ]| is zero if j /∈ {a, b} because the martingales M j,N ,

Ma,N and M b,N are orthogonal, and is bounded by CN−1t else by point (iv).
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As a consequence,

|Eθ[U
k,N
r Ma,N

u M b,N
v ]| ≤CN−1t

∑
n≥0

Λn(An
N (k, a) +An

N (k, b))

=CN−1t(QN (k, a) +QN (k, b)).

Since k �= a and k �= b, this is bounded by CN−2t by (8).
For (vii), we assume e.g. that r ≤ s and u ≤ v and we recall that k �= a. We

have

Covθ (M
k,N
r Mk,N

s ,Ma,N
u Ma,N

v )

=Covθ ((M
k,N
r )2, (Ma,N

u )2) + Covθ (M
k,N
r (Mk,N

s −Mk,N
r ), (Ma,N

u )2)

+ Covθ ((M
k,N
r )2,Ma,N

u (Ma,N
v −Ma,N

u ))

+ Covθ (M
k,N
r (Mk,N

s −Mk,N
r ),Ma,N

u (Ma,N
v −Ma,N

u ))

=I + J +K + L.

First, L = 0. Indeed, assuming e.g. that r ≥ u, we have

L =Eθ[M
k,N
r (Mk,N

s −Mk,N
r )Ma,N

u (Ma,N
v −Ma,N

r +Ma,N
r −Ma,N

u )]

=Eθ[M
k,N
r Ma,N

u Eθ[(M
k,N
s −Mk,N

r )(Ma,N
v −Ma,N

r )|Fr]]

+ Eθ[M
k,N
r Ma,N

u (Ma,N
r −Ma,N

u )Eθ[M
k,N
s −Mk,N

r |Fr]]

and in both terms, the conditional expectation vanishes. Next, we write as usual
(Mk,N

r )2 = 2
∫ r

0
Mk,N

τ− dMk,N
τ + Zk,N

r and (Ma,N
u )2 = 2

∫ u

0
Ma,N

τ− dMa,N
τ + Za,N

u .

By orthogonality of the martingales
∫ ·
0
Mk,N

τ− dMk,N
τ and

∫ ·
0
Ma,N

τ− dMa,N
τ , we

find

I =Covθ (Z
k,N
r , Za,N

u ) + 2Covθ

(
Zk,N
r ,

∫ u

0

Ma,N
τ− dMa,N

τ

)

+ 2Covθ

(∫ r

0

Mk,N
τ− dMk,N

τ , Za,N
u

)
.

We deduce from points (i) and (iii), since k �= a, that |I| ≤ C(N−1t+N−1t3/2) ≤
CN−1t3/2. We now treatK. It vanishes if u ≥ r, because Eθ[M

a,N
v −Ma,N

u |Fu] =
0. We thus assume that u < r. We write as usual (Mk,N

r )2 = (Mk,N
u )2 +

2
∫ r

u
Mk,N

τ− dMk,N
τ + Zk,N

r − Zk,N
u and

K =Eθ[(M
k,N
u )2Ma,N

u (Ma,N
v −Ma,N

u )]

+ 2E
[( ∫ r

u

Mk,N
τ− dMk,N

τ

)
Ma,N

u (Ma,N
v −Ma,N

u )
]

+ Eθ[(Z
k,N
r − Zk,N

u )Ma,N
u (Ma,N

v −Ma,N
u )].

The first term vanishes (because Eθ[M
a,N
v −Ma,N

u |Fu] = 0), as well as the second

one (because Eθ[(
∫ r

u
Mk,N

τ− dMk,N
τ )(Ma,N

v −Ma,N
u )|Fu] = 0 by orthogonality of

the involved martingales). Consequently,

K =Eθ[(Z
k,N
r − Zk,N

u )Ma,N
u (Ma,N

v −Ma,N
u )]
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=Eθ[(U
k,N
r − Uk,N

u )Ma,N
u (Ma,N

v −Ma,N
u )].

Using (4) and recalling that βn(u, r, x) = ϕ�n(r − x)− ϕ�n(u− x), we find

K =
∑
n≥0

∫ r

0

βn(u, r, x)

N∑
j=1

An
N (k, j)Eθ[M

j,N
x Ma,N

u (Ma,N
v −Ma,N

u )]dx.

But |Eθ[M
j,N
x Ma,N

u (Ma,N
v −Ma,N

u )]| ≤ CN−1t if a �= j by (iv), while Lemma
16-(iii) tells us that |Eθ[M

j,N
x Ma,N

u (Ma,N
v −Ma,N

u )]| ≤ Ct3/2 if a = j. Thus

|K| ≤C
∑
n≥0

Λn
[
An

N (k, a)t3/2 +

N∑
j=1

An
N (k, j)N−1t

]

≤C
[
QN (k, a)t3/2 +N−1

N∑
j=1

QN (k, j)t
]
.

But k �= a implies that QN (k, a) ≤ CN−1 by (8), while N−1
∑N

j=1 QN (k, j) ≤
CN−1|||QN |||∞ ≤ CN−1. As a conclusion, |K| ≤ CN−1(t3/2 + t) ≤ CN−1t3/2.
Of course, J is treated similarly, and this completes the proof of point (vii).

Point (viii) is obvious: it suffices to use the Hölder inequality to find

|Covθ (Mk,N
r M l,N

s ,Ma,N
u M b,N

v )|
≤Eθ[(M

k,N
r )4]1/4Eθ[(M

l,N
s )4]1/4Eθ[(M

a,N
u )4]1/4Eθ[(M

b,N
v )4]1/4,

which is bounded by Ct2 by Lemma 16-(iii).

We can now easily bound ΔN,31
t .

Lemma 23. Assume H(q) for some q ≥ 1. Then a.s., on Ω1
N , for t ≥ 1,

Eθ[(Δ
N,31
t )2] ≤ Ct−1

N∑
i=1

[
�N (i)− �̄N

]2
.

Proof. We first note that

ΔN,31
t = 2μt−1

∣∣∣
N∑
i=1

[
U i,N
2t − U i,N

t

][
�N (i)− �̄N

]∣∣∣.

Since U i,N
2t − U i,N

t is centered (its conditional expectation Eθ vanishes),

Eθ[(Δ
N,31
t )2] =4μ2t−2

N∑
i,j=1

[
�N (i)− �̄N

][
�N (j)− �̄N

]

× Covθ (U
i,N
2t − U i,N

t , U j,N
2t − U j,N

t ).

Using now Lemma 22-(i), we deduce that |Covθ (U i,N
2t − U i,N

t , U j,N
2t − U j,N

t )| ≤
Ct(1{i=j} + N−1) on Ω1

N . Using furthermore that [�N (i) − �̄N ][�N (j) − �̄N ] ≤
[�N (i)− �̄N ]2 + [�N (j)− �̄N ]2 and a symmetry argument, we conclude that
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Eθ[(Δ
N,31
t )2] ≤ Ct−1

N∑
i,j=1

[
�N (i)−�̄N

]2
(1{i=j}+N−1) = Ct−1

N∑
i=1

[
�N (i)−�̄N

]2
,

which was our goal.

We can finally estimate ΔN,211
t .

Lemma 24. Assume H(q) for some q ≥ 1. Then a.s., on Ω1
N , for t ≥ 1,

Eθ[(Δ
N,211
t )2] ≤ CNt−2.

Proof. We as usual work on Ω1
N . We note that Eθ[(Δ

N,211
t )2] = t−4

∑N
i,j=1 aij ,

where

aij = Covθ ((U
i,N
2t − U i,N

t )2, (U j,N
2t − U j,N

t )2).

But recalling (4) and setting αN (s, t, i, k) =
∑

n≥0 A
n
N (i, k)[ϕ�n(2t−s)−ϕ�n(t−

s)] for all 0 ≤ s ≤ 2t and i, k ∈ {1, . . . , N},

U i,N
2t − U i,N

t =

∫ 2t

0

N∑
k=1

αN (s, t, i, k)Mk,N
s ds. (9)

Concerning αN , we will only use that, on Ω1
N ,

∫ 2t

0

|αN (s, t, i, k)|ds ≤ 2
∑
n≥0

ΛnAn
N (i, k) = 2QN (i, k) ≤ C(1{i=k}+N−1), (10)

the last inequality coming from (8). A direct computation starting from (9)
shows that

aij =

N∑
k,l,a,b=1

∫ 2t

0

∫ 2t

0

∫ 2t

0

∫ 2t

0

αN (r, t, i, k)αN (s, t, i, l)αN (u, t, j, a)αN (v, t, j, b)

Covθ (M
k,N
r M l,N

s ,Ma,N
u M b,N

v )dvdudsdr.

Let us denote by Γk,l,a,b(t) = supr,s,u,v∈[0,2t] |Covθ (Mk,N
r M l,N

s ,Ma,N
u M b,N

v )|.
We can write, recalling (10),

N∑
i,j=1

aij ≤C
N∑

i,j,k,l,a,b=1

(1{i=k} +N−1)(1{i=l} +N−1)

(1{j=a} +N−1)(1{j=b} +N−1)Γk,l,a,b(t).

Using some symmetry arguments, we find that
∑N

i,j=1 aij ≤ C[R1 + · · · + R6],
where

R1 = N−4
N∑

i,j,k,l,a,b=1

Γk,l,a,b(t) = N−2
N∑

k,l,a,b=1

Γk,l,a,b(t),
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R2 = N−3
N∑

i,j,k,l,a,b=1

1{i=k}Γk,l,a,b(t) = N−2
N∑

k,l,a,b=1

Γk,l,a,b(t),

R3 = N−2
N∑

i,j,k,l,a,b=1

1{i=k}1{j=a}Γk,l,a,b(t) = N−2
N∑

k,l,a,b=1

Γk,l,a,b(t),

R4 = N−2
N∑

i,j,k,l,a,b=1

1{i=k}1{i=l}Γk,l,a,b(t) = N−1
N∑

k,a,b=1

Γk,k,a,b(t),

R5 = N−1
N∑

i,j,k,l,a,b=1

1{i=k}1{i=l}1{j=a}Γk,l,a,b(t) = N−1
N∑

k,a,b=1

Γk,k,a,b(t),

R6 =

N∑
i,j,k,l,a,b=1

1{i=k}1{i=l}1{j=a}1{j=b}Γk,l,a,b(t) =

N∑
k,a=1

Γk,k,a,a(t).

Using Lemma 22-(v)-(viii), from which Γk,l,a,b(t) ≤ Ct21{#{k,l,a,b}<4}, we de-
duce that R1 = R2 = R3 ≤ CNt2. Next we use Lemma 22-(vi)-(viii), that
is Γk,k,a,b(t) ≤ C(1{#{k,a,b}=3}N

−2t + 1{#{k,a,b}<3}t
2), whence R4 = R5 ≤

Ct + CNt2 ≤ CNt2. Finally, we use Lemma 22-(vii)-(viii), i.e. Γk,k,a,a(t) ≤
C(1{#{k,a}=2}N

−1t3/2 + 1{#{k,a}=1}t
2) and find that R6 ≤ CNt3/2 + CNt2 ≤

CNt2. All in all, we have proved that
∑N

i,j=1 aij ≤ CNt2, which completes the
proof.

We can finally give the

Proof of Proposition 19. It suffices to recall that |VN
t −VN

∞| ≤ ΔN,1
t +ΔN,211

t +

ΔN,212
t +ΔN,213

t +ΔN,22
t +ΔN,23

t +ΔN,31
t +ΔN,32

t and to use Lemmas 20, 21,
23 and 24: this gives, on Ω1

N ,

Eθ[|VN
t −VN

∞|] ≤ C
( N

t2q
+

1

t
+

N

tq
+

N1/2

t3/2
+
[ N∑

i=1

[�N (i)− �̄N ]2
]1/2 1

t1/2
+

N1/2

t

)
.

Recalling that t ≥ 1, the conclusion immediately follows.

4.6. Third estimator

We recall that, for Δ > 0 such that t/(2Δ) is an integer, we have set EN
t =

(Z̄N
2t − Z̄N

t )/t, ZN
Δ,t = (N/t)

∑2t/Δ
a=t/Δ+1[Z̄

N
aΔ − Z̄N

(a−1)Δ − ΔEN
t ]2 and WN

Δ,t =

2ZN
2Δ,t − ZN

Δ,t. The matrices AN and QN and the event Ω1
N were defined in

Notation 12, as well as �N (i) =
∑N

j=1 QN (i, j) and cN (i) =
∑N

j=1 QN (j, i). We

finally introduce WN
∞,∞ = μN−1

∑N
i=1 �N (i)(cN (i))2. The aim of the subsection

is to verify the following result.

Proposition 25. Assume H(q) for some q ≥ 3. Then a.s., for t ≥ 4 and
Δ ∈ [1, t/4] such that t/(2Δ) is a positive integer,
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1Ω1
N
Eθ

[∣∣∣WN
Δ,t −WN

∞,∞

∣∣∣] ≤ C
(√Δ

t
+

N

Δ(q+1)/2
+

t

Δq/2+1

)
.

Recall that we do not try to optimize the dependence in q. We first write

|WN
Δ,t −WN

∞,∞| ≤ DN,1
Δ,t + 2DN,1

2Δ,t +DN,2
Δ,t + 2DN,2

2Δ,t +DN,3
Δ,t + 2DN,3

2Δ,t +DN,4
Δ,t ,

where

DN,1
Δ,t =

N

t

∣∣∣
2t/Δ∑

a=t/Δ+1

[
Z̄N
aΔ− Z̄N

(a−1)Δ−ΔEN
t

]2
−

2t/Δ∑
a=t/Δ+1

[
Z̄N
aΔ− Z̄N

(a−1)Δ−Δμ�̄N

]2∣∣∣,

DN,2
Δ,t =

N

t

∣∣∣
2t/Δ∑

a=t/Δ+1

[
Z̄N
aΔ − Z̄N

(a−1)Δ −Δμ�̄N

]2

−
2t/Δ∑

a=t/Δ+1

[
Z̄N
aΔ − Z̄N

(a−1)Δ − Eθ[Z̄
N
aΔ − Z̄N

(a−1)Δ]
]2∣∣∣,

DN,3
Δ,t =

N

t

∣∣∣
2t/Δ∑

a=t/Δ+1

[
Z̄N
aΔ − Z̄N

(a−1)Δ − Eθ[Z̄
N
aΔ − Z̄N

(a−1)Δ]
]2

− Eθ

[ 2t/Δ∑
a=t/Δ+1

[
Z̄N
aΔ − Z̄N

(a−1)Δ − Eθ[Z̄
N
aΔ − Z̄N

(a−1)Δ]
]2]∣∣∣,

DN,4
Δ,t =

∣∣∣2N
t

Eθ

[ t/Δ∑
a=t/(2Δ)+1

[
Z̄N
2aΔ − Z̄N

2(a−1)Δ − Eθ[Z̄
N
2aΔ − Z̄N

2(a−1)Δ]
]2]

− N

t
Eθ

[ 2t/Δ∑
a=t/Δ+1

[
Z̄N
aΔ − Z̄N

(a−1)Δ − Eθ[Z̄
N
aΔ − Z̄N

(a−1)Δ]
]2]

−WN
∞,∞

∣∣∣.

We treat these four terms one by one.

Lemma 26. Assume H(q) for some q ≥ 1. Then a.s. on Ω1
N , for 1 ≤ Δ ≤ t,

Eθ[D
N,1
Δ,t ] ≤ CΔ[t−1 +Nt−2q].

Proof. Using that (Δ/t)
∑2t/Δ

a=t/Δ+1(Z̄
N
aΔ − Z̄N

(a−1)Δ) = ΔEN
t , we find that

DN,1
Δ,t =

N

t

t

Δ
(Δμ�̄N −ΔEN

t )2 = NΔ(μ�̄N − EN
t )2,

whence, on Ω1
N , Eθ[D

N,1
Δ,t ] ≤ CNΔ(t−2q + (Nt)−1) ≤ CΔ(Nt−2q + t−1), see

Proposition 17.

The second term is also easy.

Lemma 27. Assume H(q) for some q ≥ 1. Then on Ω1
N , for 1 ≤ Δ ≤ t,

Eθ[D
N,2
Δ,t ] ≤ CNt1−q.
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Proof. Using that |(A− x)2 − (A− y)2| ≤ |x− y|(|x|+ |y|+ 2|A|),

DN,2
Δ,t ≤N

t

2t/Δ∑
a=t/Δ+1

∣∣∣Δμ�̄N − Eθ[Z̄
N
aΔ − Z̄N

(a−1)Δ]
∣∣∣

×
[
Δμ�̄N + Eθ[Z̄

N
aΔ − Z̄N

(a−1)Δ] + 2(ZN
aΔ − Z̄N

(a−1)Δ)
]
,

whence

Eθ[D
N,2
Δ,t ] ≤

N

t

2t/Δ∑
a=t/Δ+1

∣∣∣Δμ�̄N−Eθ[Z̄
N
aΔ−Z̄N

(a−1)Δ]
∣∣∣[Δμ�̄N+3Eθ[Z̄

N
aΔ−Z̄N

(a−1)Δ]
]
.

But we deduce from Lemma 16-(ii) with r = 1 that, since (a− 1)Δ ≥ t,

∣∣∣Δμ�̄N − Eθ[Z̄
N
aΔ − Z̄N

(a−1)Δ]
∣∣∣ ≤ Ct1−q,

whence also Eθ[Z̄
N
aΔ − Z̄N

(a−1)Δ] ≤ Δμ�̄N + Ct1−q ≤ Δμ�̄N + C. We conclude
that

Eθ[D
N,2
Δ,t ] ≤ C

N

t

2t/Δ∑
a=t/Δ+1

t1−q
[
4Δμ�̄N + C

]
.

Since �̄N is bounded on Ω1
N and since Δ ≥ 1 ≥ t1−q, we find Eθ[D

N,2
Δ,t ] ≤

C(N/t)(t/Δ)t1−qΔ ≤ CNt1−q.

To treat DN,4
Δ,t , we need the following lemma.

Lemma 28. Assume H(q) for some q ≥ 1. Almost surely on Ω1
N , for all 1 ≤

Δ ≤ x/2,

Varθ (Ū
N
x+Δ − ŪN

x ) =
Δ

N
WN

∞,∞ − XN + rN (x,Δ),

where XN is a σ((θij)i,j=1,...,N )-measurable finite random variable and where
rN satisfies, for some deterministic constant C, the inequality |rN (x,Δ)| ≤
CxΔ−qN−1.

Proof. We set V N
x,Δ = Varθ (Ū

N
x+Δ − ŪN

x ).
Step 1. Recalling (4) and setting βn(x, x+Δ, s) = ϕ�n(x+Δ−s)−ϕ�n(x−s)

as in Lemma 15, we get

ŪN
x+Δ − ŪN

x =
∑
n≥0

∫ x+Δ

0

βn(x, x+Δ, s)N−1
N∑

i,j=1

An
N (i, j)M j,N

s ds.

Hence

V N
x,Δ =

∑
m,n≥0

∫ x+Δ

0

∫ x+Δ

0

βm(x, x+Δ, r)βn(x, x+Δ, s)N−2
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N∑
i,j,k,l=1

Am
N (i, j)An

N (k, l)Covθ (M
j,N
r ,M l,N

s )drds.

Using Remark 10, we find

V N
x,Δ =

∑
m,n≥0

∫ x+Δ

0

∫ x+Δ

0

βm(x, x+Δ, r)βn(x, x+Δ, s)

×N−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)Eθ[Z
j,N
r∧s ]drds.

Step 2. Here we show that Eθ[Z
j,N
s ] = μ�N (j)s−XN

j +RN
j (s), with, for some

constant C, for all j = 1, . . . , N ,

0 ≤ XN
j ≤ C and |RN

j (s)| ≤ C(s1−q ∧ 1).

By (3), we have Eθ[Z
j,N
s ] = μ

∑
n≥0(

∫ s

0
rϕ�n(s − r)dr)

∑N
l=1 A

n
N (j, l), whence

by Lemma 15-(i),

Eθ[Z
j,N
s ] = μ

∑
n≥0

(Λns− nΛnκ+ εn(s))

N∑
l=1

An
N (j, l) = μ�N (j)s−XN

j +RN
j (s).

We used that
∑

n≥0 Λ
n
∑N

l=1 A
n
N (j, l) =

∑N
l=1 QN (j, l) = �N (j) and we set

XN
j = μκ

∑
n≥0 nΛ

n
∑N

l=1 A
n
N (j, l) and RN

j (s) = μ
∑

n≥0 εn(s)
∑N

l=1 A
n
N (j, l).

We obviously have 0 ≤ XN
j ≤ μκ

∑
n≥0 nΛ

n|||AN |||n∞ ≤ C on Ω1
N and, since

εn(s) ≤ CnqΛn(s1−q ∧ 1) by Lemma 15-(i), still on Ω1
N ,

|RN
j (s)| ≤ C(s1−q ∧ 1)

∑
n≥0

nqΛn|||AN |||n∞ ≤ C(s1−q ∧ 1).

Step 3. Gathering Steps 1 and 2, we now write V N
x,Δ = I − J +K, where

I =
∑

m,n≥0

∫ x+Δ

0

∫ x+Δ

0

βm(x, x+Δ, r)βn(x, x+Δ, s)

×N−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)μ�N (j)(r ∧ s)drds,

J =
∑

m,n≥0

∫ x+Δ

0

∫ x+Δ

0

βm(x, x+Δ, r)βn(x, x+Δ, s)

×N−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)XN
j drds,

K =
∑

m,n≥0

∫ x+Δ

0

∫ x+Δ

0

βm(x, x+Δ, r)βn(x, x+Δ, s)
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×N−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)RN
j (r ∧ s)drds.

Step 4. Here we check that |J | ≤ Cx−2qN−1 on Ω1
N . Since |

∫ x+Δ

0
βm(x, x+

Δ, r)dr| ≤ CnqΛnx−q by Lemma 15-(ii) and since XN
j is bounded by Step 2

(and does not depend on time),

|J | ≤C
∑

m,n≥0

mqnqΛm+nx−2qN−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)

≤Cx−2qN−1
∑

m,n≥0

mqnqΛm+n|||AN |||m+n
1 .

The conclusion follows, since Λ|||AN |||1 ≤ a < 1 on Ω1
N .

Step 5. We next check that |K| ≤ CxΔ−qN−1 on Ω1
N . Using the bound on

RN
j (see Step 2), we start from

|K| ≤C
∑

m,n≥0

∫ x+Δ

0

∫ x+Δ

0

|βm(x, x+Δ, r)||βn(x, x+Δ, s)|

×N−1|||AN |||m+n
1 [(r ∧ s)1−q ∧ 1]drds

≤C(K1 +K2),

where, using that x −Δ ≥ x/2 (whence (r ∧ s)1−q ≤ Cx1−q if r ∧ s ≥ x −Δ)
and a symmetry argument,

K1 =x1−q
∑

m,n≥0

∫ x+Δ

x−Δ

∫ x+Δ

x−Δ

|βm(x, x+Δ, r)||βn(x, x+Δ, s)|

×N−1|||AN |||m+n
1 drds,

K2 =
∑

m,n≥0

∫ x−Δ

0

∫ x+Δ

0

|βm(x, x+Δ, r)||βn(x, x+Δ, s)|

N−1|||AN |||m+n
1 drds.

First, on Ω1
N ,

K1 ≤ Cx1−q
∑

m,n≥0

Λm+nN−1|||AN |||m+n
1 ≤ CN−1x1−q ≤ CxΔ−qN−1

since x ≥ Δ. Next, using that
∫ x−Δ

0
|βm(x, x + Δ, r)|dr ≤ CmqΛmΔ−q by

Lemma 15-(ii) and that
∫ x+Δ

0
|βn(x, x+Δ, s)|ds ≤ 2Λn, still on Ω1

N ,

K2 ≤ CΔ−q
∑

m,n≥0

mqΛm+nN−1|||AN |||m+n
1 ≤ CΔ−qN−1 ≤ CxΔ−qN−1,

since x ≥ 1 by assumption.
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Step 6. Finally recall that γm,n(x, x + Δ) =
∫ x+Δ

0

∫ x+Δ

0
(s ∧ u)βm(x, x +

Δ, s)βn(x, x + Δ, u)duds = ΔΛm+n − κm,nΛ
m+n + εm,n(x, x + Δ) with the

notation of Lemma 15-(iii). We thus may write

I = μ
∑

m,n≥0

γm,n(x, x+Δ)N−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)�N (j) = I1 − I2 + I3,

where

I1 =μΔ
∑

m,n≥0

Λm+nN−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)�N (j),

I2 =μ
∑

m,n≥0

κm,nΛ
m+nN−2

N∑
i,j,k=1

Am
N (i, j)An

N (k, j)�N (j),

I3 =μ
∑

m,n≥0

εm,n(x, x+Δ)N−2
N∑

i,j,k=1

Am
N (i, j)An

N (k, j)�N (j).

First, we clearly have

I1 = μΔN−2
N∑

i,j,k=1

QN (i, j)QN (k, j)�N (j) = μΔN−2
N∑
j=1

(cN (j))2�N (j),

which equals ΔN−1WN
∞,∞.

We next simply set XN = I2, which is clearly σ((θi,j)i,j=1,...,N )-measurable
and well-defined on Ω1

N . Finally, since εm,n(x, x+Δ) ≤ C(m+ n)qΛm+nxΔ−q

by Lemma 15-(iii), since �N is bounded on Ω1
N and since, as already seen,∑N

i,j,k=1 A
m
N (i, j)An

N (k, j) ≤ N |||AN |||m+n
1 ,

|I3| ≤ CxΔ−qN−1
∑

m,n≥0

(n+m)qΛm+n|||AN |||m+n
1 ≤ CxΔ−qN−1.

All this implies that |I − ΔN−1WN
∞,∞ + XN | ≤ CxΔ−qN−1. Since V N

x,Δ =
I − J + K by Step 3 and since we have seen in Steps 4 and 5 that |J | ≤
Cx−2qN−1 ≤ CxΔ−qN−1 and |K| ≤ CxΔ−qN−1, we conclude that, on Ω1

N ,
|V N

x,Δ −ΔN−1WN
∞,∞ + XN | ≤ CxΔ−qN−1 as desired.

We can now study the term DN,4
Δ,t .

Lemma 29. Assume H(q) for some q ≥ 1. Then a.s. on Ω1
N , for 1 ≤ Δ ≤ t/4,

DN,4
Δ,t ≤ CtΔ−1−q.

Proof. We clearly have

DN,4
Δ,t =

∣∣∣2N
t

t/Δ∑
a=t/(2Δ)+1

Varθ (Ū
N
2aΔ − ŪN

2(a−1)Δ)
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− N

t

2t/Δ∑
a=t/Δ+1

Varθ (Ū
N
aΔ − ŪN

(a−1)Δ)−WN
∞,∞

∣∣∣.

Using Lemma 28, (observe that for a ∈ {t/(2Δ)+1, . . . , t/Δ}, x = 2(a−1)Δ ≥ t
satisfies 2Δ ≤ x/2 and, for a ∈ {t/Δ+ 1, . . . , 2t/Δ}, x = (a− 1)Δ ≥ t satisfies
Δ ≤ x/2), we get

DN,4
Δ,t =

∣∣∣2N
t

t/Δ∑
a=t/(2Δ)+1

[2Δ
N

WN
∞,∞ −XN + rN (2(a− 1)Δ, 2Δ)

]

− N

t

2t/Δ∑
a=t/Δ+1

[Δ
N

WN
∞,∞ − XN + rN ((a− 1)Δ,Δ)

]
−WN

∞,∞

∣∣∣.

This rewrites

DN,4
Δ,t =

∣∣∣2N
t

t/Δ∑
a=t/(2Δ)+1

rN (2(a− 1)Δ, 2Δ)− N

t

2t/Δ∑
a=t/Δ+1

rN ((a− 1)Δ,Δ)
∣∣∣.

Since rN (x,Δ) ≤ CxΔ−qN−1, we find that DN,4
Δ,t ≤ C(N/t)(t/Δ)(tΔ−qN−1) =

CtΔ−1−q.

The following tedious lemma will allow us to treat the last term DN,3
Δ,t .

Lemma 30. Assume H(q) for some q ≥ 1. On Ω1
N , for all t, x,Δ ≥ 1 with

t/2 ≤ x−Δ ≤ x+Δ ≤ 2t,

Varθ ((Ū
N
x+Δ − ŪN

x )2) ≤ C
(Δ2

N2
+

t2

N2Δ4q

)

and, if t/2 ≤ y −Δ ≤ y +Δ ≤ x− 2Δ ≤ x+Δ ≤ 2t,

Covθ ((Ū
N
x+Δ − ŪN

x )2, (ŪN
y+Δ − ŪN

y )2) ≤ C
( t1/2

NΔq−1
+

t2

N2Δ4q
+

t1/2

N2Δq−3/2

)
.

Proof. We divide the proof in several steps. We work on Ω1
N .

Step 1. For i = 1, . . . , N and z ∈ [x, x + Δ], we can write, recalling (4) and
that βn(x, z, r) = ϕ�n(z − r)− ϕ�n(x− r),

U i,N
z − U i,N

x =
∑
n≥0

∫ z

0

βn(x, z, r)

N∑
j=1

An
N (i, j)M j,N

r dr = Γi,N
x,z +Xi,N

x,z ,

where

Γi,N
x,z =

∑
n≥0

∫ z

x−Δ

βn(x, z, r)

N∑
j=1

An
N (i, j)(M j,N

r −M j,N
x−Δ)dr,
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Xi,N
x,z =

∑
n≥0

(∫ z

x−Δ

βn(x, z, r)dr
) N∑

j=1

An
N (i, j)M j,N

x−Δ

+
∑
n≥0

∫ x−Δ

0

βn(x, z, r)

N∑
j=1

An
N (i, j)M j,N

r dr,

and we set as usual Γ̄N
x,z = N−1

∑N
i=1 Γ

i,N
x,z and X̄N

x,z = N−1
∑N

i=1 X
i,N
x,z .

Step 2. We now show that, on Ω1
N , for z ∈ [x, x+Δ],

sup
i=1,...,N

Eθ[(X
i,N
x,z )

4] ≤ Ct2Δ−4q and Eθ[(X̄
N
x,z)

4] ≤ Ct2N−2Δ−4q.

Using that |
∫ z

x−Δ
βn(x, z, r)dr|+

∫ x−Δ

0
|βn(x, z, r)|dr ≤ CnqΛnΔ−q by Lemma

15-(ii)

|Xi,N
x,z | ≤ C

∑
n≥0

nqΛnΔ−q
N∑
j=1

An
N (i, j) sup

[0,2t]

|M j,N
r |.

But we now from Lemma 16-(iii) that supj=1,...,N Eθ[sup[0,2t] |M j,N
r |4] ≤ Ct2.

We thus deduce from the Minkowski inequality that, still on Ω1
N ,

Eθ[(X
i,N
x,z )

4]1/4 ≤Ct1/2Δ−q
∑
n≥0

nqΛn
N∑
j=1

An
N (i, j)

≤Ct1/2Δ−q
∑
n≥0

nqΛn|||AN |||n∞ ≤ Ct1/2Δ−q.

We next observe that

X̄N
x,z =

∑
n≥0

(∫ z

x−Δ

βn(x, z, r)dr
)
ON,n

x−Δ +
∑
n≥0

∫ x−Δ

0

βn(x, z, r)O
N,n
r dr,

where the martingale

ON,n
r = N−1

N∑
i,j=1

An
N (i, j)M j,N

r

has for quadratic variation [ON,n, ON,n]r = N−2
∑N

j=1(
∑N

i=1 A
n
N (i, j))2Zj,N

r ≤
N−1|||AN |||2n1 Z̄N

r by Remark 10. By Lemma 16-(iii), we conclude that, on Ω1
N ,

Eθ

[
sup
[0,2t]

(ON,n
r )4

]
≤ CN−2|||AN |||4n1 Eθ[(Z̄

N
2t )

2] ≤ CN−2|||AN |||4n1 t2.

Using again that |
∫ z

x−Δ
βn(x, z, r)dr| +

∫ x−Δ

0
|βn(x, z, r)|dr ≤ CnqΛnΔ−q by

Lemma 15-(ii),

|X̄N
x,z| ≤ C

∑
n≥0

nqΛnΔ−q sup
[0,2t]

|ON,n
r |.

Thus, we infer from the Minkowski inequality that, still on Ω1
N ,

E[(X̄N
x,z)

4]1/4 ≤ C
∑
n≥0

nqΛnΔ−qN−1/2|||AN |||n1 t1/2 ≤ CΔ−qN−1/2t1/2.
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Step 3. We next check that Eθ[(Γ̄
N
x,z)

4] ≤ CΔ2N−2 for any z ∈ [x, x+Δ], on

ΩN
1 . Using the same martingale ON,n as in Step 2,

Γ̄N
x,z =

∑
n≥0

∫ z

x−Δ

βn(x, z, r)[O
N,n
r −ON,n

x−Δ]dr.

Recalling that [ON,n, ON,n]r = N−2
∑N

j=1(
∑N

i=1 A
n
N (i, j))2Zj,N

r with moreover∑N
i=1 A

n
N (i, j) ≤ |||AN |||n1 ,

Eθ

[
sup

[x−Δ,z]

(ON,n
r −ON,n

x−Δ)
4
]
≤CN−4|||AN |||4n1 Eθ

[( N∑
j=1

(Zj,N
z − Zj,N

x−Δ)
)2]

=CN−2|||AN |||4n1 Eθ

[(
Z̄N
z − Z̄N

x−Δ)
)2]

.

We conclude from Lemma 16-(iii) that (recall that z ∈ [x, x+Δ])

Eθ

[
sup

[x−Δ,z]

(ON,n
r −ON,n

x−Δ)
4
]
≤ CΔ2N−2|||AN |||4n1 .

Using that
∫ z

x−Δ
|βn(x, z, r)|dr ≤ 2Λn and the Minkowski inequality,

E[(Γ̄N
x,z)

4]1/4 ≤ C
∑
n≥0

ΛnΔ1/2N−1/2|||AN |||n1 ≤ CΔ1/2N−1/2.

Step 4. Recalling Step 1, (ŪN
x+Δ−ŪN

x )4 = (Γ̄N
x,x+Δ+X̄N

x,x+Δ)
4 ≤ 8(Γ̄N

x,x+Δ)
4+

8(X̄N
x,x+Δ)

4. We deduce from Steps 2 and 3 that Varθ ((Ū
N
x+Δ − ŪN

x )2) ≤
C(Δ2N−2 + t2N−2Δ−4q).

Step 5. Here we show that

∣∣∣Covθ ((ŪN
x+Δ − ŪN

x )2, (ŪN
y+Δ − ŪN

y )2)
∣∣∣

≤
∣∣∣Covθ ((Γ̄N

x,x+Δ)
2, (Γ̄N

y,y+Δ)
2)
∣∣∣+ C

N2

( t2

Δ4q
+

t1/2

Δq−3/2

)
.

It suffices to write (ŪN
x+Δ − ŪN

x )2 = (Γ̄N
x,x+Δ)

2 + (X̄N
x,x+Δ)

2 + 2Γ̄N
x,x+ΔX̄

N
x,x+Δ,

the same formula with y instead of x, and to use the bilinearity of the covariance:
we have the term Covθ ((Γ̄

N
x,x+Δ)

2, (Γ̄N
y,y+Δ)

2), and the other ones are bounded
by

Eθ

[
(Γ̄N

x,x+Δ)
2(X̄N

y,y+Δ)
2 + 2(Γ̄N

x,x+Δ)
2|Γ̄N

y,y+ΔX̄
N
y,y+Δ|+ (X̄N

x,x+Δ)
2(Γ̄N

y,y+Δ)
2

+ (X̄N
x,x+Δ)

2(X̄N
y,y+Δ)

2 + 2(X̄N
x,x+Δ)

2|Γ̄N
y,y+ΔX̄

N
y,y+Δ|

+ 2|Γ̄N
x,x+ΔX̄

N
x,x+Δ|(Γ̄N

y,y+Δ)
2 + 2|Γ̄N

x,x+ΔX̄
N
x,x+Δ|(X̄N

y,y+Δ)
2

+ 4|Γ̄N
x,x+ΔX̄

N
x,x+ΔΓ̄

N
y,y+ΔX̄

N
y,y+Δ|

]
.
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We bound all these terms, using only the Hölder inequality and recalling that
E[(Γ̄N

x,x+z)
4] ≤ CΔ2N−2 and E[(X̄N

x,x+z)
4] ≤ Ct2N−2Δ−4q and that the same

bounds hold with y instead of x. We finally remove a few terms using the in-
equality a+a3/4b1/4+a1/2b1/2+a1/4b3/4 ≤ 4(a+a1/4b3/4) with a = t2N−2Δ−4q

and b = Δ2N−2.
Step 6. Recall that y + Δ ≤ x − 2Δ. We check here that for any r, s ∈

[x−Δ, x+Δ], any u, v ∈ [y −Δ, y +Δ], any i, j, k, l ∈ {1, . . . , N},
∣∣∣Covθ

(
(M i,N

r −M i,N
x−Δ)(M

j,N
s −M j,N

x−Δ), (M
k,N
u −Mk,N

y−Δ)(M
l,N
v −M l,N

y−Δ)
)∣∣∣

≤C1{i=j}t
1/2Δ1−q.

If i �= j, Eθ[(M
i,N
r −M i,N

x−Δ)(M
j,N
s −M j,N

x−Δ)|Fx−Δ] = 0 so that the covariance
vanishes since u, v ≤ y+Δ ≤ x−Δ. We next assume that i = j and w.l.o.g. that
r ≤ s. Conditioning with respect to Fr, we easily find, since u, v ≤ x−Δ ≤ r,

K :=Covθ

(
(M i,N

r −M i,N
x−Δ)(M

i,N
s −M i,N

x−Δ), (M
k,N
u −Mk,N

y−Δ)(M
l,N
v −M l,N

y−Δ)
)

=Covθ

(
(M i,N

r −M i,N
x−Δ)

2, (Mk,N
u −Mk,N

y−Δ)(M
l,N
v −M l,N

y−Δ)
)
.

We write as usual (M i,N
r −M i,N

x−Δ)
2 = 2

∫ r

x−Δ
M i,N

τ− dM i,N
τ +Zi,N

r −Zi,N
x−Δ, because

[M i,N ,M i,N ]τ = Zi,N
τ by Remark 10. Since E[

∫ r

x−Δ
M i,N

τ− dM i,N
τ |Fx−Δ] = 0 and

since u, v ≤ x−Δ, we find that

K =Covθ

(
Zi,N
r − Zi,N

x−Δ, (M
k,N
u −Mk,N

y−Δ)(M
l,N
v −M l,N

y−Δ)
)

=Covθ

(
U i,N
r − U i,N

x−Δ, (M
k,N
u −Mk,N

y−Δ)(M
l,N
v −M l,N

y−Δ)
)

=Covθ

(
Γi,N
x−Δ,r +Xi,N

x−Δ,r, (M
k,N
u −Mk,N

y−Δ)(M
l,N
v −M l,N

y−Δ)
)

with the notation of Step 1. But Γi,N
x−Δ,r involves only increments of martingales

of the formM j,N
τ −M j,N

x−2Δ, of which the conditional expectation knowing Fx−2Δ

vanishes. Since now u, v ≤ y +Δ ≤ x− 2Δ, we deduce that

K =Covθ

(
Xi,N

x−Δ,r, (M
k,N
u −Mk,N

y−Δ)(M
l,N
v −M l,N

y−Δ)
)
,

whence

|K| ≤ Eθ[(X
i,N
x−Δ,r)

2]1/2E[(Mk,N
u −Mk,N

y−Δ)
4]1/4E[(M l,N

v −M l,N
y−Δ)

4]1/4.

Using Step 2, Lemma 16-(iii) and that u− (y−Δ) ≤ 2Δ and v− (y−Δ) ≤ 2Δ,
we easily conclude that indeed, |K| ≤ Ct1/2Δ−qΔ.

Step 7. We now show, recalling that y +Δ ≤ x− 2Δ, that

∣∣∣Covθ ((Γ̄N
x,x+Δ)

2, (Γ̄N
y,y+Δ)

2)
∣∣∣ ≤ CN−1t1/2Δ1−q.
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We denote by |I| the left hand side and we start from

Γ̄N
x,x+Δ =

∑
n≥0

∫ x+Δ

x−Δ

βn(x, x+Δ, r)N−1
N∑

i,j=1

An
N (i, j)(M j,N

r −M j,N
x−Δ)dr,

whence

I =
∑

m,n,a,b≥0

∫ x+Δ

x−Δ

∫ x+Δ

x−Δ

∫ y+Δ

y−Δ

∫ y+Δ

y−Δ

βm(x, x+Δ, r)βn(x, x+Δ, s)

× βa(y, y +Δ, u)βb(y, y +Δ, v)

×N−4
N∑

i,j,k,l=1

N∑
α,δ,γ,ζ=1

Am
N (i, j)An

N (k, l)Aa
N (α, δ)Ab

N (γ, ζ)

× Covθ

(
(M j,N

r −M j,N
x−Δ)(M

l,N
s −M l,N

x−Δ), (M
δ,N
u −Mδ,N

y−Δ)(M
ζ,N
v −Mζ,N

y−Δ)
)

dvdudsdr.

Using that
∫ x+Δ

x−Δ
|βm(x, x + Δ, r)|dr ≤ 2Λm (and the same formula for the

three other integrals), Step 6 and that
∑N

i=1 A
m
N (i, j) ≤ |||AN |||m1 (and the same

formula for the sums in k, α, γ), we find that, still on Ω1
N ,

|I| ≤C
∑

m,n,a,b≥0

Λm+n+a+b|||AN |||m+n+a+b
1 N−4

N∑
j,l,δ,ζ=1

t1/2Δ1−q1{j=l}

≤CN−1t1/2Δ1−q.

Step 8. Gathering Steps 5 and 7, we find that∣∣∣Covθ ((Ūx+Δ − ŪN
x )2, (Ūy+Δ − ŪN

y )2)
∣∣∣

≤C(N−1t1/2Δ1−q +N−2t2Δ−4q +N−2t1/2Δ3/2−q),

which completes the proof.

We can finally treat the last term.

Lemma 31. Assume H(q) for some q ≥ 1. On Ω1
N , for all 1 ≤ Δ ≤ t/2,

Eθ[(D
N,3
Δ,t )

2] ≤ C
(Δ
t
+

t

Δ4q+1
+

Nt1/2

Δq+1
+

t2

Δ4q+2
+

t1/2

Δq+1/2

)
.

Proof. First note that by definition of DN,3
Δ,t and since ŪN

r = Z̄N
r − Eθ[Z̄

N
r ],

Eθ[(D
N,3
Δ,t )

2] =
N2

t2
Varθ

( 2t/Δ∑
a=t/Δ+1

(ŪN
aΔ − ŪN

(a−1)Δ)
2
)
=

N2

t2

2t/Δ∑
a,b=t/Δ+1

Ka,b,

where Ka,b = Covθ ((Ū
N
aΔ− ŪN

(a−1)Δ)
2, (ŪN

bΔ− ŪN
(b−1)Δ)

2). If |a− b| ≤ 2, we only
use that
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|Ka,b| ≤
(
Varθ

(
(ŪN

aΔ − ŪN
(a−1)Δ)

2
)
Varθ

(
(ŪN

bΔ − ŪN
(b−1)Δ)

2
))1/2

≤C
(Δ2

N2
+

t2

N2Δ4q

)
.

We finally used the first estimate of Lemma 30, which is valid since x = (a−1)Δ
satisfies x ≥ t and thus t/2 ≤ x −Δ ≤ x + Δ ≤ 2t and x = (b − 1)Δ satisfies
the same conditions. If now |a − b| ≥ 3 and w.l.o.g. a > b, we use the second
estimate of Lemma 30, which is valid since x = (a − 1)Δ and y = (b − 1)Δ
satisfy the required conditions (in particular, y +Δ ≤ x− 2Δ). This gives

|Ka,b| ≤ C
( t1/2

NΔq−1
+

t2

N2Δ4q
+

t1/2

N2Δq−3/2

)
.

We end with

Eθ[(D
N,3
Δ,t )

2] ≤C
N2

t2
t

Δ

(Δ2

N2
+

t2

N2Δ4q

)

+ C
N2

t2
t2

Δ2

( t1/2

NΔq−1
+

t2

N2Δ4q
+

t1/2

N2Δq−3/2

)
.

The conclusion follows.

We can at last give the

Proof of Proposition 25. Gathering Lemmas 26, 27, 29 and 31, we see that, on
Ω1

N , if 1 ≤ Δ ≤ t/4,

Eθ[|WN
Δ,t −WN

∞,∞|] ≤Eθ[D
N,1
Δ,t + 2DN,1

2Δ,t +DN,2
Δ,t + 2DN,2

2Δ,t +DN,3
Δ,t

+ 2DN,3
2Δ,t +DN,4

Δ,t ]

≤C
(Δ
t
+

NΔ

t2q
+

N

tq−1
+

t

Δq+1

+

√
Δ

t
+

t

Δ4q+1
+

Nt1/2

Δq+1
+

t2

Δ4q+2
+

t1/2

Δq+1/2

)
.

Using that q ≥ 3 (whence in particular 2q − 1 ≥ q − 1 ≥ (q + 1)/2) and that
1 ≤ Δ ≤ t, we easily deduce that Δ/t ≤ (Δ/t)1/2, that NΔt−2q ≤ NΔ1−2q ≤
NΔ−(q+1)/2, that Nt1−q ≤ NΔ1−q ≤ NΔ−(q+1)/2, that tΔ−q−1 ≤ tΔ−q/2−1,
that t1/2Δ−2q−1/2 ≤ tΔ−2q−1 ≤ tΔ−q/2−1, that we have N1/2t1/4Δ−(q+1)/2 ≤
NΔ−(q+1)/2 + t1/2Δ−(q+1)/2 ≤ NΔ−(q+1)/2 + tΔ−q/2−1, as well as tΔ−2q−1 ≤
tΔ−q/2−1 and t1/4Δ−q/2−1/4 ≤ tΔ−q/2−1. This gives, still on Ω1

N ,

Eθ[|WN
Δ,t −WN

∞,∞|] ≤ C
(√Δ

t
+

N

Δ(q+1)/2
+

t

Δq/2+1

)

as desired.

4.7. Conclusion

We now have all the weapons to check our main result.
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Proof of Theorem 3. Recall that we assume H(q) for some q > 3 and that Δt =
t/(2�t1−4/(q+1)	) ∼ t4/(q+1)/2 (for t large). We can of course assume that t ≥ 4 is
large enough so that Δt ∈ [1, t/4], because else the inequalities of the statement
are trivial. Using Propositions 14 and 17, we find

E

[
1Ω1

N

∣∣∣EN
t − μ

1− Λp

∣∣∣] ≤E

[
1Ω1

N

∣∣∣EN
t − μ�̄N

∣∣∣]+ μE
[
1Ω1

N

∣∣∣�̄N − 1

1− Λp

∣∣∣]

≤C
( 1

N
+

1√
Nt

+
1

tq

)
.

Since now Pr((Ω1
N )c) ≤ Ce−cN by Lemma 13, we conclude that for any ε ∈

(0, 1),

Pr
(∣∣∣EN

t − μ

1− Λp

∣∣∣ ≥ ε
)
≤ Ce−cN+

C

ε

( 1

N
+

1√
Nt

+
1

tq

)
≤ C

ε

( 1

N
+

1√
Nt

+
1

tq

)
.

Similarly, Propositions 14 and 19 imply, since VN
∞ = μ2

∑N
i=1 |�N (i)− �̄N |2,

E

[
1Ω1

N

∣∣∣VN
t − μ2Λ2p(1− p)

(1− Λp)2

∣∣∣]

≤E

[
1Ω1

N

∣∣∣VN
t − VN

∞

∣∣∣]+ μ2
E

[
1Ω1

N

∣∣∣
N∑
i=1

|�N (i)− �̄N |2 − Λ2p(1− p)

(1− Λp)2

∣∣∣]

≤ C√
N

+ CE

[
1Ω1

N

(
1 +

N∑
i=1

[
�N (i)− �̄N

]2)1/2](N
tq

+

√
N

t
+

1√
t

)

≤C
( 1√

N
+

N

tq
+

√
N

t
+

1√
t

)
.

The last inequality uses a second time Proposition 14. We conclude, using
Lemma 13 as previously, that for any ε ∈ (0, 1),

Pr
(∣∣∣VN

t − μ2Λ2p(1− p)

(1− Λp)2

∣∣∣ ≥ ε
)
≤Ce−cN +

C

ε

( 1√
N

+
N

tq
+

√
N

t
+

1√
t

)

≤C

ε

( 1√
N

+
N

tq
+

√
N

t

)

because t−1/2 = (N1/4t−1/2)N−1/4 ≤ N1/2t−1 +N−1/2. This implies that

Pr
(∣∣∣VN

t − μ2Λ2p(1− p)

(1− Λp)2

∣∣∣ ≥ ε
)
≤ C

ε

( 1√
N

+

√
N

t

)
.

Indeed, either
√
N > t and the inequality is trivial or

√
N ≤ t and then Nt−q ≤

Nt−2 ≤ N1/2t−1.
Finally, by Propositions 14 and 25, since WN

∞,∞ = μN−1
∑N

i=1 �N (i)(cN (i))2,

E

[
1Ω1

N

∣∣∣WN
Δt,t −

μ

(1− Λp)3

∣∣∣]
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≤E

[
1Ω1

N

∣∣∣WN
Δt,t −WN

∞,∞

∣∣∣]+ μE
[
1Ω1

N

∣∣∣N−1
N∑
i=1

�N (i)(cN (i))2 − 1

(1− Λp)3

∣∣∣]

≤C
( 1

N
+

√
Δt

t
+

N

Δ
(q+1)/2
t

+
t

Δ
q/2+1
t

)
,

whence as usual by Lemma 13, for ε ∈ (0, 1),

Pr
(∣∣∣WN

Δt,t −
μ

(1− Λp)3

∣∣∣ ≥ ε
)
≤Ce−cN +

C

ε

( 1

N
+

√
Δt

t
+

N

Δ
(q+1)/2
t

+
t

Δ
q/2+1
t

)

≤C

ε

( 1

N
+

1√
t1−4/(q+1)

+
N

t2

)
.

We finally used that Δt ∼ t4/(q+1)/2, which of course implies that
√

Δt/t ∼√
1/(2t1−4/(q+1)), that N/Δ

(q+1)/2
t ∼ 2(q+1)/2Nt−2 and also that t/Δ

q/2+1
t ∼

2q/2+1t−(q+3)/(q+1) ≤ 2q/2+1/
√
t1−4/(q+1).

Proof of Corollary 4. Recall that we assume H(q) for some q > 3. We fix μ > 0,
Λ > 0 and p ∈ (0, 1] such that Λp ∈ (0, 1). We define u = μ/(1 − Λp), v =
μ2Λ2p(1−p)/(1−Λp)2 and w = μ/(1−Λp)3. It holds that (u, v, w) ∈ D (which
would not be the case if Λp = 0) and Ψ(u, v, w) = (μ,Λ, p). Furthermore, Ψ is
obviously of class C∞ on D, it is in particular locally Lipschitz continuous. As
a consequence, there is a constant c ∈ (0, 1) (depending on μ,Λ, p) such that for
any N ≥ 1, any t ≥ 1, any ε ∈ (0, 1/c),

Pr
(∥∥∥Ψ(EN

t ,VN
t ,WN

Δt,t)− (μ,Λ, p)
∥∥∥ ≥ ε

)

≤Pr
(
|EN

t − u|+ |VN
t − v|+ |WN

Δt,t − w| ≥ cε
)

≤C

ε

( 1

N
+

1√
Nt

+
1

tq
+

√
N

t
+

1√
N

+
1

N
+

N

t2
+

1√
t1−4/(q+1)

)

by Theorem 3. Using next that q > 3, that t ≥ 1 and N ≥ 1, and that either
N1/2t−1 ≥ 1 (whence the inequality below is trivial) or N1/2t−1 < 1 (whence
Nt−2 ≤ N1/2t−1), we find

Pr
(∥∥∥Ψ(EN

t ,VN
t ,WN

Δt,t)− (μ,Λ, p)
∥∥∥ ≥ ε

)
≤ C

ε

( 1√
N

+

√
N

t
+

1√
t1−4/(q+1)

)
.

But t−(1−4/(q+1))/2 = [N1/4t−(1−4/(q+1))/2]N−1/4 ≤ N−1/2+N1/2t−(1−4/(q+1)),
which concludes the proof.

We finally give the

Proof of Remark 2. Lemma 16-(ii) with r = 1 and s = 0 tells us that on Ω1
N ,

|Eθ[Z̄
N
t ] − μ�̄N t| ≤ C. By Lemma 18, we know that Eθ[|Z̄N

t − Eθ[Z̄
N
t ]|] =
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Eθ[|ŪN
t |] ≤ C(t/N)1/2, still on Ω1

N and, by Proposition 14, E[1Ω1
N
|�̄N − 1/(1−

Λp)|] ≤ CN−1. We easily deduce that

E[1Ω1
N
|Z̄N

t − μ(1− Λp)−1t|] ≤ C(1 + (t/N)1/2 + t/N) ≤ C(1 + t/N).

Since Pr(Ω1
N ) ≥ 1− Ce−cN by Lemma 13, we find that for any ε > 0,

Pr
(∣∣∣ Z̄N

t

t
− μ

1− Λp

∣∣∣ ≥ ε
)
≤ Ce−cN +

C

ε

(1
t
+

1

N

)
.

The conclusion follows.

5. The supercritical case

The goal of this section is to prove Theorem 6. In Subsection 5.1, we study
precisely the Perron-Frobenius eigenvalue and eigenvector of the matrix with
nonnegative entries AN (i, j) = N−1θij . In Subsection 5.2, we state and prove a
few results on some series involving ϕ�n. A few preliminary stochastic analysis
is handled in Subsection 5.3. We finally conclude the proof in Subsection 5.4.

5.1. Perron-Frobenius analysis of the random matrix AN

We recall that the norms || · ||r on R
N and ||| · |||r on MN×N (R) were defined

in Subsection 4.1. We denote by (e1, . . . , eN ) the canonical basis of RN and by

1N =
∑N

i=1 ei the vector will all entries equal to 1.

Notation 32. We consider the matrix AN (i, j) = N−1θij and the event

Ω2
N =

{ 1

N

N∑
i,j=1

AN (i, j) >
p

2

and for all i, j = 1, . . . , N, |NA2
N (i, j)− p2| < p2

2N3/8

}
.

Actually, 3/8 could be replaced by any other exponent in [3/8, 1/2). We first
show that Ω2

N has a high probability.

Lemma 33. Assume that p ∈ (0, 1]. It holds that Pr(Ω2
N ) ≥ 1− Ce−cN1/4

.

Proof. We recall the Hoeffding inequality [21] for a Binomial(n, q) random vari-
able X: for all x ≥ 0, it holds that Pr(|X − nq| ≥ x) ≤ 2 exp(−2x2/n).

Since N
∑N

i,j=1 AN (i, j) =
∑N

i,j=1 θij ∼ Binomial(N2, p), we deduce that

Pr(N−1
∑N

i,j=1 AN (i, j) ≤ p/2) ≤ Pr(|N
∑N

i,j=1 AN (i, j) − N2p| ≥ N2p/2) ≤
2 exp(−N2p2/2).

For each i �= j, we write N2A2
N (i, j) =

∑N
k=1 θikθkj = ZN

ij + θiiθij + θijθjj ,

where ZN
ij follows a Binomial(N−2, p2) distribution. We thus have |N2A2

N (i, j)−
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ZN
ij | ≤ 2. This obviously extends to the case where i = j. Hence for any i, j,

|NA2
N (i, j)−p2| ≥ p2/(2N3/8) implies that |ZN

ij −(N−2)p2| ≥ p2N5/8/2−4 and

thus, if N ≥ (16/p2)8/5, that |ZN
ij − (N − 2)p2| ≥ p2N5/8/4. By the Hoeffding

inequality, Pr(|NA2
N (i, j) − p2| ≥ p2/(2N3/8)) ≤ 2 exp(−p4N5/4/(8(N − 2)) ≤

2 exp(−p4N1/4/8).

All this shows that Pr((Ω2
N )c) ≤ 2 exp(−N2p2/2)+ 2N2 exp(−p4N1/4/8) for

all N ≥ (16/p2)8/5. The conclusion easily follows: we can find 0 < c < C

depending only on p such that for all N ≥ 1, Pr((Ω2
N )c) ≤ Ce−cN1/4

.

Next, we apply the Perron-Frobenius theorem.

Lemma 34. Assume that p ∈ (0, 1]. On Ω2
N , the spectral radius ρN of AN is a

simple eigenvalue of AN and ρN ∈ [p(1− 1/(2N3/8)), p(1 + 1/(2N3/8))]. There
is a unique eigenvector VN ∈ (R+)

N of AN for the eigenvalue ρN such that
||VN ||2 =

√
N . We also have VN (i) > 0 for all i = 1, . . . , N .

Proof. The matrix AN has nonnegative entries and is irreducible on Ω2
N since

A2
N has positive entries. We thus infer from the Perron-Frobenius theorem that

on Ω2
N , ρN is a simple eigenvalue of AN , that there is a unique correspond-

ing eigenvector VN with nonnegative entries such that ||VN ||2 =
√
N and that

VN (i) > 0 for all i = 1, . . . , N .

Since NA2
N (i, j) ∈ [p2(1 − 1/(2N3/8)), p2(1 + 1/(2N3/8))] for all i, j on Ω2

N

we deduce from ρ2NVN = A2
NVN that ρ2N ||VN ||1 =

∑N
i,j=1 A

2
N (i, j)VN (j) ≤

p2(1 + 1/(2N3/8))||VN ||1, whence ρ2N ≤ p2(1 + 1/(2N3/8)) and thus ρN ≤
p(1 + 1/(2N3/8)). Similarly, we can write ρ2N ||VN ||1 =

∑N
i,j=1 A

2
N (i, j)VN (j) ≥

p2(1 − 1/(2N3/8))||VN ||1, whence ρ2N ≥ p2(1 − 1/(2N3/8)) and thus ρN ≥
p(1− 1/(2N3/8)).

We now gather a number of important facts.

Lemma 35. Assume that p ∈ (0, 1]. There is N0 ≥ 1 (depending only on p)
such that for all N ≥ N0, on Ω2

N , the following properties hold true for all
i, j, k, l = 1, . . . , N :

(i) for all n ≥ 2, An
N (i, j) ≤ (3/2)An

N (k, l),

(ii) VN (i) ∈ [1/2, 2],

(iii) for all n ≥ 0, ||An
N1N ||2 ∈ [

√
NρnN/2, 2

√
NρnN ],

(iv) for all n ≥ 2, An
N (i, j) ∈ [ρnN/(3N), 3ρnN/N ],

(v) for all n ≥ 0, all r ∈ [1,∞],
∣∣∣∣||An

N1N ||−1
r An

N1N − ||VN ||−1
r VN

∣∣∣∣
r
≤

3(2N−3/8)�n/2�+1,

(vi) for all n ≥ 0, all r ∈ [1,∞],
∣∣∣∣||An

Nej ||−1
r An

Nej − ||VN ||−1
r VN

∣∣∣∣
r

≤
12(2N−3/8)�n/2�,

(vii) for all n ≥ 1, ||An
Nej ||2 ≤ 3ρnN/(p

√
N) and for all n ≥ 0, ||An

N1N ||∞ ≤
3ρnN/p.

The proof requires a quantitative version of the Perron-Frobenius theorem
due to G. Birkhoff [7]. It is based on the use of the Hilbert projective distance.
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Notation 36. For x = (xi)i=1,...,N and y = (yi)i=1,...,N in (0,∞)N , we set

dN (x, y) = log
(maxi=1,...,N (xi/yi)

mini=1,...,N (xi/yi)

)
.

We have dN (x, y) = dN (y, x) = dN (x, λy) for all λ > 0 and dN (x, y) ≤
dN (x, z) + dN (z, y). Finally, dN (x, y) = 0 if and only if x and y are colinear.

The result of Birkhoff quantifies the projection on the Perron-Frobenius vec-
tor.

Theorem 37 (Birkhoff [7], Cavazos-Cadena [11]). For any A ∈ MN×N (R) with
positive entries and any x and y in (0,∞)N , we have dN (Ax,Ay) ≤ kAdN (x, y),
where

ΓA = max
i,j,k,l=1,...,N

A(i, k)A(j, l)

A(i, l)A(j, k)
≥ 1 and kA =

√
ΓA − 1√
ΓA + 1

≤ ΓA − 1

4
.

In our context, this gives the following estimates.

Remark 38. Assume that p ∈ (0, 1]. Then on Ω2
N , it holds that for all x, y ∈

(0,∞)N , we have (i) dN (ANx,ANy) ≤ dN (x, y) and (ii) dN (A2
Nx,A2

Ny) ≤
2N−3/8dN (x, y).

Proof. On Ω2
N , we have

A2
N (i, j) ∈ [p2N−1(1− 1/(2N3/8)), p2N−1(1 + 1/(2N3/8))]. (11)

This implies that for each i = 1, . . . , N ,
∑N

k=1 AN (i, k) > 0 (because else,
A2

N (i, j) would vanish for all j = 1, . . . , N). Thus for x, y ∈ (0,∞)N , we
have ANx,ANy ∈ (0,∞)N so that dN (ANx,ANy) is well-defined. We put
m = mini(xi/yi) and M = maxi(xi/yi). We then have m(ANy)i ≤ (ANx)i ≤
M(ANy)i for all i, whence dN (ANx,ANy) ≤ log(M/m) = dN (x, y), which
proves (i). For point (ii), it suffices to use Theorem 37, and to note that, by
(11),

ΓA2
N
= max

i,j,k,l=1,...,N

A2
N (i, k)A2

N (j, l)

A2
N (i, l)A2

N (j, k)
≤ (1 + 1/(2N3/8))2

(1− 1/(2N3/8))2
≤ 1 + 8N−3/8,

whence kA2
N
≤ (ΓA2

N
− 1)/4 ≤ 2N−3/8.

We will also use the following easy remark.

Lemma 39. For all r ∈ [1,∞] and all x, y ∈ (0,∞)N such that dN (x, y) ≤ 1,
we have the inequality

∣∣∣∣||x||−1
r x− ||y||−1

r y
∣∣∣∣
r
≤ 3dN (x, y).

Proof. We fix r ∈ [1,∞] and assume without loss of generality that ||x||r =
||y||r = 1. We set m = mini(xi/yi) and M = maxi(xi/yi). Since ||x||r = ||y||r,
it holds that m ≤ 1 ≤ M . Using that 1 ≥ dN (x, y) = log(1 + (M − m)/m),
we deduce that (M −m)/m ≤ e − 1 ≤ 2. Since log(1 + u) ≥ u/3 on [0, 2], we
conclude that dN (x, y) ≥ (M −m)/(3m) ≥ (M −m)/3. But for all i, we have
xi ∈ [myi,Myi], whence |xi−yi| ≤ (M−m)yi. Thus ||x−y||r ≤ (M−m)||y||r =
(M −m) ≤ 3dN (x, y).
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We can now give the

Proof of Lemma 35. We work on Ω2
N during the whole proof.

Step 1. We first check that dN (1N , VN ) ≤ 2N−3/8. We start from A2
NVN =

ρNVN , so that for all i, VN (i) = ρ−2
N

∑N
j=1 A

2
N (i, j)VN (j). Using (11) and setting

κN = p2ρ−2
N N−1

∑N
j=1 VN (j), we conclude that VN (i) ∈ [κN (1 − 1/(2N3/8)),

κN (1 + 1/(2N3/8))]. Consequently, maxi VN (i)/mini VN (i) is smaller than (1 +
1/(2N3/8))/(1− 1/(2N3/8)) ≤ 1 + 2N−3/8. Hence

dN (1N , VN ) ≤ log[(1 + 1/(2N3/8))/(1− 1/(2N3/8))]

≤ log(1 + 2N−3/8) ≤ 2N−3/8.

Step 2. Here we show that for all i, VN (i) ∈ [(1 + 2N−3/8)−1, (1 + 2N−3/8)].
This will imply point (ii) (for N large enough so that 2N−3/8 ≤ 1). We introduce
m = mini VN (i) and M = maxi VN (i). We have seen in Step 1 that M/m ≤
1 + 2N−3/8. Recalling that ||VN ||2 =

√
N by definition, we deduce that N =∑N

i=1(VN (i))2 ≤ NM2 ≤ N(1 + 2N−3/8)2m2, whence m ≥ (1 + 2N−3/8)−1.

Similarly, N =
∑N

i=1(VN (i))2 ≥ Nm2 ≥ N(1 + 2N−3/8)−2M2, whence M ≤
(1 + 2N−3/8).

Step 3. We verify that for all n ≥ 0, dN (An
N1N , VN ) ≤ (2N−3/8)�n/2�+1. By

Lemma 39, this will imply point (v) for all N large enough so that 2N−3/8 ≤ 1.
Using that An

NVN = ρnNVN , we find that dN (An
N1N , VN ) = dN (An

N1N , An
NVN ).

Hence for all n even, we deduce from Remark 38-(ii) and Step 1 that we have
dN (An

N1N , VN ) ≤ (2N−3/8)n/2dN (1N , VN ) ≤ (2N−3/8)n/2+1. When n is odd,
we simply use that dN (An

N1N , VN ) = dN (An
N1N , ANVN ) ≤ dN (An−1

N 1N , VN )
by Remark 38-(i).

Step 4. We now prove (vi). We fix r ∈ [1,∞] and j ∈ {1, . . . , N}. The result is
obvious if n = 0 or n = 1 because then

∣∣∣∣||An
Nej ||−1

r An
Nej − ||VN1N ||−1

r VN

∣∣∣∣
r
≤

2 ≤ 12(2N−3/8)�n/2�.
By Remark 38-(ii), wee see that dN (A2k

N ej , VN ) = dN (A2k
N ej , A

2k
N VN ) ≤

(2N−3/8)k−1dN (A2
Nej , VN ) for all k ≥ 1.

We next write dN (A2
Nej , VN ) ≤ dN (A2

Nej ,1N ) + dN (1N , VN ). By Step 1,
we have dN (1N , VN ) ≤ log[(1 + N−3/8/2)/(1 + N−3/8/2)]. Furthermore, we
deduce from (11) that dN (A2

Nej ,1N ) = log[maxi(A
2
N (i, j))/mini(A

2
N (i, j))] ≤

log[(1 + N−3/8/2)/(1 + N−3/8/2)]. All in all, we find that dN (A2
Nej , VN ) ≤

log[(1 +N−3/8/2)2/(1−N−3/8/2)2] ≤ log(1 + 8N−3/2) ≤ 8N−3/2.
Hence for all k ≥ 1, dN (A2k

N ej , VN ) ≤ 8N−3/8(2N−3/8)k−1 = 4(2N−3/8)k.
We also have, by Remark 38-(i), dN (A2k+1

N ej , VN ) = dN (A2k+1
N ej , ANVN ) ≤

dN (A2k
N ej , VN ). Thus for all n ≥ 2, dN (An

Nej , VN ) ≤ 4(2N−3/8)�n/2�. This
implies that indeed,

∣∣∣∣||An
Nej ||−1

r An
Nej − ||VN ||−1

r VN

∣∣∣∣
r
≤ 12(2N−3/8)�n/2� by

Lemma 39, if N is large enough so that 2N−3/8 ≤ 1/4.
Step 5. We check (i). Using Step 2, we see that for all j = 1, . . . , N , all n ≥ 2,

dN (An
Nej , VN ) = log

(maxi(A
n
N (i, j)/VN (i))

mini(An
N (i, j)/VN (i))

)
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≥ log
(maxi A

n
N (i, j)

mini An
N (i, j)

× (1 + 2N−3/8)−2
)
.

But for all n ≥ 2, using Remark 38-(i), dN (An
Nej , VN ) = dN (An

Nej , A
n−2
N VN ) ≤

dN (A2
Nej , VN ) ≤ log(1 + 8N−3/8) as seen in Step 4. We conclude that

maxi A
n
N (i, j)

mini An
N (i, j)

≤ (1 + 2N−3/8)2(1 + 8N−3/8).

Using the same arguments with the transpose matrix At
N (which satisfies exactly

the same assumptions as AN on Ω2
N ), we see that for all i = 1, . . . , N ,

maxj A
n
N (i, j)

minj An
N (i, j)

≤ (1 + 2N−3/8)2(1 + 8N−3/8).

Finally, we conclude that for all n ≥ 2,

maxi,j A
n
N (i, j)

mini,j An
N (i, j)

≤ (1 + 2N−3/8)4(1 + 8N−3/8)2.

This is indeed smaller than 3/2 if N is large enough.
Step 6. We now verify (iii). We write An

N1N = ||An
N1N ||2(N−1/2VN +ZN,n),

where ZN,n = ||An
N1N ||−1

2 An
N1N − N−1/2VN . We know by (v) (with r = 2)

that ||ZN,n||2 ≤ 3(2N−3/8)�n/2�+1. We next write, for each n ≥ 0, An+1
N 1N =

||An
N1N ||2(N−1/2ρNVN + ANZN,n). Since ||VN ||2 =

√
N and |||AN |||2 ≤ 1

(which immediately follows from the fact that 0 ≤ AN (i, j) ≤ 1/N), we conclude
that

∣∣||An+1
N 1N ||2 − ρN ||An

N1N ||2
∣∣ ≤ 3||An

N1N ||2(2N−3/8)�n/2�+1.

We now set xn = ||An
N1N ||2/(

√
NρnN ). For all n ≥ 0, we have

|xn+1 − xn| ≤ 3xn(2N
−3/8)�n/2�+1/ρN ≤ 6xn(2N

−3/8)�n/2�+1/p,

because ρN ≥ p/2 on Ω2
N , see Lemma 34. If now N is large enough so that

6(2N−3/8)1/2/p ≤ 1/2, we easily conclude, using that x0 = 1, that, for all
n ≥ 1,

xn ∈
[ n∏
k=1

(1− 6(2N−3/8)�k/2�+1/p),
n∏

k=1

(1 + 6(2N−3/8)�k/2�+1/p)
]
,

which is included in [1/2, 2] if N is large enough (depending only on p). Since
x0 = 1, we thus have xn ∈ [1/2, 2] for all n ≥ 0, and thus ||An

N1N ||2 ∈
[
√
NρnN/2, 2

√
NρnN ] for all n ≥ 0.

Step 7. Here we prove (iv). We fix n ≥ 2 and setm = mini,j A
n
N (i, j) andM =

maxi,j A
n
N (i, j). We know from (i) that M/m ≤ 3/2. Starting from point (iii),

we write
√
NρnN/2 ≤ ||An

N1N ||2 = (
∑N

i=1(
∑N

j=1 A
n
N (i, j))2)1/2 ≤ N3/2M ≤

3N3/2m/2, whence m ≥ ρnN/(3N). By the same way, 2
√
NρnN ≥ ||An

N1N ||2 ≥
N3/2m ≥ 2N3/2M/3, whence M ≤ 3ρnN/N .

Step 8. It only remains to check (vii). We know from (iv) that for all n ≥ 2,
An

N (i, j) ≤ 3ρnN/N ≤ 3ρnN/(pN). And for n = 1, AN (i, j) ≤ 1/N ≤ 3ρN/(pN)
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because ρN ≥ p/3 on Ω2
N , see Lemma 34. We conclude that for all n ≥ 1,

An
N (i, j) ≤ 3ρnN/(pN). This immediately implies that for all n ≥ 1, ||An

Nej ||2 =

(
∑N

i=1(A
n
N (i, j))2)1/2 ≤ 3ρnN/(p

√
N) and ||An

N1N ||∞ = maxi
∑N

j=1 A
n
N (i, j) ≤

3ρnN/p. Finally, for n = 0, we of course have ||A0
N1N ||∞ = 1 ≤ 3ρ0N/p.

Finally, the following tedious result is crucial for our estimation method.

Proposition 40. We assume that p ∈ (0, 1] and we introduce, on Ω2
N , V̄N =

N−1
∑N

i=1 VN (i) and

UN
∞ =

N∑
i=1

(VN (i)− V̄N

V̄N

)2

.

There is N0 ≥ 1 and C > 0 (depending only on p) such that for all N ≥ N0,

E

[
1Ω2

N

∣∣∣UN
∞ −

(1
p
− 1

)∣∣∣] ≤ C√
N

and E[1Ω2
N
||VN − V̄N1N ||22] ≤ C.

Proof. We work with N large enough so that we can apply Lemma 35. We intro-
duce the vectors LN = AN1N and LN = A6

N1N , we set L̄N = N−1
∑N

i=1 LN (i),

L̄N = N−1
∑N

i=1 LN (i),

HN =

N∑
i=1

(LN (i)− L̄N

L̄N

)2

and HN =

N∑
i=1

(LN (i)− L̄N

L̄N

)2

.

We checked in the proof of Proposition 14-Step 2 that (i) E[|L̄N −p|2] ≤ CN−2,
(ii) E[||LN − L̄N1N ||42] ≤ C, (iii) E[(||LN − L̄N1N ||22 − p(1− p))2] ≤ CN−1, (iv)
E[||ANLN − L̄NLN ||22] ≤ CN−1.

We also recall that L̄N ≤ 1 and |||AN |||2 ≤ 1 (simply because 0 ≤ AN (i, j) ≤
1/N). Furthermore, on Ω2

N , it holds that L̄N = N−1
∑N

i,j=1 AN (i, j) ≥ p/2, that

L̄N = N−1
∑N

i,j=1 A
6
N (i, j) ≥ ρ6N/3 ≥ p6/192 (by Lemma 35-(iv) and because

ρN ≥ p/2 by Lemma 34) and that V̄N ≥ 1/2 (by Lemma 35-(ii)).
Step 1. We show that on Ω2

N , ΔN = |UN
∞ −HN | ≤ CN−1/2. A simple com-

putation shows that

ΔN =
∣∣∣

N∑
i=1

[(VN (i)

V̄N

)2

−
(LN (i)

L̄N

)2]∣∣∣

≤
( N∑

i=1

∣∣∣VN (i)

V̄N
− LN (i)

L̄N

∣∣∣)(max
i

(VN (i)

V̄N
+

LN (i)

L̄N

))
= SNTN ,

the last equality being a definition.
Lemma 35-(ii) implies that maxi(VN (i)/V̄N ) ≤ maxi VN (i)/mini VN (i) ≤ 4

and Lemma 35-(i) implies that maxi(LN (i)/L̄N ) ≤ maxi LN (i)/mini LN (i) ≤
3/2 because LN = A6

N1N . Thus TN ≤ 4 + 3/2 ≤ 6. Next, it holds that SN =
N
∣∣∣∣||A6

N1N ||−1
1 A6

N1N−||VN1N ||−1
1 VN

∣∣∣∣
1
. We thus infer from Lemma 35-(v) that

SN ≤ 3N(2N−3/8)4 = 48N−1/2. The conclusion follows.
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Step 2. We next prove that E[1Ω2
N
|HN −HN |] ≤ CN−1/2. We first write

||LN − (L̄N )5LN ||2 =||A6
N1N − (L̄N )5AN1N ||2

≤
5∑

k=1

||(L̄N )5−kAk+1
N 1N − (L̄N )6−kAk

N1N ||2.

Using that L̄N ≤ 1 and |||AN |||2 ≤ 1, we deduce that

||LN − (L̄N )5LN ||2 ≤ 5||A2
N1N − L̄NAN1N ||2 = 5||ANLN − L̄NLN ||2.

We thus deduce from point (iv) recalled above that E[||LN − (L̄N )5LN ||22] ≤
CN−1. But it holds that ||LN − (L̄N )5LN ||2 = IN + JN , where IN = ||(LN −
L̄N1N )− (L̄N )5(LN − L̄N1N )||2 and JN = ||L̄N1N − (L̄N )61N ||2 =

√
N |L̄N −

(L̄N )6|. Consequently, E[I2N ] + E[J2
N ] ≤ CN−1. Using now that

HN =
||LN − L̄N1N ||22

(L̄N )2
=

||(L̄N )5(LN − L̄N1N )||22
(L̄N )12

and HN =
||LN − L̄N1N ||22

(L̄N )2
,

the facts that L̄N ≥ p6/192 and (L̄N )6 ≥ p6/64 on Ω2
N and that the map

x �→ x−2 is globally Lipschitz and bounded on [p6/192,∞), we conclude that,
still on Ω2

N ,

|HN −HN | ≤C
(
||(L̄N )5(LN − L̄N1N )||22|(L̄N )6 − L̄N |

+
∣∣∣||LN − L̄N1N ||22 − ||(L̄N )5(LN − L̄N1N )||22

∣∣∣).
Using now the inequality |a2 − b2| ≤ (a− b)2 + 2a|a− b| for a, b ≥ 0, we deduce
that

|HN −HN | ≤C
(
||(L̄N )5(LN − L̄N1N )||22N−1/2JN + I2N

+ ||(L̄N )5(LN − L̄N1N )||22IN
)

≤C
(
||LN − L̄N1N ||22N−1/2JN + I2N + ||LN − L̄N1N ||22IN

)

because L̄N ≤ 1. Using the Cauchy-Schwarz inequality, that E[I2N ] + E[J2
N ] ≤

CN−1 and that E[||LN−L̄N1N ||42] ≤ C by point (ii) recalled above, we conclude
that E[1Ω2

N
|HN −HN |] ≤ CN−1/2.

Step 3. Here we check that E[1Ω2
N
|HN−(1/p−1)|] ≤ CN−1/2. Since L̄N ≥ p/2

on Ω2
N and since x �→ x−2 is bounded and globally Lipschitz continuous on

[p/2,∞), we can write

∣∣∣HN −
(1
p
− 1

)∣∣∣ =∣∣∣ ||LN − L̄N1N ||22
(L̄N )2

− p(1− p)

p2

∣∣∣
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≤C
(
|L̄N − p|p(1− p) +

∣∣∣||LN − L̄N1N ||22 − p(1− p)
∣∣∣).

The conclusion follows, since as recalled in points (i) and (iii) above, E[|L̄N −
p|] ≤ CN−1 and E[

∣∣||LN − L̄N1N ||22 − p(1− p)
∣∣] ≤ CN−1/2.

Step 4. Gathering Steps 1, 2 and 3, we immediately deduce that E[1Ω2
N
|UN

∞−
(1/p − 1)|] ≤ CN−1/2. Since now V̄N ≤ 2 on Ω2

N by Lemma 35-(ii), ||VN −
V̄N1N ||22 = (V̄N )2UN

∞ ≤ 4UN
∞, whence of course, E[1Ω2

N
||VN − V̄N1N ||22] ≤ C.

5.2. Preliminary analytic estimates

We recall the following lemma, relying on some results of Feller [14] on convo-
lution equations, that can be found in [13, Lemma 26-(b)].

Lemma 41. Let ψ : [0,∞) �→ [0,∞) be integrable and such that
∫∞
0

ψ(t)dt > 1.

Assume also that t �→
∫ t

0
|dψ(s)| has at most polynomial growth and set Γt =∑

n≥0 ψ
�n(t). Consider α > 0 such that

∫∞
0

e−αtψ(t)dt = 1. There are 0 < c <

C such that for all t ≥ 0, 1 + Γt ∈ [ceαt, Ceαt].

Based on this, it is not hard to verify the following result.

Lemma 42. Assume A. Recall that α0 was defined in Remark 5 such that
p
∫∞
0

e−α0tϕ(t)dt = 1 and that ρN was defined, for each N ≥ 1, in Lemma 34.
We now set ΓN

t =
∑

n≥0 ρ
n
Nϕ�n(t). For any η > 0, we can find Nη ≥ 1 and

0 < cη < Cη (depending only on p, ϕ and η) such that for all N ≥ Nη, on Ω2
N ,

for all t ≥ 0, 1 + ΓN
t ∈ [cηe

(α0−η)t, Cηe
(α0+η)t].

Proof. We only prove the result when η ∈ (0, α0), which of course suffices. We
consider ρ+η > p > ρ−η defined respectively by

∫∞
0

e−(α0+η)tϕ(t)dt = 1/ρ+η and∫∞
0

e−(α0−η)tϕ(t)dt = 1/ρ−η . We put Γη,+
t =

∑
n≥0(ρ

+
η )

nϕ�n(t) and Γη,−
t =∑

n≥0(ρ
−
η )

nϕ�n(t). Applying Lemma 41 with ψ = ρ+η ϕ and with ψ = ρ−η ϕ,
we deduce that there are some constants 0 < cη < Cη such that for all t ≥ 0,
cηe

(α0−η)t ≤ 1+Γη,−
t ≤ 1+Γη,+

t ≤ Cηe
(α0+η)t. But on Ω2

N , we know from Lemma
34 that ρN ∈ [p(1 − N−3/8/2), p(1 + N−3/8/2)]. Thus for N large enough, we
clearly have ρN ∈ [ρ−η , ρ

+
η ], so that ΓN

t ∈ [Γη,−
t ,Γη,+

t ]. The conclusion follows.

We next gather a number of consequences of the above estimate that we will
use later.

Lemma 43. Assume A. Recall that α0 was defined in Remark 5, that ρN
was defined in Lemma 34 and that ΓN

t =
∑

n≥0 ρ
n
Nϕ�n(t). We also put vNt =

μN−1/2
∑

n≥0 ||An
N1N ||2

∫ t

0
sϕ�n(t − s)ds. For any η > 0, we can find Nη ≥ 1,

tη > 0 and 0 < cη < Cη (depending only on p, μ, ϕ and η) such that for all
N ≥ Nη, on Ω2

N ,
(i) for all t ≥ 0, vNt ≤ Cηe

(α0+η)t,
(ii) for all t ≥ tη, v

N
t ≥ cηe

(α0−η)t,

(iii) for all t ≥ 0,
∑

n≥0 ρ
n
N (2N−3/8)�n/2�

∫ t

0
ϕ�n(t− s)ds ≤ Cη,
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(iv) for all t ≥ 0,
∑

n≥0 ρ
n
N

∫ t

0
e(α0+η)s/2ϕ�n(t− s)ds ≤ Cηe

(α0+η)t,

(v) for all t ≥ 0,
∑

n≥0 ρ
n
N

∫ t

0
sϕ�n(t− s)ds ≤ Cηe

(α0+η)t,

(vi) for all t ≥ 0,
∫ t

0

∫ t

0
ΓN
t−rΓ

N
t−se

(α0+η)(r∧s)drds ≤ Cηe
2(α0+η)t.

Proof. We fix η > 0 and work with N large enough and on Ω2
N , so that we can

use Lemmas 35 and 42.
We start with (i). By Lemma 35-(iii), ||An

N1N ||2 ≤ 2
√
NρnN . Hence vNt ≤

2μ
∫ t

0
sΓN

t−sds ≤ Cη

∫ t

0
se(α0+η)(t−s)ds = Cηe

(α0+η)t
∫ t

0
se−(α0+η)sds ≤ Cηe

(α0+η)t.

The LHS of point (iv) is
∫ t

0
e(α0+η)s/2ΓN

t−sds ≤ Cη

∫ t

0
e(α0+η)s/2e(α0+η)(t−s)ds,

which equals Cηe
(α0+η)t

∫ t

0
e−(α0+η)s/2ds ≤ Cηe

(α0+η)t.
Point (v) follows from point (iv).
The LHS of (vi) is bounded by

Cη

∫ t

0

∫ t

0

e(α0+η)(t−r)e(α0+η)(t−s)e(α0+η)(r∧s)drds,

which equals 2Cη

∫ t

0
e(α0+η)(t−s)

∫ s

0
e(α0+η)(t−r)e(α0+η)rdrds, which itself equals

2Cηe
2(α0+η)t

∫ t

0
se−(α0+η)sds ≤ Cηe

2(α0+η)t.

Setting Λ =
∫∞
0

ϕ(t)dt, the LHS of point (iii) is bounded by the quantity∑
n≥0(ΛρN )n(2N−3/8)�n/2� ≤

∑
n≥0(2Λp)

n(2N−3/8)�n/2� since ρN ≤ 2p on

Ω2
N by Lemma 34. This is uniformly bounded, as soon as N is large enough so

that 2Λp(2N−3/8)1/2 ≤ 1/2.
We finally check (ii). We know from Lemma 35-(iii) that, on Ω2

N , ||An
N1N ||2 ≥√

NρnN/2, whence vNt ≥ (μ/2)
∫ t

0
sΓN

t−sds ≥ (μ/2)
∫ 2

1
sΓN

t−sds ≥ (μ/2)
∫ t−1

t−2
ΓN
s ds

if t ≥ 2. By Lemma 42, we thus have vNt ≥ (μ/2)
∫ t−1

t−2
(cηe

(α0−η)s − 1)ds ≥
(μ/2)[cηe

(α0−η)(t−2) − 1]. The conclusion easily follows: we can find tη ≥ 2 and
cη > 0 such that for all t ≥ tη, v

N
t ≥ cηe

(α0−η)t.

5.3. Preliminary stochastic analysis

We now prove a few estimates concerning the processes introduced in Notation
9. We recall that α0 was defined in Remark 5 and that ρN and VN were defined
in Lemma 34. We start from Lemma 11 to write (with as usual ϕ�0(t− s)ds =
δt(ds))

Eθ[Z
N
t ] = μ

∑
n≥0

[∫ t

0

sϕ�n(t− s)ds
]
An

N1N = vNt VN + INt , (12)

UN
t = ZN

t − Eθ[Z
N
t ] =

∑
n≥0

∫ t

0

ϕ�n(t− s)An
NMN

s ds = MN
t + JN

t , (13)

where

vNt = μ
∑
n≥0

||An
N1N ||2√
N

∫ t

0

sϕ�n(t− s)ds, (14)
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INt = μ
∑
n≥0

[∫ t

0

sϕ�n(t− s)ds
][
An

N1N − ||An
N1N ||2√
N

VN

]
, (15)

JN
t =

∑
n≥1

∫ t

0

ϕ�n(t− s)An
NMN

s ds. (16)

As usual, we denote by Ii,Nt and J i,N
t the coordinates of INt and JN

t and by
ĪNt and J̄N

t their empirical mean. We start with some upperbounds concerning
ZN

t and UN
t .

Lemma 44. Assume A. For all η > 0, there are Nη ≥ 1 and Cη > 0 such that
for all N ≥ Nη, all t ≥ 0, on Ω2

N ,

(i) maxi=1,...,N Eθ[(Z
i,N
t )2] ≤ Cηe

2(α0+η)t,

(ii) maxi=1,...,N Eθ[(U
i,N
t )2] ≤ Cη(N

−1e2(α0+η)t + e(α0+η)t),
(iii) Eθ[(Ū

N
t )2] ≤ CηN

−1e2(α0+η)t.

Proof. We fix η > 0 and work with N large enough and on Ω2
N , so that we can

use Lemmas 35 and 43.
Step 1. We first verify that ||Eθ[Z

N
t ]||∞ ≤ Cηe

(α0+η)t. Using (12) and that
||An

N1N ||∞ ≤ CρnN for all n ≥ 0 by Lemma 35-(vii), we see that ||Eθ[Z
N
t ]||∞ ≤

C
∑

n≥0 ρ
n
N

∫ t

0
sϕ�n(t− s)ds, whence the conclusion by Lemma 43-(v).

Step 2.We next show that for all i = 1, . . . , N , Eθ[(J
i,N
t )2] ≤ CηN

−1e2(α0+η)t.
We start from (16), which gives us

Eθ[(J
i,N
t )2] =

∑
m,n≥1

∫ t

0

∫ t

0

ϕ�m(t− r)ϕ�n(t− s)

N∑
j,k=1

Am
N (i, j)An

N (i, k)Eθ[M
j,N
r Mk,N

s ]drds.

But by Remark 10, Eθ[M
j,N
r Mk,N

s ] = 1{j=k}Eθ[Z
j,N
r∧s ] ≤ Cη1{j=k}e

(α0+η)(r∧s)

thanks to Step 1. Furthermore,
∑N

j=1 A
m
N (i, j)An

N (i, j) ≤ ||An
Nei||2||Am

Nei||2 ≤
CN−1ρm+n

N by Lemma 35-(vii) (because m,n ≥ 1). We thus find, recalling that
ΓN
t =

∑
n≥0 ϕ

�n(t), that

Eθ[(J
i,N
t )2] = CηN

−1

∫ t

0

∫ t

0

ΓN
t−rΓ

N
t−se

(α0+η)(r∧s)drds.

The conclusion follows from Lemma 43-(vi).

Step 3. Point (ii) follows from the facts that U i,N
t = M i,N

t + J i,N
t , that

Eθ[(M
i,N
t )2] = Eθ[Z

i,N
t ] ≤ Cηe

(α0+η)t by Remark 10 and Step 1 and that

Eθ[(J
i,N
t )2] ≤ CηN

−1e2(α0+η)t by Step 2.

Step 4. Since Zi,N
t = Eθ[Z

i,N
t ] + U i,N

t , we deduce from Steps 1 and 3 that

Eθ[(Z
i,N
t )2] ≤ Cη(e

2(α0+η)t + e(α0+η)t + N−1e2(α0+η)t) ≤ Cηe
2(α0+η)t, whence

point (i).
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Step 5. Finally, we write ŪN
t = M̄N

t + J̄N
t . It is clear from Step 2 that

Eθ[(J̄
N
t )2] ≤ CηN

−1e2(α0+η)t. Moreover, Remark 10 implies that Eθ[(M̄
N
t )2] =

N−2
∑N

i=1 Eθ[Z
i,N
t ] ≤ CηN

−1e(α0+η)t by Step 1. Point (iii) is checked.

We next show that the term INt is very small in the present scales.

Lemma 45. Assume A. For all η > 0, there are Nη ≥ 1 and Cη > 0 such that
for all N ≥ Nη, all t ≥ 0, on Ω2

N , ||INt ||2 ≤ CηN
1/8t.

Proof. We fix η > 0 and work with N large enough and on Ω2
N , so that we

can use Lemmas 35 and 43. Using the Minkowski inequality and then Lemma
35-(iii)-(v), we find

||INt ||2 ≤μ
∑
n≥0

[∫ t

0

sϕ�n(t− s)ds
]∣∣∣∣∣∣An

N1N − ||An
N1N ||2√
N

VN

∣∣∣∣∣∣
2

≤6μt
∑
n≥0

[∫ t

0

ϕ�n(t− s)ds
]
N1/2ρnN (2N−3/8)�n/2�+1

≤12μtN1/8
∑
n≥0

ρnN (2N−3/8)�n/2�
∫ t

0

ϕ�n(t− s)ds.

The conclusion follows from Lemma 43-(iii).

We now study the empirical variance of JN
t .

Lemma 46. Assume A. For all η > 0, there are Nη ≥ 1 and Cη > 0 such
that for all N ≥ Nη, all t ≥ 0, on Ω2

N , Eθ[||JN
t − J̄N

t 1N ||22] ≤ Cη[e
(α0+η)t +

N−1||VN − V̄N1N ||22e2(α0+η)t].

Proof. As usual, we fix η > 0 and work with N large enough and on Ω2
N , so

that we can use Lemmas 35 and 43. Starting from (16) and using the Minkowski
inequality, we find

Eθ[||JN
t − J̄N

t 1N ||22]1/2 ≤
∑
n≥1

∫ t

0

ϕ�n(t− s)Eθ[||An
NMN

s −An
NMN

s 1N ||22]1/2ds.

But using Remark 10 and then Lemma 44-(i), we see that

Eθ[||An
NMN

s −An
NMN

s 1N ||22]

=

N∑
i=1

Eθ

[( N∑
j=1

An
N (i, j)M j,N

s − 1

N

N∑
j,k=1

An
N (k, j)M j,N

s

)2]

=

N∑
i,j=1

(
An

N (i, j)− 1

N

N∑
k=1

An
N (k, j)

)2

Eθ[Z
j,N
s ]

≤Cηe
(α0+η)s

N∑
j=1

||An
Nej −An

Nej1N ||22.
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Using next that, for all x, y ∈ R
N ,

∣∣||x− x̄1N ||2−||y− ȳ1N ||2
∣∣ ≤ ||x−y||2 (with

the notation x̄ = N−1
∑N

i=1 xi and ȳ = N−1
∑N

i=1 yi), we write

||An
Nej −An

Nej1N ||2 ≤
∣∣∣∣∣∣An

Nej −
||An

Nej ||2√
N

VN

∣∣∣∣∣∣
2
+

||An
Nej ||2√
N

||VN − V̄N1N ||2

≤||An
Nej ||2

(
12(2N−3/8)�n/2� +

||VN − V̄N1N ||2√
N

)

by Lemma 35-(vi). Since ||An
Nej ||2 ≤ CρnN/

√
N by Lemma 35-(vii) (because

n ≥ 1), we conclude that

Eθ[||An
NMN

s −An
NMN

s 1N ||22]1/2

≤Cηe
(α0+η)s/2ρnN

(
(2N−3/8)�n/2� +

||VN − V̄N1N ||2√
N

)
.

Consequently,

Eθ[||JN
t − J̄N

t 1N ||22]1/2

≤Cη

∑
n≥1

ρnN

(
(2N−3/8)�n/2� +

||VN − V̄N1N ||2√
N

)∫ t

0

ϕ�n(t− s)e(α0+η)s/2ds

≤Cηe
(α0+η)t/2

∑
n≥1

ρnN (2N−3/8)�n/2�
∫ t

0

ϕ�n(t− s)ds

+ Cη
||VN − V̄N1N ||2√

N

∑
n≥1

ρnN

∫ t

0

ϕ�n(t− s)e(α0+η)s/2ds

≤Cηe
(α0+η)t/2 + Cη

||VN − V̄N1N ||2√
N

e(α0+η)t

by Lemma 43-(iii)-(iv). This completes the proof.

The last lemma of the subsection concerns the martingale MN
t . In point (ii)

below, (·, ·) stands for the usual scalar product in R
N .

Lemma 47. Assume A. For all η > 0, there are Nη ≥ 1 and Cη > 0 such that
for all N ≥ Nη, all t ≥ 0, on Ω2

N ,
(i) Eθ[||MN

t − M̄N
t 1N ||22] ≤ CηNe(α0+η)t,

(ii) Eθ[(M
N
t − M̄N

t 1N , VN − V̄N1N )2] ≤ Cη||VN − V̄N1N ||22e(α0+η)t,

(iii) Eθ[|XN
t |] ≤ Cη

√
Ne(α0+η)t, where XN

t = ||MN
t − M̄N

t 1N ||22 −NZ̄N
t .

Proof. We fix η > 0 and work with N large enough and on Ω2
N , so that we can

use Lemmas 35 and 43.
For point (ii), we write Eθ[(M

N
t − M̄N

t 1N , VN − V̄N1N )2] = Eθ[(M
N
t , VN −

V̄N1N )2] = Eθ[(
∑N

i=1(VN (i) − V̄N )M i,N
t )2]. By Remark 10, this is nothing but∑N

i=1(VN (i) − V̄N )2Eθ[Z
i,N
t ], which is controled by Cη||VN − V̄N1N ||22e(α0+η)t

by Lemma 44-(i).
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For point (iii), we first observe that XN
t = Y N

t − N(M̄N
t )2, where Y N

t =
||MN

t ||22 − NZ̄N
t . Using as usual Remark 10, we deduce that Eθ[N(M̄N

t )2] =

N−1
∑N

i=1 Eθ[Z
i,N
t ] ≤ Cηe

(α0+η)t by Lemma 44-(i). Next, we see that ||MN
t ||22 =∑N

i=1(M
i,N
t )2 = 2

∑N
i=1

∫ t

0
M i,N

s− dM i,N
s +

∑N
i=1 Z

i,N
t , since [M i,N ,M i,N ]t =

Zi,N
t , see Remark 10. Thus Y N

t = 2
∑N

i=1

∫ t

0
M i,N

s− dM i,N
s . But the martingales∫ t

0
M i,N

s− dM i,N
s are orthogonal and

[

∫ ·

0

M i,N
s− dM i,N

s ,

∫ ·

0

M i,N
s− dM i,N

s ]t =

∫ t

0

(M i,N
s− )2dZi,N

s ≤ Zi,N
t sup

[0,t]

(M i,N
s )2.

As a conclusion,

Eθ[(Y
N
t )2] =4

N∑
i=1

Eθ

[∫ t

0

(M i,N
s− )2dZi,N

s

]

≤4

N∑
i=1

Eθ

[
(Zi,N

t )2
]1/2

Eθ

[
sup
[0,t]

(M i,N
s )4

]1/2
.

Using again that [M i,N ,M i,N ]t = Zi,N
t and the Doob inequality, we see that

Eθ[sup[0,t](M
i,N
s )4] ≤ CEθ[(Z

i,N
t )2]. All this shows that we have Eθ[(Y

N
t )2] ≤

C
∑N

i=1 Eθ[(Z
i,N
t )2] ≤ CηNe2(α0+η)t by Lemma 44-(i). As a consequence, we

have Eθ[|Y N
t |] ≤ Cη

√
Ne(α0+η)t and Eθ[|XN

t |] ≤ Eθ[|Y N
t |] + E[N(M̄N

t )2] ≤
Cη

√
Ne(α0+η)t.

Finally, (i) follows from (iii), since Eθ[||MN
t − M̄N

t 1N ||22] ≤ Eθ[|XN
t |] +

NEθ[Z̄
N
t ] and since NEθ[Z̄

N
t ] ≤ CηNe(α0+η)t by Lemma 44-(i) again.

5.4. Conclusion

We now conclude the proof of Theorem 6. We recall that

UN
t =

[ N∑
i=1

(Zi,N
t − Z̄N

t

Z̄N
t

)2

− N

Z̄N
t

]
1{Z̄N

t >0}

=
[ ||ZN

t − Z̄N
t 1N ||22 −NZ̄N

t

(Z̄N
t )2

]
1{Z̄N

t >0},

that VN was introduced in Lemma 34 and that

UN
∞ =

N∑
i=1

(VN (i)− V̄N

V̄N

)2

=
||VN − V̄N1N ||22

(V̄N )2
.

We first proceed to a suitable decomposition of the error.

Remark 48. Assume that p ∈ (0, 1]. We introduce DN
t = |UN

t − (1/p− 1)| and
recall that vNt was defined in (14). There is N0 (depending only on p) such that
for all N ≥ N0, on the event Ω2

N ∩ {Z̄N
t ≥ vNt /4 > 0},

DN
t ≤ 16DN,1

t + 128||VN − V̄N1N ||22DN,2
t + |UN

∞ − (1/p− 1)|,
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where

DN,1
t =

1

(vNt )2

∣∣∣||ZN
t − Z̄N

t 1N ||22 −NZ̄N
t − (vNt )2||VN − V̄N1N ||22

∣∣∣
and DN,2

t =
∣∣∣ Z̄N

t

vNt
− V̄N

∣∣∣.
Proof. We work with N sufficiently large so that we can apply Lemma 35. We
obviously have DN

t ≤ |UN
t −UN

∞|+ |UN
∞− (1/p−1)|. We next write, on the event

Ω2
N ∩ {Z̄N

t ≥ vNt /4 > 0},

|UN
t − UN

∞| ≤ 1

(Z̄N
t )2

∣∣∣||ZN
t − Z̄N

t 1N ||22 −NZ̄N
t − (vNt )2||VN − V̄N1N ||22

∣∣∣
+ ||VN − V̄N1N ||22

∣∣∣( vNt
Z̄N
t

)2

− 1

(V̄N )2

∣∣∣
≤16DN,1

t + 128||VN − V̄N1N ||22DN,2
t .

We used that on the present event, (Z̄N
t )−2 ≤ 16(vNt )−2, that V̄N ≥ 1/2 (see

Lemma 35-(ii)), that (Z̄N
t /vNt ) ≥ 1/4 and that, for all x, y ≥ 1/4, |x−2−y−2| ≤

128|x− y|.

We now treat the term DN,2
t .

Lemma 49. Assume A. For all η > 0, there are Nη ≥ 1, tη ≥ 0 and Cη > 0
such that, for all N ≥ Nη, all t ≥ tη, on Ω2

N ,

(i) Eθ[DN,2
t ] ≤ Cηe

2ηt(N−1/2 + e−α0t),

(ii) Prθ(Z̄
N
t ≤ vNt /4) ≤ Cηe

2ηt(N−1/2 + e−α0t).

Proof. As usual, we fix η > 0 and consider N ≥ Nη and t ≥ tη and we work on
Ω2

N so that we can apply Lemmas 35 and 43.

Recalling (12)-(13), we write ZN
t = Eθ[Z

N
t ] + UN

t = vNt VN + INt + UN
t ,

whence DN,2
t ≤ (vNt )−1(|ĪNt |+ |ŪN

t |). But we infer from Lemma 45 that |ĪNt | ≤
N−1/2||INt ||2 ≤ CηtN

1/8−1/2, which is obviously bounded by Cηe
ηt. Next, we

know from Lemma 44-(iii) that Eθ[|ŪN
t |] ≤ CηN

−1/2e(α0+η)t. We deduce that

Eθ[DN,2
t ] ≤ Cη(v

N
t )−1eηt[1+N−1/2eα0t]. But since t ≥ tη, we know from Lemma

43-(ii) that vNt ≥ cηe
(α0−η)t. This completes the proof of (i).

By Lemma 35-(ii), V̄N ≥ 1/2. Thus Z̄N
t ≤ vNt /4 implies that DN,2

t =

|Z̄N
t /vNt − V̄N | ≥ 1/4. Hence Prθ(Z̄

N
t ≤ vNt /4) ≤ 4Eθ[DN,2

t ] and (ii) follows
from (i).

Lemma 50. Assume A. For all η > 0, there are Nη ≥ 1, tη ≥ 0 and Cη > 0
such that, for all N ≥ Nη, all t ≥ tη, on Ω2

N ,

Eθ[DN,1
t ] ≤ Cη(1 + ||VN − V̄N1N ||22)e4ηt

( 1√
N

+

√
N

eα0t
+
(√N

eα0t

)3/2)
.
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Proof. We fix η > 0 and consider N ≥ Nη and t ≥ tη and we work on Ω2
N

so that we can apply Lemmas 35 and 43. Recalling (12)-(13), we write ZN
t =

vNt VN + INt +MN
t + JN

t and

DN,1
t =

1

(vNt )2

∣∣∣||INt − ĪNt 1N + JN
t − J̄N

t 1N ||22 + ||MN
t − M̄N

t 1N ||22 −NZ̄N
t

+ 2(INt − ĪNt 1N + JN
t − J̄N

t 1N , vNt (VN − V̄N1N ) +MN
t − M̄N

t 1N )

+ 2vNt (VN − V̄N1N ,MN
t − M̄N

t 1N )
∣∣∣.

Recalling that XN
t = ||MN

t − M̄N
t 1N ||22−NZ̄N

t , see Lemma 47, we deduce that

DN,1
t ≤ 1

(vNt )2

∣∣∣2||INt − ĪNt 1N ||22 + 2||JN
t − J̄N

t 1N ||22 + |XN
t |

+ 2(||INt − ĪNt 1N ||2 + ||JN
t − J̄N

t 1N ||2)
× (vNt ||VN − V̄N1N ||2 + ||MN

t − M̄N
t 1N ||2)

+ 2vNt |(VN − V̄N1N ,MN
t − M̄N

t 1N )|
∣∣∣.

We know from Lemma 43-(i)-(ii) that vNt ≥ cηe
(α0−η)t and vNt ≤ Cηe

(α0+η)t

and from Lemma 45 that ||INt − ĪNt 1N ||2 ≤ ||INt ||2 ≤ CηN
1/8t ≤ CηN

1/8eηt.
Lemma 46 tells us that that Eθ[||JN

t − J̄N
t 1N ||22] ≤ Cη[e

(α0+η)t + N−1||VN −
V̄N1N ||22e2(α0+η)t] and Lemma 47 tells us that Eθ[|XN

t |] ≤ Cη

√
Ne(α0+η)t,

Eθ[||MN
t − M̄N

t 1N ||22] ≤ CηNe(α0+η)t and also that Eθ[|(MN
t − M̄N

t 1N , VN −
V̄N1N )|] ≤ Cη||VN − V̄N1N ||2e(α0+η)t/2. Using the Cauchy-Schwarz inequality,
we find

Eθ[DN,1
t ] ≤ Cη(1 + ||VN − V̄N1N ||22)e−2(α0−η)t

×
(
N1/4e2ηt + [e(α0+η)t +N−1e2(α0+η)t] +N1/2e(α0+η)t

+ [N1/8eηt + e(α0+η)t/2 +N−1/2e(α0+η)t][e(α0+η)t +N1/2e(α0+η)t/2]

+ e3(α0+η)t/2
)
.

We easily deduce that

Eθ[DN,1
t ] ≤Cη(1 + ||VN − V̄N1N ||22)e4ηt

×
(
N−1/2 + e−α0t/2 +N1/2e−α0t +N5/8e−3α0t/2

)
.

To conclude, it suffices to notice that e−α0t/2 ≤ N−1/2 + N1/2e−α0t and that
N5/8e−3α0t/2 ≤ N3/4e−3α0t/2 = (N1/2e−α0t)3/2.

We now have all the weapons to give the

Proof of Theorem 6. We assume A and fix η > 0.
Step 1. Starting from Remark 48 and using Lemmas 49 and 50, we deduce

that there is Nη ≥ 1, tη ≥ 0 and Cη > 0 such that for all N ≥ Nη, all t ≥ tη,
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1Ω2
N
Eθ

[
1{Z̄N

t ≥vN
t /4>0}

∣∣∣UN
t −

(1
p
− 1

)∣∣∣] ≤ 1Ω2
N

∣∣∣UN
∞ −

(1
p
− 1

)∣∣∣
+ Cη1Ω2

N
(1 + ||VN − V̄N1N ||22)e4ηt

( 1√
N

+

√
N

eα0t
+

(√N

eα0t

)3/2)
,

which implies, by Proposition 40, that

E

[
1Ω2

N∩{Z̄N
t ≥vN

t /4>0}

∣∣∣UN
t −

(1
p
− 1

)∣∣∣] ≤ Cηe
4ηt

( 1√
N

+

√
N

eα0t
+
(√N

eα0t

)3/2)

and thus, for all ε ∈ (0, 1),

Pr
(
Ω2

N , Z̄N
t ≥ vNt /4 > 0,

∣∣∣UN
t −

(1
p
− 1

)∣∣∣ ≥ ε
)

≤Cη

ε
e4ηt

( 1√
N

+

√
N

eα0t
+

(√N

eα0t

)3/2)

≤Cη

ε
e4ηt

( 1√
N

+

√
N

eα0t

)
.

For the last inequality, we used that either N1/2e−α0t ≥ 1 and then the in-
equality is trivial or N1/2e−α0t ≤ 1 and then (N1/2e−α0t)3/2 ≤ N1/2e−α0t. But
we know from Lemma (43)-(ii) that vNt > 0 on Ω2

N (because t ≥ tη) and from
Lemmas 33 and 49-(ii) that

Pr((Ω2
N )c or Z̄N

t < vNt /4) ≤Ce−cN1/4

+ Cηe
2ηt

( 1√
N

+ e−α0t
)

≤Cηe
2ηt

( 1√
N

+

√
N

eα0t

)
,

whence finally,

Pr
(∣∣∣UN

t −
(1
p
− 1

)∣∣∣ ≥ ε
)
≤Cη

ε
e4ηt

( 1√
N

+

√
N

eα0t

)
.

We have proved this inequality only for N ≥ Nη and t ≥ tη, but it obviously
extends, enlarging Cη is necessary, to any values of N ≥ 1 and t ≥ 0.

Step 2. We next recall that PN
t = Φ(UN

t ), where Φ(u) = (1+u)−11{u≥0} and
observe that p = Φ(1/p − 1). The function Φ is Lipschitz continuous on [0,∞)
with Lipschitz constant 1. Thus for any ε ∈ (0, 1), |PN

t − p| > ε implies that
either |UN

t − (1/p− 1)| > ε or UN
t < 0, so that in any case, |UN

t − (1/p− 1)| >
min{ε, (1/p− 1)}. We thus conclude from Step 1 that for any N ≥ 1, any t ≥ 0,
any ε ∈ (0, 1),

Pr(|PN
t − p| ≥ ε) ≤ Cηe

4ηt

min{ε, (1/p− 1)}
( 1√

N
+

√
N

eα0t

)
≤ Cηe

4ηt

ε

( 1√
N

+

√
N

eα0t

)
.

The proof is complete.

Finally, we handle the

Proof of Remark 5. We assume A and fix η > 0. We know from Lemma 49-
(i) that for all N ≥ Nη, t ≥ tη, 1Ω2

N
Eθ[|(Z̄N

t /vNt ) − V̄N |] ≤ Cηe
2ηt(N−1/2 +
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e−α0t), from Lemma 35-(ii) that V̄N ∈ [1/2, 2] (on Ω2
N ) and from Lemma 33

that Pr(Ω2
N ) ≥ 1−Ce−cN1/4

. We also know from Lemma 43-(i)-(ii) that on Ω2
N ,

there are 0 < aη < bη such that vNt ∈ [aηe
(α0−η)t, bηe

(α0+η)t]. We easily deduce
that, still for N ≥ Nη and t ≥ tη,

Pr(Z̄N
t /∈ [(aη/2)e

(α0−η)t, 2bηe
(α0+η)t]) ≤ Ce−cN1/4

+ Cηe
2ηt(N−1/2 + e−α0t).

Hence limt→∞ limN→∞ Pr(Z̄N
t ∈ [(aη/2)e

(α0−η)t, 2bηe
(α0+η)t]) = 1 for any η ∈

(0, α0/2). We deduce that limt→∞ limN→∞ Pr(Z̄N
t ∈ [e(α0−η)t, e(α0+η)t]) = 1 for

any η > 0.

6. Detecting subcriticality and supercriticality

Proof of Proposition 7. We first assumeH(1). We then know from Lemma 16-(i)

with r = 1 that, on Ω1
N , Eθ[Z̄

N
t ] ≤ Ct < e(log t)2/2 for all t large enough, say for

all t ≥ t0. We also know from Lemma 18 that, still on Ω1
N , Eθ[|Z̄N

t −Eθ[Z̄
N
t ]|] =

Eθ[|ŪN
t |] ≤ C(t/N)1/2 and from Lemma 13 that Pr[(Ω1

N )c] ≤ Ce−cN . We easily
deduce that

Pr(log(Z̄N
t ) ≥ (log t)2)

≤Pr((Ω1
N )c) + Pr(Ω1

N ,Eθ[Z̄
N
t ] ≥ e(log t)2/2 or |Z̄N

t − Eθ[Z̄
N
t ]| ≥ e(log t)2/2)

≤Ce−cN + C(t/N)1/2e−(log t)2

for all t ≥ t0. Enlarging C if necessary, we deduce that Pr(log(Z̄N
t ) ≥ (log t)2) ≤

Ce−cN + Ct1/2e−(log t)2 for all t ≥ 1,
We next assume A and we fix η ∈ (0, α0). We know from Lemma 49-(ii) that

for all N ≥ Nη and t ≥ tη, on Ω2
N , Prθ(Z̄

N
t ≤ vNt /4) ≤ Cηe

2ηt(N−1/2 + e−α0t),

from Lemma 43-(i)-(ii) that, still on Ω2
N , vNt ≥ cηe

(α0−η)t ≥ 4e(log t)2 (enlarging
the value of tη if necessary). Finally, Lemma 33 tells us that Pr((Ω2

N )c) ≤
Ce−cN1/4

. We thus see that

Pr(log(Z̄N
t ) ≤ (log t)2) ≤Pr((Ω2

N )c) + Pr(Ω2
N , Z̄N

t ≤ vNt /4)

≤Ce−cN1/4

+ Cηe
2ηt(N−1/2 + e−α0t)

≤Cηe
2ηt(N−1/2 + e−α0t).

All this shows that for all η ∈ (0, α0), we can find Cη and tη such that for all
t ≥ tη and all N ≥ Nη, Pr(log(Z̄

N
t ) ≤ (log t)2) ≤ Cηe

2ηt(N−1/2 + e−α0t). We
easily conclude that for all η > 0, there is Cη such that for all N ≥ 1 and all
t ≥ 1, Pr(log(Z̄N

t ) ≤ (log t)2) ≤ Cηe
2ηt(N−1/2 + e−α0t) as desired.

7. Numerics

We say that we are in the independent case when the family (θij)1≤i,j≤N is
i.i.d. and Bernoulli(p)-distributed, as in the whole paper. We say we are in
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the symmetric case when the family (θij)1≤i≤j≤N is i.i.d. and Bernoulli(p)-
distributed and when θji = θij for all 1 ≤ i < j ≤ N . We will see that this
does not change much the numerical results (with the very same estimators).
Also, we assume that we observe only (Zi,N

s )s∈[0,T ],i=1,...,K for some (large) K
smaller than N . The theoretical results of this paper only apply when K = N .
We adapt the estimators as follows. We introduce Z̄N,K

t = K−1
∑K

i=1 Z
i,N
t and

EN,K
t =

Z̄N,K
2t − Z̄N,K

t

t
, VN,K

t =
N

K

K∑
i=1

(Zi,N
2t − Zi,N

t

t
−EN,K

t

)2

− N

t
EN,K
t ,

WN,K
Δ,t = 2ZN,K

2Δ,t−ZN,K
Δ,t where ZN,K

Δ,t =
N

t

2t/Δ∑
k=t/Δ+1

(
Z̄N,K
kΔ −Z̄N,K

(k−1)Δ−ΔEN,K
t

)2

,

as well as

Psub,N,K
Δ,T = Φ3

(
EN,K
T/2 ,VN,K

T/2 ,
∣∣∣WN,K

Δ,T/2 −
N −K

K
EN,K
T/2

∣∣∣),
with Φ defined in Corollary 4. We added the absolute value around the last
argument of Φ3 for practical reasons: by this way, Psub,N,K

Δ,T is always well-
defined (and seems closer to the reality than Ψ3 which is 0 when w ≤ 0). This

does not change the theory (since WN,K
Δ,T/2−

N−K
K EN,K

T/2 is asymptoticaly positive,

at least when N = K). We also put

UN,K
T =

[N
K

K∑
i=1

(Zi,N
T − Z̄N,K

T

Z̄N,K
T

)2

− N

Z̄N,K
T

]
1{Z̄N,K

T >0}

and Psup,N,K
T =

1

UN,K
T + 1

1{UN,K
T ≥0}.

We set Δt = t/(2�t9/13	), which corresponds to the (quite arbitrary) choice
q = 12, and

p̂N,K
T = Psub,N,K

ΔT ,T 1{log(Z̄N,K
T )<(log T )2} + Psup,N,K

T 1{log(Z̄N,K
T )>(log T )2}.

7.1. Choice of the estimators

Let us explain briefly how we have modified the estimators when observing
only (Zi,N

s )s∈[0,T ],i=1,...,K . We adopt the notation of Section 2, in particular
AN (i, j) = N−1θij , and we follow the considerations therein.

In the subcritical case, we recall that QN = (I − ΛAN )−1 and that �N (i) =∑N
j=1 QN (i, j). Following closely the argumentation of Subsection 2.1, we expect

that, for t (and Δ) large and in a suitable regime, we should have EN,K
t  μ�̄KN

(where �̄KN = K−1
∑K

i=1 �N (i)), VN,K
t  μ2(N/K)

∑K
i=1(�N (i) − �̄KN )2, and

WN,K
Δ,t  μ(N/K2)

∑N
j=1(

∑K
i=1 QN (i, j))2�N (j). Recalling now that �N (i) 
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1+Λ(1−Λp)−1LN (i) and thatNLN is a vector composed of i.i.d. Binomial(N, p)

random variables, we expect that EN,K
t  μE[�N (1)]  μ/(1−Λp) and VN,K

t 
μ2NVar (�N (1))  μ2Λ2p(1 − p)/(1 − Λp)2 for N , K and t large. For the last
estimator, one first has to get convinced, following again the arguments of Sub-
section 2.1, that

∑K
i=1 QN (i, j)  1+(K/N)Λp/(1−Λp) if j ∈ {1, . . . ,K} while∑K

i=1 QN (i, j)  (K/N)(Λp/(1−Λp)) if j ∈ {K+1, . . . , N}. Since we still have
�N (j)  1 + Λp/(1− Λp) = 1/(1− Λp), we find that

WN,K
Δ,t  μN

K2(1− Λp)

(
K
[
1 +

KΛp

N(1− Λp)

]2
+ (N −K)

[ KΛp

N(1− Λp)

]2)

=
μ

(1− Λp)3
+

(N −K)μ

K(1− Λp)
.

Recalling that EN,K
t  μ/(1−Λp), we conclude that WN,K

Δ,t −(N−K)EN,K
t /K 

μ/(1− Λp)3. For N , K, t and Δ large, we thus should have

Φ3

(
EN,K
t ,VN,K

t ,
∣∣∣WN,K

Δ,t − N −K

K
EN,K
t

∣∣∣)

Φ3

( μ

1− Λp
,
μ2Λ2p(1− p)

(1− Λp)2
,

μ

(1− Λp)3

)
= p.

We introduce the conjectured limit of Psub,N,K
Δt,t

as t → ∞:

Psub,N,K
∞,∞ = Φ3

(
μ�̄KN ,

μ2N

K

K∑
i=1

(�N (i)− �̄KN )2,

∣∣∣μN
K2

N∑
j=1

(

K∑
i=1

QN (i, j))2�N (j)− N −K

K
μ�̄KN

∣∣∣).
In the supercritical case, we follow Subsection 2.2 and deduce that for t

large, we should have UN,K
t  (N/K)(V̄ K

N )−2
∑K

i=1(VN (i) − V̄ K
N )2, where VN

is the Perron-Frobenius eigenvector of AN and where V̄ K
N = K−1

∑K
i=1 VN (i).

Recalling now that VN is almost colinear to LN and that NLN is a vector
composed of i.i.d. Binomial(N, p) random variables, we conclude that indeed,

it should hold that UN,K
t  N(E[VN (1)])−2

Var (VN (1))  1/p − 1 for N , K

and t large, whence Psup,N,K
t  p. Here we introduce the conjectured limit of

Psup,N,K
t as t → ∞:

Psup,N,K
∞ =

(
1 +

N

K(V̄ K
N )2

K∑
i=1

(VN (i)− V̄ K
N )2

)−1

.

7.2. Numerical results

From now on, we assume that ϕ(t) = a exp(−bt) for some a, b > 0, which satisfies
all our assumptions and is easy to simulate. We also always assume that a = 2
and b = 1, whence Λ = 2. We did not find interesting different behaviors when
using other values.
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On all the pictures below but the two last ones, we plot the time evolution
of the three quartiles, using 1000 simulations, of p̂N,K

t − p, as a function of time
t ∈ [0, T ]. We always choose T in such a way that Z̄N

T  3000, so that on the
right of all the pictures below, we always have more or less the same quantity of
data (for a given value of K). The median is plotted in black and the two other
quartiles (25% and 75%) are plotted in red.

Except in the case where p = 0 and μ = 1, we always use the same range for
the y coordinate, from −0.1 to 0.1 for the This explains why some curves are
off the chart. An exception is the case where p = 0.

For a given simulation, we say that the choice is good when p̂N,K
t = Psub,N,K

Δt,t

and Λp < 1 or p̂N,K
t = Psup,N,K

t and Λp > 1. When the choice is almost always
good (that is, for a large proportion of the simulations), we also indicate below
the picture the three quartiles of p̂N,K

∞ −p, where p̂N,K
∞ is the conjectured limit as

t → ∞ of p̂N,K
t , given by p̂N,K

∞ = Psub,N,K
∞,∞ when Λp < 1 and p̂N,K

∞ = Psup,N,K
∞

when Λp > 1.

7.2.1. Estimation of p in the independent case

We start with the independent case. As the pictures below show, the estimation
of p is more precise when p is large. Also, around the critical case, p̂N,K

t is far
from always making the good choice, but this does not, however, produce too
bad results. On the contrary, the estimation of p when p is very small does not
work very well. We did not investigate the case where p is very small and Λp > 1
and we do not know what would happen. This would presumably require a lot
of work.

Observe that the results with N = K = 1000 are most often not better than
those with N = K = 250. This is not so surprising for a given value of T , since
our rate of convergence resembles T−1N1/2 +N−1/2 in the subcritical case and
something similar in the supercritical case.

Finally, in all the trials below, it seems that |p̂N,K
∞ − p| is much smaller than

|p̂N,K
t − p|.
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7.2.2. Estimation of p in the symmetric case

We obtain very similar numerical results. When p = 0, the symmetric and
independent cases are precisely the same so that we do not plot it again.
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7.2.3. Practical choice of Δ
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