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Abstract: The dependence structure in a d-variate continuous random
vector X is characterized by its unique copula. Starting from the fact that
many copulas can be extracted from the global d-dimensional copula of X,
a very general framework is proposed here for testing that a given collection
of induced p-dimensional copulas from a multivariate distribution are iden-
tical. Many hypotheses of interest in copula modeling fall into this category,
including bivariate symmetry (diagonal, radial, joint), exchangeability, as
well as various types of equality of copulas. Here, a broad class of test
statistics is defined around a matrix representation of the null hypothesis
and quadratic functionals including Cramér–von Mises and characteristic
function mappings. Since the null hypotheses to be tested are composite
by nature, the computation of P-values is achieved using multiplier boot-
strap versions of the test statistics. The sample properties of the method are
investigated when testing for several types of bivariate symmetry, exchange-
ability, equality of non-overlapping and overlapping copulas and equality
of all bivariate copulas. The general conclusion is that the tests are good
at keeping their nominal level and are powerful against a wide variety of
alternatives, showing the relevance and reliability of the methodology for
the modeling of multivariate datasets with the help of copulas.
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1. Introduction

Take a random vector X = (X1, . . . , Xd), d ≥ 2, with joint distribution func-
tion H(x) = P(X ≤ x), where x = (x1, . . . , xd). If the marginal distributions
F1, . . . , Fd of X are continuous, then a unique copula C : [0, 1]d → [0, 1] ex-
ists such that H(x) = C{F1(x1), . . . , Fd(xd)} for all x ∈ Rd; more details on
the theoretical aspects of copulas can be found in the monographs by [13], [7]
and [18]. For copula modeling, the testing of shape hypotheses has retained a
lot of attention recently. These hypotheses only specify a general form for the
underlying dependence structure C of X. Among many contributions in this
area, one can mention tests for extreme-value dependence ([15], [19]) and tests
of Archimedeanity ([12], [3]). Because of the composite nature of the hypotheses
of interest, the statistical procedures in these works typically exploit a special
feature shared by all the members under the null, e.g., the max-stability prop-
erty of extreme-value copulas.
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In this paper, a special attention is given to a very general class of shape
hypotheses, namely those that can be written in terms of equality between
copulas that one can extract from C. As will be seen, the class includes several
hypotheses including many notions of symmetry ([11], [20], [10]) and the equality
of two copulas ([21]). Formally, let G be the set of functions g : [0, 1] → [0, 1] such
that g = I or g = 1− I, where I is the identity function. Given g1, . . . , gp ∈ G,
let g(u) = (g1(u1), . . . , gp(up)), where u = (u1, . . . , up). Taking a p-tuple A =
(A1, . . . , Ap) of distinct elements of {1, . . . , d}, consider the random subvector
UA = (UA1 , . . . , UAp) of U = (U1, . . . , Ud) ∼ C whose joint distribution

CA,g(v) = P {g (UA) ≤ v} , v ∈ [0, 1]p, (1)

is a p-variate copula extracted from C. The aim of this paper is to develop a
general framework for testing hypotheses of the form

H0 : CA(1),g(1) = · · · = CA(K),g(K) , (2)

where A(1), . . . , A(K) are p-tuples of distinct elements of {1, . . . , d} and g(1),

. . ., g(K) are such that for each k ∈ {1, . . . ,K}, g(k) = (g
(k)
1 , . . . , g

(k)
p ) with

g
(k)
1 , . . . , g

(k)
p ∈ G. The null hypothesis H0 corresponds to the equality in dis-

tribution of g(1)(UA(1)), . . ., g(K)(UA(K)). Although the methodology will be
developed under a general setting, one should keep in mind the following special
cases that are of a particular interest for copula modeling:

Bivariate symmetry. Let d = p = 2. If A(1) = (1, 2), A(2) = (2, 1) and g(1) =

g(2) = (I, I), then H0 is the hypothesis of diagonal symmetry C(v1, v2) =
C(v2, v1); if A

(1) = A(2) = (1, 2), g(1) = (I, I) and g(2) = (1− I, 1− I), then H0

is the hypothesis of radial symmetry C(v1, v2) = v1+v2−1+C(1−v1, 1−v2); if
A(1) = A(2) = A(3) = (1, 2), g(1) = (I, I), g(2) = (1− I, I) and g(3) = (I, 1− I),
then H0 is the hypothesis of joint symmetry.

Exchangeability. For p = d > 2, let A(1), . . . , A(K) be the K = d! sets of all

possible permutations of {1, . . . , d} and put g(1) = · · · = g(K) = (I, . . . , I); then
H0 corresponds to the hypothesis of exchangeability.

Equality of copulas. For 2 ≤ p < d, consider K possibly overlapping p-tuples

A(1), . . . , A(K) of distinct elements of {1, . . . , d} and let g(1) = · · · = g(K) =
(I, . . . , I); then H0 is the hypothesis of equality of the p-variate copulas asso-
ciated to A(1), . . . , A(K). In particular, when p = 2 and if for K = d(d − 1)/2,
A(1), . . . , A(K) are the sets of all possible pairs extracted from {1, . . . , d}, then
H0 is the hypothesis of equality of all the bivariate copulas.

In this article, a general statistical framework based on quadratic functionals is
proposed in order to test any null hypothesis that can be written in the form H0.
The broad class of nonparametric test statistics hence defined includes Cramér–
von Mises, characteristic function and diagonal type statistics as special cases.
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As will be seen, the fact that the test statistic are of a quadratic-type provides
simple and easy-to-implement formulas; most importantly, it yields consistent
tests in many situations of interest. Moreover, the test statistics recently con-
sidered by [16] appears as a special case of the general methodology developed
here when the hypotheses to be tested are of the form (2).

The paper is organized as follows. In Section 2, the general class of quadratic
test statistics is introduced and their asymptotic behavior is investigated; this is
closely related to a very general result on the large-sample behavior of vectors of
empirical copula processes that is of an independent interest. A method for the
computation of P-values based on the multiplier bootstrap method is proposed
and validated in Section 3. Many quadratic functionals on which the tests are
based are described in Section 4. In Section 5, the sample properties of the tests
are thoroughly investigated with the help of Monte–Carlo simulations. Conclud-
ing remarks are given in Section 6. All proofs and computational formulas are
relegated to three appendices.

2. A general class of test statistics

2.1. Characterization of the null hypothesis

Starting from the null hypothesis H0 described in equation (2), consider the
K-dimensional vector of p-variate copulas

C =
(
CA(1),g(1) , . . . , CA(K),g(K)

)�
. (3)

The null hypothesis H0 entails that there exists a copula D : [0, 1]p → [0, 1] such
that CA(k),g(k) = D for all k ∈ {1, . . . ,K}. This can be equivalently written

C(v) = D(v)1K for all v ∈ [0, 1]p, (4)

where here and in the sequel, 1K = (1, . . . , 1)� ∈ R
K . The alternative hypothesis

specifies that there exists at least one pair k �= k′ ∈ {1, . . . ,K} such that
CA(k),g(k) �= CA(k′),g(k′) . Next, consider a combination matrix M ∈ R

q×K such

that for z ∈ R
K , one has M z = 0q if and only if z = r 1K for some real number

r �= 0 and 0q = (0, . . . , 0)� ∈ R
q; M can be taken as being of full rank without

loss of generality. It follows from (4) that MC(v) = 0q for all v ∈ [0, 1]p if and
only if H0 is true. This characterization of the null hypothesis is at the heart of
the upcoming developments.

2.2. Quadratic-type test statistics

In this subsection, a general class of test statistics will be built around quadratic
functionals of MC. To this end, define for any a, b ∈ N the set Sab of uniformly
bounded functions S : [0, 1]p → R

a×b. Then, let F : Sab → R
b×b be a functional
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that is well defined for every a, b ∈ N and that is quadratic in the sense that for
any R ∈ R

b×1 and S ∈ Sab,

R�F(S)R = F(SR). (5)

Property (5) entails F(0q) = 0 since for any r ∈ R, F(0q) = F(0q r) = r2F(0q).
A measure of discrepancy from H0 can then be based on a quadratic functional
F and a combination matrix M ∈ R

q×K via TF,M : SK1 → R such that
TF,M(S) = F(MS). The fact that MC = 0q if and only if H0 is true entails
that under the null hypothesis,

TF,M(C) = F (MC) = F (0q) = 0.

The null and alternative hypotheses may then be reformulated as

H0 : TF,M(C) = 0 and H1 : TF,M(C) > 0. (6)

Now let X1, . . . ,Xn be i.i.d. from a d-variate population with joint distribu-
tion H, continuous marginal distributions F1, . . ., Fd, and unique copula C. A
nonparametric estimation of C first investigated by [22] is given by

Cn(u) =
1

n

n∑
i=1

I

(
Ûi ≤ u

)
, u = (u1, . . . , ud) ∈ [0, 1]d,

where Ûi = (Fn1(Xi1), . . . , Fnd(Xid)) and Fn1, . . . , Fnd are the univariate em-
pirical distribution functions. This estimator is asymptotically equivalent to the
empirical copula as defined, e.g., by [26] and [25], and is employed here for com-
putational convenience. In the sequel, Cn will be referred to as the empirical
copula without confusion. A natural empirical version of the copula CA,g defined
in equation (1) is then given by

ĈA,g(v) =
1

n

n∑
i=1

I

{
g
(
ÛiA

)
≤ v

}
,

where for each i ∈ {1, . . . , n}, ÛiA = (ÛiA1 , . . . , ÛiAp). An estimator of the
vector of copulas C defined in (3) is therefore

Ĉ =
(
ĈA(1),g(1) , . . . , ĈA(K),g(K)

)�
.

In view of (6), a test would consist in rejecting H0 for large values of TF,M(Ĉ).

This statistic can be computed easily upon noting that Ĉ = L̂1n/n, where the

entries of L̂ ∈ SKn are

L̂ki(v) = I

{
g(k)

(
ÛiA(k)

)
≤ v

}
.

The quadratic nature of F described in equation (5) entails

TF,M(Ĉ) = F
(
ML̂

1n

n

)
=

1

n2
1�
n Λ1n,
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where Λ = F(ML̂) ∈ R
n×n. Simple and explicit formulas for computing the

entries of Λ are given in Appendix B for the quadratic functionals that are
described in Section 4.

2.3. Asymptotic behavior

The weak convergence of the empirical copula process Cn =
√
n(Cn − C) was

obtained by [25]. Specifically, assuming that for each � ∈ {1, . . . , d}, the partial
derivative C [�](u) = ∂C(u)/∂u� exists and is continuous on the set {u ∈ [0, 1]d :
0 < u� < 1}, then Cn converges weakly in the space �∞([0, 1]d) of bounded
functions on [0, 1]d to a process of the form

C(u) = B(u)−
d∑

�=1

C [�](u)B(1�−1, u�,1d−�), (7)

where B is a tight centered Gaussian process such that for any u,u′ ∈ [0, 1]d,

E {B(u)B(u′)} = C(u ∧ u′)− C(u)C(u′).

Here and in the sequel, weak convergence is understood in the meaning given by
[26]. Note that C [1], . . . , C [d] must be defined properly on the frontier of [0, 1]d

in order that C exists and has continuous paths everywhere on [0, 1]d. To this
end, one defines, for � ∈ {1, . . . , d},

C [�](u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
lim sup

h↓0

C(u+ h e�)

h
, if u� = 0;

lim sup
h↓0

C(u)− C(u− h e�)

h
, if u� = 1,

where e1, . . . , ed are the coordinate vectors in R
d.

Proposition 2 establishes the asymptotic behavior under the null hypothesis
of the K-dimensional vector of empirical copulas Ĉ. Before stating it, a first step
is to obtain the large-sample behavior of the process ĈA,g =

√
n(ĈA,g − CA,g)

for arbitrary A and g ∈ G.
Proposition 1. Suppose that for each j ∈ {1, . . . , p}, the partial derivative

C
[j]
A,g(v) = ∂CA,g(v)/∂vj exists and is continuous on the set {v ∈ [0, 1]p : 0 <

vj < 1}. Then the empirical process ĈA,g =
√
n(ĈA,g − CA,g) converges weakly

in the space �∞([0, 1]p) to a limit process of the form

CA,g(v) = BA,g(v)−
p∑

j=1

C
[j]
A,g(v)BA,g(1j−1, vj ,1p−j),

where BA,g is a CA,g-Brownian bridge, i.e. a tight centered Gaussian process on
[0, 1]p such that E{BA,g(v)BA,g(v

′)} = CA,g(v ∧ v′)− CA,g(v)CA,g(v
′).
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The next proposition is the main theoretical result of this section. Before stating
it, define for each v,v′ ∈ [0, 1]p the matrix γ(v,v′) ∈ R

K×K whose entries are

γkk′(v,v′) = P
{
g(k)(UA(k)) ≤ v,g(k′)(UA(k′)) ≤ v′

}
.

Proposition 2. Suppose C = D 1K , where D is a p-variate copula such that
for each j ∈ {1, . . . , p}, the partial derivative D[j](v) = ∂D(v)/∂vj exists and
is continuous on the set {v ∈ [0, 1]p : 0 < vj < 1}. Then the vector of empirical

processes V̂ =
√
n(Ĉ−D 1K) converges weakly in the space (�∞([0, 1]p))

⊗
K to

V(v) = W(v)−
p∑

j=1

D[j](v)W(1j−1, vj ,1p−j),

where W is a K-dimensional vector of centered Gaussian processes on [0, 1]p

such that E
{
W(v)W(v′)�

}
= γ(v,v′)−D(v)D(v′)1K1�

K .

An immediate consequence of Proposition 2 is the characterization of the limit
of the test statistic TF,M(Ĉ) under the null hypothesis.

Corollary 1. Let M ∈ Rq×K be a combination matrix such that M z = 0q

if and only if z = r 1K , r ∈ R \ {0}. Under the conditions of Proposition 2,

nTF,M(Ĉ) converges in distribution to a random variable having representation
F(V′), where

V
′(v) = W

′(v)−
p∑

j=1

D[j](v)W′(1j−1, vj ,1p−j)

and W
′ is a q-dimensional vector of centered Gaussian processes on [0, 1]p with

E
{
W

′(v)W′(v′)�
}
= M γ(v,v′)M�.

The distribution of F(V′) in Corollary 1 has not a simple form in general. From
the fact that F is quadratic in the meaning given in (5), one can conjecture
that this limit distribution admits a representation in terms of a weighted sum
of independent chi-squared random variables. Showing such a result is however
out of the scope of this work.

As a complement, the asymptotic distribution of TF,M(Ĉ) is now established
under alternatives to H0, i.e. when C is such that MC �= 0q.

Proposition 3. Suppose F is Hadamard differentiable with derivative at S ∈
Sq1 given by F ′

S. If for each � ∈ {1, . . . , d}, the partial derivative C [�] exists and
is continuous on the set {u ∈ [0, 1]d : 0 < u� < 1} and M ∈ R

q×K is such that

MC �= 0q, then
√
n{TF,M(Ĉ)−TF,M(C)} is asymptotically normal with mean

zero and variance σ2
F,M = var {F ′

MC (MV
�)}, where V

� is the weak limit of
√
n(Ĉ−C).
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3. Multiplier bootstrap for the computation of P-values

3.1. The multiplier CLT for copula processes

For H ∈ N, consider the independent vectors (ξ
(1)
1 , . . . , ξ

(1)
n ), . . . , (ξ

(H)
1 , . . . , ξ

(H)
n )

of independent and positive multiplier random variables from a probability dis-

tribution having mean one, variance one, and such that
∫∞
0

{P(ξ(h)i > x)}1/2dx <
∞. For each h ∈ {1, . . . ,H}, define a multiplier version of the process B appear-
ing in equation (7) by

B̂
(h)(u) =

1√
n

n∑
i=1

γ
(h)
i I

(
Ûi ≤ u

)
,

where γ
(h)
i = (ξ

(h)
i − ξ̄(h))/ξ̄(h) and ξ̄(h) = (ξ

(h)
1 + · · · + ξ

(h)
n )/n. This way of

defining the multiplier random variables is known as the weighted bootstrap,
which was introduced by [6]. The particular case of exponential multipliers is
called bayesian bootstrap. The limiting representation of Cn in (7) suggests

Ĉ
(h)(u) = B̂

(h)(u)−
d∑

�=1

Ĉ [�](u) B̂(h)(1�−1, u�,1d−�) (8)

as the multiplier empirical copula process, where for each � ∈ {1, . . . , d}, Ĉ [�] is
an estimator of the partial derivative C [�] such that for any ε ∈ (0, 1/2),

sup
u∈[0,1]d:
u�∈[ε,1−ε]

∣∣∣Ĉ [�](u)− C [�](u)
∣∣∣ P−→ 0.

One deduces from [25] that the vector of processes (Cn, Ĉ
(1), . . . , Ĉ(H)) con-

verges weakly in the space (�∞([0, 1]d))
⊗

(1+H) to (C,C(1), . . . ,C(H)), where
C

(1), . . . ,C(H) are independent copies of C. This multiplier bootstrap method
for empirical copula processes will now be adapted in order to mimic the asymp-
totic behavior of V̂ under the null hypothesis.

3.2. Multiplier versions of the test statistics

The fact that the distribution of nTF,M(Ĉ) under H0, both in finite samples
and asymptotically, depends on the unknown value of the p-variate copula D
such that C = D 1K prevents from finding explicitly, or even numerically, a
value Qα such that P(TF,M(V) > Qα) = α. A solution is to rely on bootstrap

replicates of the limit F(V′) of nTF,M(Ĉ) obtained from the multiplier method.
To this end, for each h ∈ {1, . . . ,H}, let

Ŵ
(h) =

(
B̂
(h)

A(1),g(1) , . . . , B̂
(h)

A(K),g(K)

)�
∈ SK1,
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where for each k ∈ {1, . . . ,K},

B̂
(h)

A(k),g(K)(v) =
1√
n

n∑
i=1

γ
(h)
i I

{
g(k)

(
ÛiA(k)

)
≤ v

}
are the multiplier versions of the limit process BA(k),g(k) appearing in the asymp-

totic representation of V̂. Then, for uniformly bounded D̂[1], . . . , D̂[p] that satisfy

sup
v∈[0,1]p:
vj∈[ε,1−ε]

∣∣∣D̂[j](v)−D[j](v)
∣∣∣ P−→ 0 (9)

for any ε ∈ (0, 1/2), define

V̂
(h)(v) = Ŵ

(h)(v)−
p∑

j=1

D̂[j](v) Ŵ(h)(1j−1, vj ,1p−j). (10)

Estimators of D̂[1], . . . , D̂[p] based on finite-differences are described in Section 5.

Proposition 4. Under the conditions of Proposition 2, (V̂, V̂(1), . . . , V̂(H)) con-
verges weakly in the space (�∞([0, 1]p))

⊗
(1+H) to (V,V(1), . . . ,V(H)), where V(1),

. . ., V(H) are independent copies of V.

Corollary 1 states that nTF,M(Ĉ) converges in distribution to F(V′) under H0,
where V

′ = MV. Hence, multiplier versions of this test statistic are given by
F(MV̂(1)), . . . ,F(MV̂(H)). Since F is continuous, an application of the contin-
uous mapping theorem combined with the conclusion of Proposition 4 entails
that the latter are asymptotically independent copies of F(MV) = F(V′). A
P-value is then given by

p̂F,M =
1

H

H∑
h=1

I

{
F
(
MV̂

(h)
)
> nTF,M(Ĉ)

}
. (11)

Note that the weak convergence result about the empirical process V̂ and its mul-
tiplier versions still holds under any alternative such that for each � ∈ {1, . . . , d},
the partial derivative C [�] of the underlying copula C exists and is continu-
ous for u ∈ {[0, 1]d : 0 < u� < 1}. As a consequence, (V̂, V̂(1), . . . , V̂(H)) �
(V�,V(1), . . . ,V(H)), where V

(1), . . . ,V(H) are independent copies of the limit

V
� of V̂ =

√
n(Ĉ −C), whether C equals D 1K or not. Thus, a test based on

nTF,M(Ĉ) is consistent whenever C is such that F(MC) > 0. To see this,

observe that since V̂ is tight and F is assumed continuous,

TF,M
(
Ĉ
)
= F

(
M V̂√

n
+MC

)
n→∞−→ F (MC) > 0,

so that nTF,M(Ĉ)
n→∞→ ∞ in probability. As a consequence, p̂F,M defined in

(11) is an asymptotically valid P-value for the test based on nTF,M(Ĉ).
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Simple formulas derive from the above multiplier bootstrap and the quadratic
nature of the test statistics. First define for each h ∈ {1, . . . ,H} the vector

γ(h) = (γ
(h)
1 , . . . , γ

(h)
n ) ∈ R

n. From the definition of V̂(h) given in equation (10),

one can write V̂
(h) = P̂ γ(h)/

√
n, where the entries of P̂ ∈ SKn are

P̂ki = I

{
g(k)

(
ÛiA(k)

)
≤ v

}
−

p∑
j=1

D̂[j](v) I
{
g
(k)
j

(
Û
iA

(k)
j

)
≤ vj

}
. (12)

Using property (5) on F , one readily obtains

F
(
MV̂

(h)
)
=

1

n
(γ(h))�Λ̂γ(h),

where Λ̂ = F(MP̂ ) ∈ R
n×n needs to be computed only once from the data. As a

consequence, the multiplier bootstrap replicates of the test statistic nTF,M(Ĉ)

obtains quickly. Approximation formulas for Λ̂ are given in Appendix C.

4. Some quadratic functionals

4.1. Cramér–von Mises and diagonal section

A Cramér–von Mises type functional for S ∈ Sab is given by

FCvM(S) =

∫
[0,1]p

{S(v)}� S(v) dv,

where here and in the sequel, the integration of a matrix of functions is under-
stood to be taken componentwise. Note that ifMC �= 0q, then (MC)�(MC) >

0, so that FCvM(MC) > 0. As a consequence, the test based on TF,M(Ĉ) is
consistent against any alternative to H0, whatever the form of H0. A version
of FCvM that considers some sort of dimension reduction using the diagonal
section instead is

FDia(S) =

∫ 1

0

{S(v 1p)}� S(v 1p) dv.

However, unlike the test based on FCvM, the test using FDia is not consistent
against all kind of alternatives to H0.

4.2. Characteristic function

The characteristic function of a p-variate random vector X with distribution

function H is defined for t = (t1, . . . , tp) ∈ R
p by ψH(t) = E(eit

�X), where
i =

√
−1. A marginal-free version that depends only on the copula C of X is
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given by ψC(t) = E(eit
�U), where U ∼ C. A mapping acting on this complex-

valued function is
∫
Rp |ψC(t)|2dω(t), where dω > 0 is a weight function. If C

admits a density dC, then one can equivalently write

∫
Rp

|ψC(t)|2 dω(t) =
∫
Rp

∣∣∣∣∣
∫
[0,1]p

eit
�u dC(u)

∣∣∣∣∣
2

dω(t).

In order to generalize the above functional to S ∈ Sab, define

Fω
Cf(S) =

∫
Rp

⎧⎨⎩
(∫

[0,1]p
eit

�v dS(v)

)�(∫
[0,1]p

eit�u dS(u)

)⎫⎬⎭ dω(t),

where z is the componentwise complex conjugate of the complex matrix z. In
order that the integral with respect to S makes sense, it is assumed that S
is of bounded variation on [0, 1]p in the sense of Hardy–Krause. The following
lemma provides a formula for Fω

Cf that will prove useful for the computation of
the related test statistics.

Lemma 1. For any S ∈ Sab of bounded variation,

Fω
Cf(S) =

∫
[0,1]2p

βω(v − u) dS�(v) dS(u), (13)

where for r = (r1, . . . , rp) ∈ R
p,

βω(r) =

∫
Rp

cos
(
t�r
)
dω(t).

The following result provides an alternate formula for Fω
Cf . The proof is based

on a multivariate integration by parts formula for Riemann-Stieltje integrals
(see [8], for instance). The formula will prove useful for the computation of the
multiplier versions of the test statistic based on Fω

Cf ; see Appendix C for details.

Lemma 2. For any S ∈ Sab of bounded variation,

Fω
Cf(S) =

∫
[0,1]2p

∑
I,J⊆Sp

S� ([vI ,1]
)
S
(
[uJ ,1]

)
×
(

∂

∂vI
∂

∂uJ βω
(
vI − uJ ))dv du, (14)

where Sp = {1, . . . , p}, while vI
j = vj if j ∈ I and vI

j = 0 otherwise.

One can take Fω
Cf in equation (14) as the definition for all S ∈ Sab. Because

this functional is continuous, a consequence of Lemma 2 is that the asymptotic
result stated in Corollary 1 holds for Fω

Cf .
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4.3. Spearman’s rank correlation and other linear measures of
dependence

For some null hypotheses, it may be reasonable to only compare moments as-
sociated to C1, . . . , CK . One such example is the use of Spearman’s measure of
association as considered by [9] for testing the hypothesis of an homogeneous
correlation matrix. In the d-dimensional case, Spearman’s rho can be defined as
an affine transformation of

ηSp(C) =

∫
[0,1]d

C(u) du.

More generally, let η : �∞([0, 1]d) → R be continuous and linear. For example,
the medial correlation coefficient of [1] is an affine transformation of ηB�(C) =
C(1d/2). A quadratic functional based on η and acting on S ∈ Sab may be
defined by Fη(S) = η(S)�η(S), where the entries of η(S) ∈ R

a×b are η(S)ij =
η(Sij); see [17] and [24] for details on copula-based measures of association.

Note that a consequence of Corollary 1 applied to the current context yields
the convergence in distribution of nTFη,M(Ĉ) to η(V′)�η(V′). Since η is con-
tinuous and linear and V

′ is a centered Gaussian process, Lemma 3.9.8 in [26]
entails η(V′) ∼ Nq(0q, Aη), where Aη = E{η(V′)η(V′)�}. Classical results
on the sums of squares of normal vectors that one can find in [23] entail that

nTFη,M(Ĉ) is asymptotically equivalent to λ1 Y
2
1 +· · ·+λr Y

2
r , where Y

2
1 , . . . , Y

2
r

are independent chi-squared random variables with ν1, . . ., νr degrees of free-
dom, respectively, and λ1, . . . , λr are the r distinct eigenvalues of Aη with al-
gebraic multiplicity ν1, . . . , νr. For Spearman’s functional, one invokes Fubini’s
theorem to show that Aη =

∫
[0,1]2p

E{V′(v)V′(v′)} dv dv′, while for Blomqvist’s

functional, Aη = E{V′(1p/2)V
′(1p/2)}.

5. Investigation of the sample properties of the tests

5.1. General setup

The asymptotic behavior of the test statistic nTF,M(Ĉ) under the null hypoth-
esis in (2) has been established in Corollary 1, while the asymptotic validity of
the multiplier bootstrap for the computation of P-values was formally obtained
in Proposition 4. However, these limit results tell little about the behavior of
the tests in small samples. For that reason, it is important to investigate the
sample properties of the tests in terms of their ability to keep their nominal size
under H0 and their power against selected alternative hypotheses.

The null hypotheses that were considered in this simulation study are the
following: (i) three types of bivariate symmetries, namely diagonal, radial and
joint symmetry, (ii) multivariate exchangeability, (iii) some variants of the equal-
ity among copulas and (iv) the equality of all the bivariate copulas in a d-
variate vector. The main focus is put on the tests based on the Cramér–von
Mises (CvM) statistic and on two characteristic function statistics (Cf1, Cf2)
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corresponding respectively to the weight functions dω1(t) =
∏p

j=1 e
−t2j and

dω2(t) =
∏p

j=1 e
−|tj |. In these cases, one can show that for r = (r1, . . . , rp),

βω1(r) = (
√
π)p

∏p
j=1 e

−r2j/4 and βω2(r) = 2p
∏p

j=1(1+ r2j )
−1. These three tests

are consistent under any alternative to H0. The tests based on the diagonal
functional (Dia) was investigated only when testing for the equality of copulas,
i.e. in the cases (iii) and (iv) above, because the latter vanishes in situations (i)
and (ii); for the same reason, the Spearman and Blomqvist functionals (Sp, B�)
were only studied when testing for the equality of all bivariate copulas.

In Appendix C, the formulas for computing the multiplier versions of the
test statistics are based on an approximation of P̂ on a grid of [0, 1]p of size
Np; for the simulation results that are reported, N = 20 when p = 2 and
N = 10 otherwise. The distribution of the multiplier random variables is the
exponential with mean one and the number of multiplier bootstrap samples was
H = 1 000. All probabilities of rejection were estimated from 1 000 replicates.
For each j ∈ {1, . . . , p}, the estimation of the partial derivative D[j] appearing

in the limiting representation of V̂ under the null hypothesis will be based on
a finite difference estimator. Namely, for a given A and g, proceed as e.g. [25]
and define for hn = n−1/2,

Ĉ
[j]
A,g(v)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĈA,g(vj−1, 2hn,vp−j)

2hn
, vj ∈ [0, hn),

ĈA,g(v + hnej)− ĈA,g(v − hnej)

2hn
, vj ∈ [hn, 1− hn],

ĈA,g(vj−1, 1,vp−j)− ĈA,g(vj−1, 1− 2hn,vp−j)

2hn
, vj ∈ (1− hn, 1],

where vj−1 = (v1, . . . , vj−1) and vp−j = (vj+1, . . . , vp). Then, since C
[j]

A(k),g(k) =

D[j] for each k ∈ {1, . . . ,K} under the null hypothesis, a combined estimator of
D[j] is given by

D̂[j](v) =
1

K

K∑
k=1

Ĉ
[j]

A(k),g(k)(v).

The next proposition establishes that D̂[1], . . . , D̂[p] satisfy the requirement of
equation (9).

Proposition 5. For each j ∈ {1, . . . , p}, the estimator D̂[j] is uniformly bounded
and for any ε ∈ (0, 1/2),

sup
v∈[0,1]p:vj∈[ε,1−ε]

∣∣∣D̂[j](v)−D[j](v)
∣∣∣ P−→ 0.
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Many choices for the combination matrix are possible. For the upcoming sim-
ulations, one takes M = IK − 1K 1�

K/K so that MC = C − C̄ for C ∈ SK1,
where C̄ is the componentwise mean of C. This choice ensures that the tests
remain as omnibus as possible. A version of M having linearly independent lines
consists in defining M̃ as the first K − 1 lines of M, but M will be used in the
sequel for convenience.

5.2. Bivariate symmetries

A bivariate copula C is symmetric with respect to the main diagonal of the unit
square if C(v1, v2) = C(v2, v1) for all (v1, v2) ∈ [0, 1]2. It corresponds to A(1) =
(1, 2), A(2) = (2, 1) and g(1) = g(2) = (I, I), because g(1)(UA(1)) = (U1, U2) and
g(2)(UA(2)) = (U2, U1), so that the associated copulas are CA(1),g(1)(v1, v2) =
P(U1 ≤ v1, U2 ≤ v2) = C(v1, v2) and

CA(2),g(2)(v1, v2) = P(U2 ≤ v1, U1 ≤ v2) = C(v2, v1).

Test statistics for symmetry have been developed by [11] and [20]. In particular,
one of the procedures suggested by [11] is based on the Cramér–von Mises
functional described in Section 4.

In order to study the size of the introduced tests for diagonal symmetry,
observations from the Clayton (C�) and Frank (Fr) Archimedean copulas, as
well as from the Normal copula (N) have been simulated; as is well known,
these copulas are symmetric. The results about the estimated probability of
rejection of the null hypothesis can be found in the top panel of Table 1 for the
Cramér–von Mises and the two characteristic function statistics Cf1 and Cf2.
Observations under H1 were generated using a particular case of an idea of [14]
that allows to asymmetrize a symmetric copula C via C�(v1, v2) = uδ

1C(v1−δ
1 , v2)

for some δ ∈ (0, 1). The special case δ = 1/2 has been considered for the Clayton
(C�K), Frank (FrK) and Normal (NK) copulas.

A copula C is radial symmetric if C(v1, v2) = v1 + v2 − 1 +C(1− v1, 1− v2)
for all (v1, v2) ∈ [0, 1]2. It corresponds to A(1) = A(2) = (1, 2), g(1) = (I, I) and
g(2) = (1−I, 1−I), since in that case, g(1)(UA(1)) = (U1, U2) and g(2)(UA(2)) =
(1−U1, 1−U2), so that the corresponding copulas are CA(1),g(1)(v1, v2) = P(U1 ≤
v1, U2 ≤ v2) = C(v1, v2) and

CA(2),g(2)(v1, v2) = P(1− U1 ≤ v1, 1− U2 ≤ v2)

= P(U1 ≥ 1− v1, U2 ≥ 1− v2)

= 1− (1− v1)− (1− v2) + C(1− v1, 1− v2)

= v1 + v2 − 1 + C(1− v1, 1− v2).

Test statistics for radial symmetry were investigated by [10]. For the results in
the middle panel of Table 1, models considered under the null hypothesis were
the Frank and Normal copulas. Note that Frank’s model is the only member of
the Archimedean family that possesses the radial symmetry property. Alterna-
tive hypotheses are provided by Clayton’s copula. Finally note that a stronger
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Table 1

Probability of rejection of the null hypotheses of diagonal (top panel), radial (middle panel)
and joint symmetry (bottom panel), as estimated from 1 000 replicates from various

scenarios under H0 and H1 when n ∈ {50, 100, 200} for the Cramér–von Mises (CvM) and
two characteristic function (Cf1, Cf2) statistics

Copula n = 50 n = 100 n = 200
model τ CvM Cf1 Cf2 CvM Cf1 Cf2 CvM Cf1 Cf2

H0

C� .5 1.8 4.2 4.4 3.1 4.4 4.4 3.1 4.6 4.8
N .5 2.0 5.0 4.2 2.2 4.3 4.6 2.8 3.5 2.8
Fr .5 1.1 4.5 3.9 1.9 5.1 4.1 1.5 4.5 4.2

H1

C�K .5 5.5 9.2 8.7 11.1 14.2 14.7 26.5 32.3 30.6
NK .5 9.2 13.6 13.5 15.6 23.6 24.2 38.6 51.5 50.8
FrK .5 11.5 16.9 17.7 24.6 30.7 32.4 52.0 60.0 60.5

H0

Fr .3 2.6 3.3 3.5 2.5 3.1 3.4 3.7 4.4 4.6
Fr .7 1.1 0.9 1.2 1.5 2.1 3.4 2.8 3.1 3.9
N .3 3.6 4.6 4.8 3.9 4.9 4.8 3.7 3.9 4.3
N .7 0.8 0.5 1.3 2.3 1.7 3.2 1.9 2.5 3.0

H1
C� .3 15.9 18.5 19.9 32.8 41.6 39.1 63.6 75.6 71.4
C� .7 19.5 12.8 33.6 64.2 83.2 76.6 98.3 99.8 99.3

H0

Π .0 5.0 5.9 5.2 4.3 4.9 4.6 3.8 4.0 3.8
FrJS .3 4.6 5.2 5.0 4.1 4.3 4.9 3.2 3.3 3.4
FrJS .7 2.6 2.6 2.3 5.2 5.2 5.5 5.2 4.8 4.9
NJS .3 4.8 5.9 5.5 4.0 3.6 4.2 4.3 4.0 3.9
NJS .7 4.8 5.2 4.4 3.6 2.7 3.4 5.4 4.8 5.3

H1

C� .1 16.9 18.3 18.2 29.9 31.1 31.4 50.4 52.0 51.4
N .1 15.1 18.2 17.0 26.6 29.8 28.6 46.3 52.4 50.0
Fr .1 19.6 21.6 21.6 28.5 30.9 30.5 52.1 53.8 53.9

hypothesis is joint symmetry; this occurs when A(1) = A(2) = A(3) = (1, 2),
g(1) = (I, I), g(2) = (1 − I, I) and g(3) = (I, 1 − I). The independence copula
Π(v1, v2) = v1v2 is jointly symmetric has been considered as a model under
the null hypothesis. In addition, joint symmetric versions of the Normal and

Frank copulas arising from the mixture (U, V )
d
= (X,Y ) or (U, V )

d
= (1−X,Y )

with probability 1/2, where (X,Y ) follows a radial symmetric copula, have been
considered; the models are referred to FrJS and NJS . Finally, alternative hy-
potheses based on the Clayton, Normal and Frank copulas have been considered.
The results can be found in the bottom panel of Table 1.

The levels of dependence for the models in Table 1 are controlled via Kendall’s
tau whose expression for a copula C is τ(C) = 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1.

Looking globally at these results, one notes that the tests are good at keeping
their nominal 5% level under the selected null hypotheses. An exception to
that occurs for the Cramér–von Mises when τ(C) = .7. As documented by [2],
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statistical tests using the multiplier method for empirical copulas often show
some problems at keeping their size under high levels of dependence. A larger
value of the approximation parameter N would possibly give more accurate
results, but at the cost of much slower procedures. Overall, the tests are very
powerful. Of course, for a given alternative, the estimated powers increase with
the sample size. Interestingly, the characteristic function statistics are more
powerful than the Cramér–von Mises statistic, with a mild superiority of Cf1 over
Cf2. To the author’s knowledge, it is the first time that rank-based characteristic
functions are used for inference in copula models. Their good behavior here
compared to the widely-used CvM statistic is very promising for other types of
applications in semi-parametric inference.

5.3. Multivariate exchangeability

A generalization of diagonal symmetry for d > 2 dimensions is exchangeabil-
ity. Specifically, a copula C : [0, 1]d → [0, 1] is said to be exchangeable if
C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)) for any permutation π(1), . . . , π(d) of the

first d integers. In that case, A(1), . . . , A(d!) are the sets of all possible per-
mutations of {1, . . . , d} and g(1) = · · · = g(d!) = (I, . . . , I). All the members
of the family of Archimedean copulas are exchangeable; this property follows
easily from their representation C(u) = φ−1{φ(u1) + · · · + φ(ud)}, where φ is
a univariate generator. Multivariate elliptical copulas with an equicorrelated
covariance matrix are also exchangeable dependence models; this includes the
so-called equicorrelated Normal copula.

Simulated data from two classes of models have been considered. The first is
based on the d-variate Normal copula with correlation matrix Σ ∈ R

d×d. When
Σ is such that θ = Σ12 = Σ21 and Σjj′ = 0.2 for all (j, j′) �= (1, 2), (2, 1), the

model is noted N1(θ); if one takes Σ with Σjj′ = θ|j−j′| for some θ ∈ (0, 1), the
model is referred to N2(θ). Models N1(.2) and N2(.0) are thus situations when
the null hypothesis of exchangeability holds. Another model construction will
be based on the asymmetrization of the multivariate Clayton copula CC� via

C�(u) = uδCC�(u1�
d −δ), where δ = (δ1, . . . , δd) ∈ [0, 1]d, uδ = (uδ1

1 , . . . , uδd
d )

and u1�
d −δ = (u1−δ1

1 , . . ., u1−δd
d ), where the level of dependence of CC� is

adjusted in such a way that Kendall’s tau equals 1/2. When δ1 = θ and
δ2 = · · · = δd = .4, the model is referred to C�K1 (θ); if δj = θj for all
j ∈ {1, . . . , d} and for some θ ∈ (0, 1), this is noted C�K2 (θ).

The results for the test statistics CvM, Cf1 and Cf2 are presented in Table 2
when d = 3. For the null hypotheses that were considered, i.e. N1(.2), N2(.0),
C�K1 (.4) and C�K2 (.0), the test statistics Cf1 and Cf2 are good at keeping their
nominal level, even for sample sizes as small as n = 50. However, the test based
on the Cramér–von Mises functional has much more difficulty at keeping its
size. This unwanted behavior seems to have a significant effect on the power of
the test. Indeed, the power of the CvM statistic is much less than that of the
two characteristic function statistics under all scenarios under H1.
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Table 2

Probability of rejection of the null hypothesis of exchangeability in trivariate random vectors
as estimated from 1 000 replicates from various scenarios under H0 and H1 when
n ∈ {50, 100, 200} for the Cramér–von Mises (CvM) and two characteristic function

(Cf1,Cf2) statistics

Copula n = 50 n = 100 n = 200
model CvM Cf1 Cf2 CvM Cf1 Cf2 CvM Cf1 Cf2

H0
N1(.2) 1.7 4.4 3.8 2.4 4.9 5.2 2.2 5.6 4.5
N2(.0) 2.2 6.4 5.5 2.0 6.8 6.4 3.2 7.4 6.1

H0
C�K1 (.4) 1.6 4.7 4.1 2.2 6.0 5.8 1.9 4.6 4.3
C�K2 (.0) 0.8 4.5 3.9 0.7 5.3 5.2 1.5 3.4 2.3

H1

N1(.4) 5.2 16.2 15.2 9.3 33.7 30.7 22.9 65.6 60.0
N1(.6) 20.8 65.1 59.6 51.1 96.1 94.0 89.9 100.0 99.7
N2(.6) 9.0 36.9 33.1 29.5 76.5 73.3 75.5 98.9 97.7
N2(.8) 6.9 48.5 39.9 31.2 89.5 84.8 91.7 99.8 99.7

H1

C�K1 (.6) 2.3 8.1 7.3 2.6 10.0 9.8 5.1 17.3 16.7
C�K1 (.8) 4.6 16.1 14.5 8.9 29.3 28.6 22.3 53.4 51.2
C�K2 (.6) 2.4 12.4 11.2 5.2 23.9 23.1 15.0 43.6 42.4
C�K2 (.8) 3.0 6.7 5.9 3.0 8.0 8.5 5.5 13.5 11.7

5.4. Equality of copulas

The general framework developed in this paper allows easily for the testing of
the equality of any subset of p-variate copulas that one can extract from the
whole d-variate copula of a multivariate vector X = (X1, . . . , Xd). In the case
when K = 2, it corresponds to the hypothesis of equality of two copulas as
investigated by [21]. With the tools proposed here, it can easily be generalized
to the equality of K > 2 copulas. In addition, one can consider copulas having
one or more overlapping components, for example when testing for the equality
of the dependence structures of (X1, X2) and (X2, X3).

All the simulation results that are presented in Table 3 used data generated
from model N1(θ) described in subsection 5.3 and from a version T3(θ) based
on the Student copula with ν = 3 degrees of freedom. Only the results for
p = 2 are presented. The values in the top panel of Table 3 correspond to
situations where there are no overlapping components. Copulas with overlapping
components were taken into account for the results in the bottom panel: one has
A(1) = (1, 2), A(2) = (2, 3) whenK = 2, A(1) = (1, 2), A(2) = (2, 3), A(3) = (3, 4)
when K = 3, and A(1) = (1, 2), A(2) = (2, 3), A(3) = (3, 4), A(4) = (4, 5) when
K = 4. The tests that were investigated are based on the Cramér–von Mises
(CvM), diagonal (Dia) and the two characteristic function statistics (Cf1, Cf2).

Looking at the results in Table 3, one notes that the tests keep their nominal
levels well under all scenarios under the null hypothesis, i.e., when θ = .2.
One can also see that the four tests are very good at detecting departures
from H0. As expected, the power increases as the sample size increases and as
the departure from the null hypothesis gets larger. Probably due to their close
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Table 3

Probability of rejection of the null hypothesis of equality of K bivariate copulas as estimated
from 1 000 replicates from models N1(θ) and T3(θ) with θ = .2 (H0) and θ ∈ {.4, .6} (H1)

when n ∈ {50, 100} for the Cramér–von Mises (CvM), diagonal (Dia) and two
characteristic function (Cf1,Cf2) statistics. Upper panel: no overlapping components;

bottom panel: overlapping components

Copula n = 50 n = 100
K model CvM Dia Cf1 Cf2 CvM Dia Cf1 Cf2

2

N1(.2) 5.4 5.0 5.9 6.0 4.7 4.9 5.8 5.4
N1(.4) 16.8 15.5 21.3 19.8 22.5 21.8 28.5 26.4
N1(.6) 51.3 48.9 62.2 58.1 84.1 81.7 90.1 87.7
T3(.2) 4.9 5.0 5.9 6.1 4.8 6.1 5.1 4.9
T3(.4) 44.2 48.1 48.9 48.1 78.0 75.4 82.2 81.2
T3(.6) 88.6 92.2 90.8 90.7 99.9 99.9 99.9 99.9

3

N1(.2) 3.9 4.7 6.7 6.0 3.1 3.2 3.2 3.6
N1(.4) 12.0 12.7 17.8 16.1 20.3 21.1 25.2 23.6
N1(.6) 47.3 48.2 63.0 56.8 85.8 84.7 91.5 88.6
T3(.2) 4.1 4.8 5.1 4.7 4.4 5.5 5.4 5.5
T3(.4) 40.7 47.7 47.3 45.7 76.7 76.6 81.2 79.4
T3(.6) 90.1 93.5 93.2 92.4 100.0 99.8 99.9 100.0

4

N1(.2) 3.3 5.5 5.4 5.4 2.9 3.9 3.2 3.1
N1(.4) 9.8 12.0 16.1 14.1 19.6 20.6 27.1 25.0
N1(.6) 43.4 45.8 57.2 53.5 81.5 80.3 88.9 86.4
T3(.2) 2.8 4.4 3.7 3.6 4.6 4.6 6.0 5.5
T3(.4) 34.6 41.7 43.9 42.3 74.4 75.5 78.8 77.6
T3(.6) 86.3 91.7 91.0 90.5 99.8 99.8 100.0 100.0

2

N1(.2) 4.7 5.2 6.2 6.1 4.7 3.9 4.7 4.7
N1(.4) 14.9 14.2 19.5 18.3 27.2 24.9 33.5 31.5
N1(.6) 56.2 52.2 64.5 60.6 86.3 84.2 91.8 89.2
T3(.2) 4.1 3.9 4.8 4.6 4.4 4.6 5.2 5.3
T3(.4) 46.7 50.0 51.4 49.5 80.9 80.5 82.9 83.1
T3(.6) 91.9 93.8 93.0 93.1 100.0 99.9 99.8 99.8

3

N1(.2) 3.3 4.8 5.7 4.8 2.9 4.1 3.3 3.8
N1(.4) 10.3 12.8 16.1 14.8 21.0 21.7 29.0 26.9
N1(.6) 50.3 51.8 64.7 59.2 87.4 85.1 92.9 90.4
T3(.2) 3.0 4.4 3.9 3.7 4.0 5.1 4.3 4.5
T3(.4) 40.8 48.1 48.7 46.9 80.5 81.9 83.3 82.8
T3(.6) 90.9 93.3 94.5 93.0 99.8 100.0 99.8 99.8

4

N1(.2) 3.4 4.1 5.7 4.9 2.3 3.0 3.5 3.3
N1(.4) 10.7 11.6 15.8 14.4 17.7 19.7 25.1 23.0
N1(.6) 40.9 44.4 58.8 52.4 81.0 82.5 91.0 87.6
T3(.2) 1.7 4.9 3.5 3.0 4.4 4.5 6.2 6.1
T3(.4) 35.3 40.1 45.2 42.0 76.2 81.4 80.9 79.9
T3(.6) 88.1 93.2 92.6 92.4 100.0 99.9 100.0 100.0

connection, the results for the Cramér–von Mises and the diagonal statistics are
similar; this conclusion must be taken with care as the latter is not consistent
against all types of alternatives. Here again, the characteristic function statistics
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are systematically more powerful than the CvM statistic. Also observe that
for a given θ, the estimated powers are clearly higher for the Student copulas
compared to alternatives based on the Normal model. Finally note that results
not presented here indicate that the procedures based on the Spearman and
Blomqvist functionals are quite powerful, too. However, these tests would have
no power against alternatives where, e.g., all Spearman measures are equal but
where the copulas have different structures.

5.5. Distributional equality of all the pairs

The problem of testing for the equality of the d(d−1)/2 components of a Spear-
man matrix R ∈ R

d×d, where R��′ is the value of Spearman’s rank correlation
coefficient for the pair (X�, X�′), was considered by [9]. This hypothesis corre-
sponds to A(1), . . . , A(d(d−1)/2) being the d(d− 1)/2 possible pairs in {1, . . . , d}
and g(k) = (I, I) for each k ∈ {1, . . . , d(d − 1)/2}. Statistics similar as those
investigated by [9] arise when one takes the Spearman functional in the case
p = 2. The problem can be generalized in many ways, e.g. for (i) testing the
equality of all the pairwise dependence levels, as measured by an association
measure like Blomqvist’s index, (ii) testing the equality of p-variate dependence
coefficients for a selection of p-variate copulas extracted from C when p > 2,
and (iii) testing the equality of all bivariate copulas of C. The results in Table 4
concern item (iii), where it is assumed that all bivariate copulas are symmetric.
In that case, there are K = d(d−1)/2 bivariate copulas that must be compared.

One can see from the results in Table 4 that the test statistics Cf1, Cf2,
Sp and B� are overall good at keeping their nominal level. The Cramér–von
Mises and diagonal statistics tend to be too conservative, especially under model
C�K2 (.0), i.e. the Clayton copula. Under all scenarios of alternative hypotheses,
the Spearman test statistic Sp considered by [9] is the most powerful; however,
one has to keep in mind that this test is not consistent against alternatives where
the bivariate copulas have the same level of dependence but different structures.
Again, the characteristic function statistics perform very well, being superior to
the Cramér–von Mises and diagonal statistics.

6. Concluding remarks

A general statistical methodology for testing a wide variety of composite hy-
potheses about copulas extracted from multivariate distributions has been in-
troduced. The framework is very flexible, as it allows the testing of many hy-
potheses already considered in the literature, as well as many extensions and
other ones that were never considered to date. The performance of the tests in
small samples show the relevance of the introduced method.

The class of quadratic functionals from which the tests were developed enables
for the investigation of several types of statistics including the well-known and
widely-used Cramér–von Mises functional, as well as new rank-based diagonal
and characteristic function mappings. From the empirical results presented in
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Table 4

Probability of rejection of the null hypothesis of the equality in distribution of all pairs in a
multivariate random vector as estimated from 1 000 replicates from various scenarios under

H0 and H1 when n ∈ {50, 100} for the Cramér–von Mises (CvM), diagonal (Dia), two
characteristic function (Cf1,Cf2), Spearman (Sp) and Blomqvist (B�) statistics. Upper

panel: d = 3; bottom panel: d = 4

Copula n = 50 n = 100
model CvM Dia Cf1 Cf2 Sp B� CvM Dia Cf1 Cf2 Sp B�

H0

N1(.2) 2.9 5.2 6.0 4.8 6.0 6.4 4.9 4.6 5.0 5.4 5.4 5.0
N2(.0) 3.0 4.0 4.9 4.4 5.3 5.7 4.5 4.9 5.1 4.6 5.6 5.8
C�K1 (.4) 2.3 4.0 4.7 3.8 5.1 4.8 4.4 5.7 6.4 5.9 6.2 5.9
C�K2 (.0) 1.3 4.0 4.6 3.2 4.5 4.9 1.7 3.6 5.6 4.6 5.5 5.4

H1

N1(.4) 12.6 13.7 18.7 16.6 20.3 11.3 25.5 25.3 34.7 31.3 36.6 19.5
N1(.6) 53.1 55.2 69.2 64.5 72.3 36.3 89.3 87.4 94.7 93.2 95.4 65.7
N2(.4) 18.8 18.5 30.3 27.3 32.8 14.6 36.1 35.6 50.6 45.9 54.4 24.9
N2(.6) 22.8 27.4 45.8 38.9 48.6 19.1 61.0 57.6 78.9 73.2 82.7 33.1

H1

C�K1 (.6) 4.1 6.0 6.0 6.0 7.4 6.6 6.8 8.7 9.4 8.9 10.5 7.8
C�K1 (.8) 12.1 14.3 17.3 16.4 19.0 11.6 20.8 24.5 24.9 24.0 27.4 18.4
C�K2 (.5) 11.5 15.5 18.2 15.8 20.2 11.3 20.8 26.4 27.6 25.3 31.4 17.7
C�K2 (.7) 6.7 8.2 11.0 10.5 12.2 9.8 8.7 10.6 11.4 10.7 13.7 8.0

H0

N1(.2) 1.6 2.7 3.7 3.2 4.4 5.6 2.3 3.3 4.2 4.3 4.1 4.9
N2(.0) 1.7 3.0 4.1 3.6 4.3 5.3 3.2 4.7 5.5 4.7 5.7 4.8
C�K1 (.4) 1.0 3.4 3.2 3.2 3.3 4.8 1.4 3.5 3.3 3.0 4.0 3.7
C�K2 (.0) 0.5 1.4 2.8 1.5 2.8 4.2 1.1 2.6 3.8 3.7 4.0 5.0

H1

N1(.4) 3.9 8.2 11.2 9.0 13.7 9.1 12.3 16.1 20.2 17.8 23.3 13.2
N1(.6) 29.6 39.6 51.6 45.1 57.0 27.5 70.2 77.2 87.1 82.7 89.9 54.1
N2(.4) 22.4 27.3 42.8 36.2 48.4 19.6 61.3 60.6 78.6 72.3 82.5 41.4
N2(.6) 46.6 52.4 76.2 67.3 79.4 35.6 88.6 89.7 97.9 95.8 98.7 61.7

H1

C�K1 (.6) 3.2 5.5 6.2 5.3 8.1 7.0 5.6 10.3 9.7 9.6 11.7 10.3
C�K1 (.8) 9.8 15.4 17.5 15.2 20.4 13.9 28.2 35.5 36.5 35.2 40.8 25.3
C�K2 (.5) 19.2 29.7 34.7 30.0 39.7 21.9 47.0 61.3 61.0 57.8 66.4 37.8
C�K2 (.7) 8.6 13.6 16.1 14.7 18.9 12.8 21.1 29.4 29.9 29.3 34.8 21.6

Section 5, the latter are particularly appealing as they lead to consistent tests
that seem to outperform the popular Cramér–von Mises statistics, at least for
small sample sizes. A more formal approach considering the asymptotic power of
these tests under contiguous alternatives could be an interesting avenue of future
research. These characteristic function statistics could also provide competing
procedures in many other inferential problems involving copulas, e.g., goodness-
of-fit tests to parametric families and tests of independence.

Another special case of the general class of quadratic functions that was
introduced is the test statistics proposed by [16]. Their idea consists in con-
sidering a function h ∈ �∞([0, 1]p) at a finite and pre-determined set of points
Θ = (θ1, . . . , θL) and to define the quadratic functional FLG(h) = h�

Θ hΘ, where
hΘ = (h(θ1), . . . , h(θL))

�. In order to generalize to S ∈ Sab, define Sθ1 , . . . , SθL ,
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where Sθ� = S(θ�) ∈ R
a×b, and let

FLG(S) =

L∑
�=1

S�
θ�
Sθ� .

Formulas for FLG(ML̂) and FLG(MP̂ ) would be easy to obtain.
Finally, note that the tools proposed in this work are not restricted to the

i.i.d. case. Assuming a condition on the strong mixing coefficients of (Xi)i∈Z,
one deduces from [5] that the empirical copula process converges weakly to a
Gaussian limit whose covariance function depends on the serial structure of
the sequence. Re-sampling could be done from a serial version of the multiplier
method [see 4]. As a consequence, the theoretical results derived here could be
adapted in a straightforward manner to the context of multivariate time series.

Appendix A: Proofs

First consider the following auxiliary lemma.

Lemma 3. Let Sp = {1, . . . , p} and S̃g
p = {j ∈ Sp : gj = 1− I}, where I is the

identity function. One has for v = (v1, . . . , vp) ∈ [0, 1]p that

CA,g(v) =
∑

B⊆S̃g
p

(−1)|B| C
(
vB
)

and ĈA,g(v) =
∑

B⊆S̃g
p

(−1)|B| Cn

(
vB
)
,

where |B| is the cardinality of the set B and for each � ∈ {1, . . . , d},

vB
� =

⎧⎨⎩ vj , if � = Aj for some j ∈ Sp \ S̃g
p ;

1− vj , if � = Aj for some j ∈ B;
1, otherwise.

Proof. One can write

CA,g(v) = E

⎧⎨⎩∏
j∈Sp

I
(
gj
(
UAj

)
≤ vj

)⎫⎬⎭
= E

⎧⎨⎩ ∏
j∈Sp\S̃g

p

I
(
UAj ≤ vj

) ∏
j∈S̃g

p

I
(
1− UAj ≤ vj

)⎫⎬⎭ .

Then, note that∏
j∈S̃g

p

I
(
1− UAj ≤ vj

)
=

∏
j∈S̃g

p

{
1− I

(
UAj < 1− vj

)}
=

∑
B⊆S̃g

p

(−1)|B|
∏
j∈B

I
(
UAj < 1− vj

)
.
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Hence,

CA,g(v) =
∑

B⊆S̃g
p

(−1)|B| E

⎧⎨⎩ ∏
j∈Sp\S̃g

p

I
(
UAj ≤ vj

) ∏
j∈B

I
(
UAj < 1− vj

)⎫⎬⎭
=

∑
B⊆S̃g

p

(−1)|B| C
(
vB
)
.

The expression for ĈA,g obtains similarly. �

A.1. Proof of Proposition 1

From Lemma 3, the empirical process ĈA,g can be written

ĈA,g(v) =
∑

B⊆S̃g
p

(−1)|B|
Cn

(
vB
)
,

where Cn =
√
n(Cn − C) is the empirical copula process. Then, again from

Lemma 3,

C
[j]
A,g(v) =

∑
B⊆S̃g

p :j∈B∪Sp\S̃g
p

(−1)|B|C [Aj ]
(
vB
)
g′j(vj).

Hence the assumption on the partial derivatives of CA,g ensures that for each
� = Aj , C

[�](vB) exists and is continuous on {[0, 1]d : 0 < v� < 1} for any

B ⊆ S̃g
p . As a consequence, one has from [25] that Cn(v

B) � C(vB), where C is
described in equation (7). Thus, in virtue of the continuous mapping Theorem,

ĈA,g converges weakly in the space �∞([0, 1]p) to a limit process of the form

CA,g(v)

=
∑

B⊆S̃g
p

(−1)|B|
C
(
vB
)

= BA,g(v) +
∑

B⊆S̃g
p

(−1)|B|

{
−

d∑
�=1

C [�]
(
vB
)
B
(
1�−1, v

B
� ,1d−�

)}
= BA,g(v)

+
∑

B⊆S̃g
p

(−1)|B|

⎧⎨⎩−
∑

j∈B∪Sp\S̃g
p

C [Aj ]
(
vB
)
B
(
1Aj−1, gj(vj),1d−Aj

)⎫⎬⎭ ,

where
BA,g(v) =

∑
B⊆S̃g

p

(−1)|B|
B
(
vB
)
.
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The last equality follows from the fact that B(1�−1, v
B
� ,1d−�) vanishes unless

� = Aj for some j ∈ B ∪ Sp \ S̃g
p . Observe that because B vanishes when one or

more of its component is zero, all summands in the definition of BA,g vanish if

j ∈ Sp\S̃g
p , except when B = ∅; then BA,g(1j−1, vj ,1p−j) = B(1Aj−1, vj ,1d−Aj )

in that case. Otherwise, if j ∈ S̃g
p , then the only nonzero term occurs when

B = {j}, so that BA,g(1j−1, vj ,1p−j) = −B(1Aj−1, 1 − vj ,1d−Aj ). Hence,
BA,g(1j−1, vj ,1p−j) = g′j(vj)B(1Aj−1, gj(vj),1d−Aj ) or equivalently,

B(1Aj−1, gj(vj),1d−Aj ) = g′j(vj)BA,g(1j−1, vj ,1p−j).

It follows that∑
B⊆S̃g

p

(−1)|B|
∑

j∈B∪Sp\S̃g
p

C [Aj ]
(
vB
)
B
(
1Aj−1, gj(vj),1d−Aj

)

=
∑

B⊆S̃g
p

(−1)|B|
∑

j∈B∪Sp\S̃g
p

C [Aj ]
(
vB
)
g′j(vj)BA,g (1j−1, vj ,1p−j)

=

p∑
j=1

⎧⎨⎩ ∑
B⊆S̃g

p :j∈B∪Sp\S̃g
p

(−1)|B|C [Aj ]
(
vB
)
g′j(vj)

⎫⎬⎭BA,g (1j−1, vj ,1p−j)

=

p∑
j=1

C
[j]
A,g(v)BA,g (1j−1, vj ,1p−j) .

Hence, one can conclude that

CA,g(v) = BA,g(v)−
p∑

j=1

C
[j]
A,g(v)BA,g (1j−1, vj ,1p−j) .

That BA,g is centered Gaussian is obvious from the fact that it is a linear com-
bination of Gaussian processes. It remains to show that its covariance structure
is that of a CA,g-Brownian bridge. To this end, note that BA,g is the limit of

B̂A,g(v) =
1√
n

n∑
i=1

{I (g (UiA) ≤ v)− CA,g(v)} ,

where g(U1A), . . . ,g(UnA) are i.i.d. CA,g. Hence the covariance structure of
BA,g obtains from the finite-dimensional covariances. One obtains easily

E
{
B̂A,g(v) B̂A,g(v

′)
}

= E {I (g (U1A) ≤ v) I (g (U1A) ≤ v′)}
−E {I (g (U1A) ≤ v)}E {I (g (U1A) ≤ v)}

= CA,g(v ∧ v′)− CA,g(v)CA,g(v
′),

finishing the proof.
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A.2. Proof of Proposition 2

First note that

V̂ =

⎛⎜⎝ ĈA(1),g(1)

...

ĈA(K),g(K)

⎞⎟⎠ .

Hence, from Proposition 1 in the special case when CA(k),g(k) = D for all k ∈
{1, . . . ,K}, one has

V̂(v) �

⎛⎜⎝ BA(1),g(1)(v)
...

BA(K),g(K)(v)

⎞⎟⎠−
p∑

j=1

D[j](v)

⎛⎜⎝ BA(1),g(1)(1j−1, vj ,1p−j)
...

BA(K),g(K)(1j−1, vj ,1p−j)

⎞⎟⎠ ,

where for each k ∈ {1, . . . ,K},

BA(k),g(k)(v) =
∑

B⊆S̃
(k)
p

(−1)|B|
B

(
vB,(k)

)
,

with S̃
(k)
p = {j ∈ Sp : g

(k)
j = 1− I} and for each � ∈ {1, . . . , d},

v
B,(k)
� =

⎧⎪⎨⎪⎩
vj , if � = A

(k)
j for some j ∈ Sp \ S̃(k)

p ;

1− vj , if � = A
(k)
j for some j ∈ B;

1, otherwise.

Then, let

W =

⎛⎜⎝ BA(1),g(1)

...
BA(K),g(K)

⎞⎟⎠
and note that this vector of processes appears as the tight limit of

Ŵ =

⎛⎜⎝ B̂A(1),g(1)

...

B̂A(K),g(K)

⎞⎟⎠ ,

where

B̂A(k),g(k)(v) =
1√
n

n∑
i=1

{
I

(
g(k) (UiA(k)) ≤ v

)
−D(v)

}
.

The covariance structure of W then obtains easily from the finite-dimensional
distributions, proceeding similarly as in the proof of Proposition 1. Specifically,

E
{
B̂A(k),g(k)(v) B̂A(k′),g(k′)(v′)

}
= E

{
I

(
g(k) (U1A(k)) ≤ v

)
I

(
g(k′) (U1A(k′)) ≤ v′

)}
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−E
{
I

(
g(k) (U1A(k)) ≤ v

)}
E
{
I

(
g(k′) (U1A(k′)) ≤ v′

)}
= γkk′(v,v′)−D(v)D(v′).

One can then write E
{
W(v)W(v′)�

}
= γ(v,v′)−D(v)D(v′)1K1�

K .

A.3. Proof of Corollary 1

Using the fact that MC = 0q under H0 and from property (5), one can write

nTF,M
(
Ĉ
)
= nF

(
MĈ−MC

)
= F

{
M
(
Ĉ−C

)√
n
}
= F

(
MV̂

)
.

Since F is continuous, one can apply the continuous mapping theorem and
conclude that F(MV̂) � F(V′), where V

′ = MV and V is the weak limit of V̂
given in Proposition 2. From the representation of V, one can write

V
′(v) = W

′(v)−
p∑

j=1

D[j](v)W′(1j−1, vj ,1p−j),

where W
′ = MW is a q-dimensional vector of centered Gaussian processes on

[0, 1]p with

E
{
W

′(v)W′(v′)�
}

= ME
{
W(v)W(v′)�

}
M�

= M γ(v,v′)M� −D(v)D(v′)M1K(M1K)�

= M γ(v,v′)M�.

The last equality follows from M1K = 0q, by assumption on M.

A.4. Proof of Proposition 3

Let S ∈ Sq1 and Δn → Δ ∈ Sq1 as n → ∞. By the Hadamard differentiability
of F , one has for tn → 0 ∈ R that

lim
n→∞

∣∣∣∣F (S +Δn tn)−F(S)

tn
−F ′

S(Δ)

∣∣∣∣ = 0.

Now for M ∈ R
q×K and Δn ∈ SK1,

lim
n→∞

∣∣∣∣TF,M (S +Δn tn)− TF,M(S)

tn
−F ′

MS(MΔ)

∣∣∣∣
= lim

n→∞

∣∣∣∣F (MS +MΔn tn)−F(MS)

tn
−F ′

MS(MΔ)

∣∣∣∣
= 0,

since MS ∈ Sq1 and MΔn → MΔ ∈ Sq1, and because of the Hadamard
differentiability of F . Thus TF,M(S) is Hadamard differentiable with deriva-
tive at S given by F ′

MS(MΔ). The functional Delta method combined with
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√
n(Ĉ − C) � V

� yields
√
n{TF,M(Ĉ) − TF,M(C)} � F ′

MC(MV
�). Since

F ′ : Sq1 → R is linear, Lemma 3.9.8 in [26] entails that F ′
MC(MV

�) is uni-
variate Normal with mean E{F ′

MC(MV�)} = F ′
MC(0q) = 0 and variance

σ2
F,M = var {F ′

MC (MV
�)}.

A.5. Proof of Proposition 4

Using arguments similar as those in the proof of Lemma 3, one can show that

B̂
(h)

A(k),g(k)(v) =
∑

B⊆S̃
(k)
p

(−1)|B|
B̂
(h)
(
vB,(k)

)

for each k ∈ {1, . . . ,K}, where S̃
(k)
p and vB,(k) are defined in the proof of

Proposition 2. If j ∈ Sp \ S̃(k)
p , then

B̂
(h)

A(k),g(k)(1j−1, vj ,1p−j) =
1√
n

n∑
i=1

γ
(h)
i I

(
Û
iA

(k)
j

≤ vj

)
= B̂

(h)
(
1
A

(k)
j −1

, vj ,1d−A
(k)
j

)
.

On the other side, if j ∈ S̃
(k)
p ,

B̂
(h)

A(k),g(k)(1j−1, vj ,1p−j) =
1√
n

n∑
i=1

γ
(h)
i I

(
Û
iA

(k)
j

≥ 1− vj

)
=

1√
n

n∑
i=1

γ
(h)
i

{
1− I

(
Û
iA

(k)
j

< 1− vj

)}
= − 1√

n

n∑
i=1

γ
(h)
i I

(
Û
iA

(k)
j

< 1− vj

)
= −B̂

(h)
(
1
A

(k)
j −1

, 1− vj ,1d−A
(k)
j

)
.

Thus, one can write

B̂
(h)

A(k),g(k)(1j−1, vj ,1p−j) = (g
(k)
j )′(vj) B̂

(h)
(
1
A

(k)
j −1

, g
(k)
j (vj),1d−A

(k)
j

)
.

Hence, the k-th component of V̂(h) is

V̂
(h)
k (v)

=
∑

B⊆S̃
(k)
p

(−1)|B|

{
B̂
(h)
(
vB,(k)

)
−

d∑
�=1

D̂[�]
(
vB,(k)

)
B̂
(h)
(
1�−1, v

B
� ,1d−�

)}
.
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The expression inside the brackets is Ĉ(h) defined in equation (8), but with Ĉ [�]

replaced by D̂[�], so that one can write

V̂
(h)
k (v) =

∑
B⊆S̃

(k)
p

(−1)|B|
Ĉ

(h)
(
vB,(k)

)
.

From Proposition 3.2 in [25], one concludes that for each k ∈ {1, . . . ,K},
(V̂k, V̂

(h)
k ) converges weakly to (Vk,V

(h)
k ), where V

(h)
k is an independent copy of∑

B⊆S̃
(k)
p

(−1)|B|
C

(h)
(
vB,(k)

)
= CA(k),g(k)(v).

Hence, the vector (V̂, V̂(1), . . . , V̂(M)) converges weakly to (V,V(1), . . . ,V(M)),
where V

(1), . . . ,V(M) are independent copies of V.

A.6. Proof of Lemma 1

Because eit
�v = cos(t�v) + i sin(t�v), one has

eit
�v eit�u = cos(t�v) cos(t�u) + sin(t�v) sin(t�u) + i r(u,v),

where r(u,v) = sin(t�v) cos(t�u)− cos(t�v) sin(t�u). Hence, one can write(∫
[0,1]p

eit
�v dS(v)

)�(∫
[0,1]p

eit�u dS(u)

)

=

∫
[0,1]2p

eit
�v eit�u dS�(v) dS(u)

=

∫
[0,1]2p

{
cos(t�v) cos(t�u) + sin(t�v) sin(t�u)

}
dS�(v) dS(u), (15)

where the last equality arises since r(v,u) = −r(u,v), so that∫
[0,1]2p

r(u,v) dS�(v) dS(u) =

∫
[0,1]2p

r(v,u) dS�(u) dS(v)

= −
∫
[0,1]2p

r(u,v) dS�(u) dS(v)

= −
∫
[0,1]2p

r(u,v) dS�(v) dS(u).

Using the trigonometric identity cosx cos y + sinx sin y = cos(x − y) and in-
tegrating over Rp with respect to the weight function dω, one obtains using
Fubini’s theorem that

Fω
Cf(S) =

∫
Rp

{∫
[0,1]2p

cos
{
t� (v − u)

}
dS�(v) dS(u)

}
dω(t)
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=

∫
[0,1]2p

{∫
Rp

cos
{
t� (v − u)

}
dω(t)

}
dS�(v) dS(u)

=

∫
[0,1]2p

βω (v − u) dS�(v) dS(u).

A.7. Proof of Lemma 2

From Proposition A.1 of [8], the fact that S is of bounded variation allows to
deduce that for any function G of bounded variation on [0, 1]p,∫

[0,1]p
G(v) dS(v) =

∫
[0,1]p

∑
I⊆Sp

S
(
[vI ,1]

)( ∂

∂vI G(vI)

)
dv,

where Sp = {1, . . . , p}. It then follows that∫
[0,1]2p

G(v)G(u) dS�(v) dS(u)

=

∫
[0,1]2p

∑
I,J⊆Sp

S� ([vI ,1]
)
S
(
[uJ ,1]

)( ∂

∂vI
∂

∂uJ G(vI)G(uJ )

)
dv du.

Using the trigonometric identity cosx cos y+sinx sin y = cos(x−y), one deduces
that formula (15) can be written(∫

[0,1]p
eit

�v dS(v)

)�(∫
[0,1]p

eit�u dS(u)

)

=

∫
[0,1]2p

∑
I,J⊆Sp

S� ([vI ,1]
)
S
(
[uJ ,1]

)
×
(

∂

∂vI
∂

∂uJ cos
{
t�
(
vI − uJ )})dv du.

Integrating this expression over Rp with respect to the weight function dω and
making use of Fubini’s theorem yields the result.

A.8. Proof of Proposition 5

From Lemma 3, one can show that for an arbitrary p-tuple A and a given
g = (g1, . . . , gp) ∈ G,

Ĉ
[j]
A,g(v) =

∑
B⊆S̃g

p ,

j∈B∪Sp\S̃g
p

(−1)|B| Ĉ [Aj ]
(
vB
)
g′j(vj),
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where from [25], the estimator

Ĉ [�](u) =
Cn (u+ bne�)− Cn (u− bne�)

2 bn

is such that for any ε ∈ (0, 1/2),

sup
u∈[0,1]d,
u�∈[ε,1−ε]

∣∣∣Ĉ [�](u)− C [�](u)
∣∣∣ P−→ 0.

Hence,

Ĉ
[j]
A,g(v)− C

[j]
A,g(v) =

∑
B⊆S̃g

p ,

j∈B∪Sp\S̃g
p

(−1)|B|
{
Ĉ [Aj ]

(
vB
)
− C [Aj ]

(
vB
)}

g′j(vj).

As a consequence, for any ε ∈ (0, 1/2),

sup
v∈[0,1]p,
vj∈[ε,1−ε]

∣∣∣Ĉ [j]
A,g(v)− C

[j]
A,g(v)

∣∣∣ ≤ ∑
B⊆S̃g

p ,

j∈B∪Sp\S̃g
p

sup
v∈[0,1]p,
vj∈[ε,1−ε]

∣∣∣Ĉ [Aj ]
(
vB
)
− C [Aj ]

(
vB
)∣∣∣ .

Since the expression on the righthand side of the last inequality converges in
probability to zero, one finally has

sup
v∈[0,1]p,
vj∈[ε,1−ε]

∣∣∣D̂[j](v)−D[j](v)
∣∣∣

≤ 1

K

K∑
k=1

sup
v∈[0,1]p,
vj∈[ε,1−ε]

∣∣∣Ĉ [j]

A(k),g(k)(v)− C
[j]

A(k),g(k)(v)
∣∣∣ P−→ 0.

Appendix B: Formulas for the test statistics

Formulas will be given for Λ = F(ML̂) ∈ R
n×n; this matrix appears in the

computation of the test statistics. In the sequel, the combination matrix is

M = IK − 1K 1�
K/K. Also, the notation G

(k)
i = g(k)(ÛiA(k)) will be adopted

throughout, so that L̂ki(v) = I(G
(k)
i ≤ v).

B.1. Cramér–von Mises and diagonal section

Since M�M = M (i.e. M is idempotent), (M L̂)�M L̂ = L̂�M L̂ = M̂ (1) −
M̂ (2), where the entries of M̂ (1) = L̂�L̂ and M̂ (2) = L̂�1K 1�

KL̂/K are

M̂
(1)
ii′ (v) =

K∑
k=1

I

(
G

(k)
i ∨G

(k)
i′ ≤ v

)
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and

M̂
(2)
ii′ (v) =

1

K

K∑
k,k′=1

I

(
G

(k)
i ∨G

(k′)
i′ ≤ v

)
,

with r ∨ r′ being the componentwise maximum of r, r′ ∈ R
p. From straightfor-

ward computations, the entries of Λ = ΛCvM = FCvM(ML̂) are

Λii′ =

K∑
k=1

p∏
j=1

{
1−

(
G

(k)
ij ∨G

(k)
i′j

)}
− 1

K

K∑
k,k′=1

p∏
j=1

{
1−

(
G

(k)
ij ∨G

(k′)
i′j

)}
.

For the diagonal section statistic, note that

M̂
(1)
ii′ (v 1p) =

K∑
k=1

I

(
max
1≤j≤p

G
(k)
ij ∨G

(k)
i′j ≤ v

)
and

M̂
(2)
ii′ (v 1p) =

1

K

K∑
k,k′=1

I

(
max
1≤j≤p

G
(k)
ij ∨G

(k′)
i′j ≤ v

)
.

Hence, the entries of Λ = ΛDia = FDia(ML̂) are

Λii′ =
1

K

K∑
k,k′=1

(
max
1≤j≤p

G
(k)
ij ∨G

(k′)
i′j

)
−

K∑
k=1

(
max
1≤j≤p

G
(k)
ij ∨G

(k)
i′j

)
.

B.2. Characteristic function

Letting δv(r) give mass one at v = r and zero otherwise, one can write

dĈA(k),g(k)(v) =
1

n

n∑
i=1

δv

(
G

(k)
i

)
.

If one defines D ∈ SKn such that Dki(v) = δv(G
(k)
i ), then dL̂ = D; it follows

that (MD(v))�MD(u) = D(v)�MD(u) = M̂ (1)(v,u)− M̂ (2)(v,u), where

M̂
(1)
ii′ (v,u) =

K∑
k=1

δv(G
(k)
i ) δu(G

(k)
i′ )

and

M̂
(2)
ii′ (v,u) =

1

K

K∑
k,k′=1

δv(G
(k)
i ) δu(G

(k′)
i′ ).

As a consequence, one has in view of (13) that the entries of Λ = Fω
Cf(ML̂) are

Λii′ =

K∑
k=1

βω
(
G

(k)
i −G

(k)
i′

)
− 1

K

K∑
k,k′=1

βω
(
G

(k)
i −G

(k′)
i′

)
.
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B.3. Linear statistics

From the linearity of η and the fact that M�M = M, one obtains

Λ = F(ML̂) = η(L̂)�M�Mη(L̂) = η(L̂)�Mη(L̂).

Since η(L̂)ki = η(L̂ki), one has respectively for the Spearman and Blomqvist
functionals that

ηSp(L̂)ki =

p∏
j=1

(
1−G

(k)
ij

)
and ηB�(L̂)ki = I

(
max
1≤j≤p

G
(k)
ij ≤ 1

2

)
.

Appendix C: Formulas for the multiplier versions

C.1. Approximation of P̂

Exactly as in Appendix B, adopt the notation G
(k)
i = g(k)(Ûi,A(k)), so that the

entries of the function matrix P̂ ∈ SKn defined in equation (12) are given by

P̂ki(v) = I

(
G

(k)
i ≤ v

)
−

p∑
j=1

D̂[j](v) I
(
G

(k)
ij ≤ vj

)
.

It will be convenient to approximate P̂ on a grid of [0, 1]p by choosing N ∈ N

large and by considering

PN (v) =
∑
s∈BN

P̂

(
s− 1/2

N

)
IΩs(v),

where BN = {1, . . . , N}p and

Ωs =

p⊗
j=1

(
sj − 1

N
,
sj
N

]
.

Since F is assumed continuous, the approximation of Λ̂=F(MP̂ ) with F(MPN )
is valid.

C.2. Cramér–von Mises and diagonal section

For the Cramér–von Mises and diagonal functionals, one obtains from straight-
forward computations using the fact that M�M = M that

FCvM (MPN ) =
∑

s,s′∈BN

P̂

(
s− 1/2

N

)�
M P̂

(
s′ − 1/2

N

)∫
Ωs∩Ωs′

dv
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=
∑
s∈BN

P̂

(
s− 1/2

N

)�
M P̂

(
s− 1/2

N

)∫
Ωs

dv

=
1

Np

∑
s∈BN

P̂

(
s− 1/2

N

)�
M P̂

(
s− 1/2

N

)
.

Similar computations yield

FDia (MPN ) =
1

N

N∑
s=1

P̂

{(
s− 1/2

N

)
1p

}�
M P̂

{(
s− 1/2

N

)
1p

}
.

C.3. Characteristic function

One can exploit the fact that S(v) = MPN (v) vanishes whenever vj = 0 for
some j ∈ {1, . . . , p}, or when at least p − 1 components of v are equal to one.
In that case,

S([vI ,1]) =
∑

K⊆I:|K|>1

(−1)|K|S(ṽK),

where vK
j = vj when j ∈ K and vj = 1 otherwise. Plugging it into formula (14)

and after some computations, one obtains

Fω
Cf(S) =

∫
[0,1]2p

∑
K⊆Sp:|K|>1

∑
L⊆Sp:|L|>1

S(ṽK)�S(ũL)βω
K,L(v,u) dv du,

where

βω
K,L(v,u) =

∑
I:K⊆I

∑
J :L⊆J

∂

∂vI
∂

∂uJ βω
(
vI − uJ ) .

When p = 2, one can show that the formula simplifies to

Fω
Cf(S) =

∫
[0,1]4

S(v1, v2)
�S(u1, u2)β

[2,2](v − u) dv du,

where β[2,2](r1, r2) = ∂2 ∂2 βω(r1, r2)/∂r
2
1 ∂r

2
2. One then has

Fω
Cf(MPN ) =

1

N4

∑
s,s′∈BN

P̂

(
s− 1/2

N

)�
M P̂

(
s′ − 1/2

N

)
β[2,2]

(
s− s′

N

)
.

The formulas are explicit but cumbersome for p > 2.

C.4. Linear statistics

The linearity of η and M�M = M entails Fη(MPN ) = η (PN )
� Mη (PN ),

where

η (PN ) =
∑
s∈BN

P̂

(
s− 1/2

N

)
η {IΩs(v)} .
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Since

IΩs(v) =

p∏
j=1

I

(
sj − 1

N
< vj ≤

sj
N

)
,

one has respectively for the Spearman and Blomqvist functionals, ηSp{IΩs(v)} =
N−p and

ηB� {IΩs(v)} =

p∏
j=1

I

{
sj ∈

[
N

2
,
N

2
+ 1

)}
=

p∏
j=1

I (sj = �(N + 1)/2�) .

As a consequence,

ηSp(PN ) =
1

Np

∑
s∈BN

P̂

(
s− 1/2

N

)
,

and because {�(N + 1)/2� − 1/2}/N ≈ 1/2, one has ηB�(PN ) ≈ P̂ (1p/2).
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