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1. Introduction

Consider statistical inference using the following hierarchical Bayesian model
for observations X1, . . . , Xn:

(i) A probability distribution G on R is generated from the Dirichlet process
prior DP(α) with base measure α.

(ii) An i.i.d. sample Z1, . . . , Zn is generated from G.
(iii) An i.i.d. sample e1, . . . , en is generated from a known density f , indepen-

dent of the other samples.
(iv) The observations are Xi = Zi + ei, for i = 1, . . . , n.

In this setting the conditional density of the dataX1, . . . , Xn given G is a sample
from the convolution

pG = f ∗G
of the density f and the measure G. The scheme defines a conditional distri-
bution of G given the data X1, . . . , Xn, the posterior distribution of G, and
consequently also posterior distributions for quantities that derive from G, in-
cluding the convolution density pG. We are interested in whether this posterior
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distribution can recover a “true” mixing distribution G0 if the observations
X1, . . . , Xn are in reality a sample from the mixed distribution pG0 , for some
given probability distribution G0.

The main contribution of this paper is for the case that f is the Laplace
density f(x) = e−|x|/2. For distributions on the full line Laplace mixtures seem
the second most popular class next to mixtures of the normal distribution,
with applications in for instance speech recognition or astronomy (Kotz et al.
(2001)) and clustering problem in genetics (Bailey et al. (1994)). For the present
theoretical investigation the Laplace kernel is interesting as a test case of a non-
supersmooth kernel.

We consider two notions of recovery. The first notion measures the distance
between the posterior of G and G0 through the Wasserstein metric

Wk(G,G′) = inf
γ∈Γ(G,G′)

(∫
|x− y|k dγ(x, y)

)1/k

,

where Γ(G,G′) is the collection of all couplings γ of G and G′ into a bivariate
measure with marginals G and G′ (i.e. if (x, y) ∼ γ, then x ∼ G and y ∼
G′), and k ≥ 1. The Wasserstein metric is a classical metric on probability
distributions, which is well suited for use in obtaining rates of estimation of
measures. It is weaker than the total variation distance (which is more natural
as a distance on densities), can be interpreted through transportation of measure
(see Villani (2009)), and has also been used in applications such as as comparing
the color histograms of digital images. Recovery of the posterior distribution
relative to the Wasserstein metric was considered by Nguyen (2013), within a
general mixing framework. We refer to this paper for further motivation of the
Wasserstein metric for mixtures, and to Villani (2009) for general background
on the Wasserstein metric. In the present paper we improve the upper bound
on posterior contraction rates given in Nguyen (2013), at least in the case of the
Laplace mixtures, obtaining a rate of nearly n−1/8 for W1 (and slower rates for
k > 1). Apparently the minimax rate of contraction for Laplace mixtures relative
to the Wasserstein metric is currently unknown. Recent work on recovery of a
mixing distribution by non-Bayesian methods is given in Zhang (1990). It is not
clear from our result whether the upper bound n−1/8 is sharp.

The second notion of recovery measures the distance of the posterior of G to
G0 indirectly through the Hellinger or Lq-distances between the mixed densities
pG and pG0 . This is equivalent to studying the estimation of the true density
pG0 of the observations through the density pG under the posterior distribution.
As the Laplace kernel f has Fourier transform

f̃(λ) =
1

1 + λ2
,

it follows that the mixed densities pG have Fourier transforms satisfying

|p̃G(λ)| ≤
1

1 + λ2
.
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Estimation of a density with a polynomially decaying Fourier transform was
first considered in Watson and Leadbetter (1963). According to their Theorem
in Section 3A, a suitable kernel estimator possesses a root mean square error of
n−3/8 with respect to the L2-norm for estimating a density with Fourier trans-
form that decays exactly at the order 2. This rate is the “usual rate” n−α/(2α+1)

of nonparametric estimation for smoothness α = 3/2. This is understandable as
|p̃(λ)| � 1/(1+ |λ|2) implies that

∫
(1+ |λ|2)α|p̃(λ)|2 dλ < ∞, for every α < 3/2,

so that a density with Fourier transform decaying at square rate belongs to
any Sobolev class of regularity α < 3/2. Indeed in Golubev (1992), the rate
n−α/(2α+1) is shown to be minimax for estimating a density in a Sobolev ball of
functions on the line. In the present paper we show that the posterior distribu-
tion of Laplace mixtures pG contracts to pG0 at the rate n−3/8 up to a logarithm
factor, relative to the L2-norm and Hellinger distance, and also establish rates
for other Lq-metrics. Thus the Dirichlet posterior (nearly) attains the minimax
rate for estimating a density in a Sobolev ball of order 3/2. It may be noted
that the Laplace density itself is Hölder of exactly order 1, which implies that
Laplace mixtures are Hölder smooth of at least the same order. This insight
would suggest a rate n−1/3 (the usual nonparametric rate for α = 1), which is
slower than n−3/8, and hence this insight is misleading.

Besides recovery relative to the Wasserstein metric and the induced metrics
on pG, one might consider recovery relative to a metric on the distribution
function on G. Frequentist recovery rates for this problem were obtained in Fan
(1991) under some restrictions. There is no simple relation between these rates
and rates for the other metrics. The same is true for the rates for deconvolution of
densities, as in Fan (1991). In fact, the Dirichlet prior and posterior considered
here are well known to concentrate on discrete distributions, and hence are
useless as priors for recovering a density of G.

Contraction rates for Dirichlet mixtures of the normal kernel were consid-
ered in Ghosal and Vaart (2001); Ghosal and van der Vaart (2007); Kruijer
et al. (2010); Shen et al. (2011); Scricciolo (2011). The results in these papers
are driven by the smoothness of the Gaussian kernel, whence the same approach
will fail for the Laplace kernel. Nevertheless we borrow the idea of approximat-
ing the true mixed density by a finite mixture, albeit that the approximation
is constructed in a different manner. Because more support points than in the
Gaussian case are needed to obtain a given quality of approximation, higher
entropy and lower prior mass concentration result, leading to a slower rate of
posterior contraction. To obtain the contraction rate for the Wasserstein metrics
we further derive a relationship of these metrics with a power of the Hellinger
distance, and next apply a variant of the contraction theorem in Ghosal et al.
(2000), which is included in the appendix of the paper. Contraction rates of mix-
tures with other priors than the Dirichlet were considered in Scricciolo (2011).
Recovery of the mixing distribution is a deconvolution problem and as such can
be considered an inverse problem. A general approach to posterior contraction
rates in inverse problems can be found in Knapik and Salomond (2014), and
results specific to deconvolution can be found in Donnet et al. (2014). These
authors are interested in deconvolving a (smooth) mixing density rather than a
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mixing distribution, and hence their results are not directly comparable to the
results in the present paper.

The papers such as Fan (1993); Lepski and Willer (2015) consider recovery
of a mixing density relative to the Lp-norm in the frequentist setting. If the
smoothness of the mixing density degenerates to 0, then the minimax rate de-
creases to a constant and it is not possible to find a consistent estimator. In the
present paper we show that in the same problem but viewed as a deconvolution
problem on distributions, endowed with the weaker Wasserstein distance, we
may obtain polynomial rates for the mixing distribution without any smooth-
ness assumption on the distribution. In particular, for any mixing distribution
it is possible to construct a consistent estimator.

The paper is organized as follows. In the next section we state the main
results of the paper, which are proved in the subsequent sections. In Section 3
we establish suitable finite approximations relative to the Lq- and Hellinger
distances. The Lq-approximations also apply to other kernels than the Laplace,
and are in terms of the tail decay of the kernel’s characteristic function. In
Sections 4 and 5 we apply these approximations to obtain bounds on the entropy
of the mixtures relative to the Lq, Hellinger and Wasserstein metrics, and a lower
bound on the prior mass in a neighbourhood of the true density. Sections 6 and 7
contain the proofs of the main results.

1.1. Notation and preliminaries

Throughout the paper integrals given without limits are considered to be inte-
grals over the real line R. The Lq-norm is denoted

‖g‖q =

(∫
|g(x)|q dx

)1/q

,

with ‖·‖∞ being the uniform norm. The Hellinger distance on the space of
densities is given by

h(f, g) =

(∫
(f1/2(x)− g1/2(x))2 dx

)1/2

.

It is easy to see that h2(f, g) ≤ ‖f − g‖1 ≤ 2h(f, g), for any two probability
densities f and g. Furthermore, if the densities f and g are uniformly bounded by
a constant M , then ‖f − g‖2 ≤ 2

√
Mh(f, g). The Kullback-Leiber discrepancy

and corresponding variance are denoted by

K(p0, p) =

∫
log(p0/p) dP0, K2(p0, p) =

∫
(log(p0/p))

2 dP0

with P0 the measure corresponding to the density p0.
We are primarily interested in the Laplace kernel, but a number of results

are true for general kernels f . The Fourier transform of a function f and the
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inverse Fourier transform of a function f̃ are given by

f̃(λ) =

∫
eıλxf(x)dx, f(x) =

1

2π

∫
e−ıλxf̃(λ)dλ.

For 1
p + 1

q = 1 and 1 ≤ p ≤ 2, Hausdorff-Young’s inequality gives that ‖f‖q ≤
(2π)−1/p‖f̃‖p.

The covering number N(ε,Θ, ρ) of a metric space (Θ, ρ) is the minimum
number of ε-balls needed to cover the entire space Θ.

Throughout the paper � denotes inequality up to a constant multiple, where
the constant is universal or fixed within the context. Furthermore an 	 bn means
c ≤ lim infn→∞ an/bn ≤ lim supn→∞ an/bn ≤ C, for some positive constants c
and C.

We denote by M[−a, a] the set of all probability measures on a given interval
[−a, a].

2. Main results

Let Πn(·|X1, . . . , Xn) be the posterior distribution for G in the scheme (i)-(iv)
introduced at the beginning of the paper. We study this random distribution
under the assumption that X1, . . . , Xn are an i.i.d. sample from the mixture
density pG0 = f ∗ G0, for a given probability distribution G0. We assume that
G0 is supported in a compact interval [−a, a], and that the base measure α of
the Dirichlet prior in (i) is concentrated on this interval with a Lebesgue density
bounded away from 0 and ∞.

Theorem 1. If G0 is supported on [−a, a] with f being Laplace kernel and α
has support [−a, a] with Lebesgue density bounded away from 0 and ∞, then for
every k ≥ 1, there exists a constant M such that

Π
(
G : Wk(G,G0) ≥ Mn−3/(8k+16)(log n)(k+7/8)/(k+2)|X1, . . . , Xn) → 0, (2.1)

in PG0-probability.

The rate for the Wasserstein metric Wk given in the theorem deteriorates
with increasing k, which is perhaps not unreasonable as the Wasserstein metrics
increase with k. The fastest rate is n−1/8(logn)5/8, and is obtained for W1.

Theorem 2. If G0 is supported on [−a, a] with f being Laplace kernel and α
has support [−a, a] with Lebesgue density bounded away from 0 and ∞, then
there exists a constant M such that

Πn

(
G : h(pG, pG0) ≥ M(logn/n)3/8|X1, . . . , Xn

)
→ 0, (2.2)

in PG0-probability. Furthermore, for every q ∈ [2,∞) there exists Mq such that

Πn

(
G : ‖pG − pG0‖q ≥ Mq(logn/n)

(q+1)/(q(q+2))|X1, . . . , Xn

)
→ 0, (2.3)

in PG0-probability.
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The rate for the Lq-distance given in (2.3) deteriorates with increasing q. For
q = 2 it is the same as the rate (log n/n)3/8 for the Hellinger distance.

In both theorems the mixing distributions are assumed to be supported on a
fixed compact set. Without a restriction on the tails of the mixing distributions,
no rate is possible. The assumption of a compact support ensures that the rate is
fully determined by the complexity of the mixtures, and not their tail behaviour.

3. Finite approximation

In this section we show that a general mixture pG can be approximated by
a mixture with finitely many components, where the number of components
depends on the accuracy of the approximation, the distance used, and the kernel
f . We first consider approximation with respect to the Lq-norm, which applies
to mixtures pG = f ∗ G, for a general kernel f , and next approximation with
respect to the Hellinger distance for the case that f is the Laplace kernel. The
first result generalizes the result of Ghosal and Vaart (2001) for normal mixtures.
Also see Scricciolo (2011).

The result splits in two cases, depending on the tail behaviour of the Fourier
transform f̃ of f :

-ordinary smooth f : lim sup|λ|→∞
∣∣f̃(λ)∣∣|λ|β < ∞, for some β > 1/2.

-supersmooth f : lim sup|λ|→∞
∣∣f̃(λ)∣∣e|λ|β < ∞, for some β > 0.

Lemma 1. Let ε < 1 be sufficiently small and fixed. For a probability measure
G on an interval [−a, a] and 2 ≤ q ≤ ∞, there exists a discrete measure G′ on
[−a, a] with at most N support points in [−a, a] such that

‖pG − pG′‖q � ε,

where

(i) N � ε−(β−p−1)−1

if f is ordinary smooth of order β, for p and q being
conjugate (p−1 + q−1 = 1).

(ii) N � (log ε−1)max(1,β−1) if f is supersmooth of order β.

Proof. The Fourier transform of pG is given by f̃ G̃, for G̃(λ) =
∫
eıλz dG(z).

Determine G′ so that it possesses the same moments as G up to order k−1, i.e.∫
zjd(G−G′)(z) = 0, ∀ 0 ≤ j ≤ k − 1.

By Lemma A.1 in Ghosal and Vaart (2001) G′ can be chosen to have at most k
support points.

Then for G and G′ supported on [−a, a], we have

|G̃(λ)− G̃′(λ)| =

∣∣∣∣∣∣
∫ (

eıλz −
k−1∑
j=0

(ıλz)j

j!

)
d(G−G′)(z)

∣∣∣∣∣∣
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≤
∫ |ıλz|k

k!
d(G+G′)(z) ≤

(ae|λ|
k

)k

.

The inequality comes from |eiy −
∑k−1

j=0 (iy)
j/j!| ≤ |y|k/k! ≤ (e|y|)k/kk, for

every y ∈ R.
Therefore, by Hausdorff-Young’s inequality,

‖pG − pG′‖pq ≤ 1

2π

∫
|f̃(λ)|p|G̃(λ)− G̃′(λ)|pdλ

�
∫
|λ|>M

|f̃(λ)|pdλ+

∫
|λ|≤M

(ea|λ|
k

)pk

dλ.

We denote the first term in the preceding display by I1 and the second term by
I2. It is easy to bound I2 as:

I2 	
(ea
k

)kp Mkp+1

kp+ 1
�

(eaM
k

)kp+1 1

p
.

For I1 we separately consider the supersmooth and ordinary smooth cases.
In the supersmooth case with parameter β, we note that the function

(tβ
−1−1)/eδt is monotonely decreasing for t ≥ pMβ , when δ ≥ (β−1−1)/(pMβ).

Thus, for large M ,

I1 �
∫
|λ|>M

e−p|λ|βdλ =
2

βpβ−1

∫
t>pMβ

e−ttβ
−1−1dt

≤ 2

βpβ−1

∫
t>pMβ

e−(1−δ)t dt
(pMβ)β

−1−1

eδpMβ =
2

1− δ

1

βp
e−pMβ

M1−β ,

where the bound is sharper if δ is smaller. Choosing the minimal value of δ, we
obtain

I1 � 1

1− (β−1 − 1)/(pMβ)

1

βp
e−pMβ

M1−β � M1−βe−pMβ

,

for M sufficiently large. We next choose M = 2 (log(1/ε))
1
β in order to ensure

that I1 ≤ εp. Then I2 � εp if k ≥ 2eaM and 2−kp ≤ εp. This is satisfied if

k = 2(log ε−1)max(β−1,1).
In the ordinary smooth case with smoothness parameter β, we have the bound

I1 �
∫
λ>M

|λ|−βpdλ �
(

1

M

)βp−1

.

We choose M = (1/ε)−(β−1/p)−1

to render the right side equal to εp. Then

I2 � εp if k = 2ε−(β−1/p)−1

.

The number of support points in the preceding lemma is increasing in q and
decreasing in β. For approximation in the L2-norm (q = 2), the number of
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support points is of order ε−1/(β−1/2), and this reduces to ε−2/3 for the Laplace
kernel (ordinary smooth with β = 2). The exponent β − 1/2 can be interpreted
as (almost) the Sobolev smoothness of pG, since, for α < β − 1/2,∫

(1 + |λ|2)α|p̃G(λ)|2dλ �
∫

(1 + |λ|2)α|f̃(λ)|2dλ < ∞.

We do not have a compelling intuition for this correspondence.
The Hellinger distance is more sensitive to areas where the densities are close

to zero. This causes that the approach in the preceding lemma does not give
sharp results. The following lemma does, but is restricted to the Laplace kernel.

Lemma 2. For a probability measure G supported on [−a, a] there exists a
discrete measure G′ with at most N 	 ε−2/3 support points such that for pG =
f ∗G and f the Laplace density

h(pG, pG′) ≤ ε.

Proof. Since pG(x) ≥ f(|x|+ a) = e−ae−|x|/2, for every x and probability mea-
sure G supported on [−a, a], the Hellinger distance between Laplace mixtures
satisfies

h2(pG, pG′) ≤
∫

(pG − pG′)2

pG + pG′
(x) dx ≤ ea

∫
(pG′(x)− pG(x))

2e|x| dx.

If we write qG(x) = pG(x)e
|x|/2, and q̃G for the corresponding Fourier transform,

then the integral in the right side is equal to (1/2π)
∫
|q̃G′ − q̃G|2(λ) dλ, by

Plancherel’s theorem. By an explicit computation we obtain

q̃G(λ) =
1

2

∫ ∫
eıλxe−|x−z|+|x|/2 dx dG(z) =

1

2

∫
r(λ, z) dG(z),

where r(λ, z) is given by

r(λ, z) =
e−z

ıλ+ 1/2
+ e−z e

(ıλ+3/2)z − 1

ıλ+ 3/2
− e(ıλ+1/2)z

ıλ− 1/2

=
e−z

(ıλ+ 1/2)(ıλ+ 3/2)
− 2eıλzez/2

(ıλ+ 3/2)(ıλ− 1/2)
. (3.1)

Now let G′ be a discrete measure on [−a, a] such that∫
e−z d(G′ −G)(z) = 0,

∫
ez/2zj d(G′ −G)(z) = 0, ∀ 0 ≤ j ≤ k − 1.

By Lemma A.1 in Ghosal and Vaart (2001) G′ can be chosen to have at most
k + 1 support points.

By the choice of G′ the first term of r(λ, z) gives no contribution to the
difference

∫
r(λ, z) d(G′ − G)(z). As the second term of r(λ, z) is for large |λ|

bounded in absolute value by a multiple of |λ|−2, it follows that

I2 :=

∫
|λ|>M

∣∣∣∣
∫

r(λ, z) d(G′ −G)(z)

∣∣∣∣
2

dλ �
∫
λ>M

λ−4dλ 	 M−3.
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By the choice of G′ in the second term of r(λ, z) we can replace eiλz by eıλz −∑k
j=0(ıλz)

j/j! again without changing the integral
∫
r(λ, z) d(G′ − G)(z). It

follows that

I1 :=

∫
|λ|≤M

∣∣∣∣
∫

r(λ, z) d(G′ −G)(z)

∣∣∣∣
2

dλ

≤
∫
|λ|≤M

∣∣∣∣ 2

(ıλ+ 1/2)(ıλ+ 3/2)

∣∣∣∣
2
∣∣∣∣∣∣
∫

ez/2
[
eıλz −

k∑
j=0

(ıλz)j
]
d(G′ −G)(z)

∣∣∣∣∣∣
2

dλ

�
∫ M

0

(zλ)2k

(k!)2
dλ � (aeM)2k+1

k2k+1
.

It follows, by a similar argument as in the proof of Lemma 1, that we can reduce
both I1 and I2 to ε2 by choosing and M 	 ε−2/3 and k = 2aeM .

4. Entropy

We study the covering numbers of the class of mixtures pG = f ∗ G, where G
ranges over the collection M[−a, a] of all probability measures on [−a, a]. We
present a bound for any Lq-norm and general kernels f , and a bound for the
Hellinger distance that is specific to the Laplace kernel.

Proposition 1. If both ‖f‖q and ‖f ′‖q are finite and f̃ has ordinary smoothness
β, then, for pG = f ∗G, and any q ≥ 2,

logN
(
ε, {pG : G ∈ M[−a, a]}, ‖·‖q

)
�

(
1

ε

) 1
β−1+1/q

log
(1
ε

)
. (4.1)

Proof. Consider an ε-net of Pa = {pG : G ∈ M[−a, a]} by constructing I the
collection of all pG’s such that the mixing measure G ∈ M[−a, a] is discrete and

has at most N ≤ Dε−(β−1+q−1)−1

support points for some proper constant D.
In light of the approximation Lemma 1, the set of all mixtures pG with G a

discrete probability measure with N � ε−(β−1+q−1)−1

support points forms an
ε-net over the set of all mixtures pG as in the lemma. It suffices to construct an
ε-net of the given cardinality over this set of discrete mixtures.

By Jensen’s inequality and Fubini’s theorem,

‖f(· − θ)− f‖q =

(∫ ∣∣∣∣θ
∫ 1

0

f ′(x− θs) ds

∣∣∣∣
q

dx

)1/q

≤ ‖f ′‖qθ.

Furthermore, for any probability vectors p and p′ and locations θi,∥∥∥∥∥
N∑
i=1

pif(· − θi)−
N∑
i=1

p′if(· − θi)

∥∥∥∥∥
q

≤
N∑
i=1

|pi − p′i|‖f(· − θi)‖q = ‖f‖q‖p− p′‖1.
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Combining these inequalities, we see that for two discrete probability measures
G =

∑N
i=1 piδθi and G′ =

∑N
i=1 p

′
iδθ′

i
,

‖pG − pG′‖q ≤ ‖f ′‖q max
i

|θi − θ′i|+ ‖f‖q‖p− p′‖1. (4.2)

Thus we can construct an ε-net over the discrete mixtures by relocating the
support points (θi)

N
i=1 to the nearest points (θ′i)

N
i=1 in a ε-net on [−a, a], and

relocating the weights p to the nearest point p′ in an ε-net for the l1-norm over
the N -dimensional l1-unit simplex. This gives a set of at most(

2a

ε

)N (
5

ε

)N

∼
(
10a

ε2

)N

measures pG (cf. Lemma A.4 of Ghosal and van der Vaart (2007) for the entropy
of the l1-unit simplex). This gives the bound of the lemma.

Proposition 2. For f the Laplace kernel and pG = f ∗G,

logN
(
ε, {pG : G ∈ M[−a, a]}, h

)
� ε−3/8 log(1/ε). (4.3)

Proof. Because the function
√
f is absolutely continuous with derivative x 
→

−2−3/2e−|x|/2 sgn(x), we have by Jensen’s inequality and Fubini’s theorem that

h2
(
f, f(· − θ)

)
=

∫ (
θ

∫ 1

0

−2−3/2e−|x−θs|/2 sgn(x− θs) ds
)2

dx

≤ θ2
∫ 1

0

∫
e−|x−θs| dx ds = 2θ2.

It follows that h
(
f, f(· − θ)

)
� θ.

By convexity of the map (u, v) 
→ (
√
u−√

v)2, we have∣∣∣√∑
i

pif(· − θi)−
√∑

i

pif(· − θ′i)
∣∣∣2 ≤

∑
i

pi
[√

f(· − θi)−
√

f(· − θ′i)
]2
.

By integrating this inequality we see that the densities pG and pG′ with mix-
ing distributions G =

∑N
i=1 piδθi and G′ =

∑N
i=1 piδθ′

i
satisfy h2(pG, pG′) �∑

pi|θi − θ′i|2 ≤ ‖θ − θ′‖2∞.

Furthermore, for distributions G =
∑N

i=1 piδθi and G′ =
∑N

i=1 p
′
iδθi with the

same support points, but different weights, we have

h2(pG, pG′) ≤
∫ (∑N

i=1(pi − p′i)f(x− θi)
)2∑N

i=1(pi + p′i)f(x− θi)
dx

≤
∫ ( N∑

i=1

|pi − p′i|
)2 f2(|x| − a)

2f(|x|+ a)
dx � ‖p− p′‖21.

Therefore the bound follows by arguments similar as in the proof of Proposi-
tion 1, where presently we use Lemma 2 to determine suitable finite approxi-
mations.
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The map G 
→ pG = f ∗G is one-to-one as soon as the characteristic function
of f is never zero. Under this condition we can also view the Wasserstein distance
on the mixing distribution as a distance on the mixtures. Obviously the covering
numbers are then free of the kernel.

Proposition 3. For any k ≥ 1, and any sufficiently small ε > 0,

logN
(
ε,M[−a, a],Wk

)
�

(1
ε

)
log(1/ε). (4.4)

The proposition is a consequence Lemma 4, below, which applies to the set
of all Borel probability measures on a general metric space (Θ, ρ) (cf. Nguyen
(2013)).

Lemma 3. For any probability measure G concentrated on countably many
disjoint sets Θ1,Θ2, . . . and probability measure G′ concentrated on disjoint sets
Θ′

1,Θ
′
2, . . .,

Wk(G,G′) ≤ sup
i

sup
θi∈Θi,θ′

i∈Θ′
i

ρ(θi, θ
′
i) + diam(Θ)

(∑
i

|G(Θi)−G′(Θ′
i)|

)1/k

.

In particular,

Wk

(∑
i

piδθi ,
∑
i

p′iδθ′
i

)
≤ max

i
ρ(θi, θ

′
i) + diam(Θ)‖p− p′‖1/k1 .

Proof. For pi = G(Θi) and p′i = G′(Θ′
i) divide the interval [0,

∑
i pi ∧ p′i] into

disjoint intervals Ii of lengths pi∧p′i. We couple variables θ̄ and θ̄′ by an auxiliary
uniform variable U . If U ∈ Ii, then generate θ̄ ∼ G(·|Θi) and θ̄′ ∼ G′(·|Θ′

i).
Divide the remaining interval [

∑
i pi∧p′i, 1] into intervals Ji of lengths pi−pi∧p′i

and, separately, intervals J ′
i of length p′i − pi ∧ p′i. If U ∈ Ji, then generate

θ̄ ∼ G(·|Θi) and if U ∈ J ′
i , then generate θ̄′ ∼ G′(·|Θ′

i). Then θ̄ and θ̄′ have
marginal distributions G and G′, and

Eρk(θ̄, θ̄′) ≤ E
[
ρk(θ̄, θ̄′)1U≤

∑
i pi∧p′

i

]
+ diam(Θ)kP

(
U >

∑
i

pi ∧ p′i
)
.

The first term is bounded by the k-th power of the first term of the lemma, while
the probability in the second term is equal to 1−

∑
i pi∧p′i =

∑
i |pi−p′i|/2.

Lemma 4. For the set M(Θ) of all Borel probability measures on a metric
space (Θ, ρ), any k ≥ 1, and 0 < ε < min{2/3, diam(Θ)},

N
(
ε,M(Θ),Wk

)
≤

(4 diam(Θ)

ε

)kN(ε,Θ,ρ)

.

Proof. For a minimal ε-net over Θ of N = N(ε,Θ, ρ) points, let Θ = ∪iΘi

be the partition obtained by assigning each θ to a closest point. For any G
let Gε =

∑
i G(Θi)δθi , for arbitrary but fixed θi ∈ Θi. Since Wk(G,Gε) ≤ ε
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by Lemma 3, we have N(2ε,M(Θ),Wk) ≤ N(ε,Mε,Wk), for Mε the set
of all Gε. We next form the measures Gε,p =

∑
i piδθi for (p1, . . . , pN ) rang-

ing over an (ε/ diam(Θ))k-net for the l1-distance over the N -dimensional unit
simplex. By Lemma 3 every Gε is within Wk-distance of some Gε,p. Thus
N(ε,Mε,Wk) is bounded from above by the number of points p, which is
bounded by (4 diam(Θ)/ε)kN (cf. Lemma A.4 in Ghosal et al. (2000)).

5. Prior mass

This main result of this section is the following proposition, which gives a lower
bound on the prior mass of the prior (i)-(iv) in a neighbourhood of a mixture
pG0 .

Proposition 4. If Π is the Dirichlet process DP(α) with base measure α that
has a Lebesgue density bounded away from 0 and ∞ on its support [−a, a], and f
is the Laplace kernel, then for every sufficiently small ε > 0 and every probability
measure G0 on [−a, a],

log Π
(
G : K(pG, pG0) ≤ ε2,K2(pG, pG0) ≤ ε2

)
�

(1
ε

)2/3

log
(1
ε

)
.

Proof. By Lemma 2 there exists a discrete measure G1 with N � ε−2/3 support
points such that h(pG0 , pG1) ≤ ε. We may assume that the support points of G1

are at least 2ε2-separated. If not, we take a maximal 2ε2-separated set in the sup-
port points of G1, and replace G1 by the discrete measure obtained by relocating
the masses of G1 to the nearest points in the 2ε2-net. Then h(pG1 , pG′

1
) � ε2,

as seen in the proof of Proposition 2.

Now by Lemmas 6 and 5, if G1 =
∑N

i=1 pjδzj , with the support points zj at
least 2ε2-separated,

{
G : max(K,K2)(pG0 , pG) < d1ε

2
}
⊃

{
G : h(pG0 , pG) ≤ 2ε

}
⊃

{
G : h(pG1 , pG) ≤ ε

}
⊃

{
G : ‖pG − pG1‖1 ≤ d2ε

2
}

⊃
{
G :

N∑
j=1

∣∣G[zj − ε2, zj + ε2]− pj
∣∣ ≤ ε2

}
.

By Lemma A.2 of Ghosal and Vaart (2001), since the base measure α has density
bounded away from zero and infinity on [−a, a] by assumption, we have

logΠ

⎛
⎝G :

N∑
j=1

∣∣G[zj − ε2, zj + ε2]− pj
∣∣ ≤ ε2

⎞
⎠ � −N log

(1
ε

)

The lemma follows upon combining the preceding.
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Lemma 5. If G′ =
∑N

j=1 piδzj is a probability measure supported on points
z1, . . . , zN in R with |zj − zk| > 2ε for j �= k, then for any probability measure
G on R and kernel f ,

‖pG − pG′‖1 ≤ 2‖f ′‖1ε+ 2

N∑
j=1

∣∣G[zj − ε, zj + ε]− pj
∣∣.

Lemma 6. If G and G′ are probability measures on [−a, a], and f is the Laplace
kernel, then

h2(pG, pG′) � ‖pG − pG′‖2, (5.1)

max
(
K(pG, pG′),K2(pG, pG′)

)
� h2(pG, pG′). (5.2)

Proofs. The first lemma is a generalization of Lemma 4 in Ghosal and van der
Vaart (2007) from normal to general kernels, and is proved in the same manner.

In view of the shape of the Laplace kernel, it is easy to see that for G com-
pactly supported on [−a, a],

f(|x|+ a) ≤ pG(x) ≤ f(|x| − a),

We bound the squared Hellinger distance as follows:

h2(pG, pG′) ≤
∫

(pG − pG′)2

pG + pG′
dx

≤
∫
|x|≤A

eA+a(pG − pG′)2dx+

∫
|x|>A

(pG + pG′)dx

� ea‖pG − pG′‖22eA + e−A.

By the elementary inequality t + u
t ≥ 2

√
u, for u, t > 0, we obtain (5.1) upon

choosing A = min(a, log ‖pG − pG′‖−1
2 − a/2).

For the proof of the second assertion we first note that, if both G and G′ are
compactly supported on [−a, a],

pG(x)

pG′(x)
≤ f(|x| − a)

f(|x|+ a)
≤ e2a.

Therefore ‖pG/pG′‖∞ ≤ e2a, and (5.2) follows by Lemma 8 in Ghosal and
van der Vaart (2007).

6. Proof of Theorem 1

The proof is based on the following comparison between the Wasserstein and
Hellinger metrics. The lemma improves and generalizes Theorem 2 in Nguyen
(2013). Let Ck be a constant such that the map ε 
→ ε[log(Ck/ε)]

k+1/2 is mono-
tone on (0, 2].
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Lemma 7. For probability measures G and G′ supported on [−a, a], and pG =
f ∗G for a probability density f with infλ(1 + |λ|β)|f̃(λ)| > 0, and any k ≥ 1,

Wk(G,G′) � h(pG, pG′)1/(k+β)
(
log

Ck

h(pG, pG′)

)(k+1/2)/(k+β)

.

Proof. By Theorem 6.15 in Villani (2009) the Wasserstein distance Wk(G,G′)
is bounded above by a multiple of the kth root of

∫
|x|k d|G − G′|(x), where

|G−G′| is the total variation measure of the difference G−G′. We apply this
to the convolutions of G and G′ with the normal distribution Φδ with mean 0
and variance δ2, to find, for every M > 0,

Wk(G ∗ Φδ,G
′ ∗ Φδ)

k �
∫

|x|k
∣∣(G−G′) ∗ φδ(x)

∣∣ dx
≤

(∫ M

−M

x2k dx

∫ M

−M

∣∣(G−G′) ∗ φδ(x)
∣∣2 dx)1/2

+ e−M

∫
|x|>M

|x|ke|x|
∣∣(G−G′) ∗ φδ(x)

∣∣ dx
� Mk+1/2

∥∥(G−G′) ∗ φδ

∥∥
2
+ e−Me2|a|Ee2|δZ|,

where Z is a standard normal variable. The number Kδ := e2|a|Ee2|δZ| is uni-
formly bounded by if δ ≤ δk, for some fixed δk.

By Plancherel’s theorem,

∥∥(G−G′) ∗ φδ

∥∥2
2
=

∫
|G̃− G̃′|2(λ)φ̃2

δ(λ) dλ =

∫
|f̃(G̃− G̃′)|2(λ) φ̃2

δ

|f̃ |2
(λ) dλ

� ‖pG − pG′‖22 sup
λ

φ̃2
δ

|f̃ |2
(λ) � h2(pG, pG′)δ−2β ,

where we have again applied Plancherel’s theorem, used that the L2-metric
on uniformly bounded densities is bounded by the Hellinger distance, and the
assumption on the Fourier transform of f , which shows that (φ̃δ/|f̃ |)(λ) �
(1 + |λ|β)e−δ2λ2/2 � δ−β .

If U ∼ G is independent of Z ∼ N(0, 1), then (U,U + δZ) gives a coupling
of G and G ∗ Φδ. Therefore the definition of the Wasserstein metric gives that
Wk(G,G ∗ Φδ)

k ≤ E|δZ|k � δk.
Combining the preceding inequalities with the triangle inequality we see that,

for δ ∈ (0, δk] and any M > 0,

Wk(G,G′)k � Mk+1/2h(pG, pG′)δ−β + e−M + δk.

The lemma follows by optimizing this over M and δ. Specifically, for ε =
h(pG, pG′), we choose M = k/(k + β) log(Ck/ε) and δ = (Mk+1/2ε)1/(k+β).
These are eligible choices for

δk = sup
ε∈(0,2]

[ k

k + β
log

Ck

ε

](k+1/2)/(k+β)

ε1/(k+β),
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which is indeed a finite number. In fact the supremum is taken at ε = 2, by the
assumption on Ck.

For the Laplace kernel f we choose β = 2 in the preceding lemma, and
then obtain that d(pG, pG′) ≤ h(pG, pG′), for the “discrepancy” d = γ−1(Wk),
and γ(ε) = Dkε

1/(k+β)[log(Ck/ε)]
(k+1/2)/(k+β) a multiple of the (monotone)

transformation in the right side of the preceding lemma. For small values of
Wk(G1, G2) we have

d(pG1 , pG2) 	 W k+2
k (G1, G2)

(
log

1

Wk(G1, G2)

)−k−1/2

. (6.1)

As k + 2 > 1 the discrepancy d may not satisfy the triangle inequality, but it
does possess the properties (a)–(d) in the appendix, Section 9. The balls of the
discrepancy d are convex, as the Wasserstein metrics are convex (see Villani
(2009)).

It follows that Theorem 3 applies to obtain a rate of posterior contraction
relative to d and hence relative to Wk ∼ d1/(k+2)

(
log(1/d)

)
(k+1/2)/(k+2). We

apply the theorem with P = Pn equal to the set of mixtures pG = f ∗G, as G
ranges over M[−a, a]. Thus (9.3) is trivially satisfied.

For the entropy condition (9.1) we have, by Proposition 3,

logN(ε,Pn, d) = logN
(
ε1/(k+2)

(
log

1

ε

)(k+1/2)/(k+2)

,M[−a, a],Wk)

�
(1
ε

)1/(k+2)(
log

1

ε

)1+(k+1/2)/(k+2)

.

Thus (9.1) holds for the rate εn � n−γ , for every γ < (k + 2)/(2k + 5).
The prior mass condition (9.2) is satisfied with the rate εn 	 (logn/n)3/8, in

view of Proposition 4.
Theorem 3 yields a rate of contraction relative to d equal to the slower of the

two rates, which is (logn/n)3/8. This translates into the rate for the Wasserstein
distance as given in Theorem 1.

7. Proof of Theorem 2

We apply Theorem 3, with P = Pn the set of all mixtures pG as G ranges over
M[−a, a]. For d = h the rate follows immediately by combining Propositions 1
and 4.

Since the densities pG are uniformly bounded by 1/2, the Lq distance ‖pG −
pG′‖q is bounded above by a multiple of h(pG, pG′)2/q. We can therefore apply

Theorem 3 with the discrepancy d(p, p′) = ‖p− p′‖q/2q . In view of Proposition 1

logN
(
ε,Pn, d

)
� ε−2/(q+1) log(1/ε).

Therefore the entropy condition (9.1) is satisfied with εn 	 (log n/n)(q+1)/(2q+4).
By Proposition 4 the prior mass condition is satisfied for εn 	 (logn/n)3/8. By
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Theorem 3 the rate of contraction relative to d is the slower of these two rates,
which is the first. The rate relative to the Lq-norm is the (2/q)th power of this
rate.

8. Normal mixtures

We reproduce the results on normal mixtures from Ghosal and Vaart (2001),
but in L2-norm. Note the normal kernel is supersmooth with β = 2, by the
approximation lemma, for any measure G1 compactly supported on [−a, a] we
can always find a discrete measure G2 with number of support points of order
N 	 log ε−1 such that ‖pG1 − pG2‖2 ≤ ε. It is easy to establish

h2(pG1 , pG2) � ‖pG1 − pG2‖2.

Following the same procedure as before, assuming G0 is the true measure,
we obtain for prior mass condition

logΠ

(
G : max

(
PG0 log

pG0

pG
, PG0

(
log

pG0

pG

)2)
≤ ε2

)
� −

(
log

1

ε

)2

,

Thus we obtain εn = log n/
√
n.

By Lemma 1, we have the following estimate for entropy condition

logN(ε,Pa, ‖ · ‖2) �
(
log

1

ε

)2

,

this coincides with the estimate of prior mass condition, thus we obtain the
rate of εn = logn/

√
n with respect to L2-norm. This is the same with what

is obtained in Ghosal and Vaart (2001), only in L2-norm. However we lose a√
log n-factor comparing to Watson and Leadbetter (1963), which is

√
logn/n.

9. Appendix: Contraction rates relative to non-metrics

The basic theorem of Ghosal et al. (2000) gives a posterior contraction rate in
terms of a metric on densities that is bounded above by the Hellinger distance.
In the present situation we would like to apply this result to a power smaller
than one of the Wasserstein metric, which is not a metric. In this appendix we
establish a rate of contraction which is valid for more general discrepancies.

We consider a general “discrepancy measure” d, which is a map d : P×P → R

on the product of the set of densities on a given measurable space and itself,
which has the properties, for some constant C > 0:

(a) d(x, y) ≥ 0;
(b) d(x, y) = 0 if and only if x = y;
(c) d(x, y) = d(y, x);
(d) d(x, y) ≤ C

(
d(x, z) + d(y, z)

)
.
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Thus d is a metric except that the triangle inequality is replaced with a weaker
condition that incorporates a constant C, possibly bigger than 1. Call a set
of the form {x : d(x, y) < c} a d-ball, and define covering numbers N(ε,P , d)
relative to d as usual.

Let Πn(·|X1, . . . , Xn) be the posterior distribution of p given an i.i.d. sample
X1, . . . , Xn from a density p that is equipped with a prior probability distribu-
tion Π.

Theorem 3. Suppose d has the properties as given, the sets {p : d(p, p′) < δ} are
convex, and satisfies d(p0, p) ≤ h(p0, p), for every p ∈ P. Then Πn

(
d(p, p0) >

Mεn|X1, . . . , Xn

)
→ 0 in Pn

0 -probability for any εn such that nε2n → ∞ and
such that, for positive constants c1, c2 and sets Pn ⊂ P,

logN(εn,Pn, d) ≤ c1nε
2
n, (9.1)

Πn(p : K(p0, p) < ε2n,K2(p0, p) < ε2n) ≥ e−c2nε
2
n , (9.2)

Πn(P − Pn) ≤ e−(c2+4)nε2n . (9.3)

Proof. For every ε > 4Cεn, we have logN(C−1ε/4,Pn, d) ≤ logN(εn,Pn, d) ≤
c1nε

2
n, take N(ε) = exp(c1nε

2
n) and ε = MC−1εn, j = 1 in Lemma 8, where

M > 4C is a large constant to be chosen later, there exist tests ϕn with errors

Pn
0 ϕn ≤ ec1nε

2
n

e−nM2C−2ε2n/32

1− e−nM2C−2ε2n/32
,

sup
p∈Pn:d(p,p0)>Mεn

Pn(1− ϕn) ≤ e−nM2C−2ε2n/32.

Next the proof proceeds as in Ghosal et al. (2000). All terms should tend to
zero for M2/(32C2) > c1 and M2/(32C2) > 2 + c2.

Lemma 8. Let d be a discrepancy measure in the sense of (a)–(d) whose balls
are convex and which is bounded from above by the Hellinger distance h. If
N(C−1ε/4,Q, d) ≤ N(ε) for any ε > Cεn > 0 and some non-increasing function
N : (0,∞) → (0,∞), then for every ε > Cεn and n, there exists a test ϕn such
that for all j ∈ N,

Pnϕn ≤ N(ε)
e−nε2/32

1− e−nε2/32
, sup

Q∈Q,d(P,Q)>Cjε

Qn(1− ϕn) ≤ e−nε2j2/32.

Proof. For a given j ∈ N, choose a maximal set Qj,1, Qj,2, . . . , Qj,Nj in the set
Qj = {Q ∈ Q : Cjε < d(P,Q) < 2Cjε} such that d(Qj,k, Qj,l) ≥ jε/2 for every
k �= l. By property (d) of the discrepancy every ball in a cover of Qj by balls
of radius C−1jε/4 contains at most one Qj,k. Thus Nj ≤ N(C−1jε/4,Qj , d) ≤
N(ε). Furthermore, the Nj balls Bj,l of radius jε/2 around Qj,l cover Qj , as
otherwise the set of Qj,l would not be maximal. For any point Q in each Bj,l,
we have

d(P,Q) ≥ C−1d(P,Qj,l)− d(Q,Qj,l) ≥ jε/2.
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Since the Hellinger distance bounds d from above, also h(P,Bj,l) ≥ jε/2. By
Lemma 9, there exist a test ϕj,l of P versus Bj,l with error probabilities bounded

from above by e−nj2ε2/32. Let ϕn be the supremum of all the tests ϕj,l obtained
in this way, for j = 1, 2, . . . , and l = 1, 2, . . . , Nj . Then,

Pnϕ ≤
∞∑
j=1

∑
l=1

Nje
−nj2ε2/32 ≤

∞∑
j=1

N(C−1jε/4,Qj , d)e
−nj2ε2/32

≤ N(ε)
e−nε2/32

1− e−nε2/32
,

and for every j ∈ N,

sup
Q∈∪l>jQl

Qn(1− ϕn) ≤ sup
l>j

e−nl2ε2/32 ≤ e−nj2ε2/32,

by the construction of ϕn.

The following lemma comes from the general results of Birgé (1984) and
Le Cam (1986).

Lemma 9. For any probability measure P and dominated, convex set of prob-
ability measures Q with h(p, q) > ε for any q ∈ Q and any n ∈ N, there exists
a test φn such that

Pnφn ≤ e−nε2/8, sup
Q∈Q

Qn(1− φn) ≤ e−nε2/8
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tion and Generalizations. Birkhäuser Boston, Inc., Boston, MA, 2001. ISBN
0-8176-4166-1. URL http://dx.doi.org/10.1007/978-1-4612-0173-1. A
revisit with applications to communications, economics, engineering, and fi-
nance. MR1935481

W. Kruijer, J. Rousseau, and A. van der Vaart. Adaptive Bayesian den-
sity estimation with location-scale mixtures. Electron. J. Stat., 4:1225–1257,
2010. ISSN 1935-7524. URL http://dx.doi.org/10.1214/10-EJS584.
MR2735885

L. M. Le Cam. Asymptotic methods in statistical decision theory. Springer,
New York [N.Y.] [etc.], 1986. ISBN 0387963073 9780387963075. MR0856411

O. Lepski and T. Willer. Lower bounds in the convolution structure den-
sity model. Working paper or preprint, Nov. 2015. URL https://hal.

archives-ouvertes.fr/hal-01226357.
X. Nguyen. Convergence of latent mixing measures in finite and infinite
mixture models. The Annals of Statistics, 41(1):370–400, Feb. 2013. ISSN
0090-5364. URL http://projecteuclid.org/euclid.aos/1364302747.
MR3059422

C. Scricciolo. Posterior rates of convergence for Dirichlet mixtures of expo-
nential power densities. Electron. J. Stat., 5:270–308, 2011. ISSN 1935-7524.
URL http://dx.doi.org/10.1214/11-EJS604. MR2802044

W. Shen, S. T. Tokdar, and S. Ghosal. Adaptive Bayesian multivariate den-
sity estimation with dirichlet mixtures. arXiv e-print 1109.6406, Sept. 2011.
URL http://arxiv.org/abs/1109.6406. Biometrika (2013) 100 (3): 623–
640. MR3094441

C. Villani. Optimal Transport: Old and New. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009. ISBN 9783540710493 3540710493 9783540710509
3540710507. MR2459454

G. S. Watson and M. R. Leadbetter. On the estimation of the probabil-
ity density, i. The Annals of Mathematical Statistics, 34(2):480–491, June

http://www.jstor.org/stable/2699987
http://www.ams.org/mathscinet-getitem?mr=1873329
http://projecteuclid.org/euclid.aos/1183667289
http://projecteuclid.org/euclid.aos/1183667289
http://www.ams.org/mathscinet-getitem?mr=2336864
http://projecteuclid.org/euclid.aos/1016218228
http://projecteuclid.org/euclid.aos/1016218228
http://www.ams.org/mathscinet-getitem?mr=1790007
http://www.ams.org/mathscinet-getitem?mr=1163140
http://dx.doi.org/10.1007/978-1-4612-0173-1
http://www.ams.org/mathscinet-getitem?mr=1935481
http://dx.doi.org/10.1214/10-EJS584
http://www.ams.org/mathscinet-getitem?mr=2735885
http://www.ams.org/mathscinet-getitem?mr=0856411
https://hal.archives-ouvertes.fr/hal-01226357
https://hal.archives-ouvertes.fr/hal-01226357
http://projecteuclid.org/euclid.aos/1364302747
http://www.ams.org/mathscinet-getitem?mr=3059422
http://dx.doi.org/10.1214/11-EJS604
http://www.ams.org/mathscinet-getitem?mr=2802044
http://arxiv.org/abs/1109.6406
http://www.ams.org/mathscinet-getitem?mr=3094441
http://www.ams.org/mathscinet-getitem?mr=2459454


Contraction Rates for Dirichlet-Laplace mixtures 627

1963. ISSN 0003-4851. URL http://projecteuclid.org/euclid.aoms/

1177704159. MR0148149
C.-H. Zhang. Fourier methods for estimating mixing densities and distribu-

tions. The Annals of Statistics, 18(2):pp. 806–831, 1990. ISSN 00905364. URL
http://www.jstor.org/stable/2242135. MR1056338

http://projecteuclid.org/euclid.aoms/1177704159
http://projecteuclid.org/euclid.aoms/1177704159
http://www.ams.org/mathscinet-getitem?mr=0148149
http://www.jstor.org/stable/2242135
http://www.ams.org/mathscinet-getitem?mr=1056338

	Introduction
	Notation and preliminaries

	Main results
	Finite approximation
	Entropy
	Prior mass
	Proof of Theorem 1
	Proof of Theorem 2
	Normal mixtures
	Appendix: Contraction rates relative to non-metrics
	Acknowledgements
	References

