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Abstract: We study the convergence of Z-estimators θ̂(η) ∈ Rp for which
the objective function depends on a parameter η that belongs to a Banach
space H. Our results include the uniform consistency over H and the weak
convergence in the space of bounded Rp-valued functions defined on H.
When η is a tuning parameter optimally selected at η0, we provide condi-
tions under which η0 can be replaced by an estimated η̂ without affecting
the asymptotic variance. Interestingly, these conditions are free from any
rate of convergence of η̂ to η0 but require the space described by η̂ to be
not too large in terms of bracketing metric entropy. In particular, we show
that Nadaraya-Watson estimators satisfy this entropy condition. We high-
light several applications of our results and we study the case where η is
the weight function in weighted regression.
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1. Introduction

Let P denote a probability measure defined on a measurable space (Z,A) and
let (Z1, . . . , Zn) be independent and identically distributed random elements
with law P . Given a measurable function f : Z → R, we define

Pf =

∫
fdP, Pnf = n−1

n∑
i=1

f(Zi), Gnf = n1/2(Pn − P )f,

where Gn is called the empirical process. We consider the estimation of a Eu-
clidean parameter θ0 ∈ Θ ⊂ R

p, when a collection of estimators, {θ̂(η) : η ∈ H},
is available. The index space (H, ‖ · ‖) is a Banach space. Suppose there exists

η0 ∈ H such that θ̂(η0) is optimal, in some sense, within the collection. Typically,

θ̂(η0) might have the smallest asymptotic variance among the estimators of the
collection. Such a situation arises in many fields of the statistics. For instance,
η can be the cut-off parameter in Huber robust regression, or η might as well be
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the weight function in weighted least squares (see equation (5) below and the
next section for more details and examples). Unfortunately, η0 is generally un-
known since it depends on the distribution P . Usually, one is restricted to first
estimate η0 by, say, η̂ and then compute the estimator θ̂(η̂), which should result
in a not too bad approximation of θ0. It turns out that, in many situations,

n1/2(θ̂(η̂)− θ0) has the same asymptotic law as n1/2(θ̂(η0)− θ0), (1)

meaning that, not only the rate of convergence but also the asymptotic variance
are the same (see for instance Newey and McFadden (1994), page 2164, the
reference therein, and van der Vaart (1998), page 61). This is all the more
surprising since the accuracy of η̂ estimating η0 does not matter provided its
consistency.

A paradigm that encompasses the previous facts can be developed via the
stochastic equicontinuity of the underlying empirical process Gn over the set of
influence functions. Suppose that

sup
η∈H

|n1/2(θ̂(η)− θ0)−Gnϕη| = oP (1),

where | · | stands for the Euclidean norm and ϕη : Z → R
p is the so called

influence function. It follows that, (1) holds whenever Gn(ϕη̂ − ϕη0) goes to
0 in probability. This holds true if the process η �→ Gn(ϕη) is stochastically
equicontinuous on H, i.e., if for any ε > 0,

lim
δ→0

lim sup
n→+∞

P

(
sup

‖η1−η2‖<δ

|Gn(ϕη1 − ϕη2)| > ε

)
= 0, (2)

where the supremum is taken over η1 and η2 in H, and if, in addition,

P (η̂ ∈ H)
P−→ 1 and ‖η̂ − η0‖ P−→ 0. (3)

Hence, to obtain (1), stochastic equicontinuity allows for relying on (3), a mild
“no-rate” conditions on η̂. In fact, conditions (2) and (3) represent a trade-off
we need to accomplish when selecting the norm ‖ · ‖. When one prefers to have
‖ · ‖ as weak as possible in order to prove (3), one needs the metric to be strong
enough so that (2) can hold. Empirical process theory turns to be very useful to
deal with this kind of problem. As it is summarized in van der Vaart and Wellner
(1996), a natural choice for ‖ · ‖ is the L2(P )-norm. Sufficient conditions for (2)
then involve weak convergence of the empirical process η �→ Gn(ϕη) or, more
restrictively, the metric entropy of the class of functions {ϕη : η ∈ H}. Such
an approach succeeded in deriving the asymptotics of specific semiparametric
estimators (Akritas and Van Keilegom, 2001; van der Vaart and Wellner, 2007;
Portier and Segers, 2015).

The main purpose of the paper is to establish conditions ensuring (1) holds,

in the case when θ̂(η) is a Z-estimator for which the objective function depends
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on some η ∈ H. More formally, we consider θ0 and θ̂(η) defined, respectively, as
“zeros” of the maps

θ �→ Pψη(θ) and θ �→ Pnψη(θ), (4)

where for each θ ∈ Θ and η ∈ H, ψη(θ) is an R
p-valued measurable map

defined on Z. Since for every η ∈ H, Pψη(θ0) = 0, we have several (possibly
infinitely many) equations available and η ∈ H does not affect the limit, in

probability, of the sequence θ̂(η). Hence η might better be understood as a
tuning parameter rather than as a semiparametric nuisance parameter. In fact,
the semiparametric models corresponding to (4) are subjected to an asymptotic
orthogonality condition between θ and η.

In Newey (1994), semiparametric estimators are studied using pathwise deri-
vatives along sub-models and the author underlines that, for such models, “dif-
ferent nonparametric estimators of the same functions should result in the same
asymptotic variance” (Newey, 1994, page 1356). In Andrews (1994), the previ-
ous statement is formally demonstrated by relying on stochastic equicontinuity,
as detailed in (2) and (3). In this paper, we provide new conditions on the map
(θ, η) �→ ψη(θ) and the estimators η̂ under which (1) holds. Despite considering
slightly less general estimators than in Andrews (1994), our approach alleviates
the regularity conditions imposed on the map θ �→ ψη(θ). They are replaced
by weaker regularity conditions dealing with the map θ �→ Pψη(θ). In addition,
the class of functions H is allowed to depend on n. We focus on conditional
moment restrictions models in which η is a weight function. In this context,
our approach results in a simple condition on the size of the bracketing metric
entropy generated by η̂. In the case of weighted linear regression, when η̂ is a
Nadaraya-Watson estimator, the previous condition is shown to be satisfied (see
below for more details). Our result extends those of Ojeda (2008) and Portier
and Segers (2015) on local linear estimators.

Our study is based on the weak convergence of {n1/2(θ̂(η) − θ0)}η∈H in
�∞(H)p, the space of bounded R

p-valued functions defined on H. The tools
we use in the proofs are reminiscent of the Z-estimation literature for which
we mention some of the most relevant contributions. In the case where θ0 is
Euclidean, asymptotic normality is obtained in Huber (1967) and nonsmooth
objective functions are considered in Pollard (1985). In the case where θ0 is
infinite dimensional, weak convergence is established in van der Vaart (1995).
The presence of a nuisance parameter with possibly, slower than root n rates of
convergence, is studied in Newey (1994) and nonsmooth objective functions are
investigated in Chen et al. (2003). Relevant textbooks are Newey and McFadden
(1994), van der Vaart and Wellner (1996), van der Vaart (1998), Kosorok (2008).

Among the different applications, we focus on weighted linear regression for
heteroscedastic models. As this topic is quite well documented (see among others,
Robinson (1987), Carroll et al. (1988) and the references therein), it allows
for comparing our approach with the existing ones. Let (Yi, Xi)i=1,...,n denote
independently and identically distributed random variables with distribution P .
The weighted least squares estimator is given by
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β̂(w) = argmin(β1,β2)∈R1+q

n∑
i=1

(Yi − β1 + βT
2 Xi)

2w(Xi), (5)

where w : Rq → R is a measurable function. Among such a collection of esti-
mators, there exists a member β̂(w0) with minimum variance (see Section 4.1
for details). Many studies have focused on the estimation of w0. For instance,
Carroll and Ruppert (1982) argues that a parametric estimation of w0 can be
performed, and Carroll (1982) and Robinson (1987) use different nonparamet-

ric estimators to approximate w0. Usually, the estimators β̂(ŵ) are shown to
have minimal variance by relying on U -statistics-based decompositions. It in-
volves relatively long and peculiar calculations depending on both ŵ : Rq → R

and the loss function. Our approach overpass this issue by providing high-level
conditions on ŵ that are in some ways independent from the rest of the prob-
lem. To summarize, we require that ŵ(x) → w0(x) in probability, dP (x)-almost
everywhere, and the existence of a function space W , satisfying

P (ŵ ∈ W) → 1 and

∫ +∞

0

√
logN[ ]

(
ε,W , Lr(P )

)
dε < +∞,

for some r > 2, where N[ ](ε,W , Lr(P )) denotes the ε-bracketing number of the
metric space (W , Lr(P )) (van der Vaart and Wellner, 1996, Definition 2.1.6). As
detailed in the paper, when w0 is modelled parametrically, the previous condi-
tions are fairly easy to verify. For nonparametric estimators of w0, in particular
for Nadaraya-Watson estimators, smoothness restrictions on the kernel function
with respect to the dimension are appropriate to obtain, in the mean time, suf-
ficiently sharp bounds on the bracketing numbers of W and that ŵ belongs to
W , with probability going to 1. In contrast to Carroll and Ruppert (1982) and
Robinson (1987), the bandwidth sequence (hn)n∈N of the Nadaraya-Watson es-
timator is allowed to go to 0 as slowly as we wish but not too fast. It is required
that hn → 0 and nh2q+δ

n → +∞, for some δ > 0.
The paper is organised as follows. We describe in Section 2 some examples

of estimators satisfying equation (4). Section 3 contains the theoretical back-

ground of the paper. We study the consistency of θ̂(η) (Section 3.1) and the

weak convergence of n1/2(θ̂(η)− θ0) in �∞(H)p (Section 3.2). Based on this, we
establish conditions ensuring (1) (Section 3.3). In the end, we consider some
weighted estimators for conditional moment restrictions models (Section 3.4).
In Section 4, we focus on the metric entropy of estimators of the optimal weight
function in weighted linear regression. We investigate different approaches, from
the parametric to the fully nonparametric approach. In the later case, we study
the Nadaraya-Watson estimator. In Section 5, we evaluate the finite sample
performance of the methods by means of simulations.

2. Examples

As discussed in the introduction, the results of the paper allow to obtain (1)
for estimators satisfying (4) that depend on a tuning parameter. This occurs at
many levels of statistical theory. We raise several examples in the following.
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Example 1. (Least squares constrained estimation) Given θ̂, an arbitrary but

consistent estimator of θ0, the estimator θ̂c is said to be a least squares con-
strained estimator if it minimizes (θ − θ̂)TΓ(θ − θ̂) over {θ : g(θ) = 0}, for
some function g, where Γ is lying over the set of symmetric positive definite
matrices Γ ≥ b > 0. Consequently, θ̂c depends on the choice of Γ but since
|θ̂c− θ̂|2 ≤ b−1|Γ1/2(θ̂c− θ̂)|2 ≤ b−1|Γ1/2(θ0− θ̂)|2 → 0 in probability, the matrix

Γ does not affect the consistency of θ̂c estimating θ0. It is well known that θ̂c is
a minimum variance estimator if Γ equals the inverse of the asymptotic variance
of θ̂ (Newey and McFadden, 1994, Section 5.2). Such a class is popular among
econometricians and also known as minimal distance estimator.

In the above illustrative example, the use of the asymptotic equicontinuity of
the process Γ �→ n1/2(θ̂c − θ0) is not really legitimate since we could obtain the
asymptotics using more basic tools such as the Slutsky’s lemma in Euclidean
space. This is due of course to the Euclideanity of θ and Γ but also to the
simplicity of the mapping (θ,Γ) �→ (θ− θ̂)TΓ(θ− θ̂). Consequently, we highlight
below more evolved examples in which either the tuning parameter is a function
(Examples 2, 4 and 5) or the dependence structure between θ and η is more
complicated than before (Example 3). To our knowledge, the asymptotics for
the examples below are quite difficult to obtain.

Example 2. (weighted linear regression) This includes the estimators described
by (5) but other losses than the square function might be used to adapt to the
distribution of the noise. Examples are Lr(Pn)-losses, Huber robust loss (see
Example 3 for details), least absolute deviation and quantile losses. In a general
framework covering every of the latter examples, a formula of the optimal weight
function is established in Bates and White (1993).

Example 3. (Huber cut-off) Whereas weighted regression handles heteroscedas-
ticity in the data, the cut-off in Huber robust regression carries out the adapta-
tion to the distribution of the noise (Huber, 1967). The Huber objective function
is defined as the continuous function that coincides with the identity on [−c, c]
(c is called the cut-off) and is constant elsewhere. A Z-estimator based on this
function permits to handle heavy tails in the distribution of the noise. The choice
of the cut-off might be done by minimizing the asymptotic variance.

Example 4. (instrumental variable) In Newey (1990), the class of nonlinear
instrumental variables is defined through the generalized method of moment.
The estimator θ̂ depends on a so-called matrix of instruments W , and satisfies
the equation

∑n
i=1 W (Z̃i)ϕ(Zi, θ) = 0, where each Z̃i is some set of coordinates

of Zi and ϕ is a given function. A formula for the optimal matrix of instruments
is available.

Example 5. (dimension reduction) The method sliced inverse regression (Li,
1991) is based on estimating the subspace generated by the vectors EXψ(Y ),
when ψ varies in a given class of functions. Minimization the asymptotic variance
leads to an expression of the optimal ψ0 (Portier and Delyon, 2013).
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3. Uniform Z-estimation theory

Define (Z∞,A∞, P∞) as the probability space associated to the whole sequence
(Z1, Z2, . . .). Random elements in �∞(H)p, such as η �→ Gnψη(θ), are not nec-
essarily measurable. To account for this, we work with the outer expectation
Eo

∞ and the outer probability measure P o
∞ (see the introduction of van der

Vaart and Wellner (1996) for the definitions). Each convergence, in probability
or in distribution, will be stated with respect to the outer probability. A class
of functions F is said to be Glivenko-Cantelli if supf∈F |(Pn − P )f | goes to 0
in P o

∞-probability. A class of functions F is said to be Donsker if Gnf con-

verges weakly in �∞(F) to a tight measurable element. Let ‖f‖L2(P ) =
√
Pf2.

A class F is Donsker if and only if it is totally bounded with respect to the
L2(P )-distance and if, for every ε > 0,

lim
δ→0

lim sup
n→+∞

P o
∞

(
sup

‖f−g‖L2(P )<δ

|Gn(f − g)| > ε

)
= 0, (6)

where the supremum is taken over f and g in F . The previous assertion follows
from the characterization of tight sequences valued in the space of bounded
functions (van der Vaart and Wellner, 1996, Theorem 1.5.7). We refer to the
book van der Vaart and Wellner (1996) for a comprehensive study of the latter
concepts.

For any element A ∈ R
p×q, let |A| denote the Frobenius norm, i.e., |A|2 =

tr(ATA). Note that if A is a vector, it coincides with the Euclidean norm. For
r > 0 and f , a measurable function, let ‖f‖Lr(P ) denote the Lr(P )-norm of the
function f .

For the sake of generality, we authorize, in Section 3.1 and 3.2, the parameter
of interest θ0 to depend on η. Hence we further assume that θ0(·) is an element
of �∞(H)p.

3.1. Uniform consistency

Before being possibly expressed as a Z-estimator, the parameter of interest θ0
is often defined as an M -estimator, i.e., θ0 ∈ �∞(H)p is such that

θ0(η) = argminθ∈Θ Pmη(θ), (7)

where mη(θ) : Z → R is a known real valued measurable function, for every

θ ∈ Θ and each η ∈ H. The estimator of θ0 is denoted by θ̂, it depends on η
since it satisfies

θ̂(η) = argminθ∈Θ Pnmη(θ). (8)

Both elements θ0 and θ̂ are R
p-valued functions defined on H. When dealing

with consistency, considering M -estimators is more general but not more dif-
ficult than Z-estimators (see Remark 3). The following generalizes standard
consistency theorems for M -estimators (van der Vaart, 1998, Theorem 5.7) to
uniform consistency results.
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Theorem 1. Assume that (7) and (8) hold. Suppose that

(a1) supη∈H, θ∈Θ |(Pn − P )mη(θ)|
P o

∞→ 0.
(a2) For all δ > 0, there exists ε > 0 such that

sup
η∈H

|θ(η)− θ0(η)| ≥ δ ⇒ sup
η∈H

P{mη(θ(η))−mη(θ0(η))} ≥ ε.

then, we have supη∈H |θ̂(η)− θ0(η)|
P o

∞→ 0.

Proof. We follow the lines of the proof of Theorem 5.7 in van der Vaart (1998).
Given δ > 0, assumption (a2) implies that there exists ε > 0 such that

P o
∞

(
sup
η∈H

|θ̂(η)− θ0(η)| ≥ δ

)
≤ P o

∞

(
sup
η∈H

P{mη(θ̂(η))−mη(θ0(η))} ≥ ε

)
.

By definition, Pn{mη(θ̂(η)) − mη(θ0(η))} ≤ 0 for every η ∈ H, then we know
that

P{mη(θ̂(η))−mη(θ0(η))}
= (P − Pn){mη(θ̂(η))}+ (Pn − P ){mη(θ0(η))}+ Pn{mη(θ̂(η))−mη(θ0(η))}
≤ (P − Pn){mη(θ̂(η))}+ (Pn − P ){mη(θ0(η))}
≤ 2 sup

θ∈Θ, η∈H
|(Pn − P ){mη(θ)}|,

that goes to 0 in outer probability by (a1).

Remark 1. Condition (a1) requires the class {mη(θ) : θ ∈ Θ, η ∈ H} to be
Glivenko-Cantelli. It is enough to bound the uniform covering numbers or the
bracketing numbers (van der Vaart and Wellner, 1996, Chapter 2.4). When Θ is
unbounded, the Glivenko-Cantelli property may fail. Examples include Lr(Pn)-
losses in linear regression. In such situations, one may require the optimisation
set Θ to be compact. Another possibility is to use, if available, special features
of the functions θ �→ mη(θ), η ∈ H, such as convexity (Newey, 1994, Theorem
2.7).

Remark 2. Condition (a2) is needed for the identifiability of the parameter θ0.
It says that when θ(·) is not uniformly close to θ0(·), the objective function eval-
uated at θ(·) is not uniformly small. Consequently, every sequence of functions
θn(·) such that supη∈H P{mη(θn(η))−mη(θ0(η))} → 0 as n → +∞, converges
uniformly to θ0(·). It is a functional version of the so called “well-separated
maximum” (Kosorok, 2008, page 252). It is stronger but often more convenient
to verify

(a2’) infη∈H inf |θ−θ0(η)|≥δ P{mη(θ)−mη(θ0(η))} > 0.

for every δ > 0. This resembles to Van der Vaart’s consistency conditions in
van der Vaart (1998), Theorem 5.9. To show that (a2’) implies (a2), suppose
that supη∈H |θ(η)− θ0(η)| ≥ 2δ and write
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P{mη(θ(η))−mη(θ0(η))}
≥ 1{|θ(η)−θ0(η)|≥δ}P{mη(θ(η))−mη(θ0(η))}
≥ 1{|θ(η)−θ0(η)|≥δ} inf

|θ−θ0(η)|≥δ
P{mη(θ)−mη(θ0(η))}

≥ 1{|θ(η)−θ0(η)|≥δ} inf
η∈H

inf
|θ−θ0(η)|≥δ

P{mη(θ)−mη(θ0(η))}.

Conclude by taking the supremum over H in both side.

Remark 3. Estimators defined through zeros of the map Pnψη(θ) are also min-
imizers of |Pnψη(θ)|. Therefore they can be handle by Theorem 1. Let θ0(·) be
such that Pψη(θ0(η)) = 0 for every η ∈ H. If (a1) holds replacing m by ψ and
if for all δ > 0, there exists ε > 0 such that

sup
η∈H

|θ(η)− θ0(η)| ≥ δ > 0 ⇒ sup
η∈H

|Pψη(θ(η))| ≥ ε > 0,

then, the uniform convergence of zeros of Pnψη(θ) to the zero of Pψη(θ) is
guaranteed. Given that mη is differentiable, the associated M -estimator can be
expressed as a Z-estimator with objective function ∇θmη. Because a function
can have several local minimums, the previous condition with ∇θmη is stronger
than (a2). Consequently, for consistency purpose, M -estimators should not be
expressed in terms of Z-estimators (see also Newey (1994), page 2117).

3.2. Weak convergence

We now consider the weak convergence properties of Z-estimators indexed by
the objective functions. We assume further that θ0 ∈ �∞(H)p and satisfies the
p-dimensional set of equations, for each η ∈ H,

Pψη(θ0(η)) = 0, (9)

where ψη(θ) : Z → R
p is a known measurable function. The estimator of θ0(·)

is denoted by θ̂(·) and for each η, it holds that

Pnψη(θ̂(η)) = 0. (10)

Here we shall suppose that supη∈H |θ̂(η)−θ0(η)| = oP o
∞(1), so that the functions

ψη, η ∈ H, are not intended to necessarily satisfy (a2). Indeed consistency of

θ̂(·) may have been established from other restrictions such as being a minimizer
(see Remark 3).

We require some “uniform” Frechet differentiability for the map θ �→ Pψη(θ),
that is, there exists Aη : Θ �→ Rp×p such that, for all δn → 0,

sup
0<|θ−θ̃|≤δn, η∈H

⎧⎨⎩
∣∣∣Pψη(θ)− Pψη(θ̃)−Aη(θ)(θ − θ̃)

∣∣∣
|θ − θ̃|

⎫⎬⎭ −→ 0. (11)
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Theorem 2. Assume that (9) and (10) hold. Suppose that

(a3) supη∈H |θ̂(η)− θ0(η)|
P o

∞→ 0.
(a4) Let ψη,k denote the k-th coordinate of ψη. For all ε > 0, there exists

δ > 0 such that |θ − θ̃| < δ implies that maxk∈{1,...,q} supη∈H ‖ψη,k(θ) −
ψη,k(θ̃)‖L2(P ) < ε.

(a5) The matrix Bη := Aη(θ0(η)), defined in (11), is bounded and invertible
uniformly in η.

(a6) There exists δ > 0 such that the class Ψ := {z �→ ψη(θ)(z) : |θ − θ0(η)| <
δ, η ∈ H} is P -Donsker.

then, we have

sup
η∈H

∣∣∣n1/2(θ̂(η)− θ0(η)) +B−1
η Gnψη(θ0(η))

∣∣∣ = oP o
∞(1).

Consequently, n1/2(θ̂(η)−θ0(η)) converges weakly to a tight zero-mean Gaussian
element in �∞(H) whose covariance function is given by

(η1, η2) �→ B−1
η1

P (ψη1(θ0(η1))ψη2(θ0(η2))
T )B−1

η2
.

Proof. We follow a standard approach by first deriving the (uniform) rates of
convergence and second computing the asymptotic distribution (van der Vaart,
1998, Theorem 5.21). From (a3) and (a4), we know that, for some nonrandom
positive sequence δn → 0, the set

En ={
sup
η∈H

|θ̂(η)− θ0(η)| < δn, max
k∈{1,...,p}

sup
η∈H

‖ψη,k(θ̂(η))− ψη,k(θ(η))‖L2(P ) < δn

}
,

is such that P o
∞(En) → 1. Because we are interested in showing convergence in

probability, we can restrict attention to En. By definition of θ̂(η), we have

0 = n1/2{Pnψη(θ̂(η))− Pψη(θ0(η))}
= Gn{ψη(θ̂(η))− ψη(θ0(η))}+Gnψη(θ0(η)) + n1/2P{ψη(θ̂(η))− ψη(θ0(η))}.

(12)

The first term is treated as follows. Under En, we have

|Gn{ψη(θ̂(η))− ψη(θ0(η))}| ≤
√
q max
k∈{1,...,p}

|Gn{ψη,k(θ̂(η))− ψη,k(θ0(η))}|

≤ √
p sup
‖ψ−ψ̃‖L2(P )<δn

|Gn{ψ − ψ̃}|,

where the supremum is over ψ and ψ̃ in Ψ. Using (a6) together with equation
(6), the first term in (12) goes to 0 in P o

∞-probability. As a consequence, we have

that Gnψη(θ0(η))+n1/2P{ψη(θ̂(η))−ψη(θ0(η))} = oP o
∞(1) or, equivalently, that

Gn{ψη(θ0(η))}+Bηn
1/2(θ̂(η)− θ0(η)) = an(η) + oP o

∞(1), (13)
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where the oP o
∞(1) is uniform in η ∈ H and an(η) = −n1/2{P{ψη(θ̂(η)) −

ψη(θ0(η))} −Bηn
1/2(θ̂(η)− θ0(η))}. Using (a5), we have that

an(η) ≤ |n1/2(θ̂(η)− θ0(η))| sup
0<|θ−θ̃|≤δn

{
|Pψη(θ)− Pψη(θ̃)−Aη(θ)(θ − θ̃)|

|θ − θ̃|

}
≤ sup

η∈H
|n1/2(θ̂(η)− θ0(η))| × o(1). (14)

Hence, because we know from (a6) that supη∈H |Gnψη(θ0(η))| = OP o
∞(1), and

using (a5) again, in particular the full rank condition on Bη, we get

sup
η∈H

|n1/2(θ̂(η)− θ0(η))| ≤ sup
η∈H

{|Bηn
1/2(θ̂(η)− θ0(η))|} sup

|u|=1

|B−1
η u| = OP o

∞(1).

Bringing the previous information in equation (14) gives that supη∈H |an(η)| =
oP o

∞(1). Therefore equation (13) becomes

sup
η∈H

∣∣∣Gnψη(θ0(η)) +Bηn
1/2(θ(η)− θ0(η))

∣∣∣ = oP o
∞(1),

and the conclusion follows.

Remark 4. Weak convergence of M -estimators is in general more difficult to
handle than weak convergence of Z-estimators (van der Vaart and Wellner,
1996, chapter 3.2). An interesting strategy is to focus on convex objective func-
tions as developed in Pollard (1985). Unlike the approach taken in Theorem 2,
this strategy handles non-smooth objective functions and it turns out to be useful
to study least absolute deviation estimators. More recently, Kato (2009) consid-
ers convex objective functions that are indexed by real parameters. The main
application deals with weak convergence of the quantile regression process.

Remark 5. All the examples in Section 2 focus on particular situations where
θ0 does not depend on η. Hence, {ψη, η ∈ H}, represents a range of criterion
functions available for estimating a single parameter θ0. In this context, condi-
tion (a4) becomes

(a4’) For all k ∈ {1, . . . , p}, supη∈H ‖ψη,k(θ)− ψη,k(θ0)‖L2(P ) → 0, as θ → θ0.

and condition (a5) is reduced to

(a5’) There exists Bη ∈ R
p×p, bounded and invertible, uniformly in η, such that

sup
η∈H

|Pψη(θ)− Pψη(θ0)−Bη(θ − θ0)| = o(θ − θ0).

3.3. Asymptotic equivalence

In this section, Theorem 2 is used to establish conditions for the asymptotics of
θ̂(η̂) estimating θ0 ∈ Θ. Hence, we shall assume that for every η ∈ H, θ0(η) = θ0,
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as in the introduction and as in Remark 5. Let η̂ denote a consistent estimator
of η0. The next theorem asserts that, whatever the rate of convergence of η̂,
θ̂(η0) and θ̂(η̂) have the same asymptotic behaviour. Consequently, whenever

θ̂(η0) is an efficient estimator of θ0, θ̂(η̂) is an efficient estimator of θ0. For the
sake of generality, we consider two cases: when the class H does not change with
n and when it does.

Theorem 3. Assume that (9), (10), (a3), (a4’), (a5’) and (a6) hold. Suppose
that

(a7) For every η ∈ H, θ0(η) = θ0.
(a8) There exist η0 ∈ H and η̂ such that

(i) P o
∞(η̂ ∈ H) → 1.

(ii) maxk∈{1,...,p} ‖ψη̂,k(θ0)−ψη0,k(θ0))‖L2(P )
P o

∞→ 0 and |Bη̂ −Bη0 |
P o

∞→ 0.

then, n1/2(θ̂(η̂)− θ0) = n1/2(θ̂(η0)− θ0) + oP o
∞(1).

Proof. Since

θ̂(η̂)− θ0 = (θ̂(η̂)− θ̂(η0)) + (θ̂(η0)− θ0),

we have to show that the first term of the right-hand side is neglectabe, i.e.,
θ̂(η̂)− θ̂(η0) = oP o

∞(n−1/2). By (a8), for a certain nonrandom positive sequence
δn → 0, the event{

η̂ ∈ H, max
k∈{1,...,p}

‖ψη̂,k(θ0)− ψη0,k(θ0)‖L2(P ) < δn, |Bη̂ −Bη0 | < δn

}
,

has probability going to 1. As we are concerned with convergence in probability,
we can restrict attention to this event. Applying Theorem 2, we find

n1/2(θ̂(η̂)− θ̂(η0)) =

B−1
η̂ Gn{ψη0(θ0)− ψη̂(θ0)}+ (B−1

η0
−B−1

η̂ )Gnψη0(θ0) + oP o
∞(1).

By (a5’), the second term in the right-hand side equals B−1
η0

−B−1
η̂ = B−1

η0
(Bη̂−

Bη0)B
−1
η̂ = O(δn) multiplied by a term which is bounded in probability, from

(a6). To obtain the convergence in probability to 0 of the first term in the right-
hand side, we follow a similar approach as in the proof of Theorem 2, i.e., we
make use of (a6) to rely on the stochastic equicontinuity, as expressed in (6).

Now we consider the case when the class H does change with n. We rely
on results from van der Vaart and Wellner (2007) which considers empirical
processes indexed by estimated functions. It requires to bound the ε-bracketing
numbers of the class Ψ together with a Lindeberg condition on the class. Similar
conditions can also be derived considering the covering numbers.

Theorem 4. Let H := Hn and assume that (9), (10), (a3), (a4’), (a5’), (a7)
and (a8) hold (with Hn in place of H). Suppose that



Z-estimators indexed by functions 475

(a6’) Let Ψn,k := {z �→ ψη,k(θ)(z) : |θ − θ0(η)| < δ, η ∈ Hn} and ψn,k be a

measurable envelope for the class Ψn,k, i.e., |ψ(z)| ≤ ψn,k(z) for every ψ ∈
Ψn,k and z ∈ Z. There exists s > 0 such that maxk∈{1,...,p} P |ψn,k|2+s <
+∞ and, for every δn → 0 and every k ∈ {1, . . . , p},∫ δn

0

√
logN[ ]

(
ε‖ψn,k‖L2(P ),Ψn,k, L2(P )

)
dε −→ 0.

then, n1/2(θ̂(η̂)− θ0) = n1/2(θ̂(η0)− θ0) + oP o
∞(1).

Proof. The proof is the same as the proof of Theorem 3 with one change. We
no longer rely on the Donsker property to provide

sup
η∈Hn

∣∣∣Gn

{
ψη(θ̂(η))− ψη(θ0)

}∣∣∣ P o
∞−→ 0, (15)

∣∣Gn

{
ψη̂(θ0)− ψη0(θ0)

}∣∣ P o
∞−→ 0, (16)

respectively, in the proof of Theorems 2 and 3. We rely on Theorem 2.2 in
van der Vaart and Wellner (2007), which asserts that (16) holds whenever, for
every k ∈ {1, . . . , p},

P (ψη̂,k(θ0)− ψη0,k(θ0))
2 P o

∞−→ 0,∫ δn

0

√
logN[ ]

(
ε‖ψn,k‖L2(P ),Ψn,k, L2(P )

)
dε

δn→0−→ 0,

Pψ
2

n,k = O(1), Pψ
2

n,k1{ψn,k≥εn1/2} → 0, for each ε > 0.

The first condition is (a8). The second is (a6’). The third is obtained from the
Hölder inequality using the moment condition on ψn,k in (a6’). The same can
be done to obtain (15).

Remark 6. Covering and bracketing numbers are classically employed to deal
with weak convergence of empirical processes (van der Vaart and Wellner, 1996,
Chapter 2.5). It often gives tractable conditions that can be verified in practice
(see Chapter 2.6 and 2.7 in van der Vaart and Wellner (1996), and Section
5 of the present paper for applications to semiparametric estimators). In our
approach, the entropy conditions allow moreover to consider classes that depends
on n. It turns out to be important when treating weighted regression estimators
in Section 5, in which η̂ is a Nadaraya-Watson estimator.

3.4. Conditional moment restrictions

We now consider conditional moment restrictions models defined as follows.
There exists β0 ∈ R

p such that

E(ϕ(Z, β0)|X) = 0, (17)
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where X ∈ X and Z ∈ Z are random variables with joint distribution P and
ϕ is a known R

p-valued function. Equation (17) implies that infinitely many
(unconditional) equations are available to characterize β0, that is, for every
bounded measurable real function w defined on X , one has

E(w(X)ϕ(Z, β0)) = 0.

Let (Z,X), (Z1, X1), (Z2, X2), . . . denote an independent and identically dis-
tributed sequence of random variables satisfying model (17). The probability
measure associated to the sequence (Z1, X1), (Z2, X2), . . . is still denoted by

P∞. The estimator β̂(w) satisfies

n−1
n∑

i=1

w(Xi)ϕ(Zi, β̂(w)) = 0, (18)

for every w in W , a class of bounded real functions. Note that this framework
includes Example 2 of Section 2. In the case where W is an R

p×p-valued class of
functions, it includes Example 4 of Section 2. In the following theorem, W is a
real-valued class of functions (see Remark 9 for Rp×p-valued classes of functions).
The proof follows from an application of Theorems 3 and 4 to the particular
case of a Z-estimator defined with the objective function (β,w) �→ w(·)ϕ(·, β).
As in the previous section, we start by considering the case when W is fixed.

Theorem 5. Assume that (17) and (18) hold. Suppose that

(b1) supw∈W |β̂(w)− β0|
P o

∞→ 0.
(b2) Let ϕk denote the k-th coordinate of ϕ. Whenever β → β0, we have

maxk∈{1,...,p} ‖ϕk(Z, β)− ϕk(Z, β0)‖L2(P ) → 0.
(b3) There exist κ > 0 and B : X →∈ R

p×p such that E|B(X)| < +∞ and

E
{
|E
[
ϕ(Z, β)− ϕ(Z, β0) | X

]
−B(X)(β − β0)|

}
≤ κ|β − β0|2,

and where Ew(X)B(X) is invertible, uniformly in w ∈ W.
(b4) Let B0 be an open ball centred at β0 and ϕk(z) = supβ∈B0

|ϕk(z, β)|. There
exists s > 0 such that maxk∈{1,...,p} P |ϕk|2+s < +∞ and the classes Φk :=
{z �→ ϕk(z, β) : β ∈ B0}, k ∈ {1, . . . , p}, are P -Donsker. Moreover, W is
uniformly bounded by 1 and the class ϕkW is P -Donsker.

(b5) There exist ŵ : X �→ R (suitably measurable) and w0 : X �→ R such that

(i) P o
∞(ŵ ∈ W) → 1.

(ii) |ŵ(x)− w0(x)| P∞→ 0, dP (x)-almost everywhere.

then, n1/2(β̂(ŵ)− β0) = n1/2(β̂(w0)− β0) + oP o
∞(1).

Proof. We verify each condition of Theorem 3 for the map ψη(θ) given by
w(·)ϕ(·, β) in which β and w replace, respectively, θ and η. The space corre-
sponding to H in Theorem 3 is here W . Note first that (9), (10) and (a3) are
implied by (17), (18) and (b1), respectively. Moreovoer (b2) implies (a4’) and
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(17) implies (a7). To complete the proof, we show that (a5’), (a6) and (a8) hold
(see Remark 5 for (a4’) and (a5’)).

We start by showing that (b3) ⇒ (a5’) with Bη equal to Ew(X)B(X). From
(b3), the matrix Ew(X)B(X) is invertible and bounded. Moreover by (b3), we
have ∣∣E{w(X)(ϕ(Z, β)− ϕ(Z, β0)−B(X)(β − β0))

}∣∣ ≤ κ|β − β0|2,

which implies (a5’).
We now show that (b4) implies (a6), that is, we need to prove that the class

{(x, z) �→ w(x)ϕ(z, β) : β ∈ B0, w ∈ W} is P -Donsker. Consider the k-th
coordinate class Φk × W = {w(·)ϕk(·, β), β ∈ B0, w ∈ W}. Because it is the
product of two classes, Φk and W , we can apply Corollary 2.10.13 in van der
Vaart and Wellner (1996). Given two pairs (β, β̃) and (w, w̃), we check that, for
every x ∈ X and z ∈ Z,

(w(x)ϕk(z, β)− w̃(x)ϕk(z, β̃))
2 ≤

2(ϕk(z, β)− ϕk(z, β̃))
2 + 2 sup

β∈B0

|ϕk(z, β)|2(w(x)− w̃(x))2.

This corresponds to (2.10.12) in van der Vaart and Wellner (1996) with Lα,1 =√
2 and Lα,2 =

√
2ϕk. By assumption, the suitable classes, Φk and ϕkW , are

P -Donsker. It remains to note that any member of the product class is square
integrable as Pϕ2

k < +∞. Therefore, we have that the class Φk×W is P -Donsker.
Hence it is a tight sequence in �∞(B0 × W). Since tightness of vector-valued
random sequences is equivalent to tightness of each coordinate, the sequence
{w(·)ϕ(·, β)), β ∈ B0, w ∈ W} is tight. Using the multivariate central limit
theorem, we obtain the convergence in distribution of the finite dimensional
distributions. From Theorem 1.5.4 in van der Vaart and Wellner (1996), the
class {(x, z) �→ w(x)ϕ(z, β) : β ∈ B0, w ∈ W} is P -Donsker. Note that the
moments of order 2 + s for ϕk have not been used yet.

It remains to show that (b5) implies (a8). Given ε > 0 and using that
|
∫
A(x)dx| ≤

∫
|A(x)|dx, we have

|
∫

(ŵ(x)− w0(x))B(x)dP (x)|

≤
∫

|B(x)| |ŵ(x)− w0(x)|dP (x)

≤ ε

∫
|B(x)|dP (x) + 2

∫
|B(x)|1{|ŵ(x)−w0(x)|>ε}dP (x).

Taking the expectation, Fubini’s theorem (measurability is here implicitly as-
sumed) leads to

E∞|
∫

(ŵ(x)− w0(x))B(x)dP (x)|

≤ ε

∫
|B(x)|dP (x) + 2

∫
|B(x)|P∞(|ŵ(x)− w0(x)| > ε)dP (x),
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the right-hand side goes to 0 by the Lebesgue dominated convergence theorem.
Conclude choosing ε small. Using that P |ϕk|2+s < +∞, the same analysis to-
gether with the Hölder inequality, leads to the fact that, for every k ∈ {1, . . . , p},
Eϕk(Z, β0)

2(ŵ(X)− w0(X))2 goes to 0 in P∞-probability.

Remark 7. Condition (b3) is related to the regularity of the map defined as
β �→ E(ϕ(Z, β)|X). It is in general weaker than asking for the regularity of the
map β �→ ϕ(z, β). For instance, it permits to include the Huber loss function
(defined in Example 3). Note also that, contrary to W, the class of functions
{z �→ ϕ(z, β) : β ∈ B0} is not supposed to be bounded. This is important to
have this flexibility in order to include examples such as weighted least squares.

Remark 8. Under the conditions of Theorem 5, the sequence n1/2(β̂(w) −
β0) converges weakly in �∞(W) to a tight zero-mean Gaussian element whose
covariance function is given by

(w1, w2) �→ C−1
w1

E
(
w1(X)ϕ(Z, β0)ϕ(Z, β0)

Tw2(X)
)
C−1

w2
,

with Cw = E(w(X)B(X)).

Finally we treat the case when W := Wn is changing with n by considering
the bracketing numbers of the underlying classes.

Theorem 6. Let W := Wn and assume that (17), (18), (b1), (b2), (b3) and
(b5) hold (with Wn in place of W). Suppose that

(b4’) Let B0 be an open ball centred at β0, Φk = {z �→ ϕk(z, β) : β ∈ B0},
ϕk(z) = supβ∈B0

|ϕk(z, β)|. For all k ∈ {1, . . . , p}, there exists s > 0 such
that P |ϕk|2+s < +∞, and, for every sequence δn → 0 and r = 2(2 + s)/s,

(i)

∫ +∞

0

√
logN[ ]

(
ε‖ϕk‖L2(P ),Φk, L2(P )

)
dε < +∞,

(ii)

∫ δn

0

√
logN[ ]

(
ε,Wn, Lr(P )

)
dε −→ 0.

Moreover the functions in Wn are bounded by 1.

then, n1/2(β̂(ŵ)− β0) = n1/2(β̂(w0)− β0) + oP o
∞(1).

Proof. We apply Theorem 4 with Ψn equal to {z �→ w(x)ϕ(z, β) : β ∈ B0, w ∈
Wn}. From the proof of Theorem 3, we have that (17), (18), (b1), (b2), (b3)
and (b5) implies (9), (10), (a3), (a4’), (a5’), (a7) and (a8). We finish the proof
by showing that (b4’) is enough to get (a6’) with Ψn,k equal to Φk ×Wn.

Given ε > 0, let [ϕ(i), ϕ(i)], i = 1, . . . , n1, be (ε‖ϕk‖L2(P ), L2(P ))-brackets

covering Φk and let [w(j), w(j)], j = 1, . . . , n2, be (ε, Lr(P ))-brackets covering
Wn, with r = 2(2 + s)/s. Because the function z �→ xy attains its bounds on
every rectangle at the edges of each rectangle, the brackets

[min(gij),max(gij)], i = 1, . . . , n1, j = 1, . . . , n2,
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with gij = (ϕ(i)w(j), ϕ(i)w(j), ϕ(i)w(j), ϕ(i)w(j)), cover the class Φk×Wn. More-
over, we have

|max(gij)−min(gij)| ≤ |ϕ(i) − ϕ(i)|+ |ϕk||w(j) − w(j)|,

then, using Minkowski’s, Hölder’s and Jensen’s inequalities (in this order), we
get

‖max(gij)−min(gij)‖L2(P ) ≤ ε‖ϕk‖L2(P ) + ‖ϕk(w
(j) − w(j))‖L2(P )

≤ ‖ϕk‖L2(P ) + ‖ϕk‖L2+s(P ) ‖w(j) − w(j)‖Lr(P )

≤ 2ε‖ϕk‖L2+s(P ),

with r = 2(2 + s)/s. Hence we have shown that, for every ε > 0,N[ ]

(
2ε‖ϕk‖L2+s(P ),Φk×

Wn, L2(P )
)
is smaller thanN[ ]

(
ε‖ϕk‖L2(P ),Φk, L2(P )

)
timesN[ ]

(
ε,Wn, Lr(P )

)
.

This implies the integrability condition in (a6).

Remark 9. In Example 4, the class W is a matrix-valued class of functions.
The statements in Theorems 5 and 6 only deal with the real-valued case. To be
valid in the matrix-valued case, one needs to assume the same assumptions as
in Theorems 5 and 6 but for each coordinate of the function class W. The main
reason for this is that the sum of two Donsker classes is Donsker.

4. Application to weighted linear regression

In this section, we are interested in estimating β0 = (β01, β02) ∈ R
1+q, defined

by the following model

E(Y |X) = β01 + βT
02X, (19)

where the conditional distribution of Y −β01−βT
02X given X ∈ R

q is symmetric
about 0. For the sake of clarity, we focus on the linear model and we assume
that (Y,X) has a density with respect to the Lebesgue measure on R×Q, with
Q ⊆ R

q. Under classical regularity conditions, it is possible to include more
general link functions in our analysis. We consider heteroscedasticity, i.e., when
the conditional variance of the residual Y −β01−βT

02X given X is not a constant.
In this context, ordinary least squares are not efficient whereas weighted least
squares might improve the estimation.

Let (Y,X), (Y1, X1), (Y2, X2), . . . denote an independent and identically dis-
tributed sequence of random variables satisfying model (19). Let P denote the
distribution of (Y,X). The probability measure associated to the whole sequence
(Y1, X1), (Y2, X2), . . . is still denoted by P∞. The class of weighted estimators is

given by β̂(w), defined by

β̂(w) = argmin(β1,β2)∈R1+q n−1
n∑

i=1

ρ
(
|Yi − β1 − βT

2 Xi|
)
w(Xi),
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where ρ : R+ → R
+ is convex positive and differentiable and w : Q → R is called

the weight function. Such a class of estimators is studied in Huber (1967), where
a special attention is drawn on robustness properties associated to the choice of
ρ. Note that when ρ(x) = x2, we obtain weighted least squares, when ρ(x) = x,
we get weighted median regression, ρ(x) = (x2/2)1{0≤x≤c} + c(x − c/2)1{x>c}
corresponds Huber’s weighted robust regression (where c needs to be chosen in a
proper way). Finally quantile regression estimators and Lr(Pn)-losses estimators
are as well included in this class.

We consider three approaches to estimate the optimal weight function w0.
Each approach is associated to a certain rate of convergence for ŵ. The first one
is parametric, i.e., w0 is supposed to be in a given class of functions indexed
by a Euclidean parameter. The second one is nonparametric, i.e., w0 needs to
satisfy some regularity conditions. The third one is called semiparametric and
realizes a compromise between both previous approaches.

It is an exercise to verify each condition of Theorem 6. Here we focus on the
special conditions dealing with the estimator ŵ of w0, namely conditions (b4’)(ii)
and (b5). The other conditions are more classical and have been examined in
different contexts (Newey and McFadden, 1994).

4.1. Minimum variance weights

A first question is to know, whether or not, such a class of estimators possesses
a member with munimum variance. The answer is provided in Bates and White
(1993) where the existence of a minimal variance estimator is studied. Basically,
optimal members must satisfy the equation: “the variance of the score equals
the Jacobian of the expected score” (as maximum likelihood estimators). Let
ε = Y − β01 − βT

02X denote the residual of the regression. The optimal weight
function is

x �→
2ρ′(0)fε|X=x(0) + E(g2,β0(Y,X)|X = x)

E(g1,β0(Y,X)|X = x)
,

where g1,β(y, x) = ρ′(|y− β1 − βT
2 x|)2, g2,β(y, x) = ρ′′(|y− β1 − βT

2 x|) and fε|X
is the conditional density of ε given X. In what follows, we consider the case
where ρ′(0) = 0, so that w0 simplifies to

w0(x) =
Nβ0(x)

Dβ0(x)
,

where Nβ(x) = E(g2,β(Y,X)|X = x)f(x), Dβ = E(g1,β(Y,X)|X = x)f(x) and
f is the density of X. Concerning the examples cited above, this restriction only
drops out quantile regression estimators.

A first estimator that can to be computed is β̂(0) = (β̂
(0)
1 , β̂

(0)
2 ), defined as

β̂(w) with constant weight function, w(x) = 1 for every x ∈ Q. Even if β̂(0)

is not efficient, it is well known that it is consistent for the estimation of β0.
Since w0 depends on β0, we use β̂(0) as a first-step estimator to carry on the
estimation of w0.
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4.2. Parametric estimation of the weights

In this paragraph, we assume that w0(x) = w(x, γ0), where γ0 belongs to some
Euclidean space. Typically, γ0 is a vector containing β0. Such a situation has
been extensively studied (see Carroll et al. (1988) and the reference therein),
and it has been shown under quite general conditions that γ0 can be estimated
consistently. Consequently, we assume in the next lines that there exists γ̂ such
that γ̂→γ0, in P o

∞-probability. The estimator of w0(x) is given by w(x, γ̂), for
every x ∈ Q, and β0 is estimated by

β̂ = argmin(β1,β2)∈R1+q n−1
n∑

i=1

ρ
(
|Yi − β1 − βT

2 Xi|
)
w(Xi, γ̂).

To verify (b4’)(ii) and (b5), it is enough to ask the following Lipschitz condition.
For every x ∈ Q, we have

|w(x, γ)− w(x, γ̃)| ≤ |γ − γ̃|. (20)

On the one hand, (b5) holds trivially with Wn equal to the class {x �→ w(x, γ) :
|γ−γ0| < δ}, for every δ > 0. On the other hand, (b4’)(ii) is satisfied because the
previous class has a (ε, ‖·‖∞)-bracketing number of the same order as the (ε, |·|)-
covering number of the Euclidean ball of radius δ (van der Vaart and Wellner,
1996, Theorem 2.7.11). Obviously, condition (20) is sufficient but not necessary.
Another interesting example is w(x, β, γ) = (1 + 1{βT

2 x≤γ})
−1, reminiscent of a

piecewise heteroscedastic model.
Within the context of linear regression given by (19), the parametric mod-

elling of w0 has serious drawbacks. Since a linear form is already assumed for the
conditional mean, it is very restrictive, in addition, to parametrize the optimal
weight function. It is even unnecessary as Theorem 6 does not ask for any rate
of convergence estimating w0. Finally, the definition of w0, as a complicated
quotient of conditional expectations, makes difficult for the analyst the setting
of a plausible parametric family for w0.

4.3. Nonparametric estimation of the weights

In this subsection, we consider the bracketing metric entropy generated by non-
parametric Nadaraya-Watson estimators. The classical approach taken for local
polynomial estimators relies on the asymptotic smoothness of such estimators
(Ojeda, 2008; Portier and Segers, 2015). In the Nadaraya-Watson case, this
smoothness approach can not succeed for compactly supported design. Due
to the inconsistency of the Nadaraya-Watson estimator at boundary points,
smoothness of the estimator is not inherited from the smoothness of the tar-
geted function. Here, we handle the Nadaraya-Watson case by studying the bias
and the variance separately. More precisely, we write the numerator N̂(x) as

E∞[N̂(x)]+ Δ̂N (x). It turns out that the class drawn by x �→ E∞[N̂(x)], which
is not random, has a smaller bracketing metric entropy than the function class
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generated by x �→ Δ̂N (x), which is included, as n increases and under reasonable
conditions, in a smooth class of functions. The denominator is treated similarly.

For any differentiable function f : Q ⊂ Rq → R and any l = (l1, . . . , lq) ∈ Nq,

let f (l1,...,lq) abbreviates ∂|l|

∂x
l1
1 ...∂x

lq
q

f , where |l| =
∑q

j=1 lj . For k ∈ N, 0 < α ≤ 1

and M > 0, we say that f ∈ Ck+α,M (Q) if, for every |l| ≤ k, f (l) exists and is
bounded by M on Q and, for every |l| = k and every (x, x′) ∈ Q2, we have

|f (l)(x)− f (l)(x′)| ≤ M |x− x′|α.

We define the estimator by

ŵ(x) =
N̂(x)

D̂(x)
,

where

N̂(x) = n−1
n∑

i=1

g2,β̂(0)(Yi, Xi)Khn(x−Xi),

D̂(x) = n−1
n∑

i=1

g1,β̂(0)(Yi, Xi)Khn(x−Xi),

Kh(·) = h−qK(·/h) and (hn)n≥1 is a sequence of bandwidths that goes to 0 as
n goes to +∞. We require the following set of assumptions.

(c1) The first step estimator is consistent, i.e., β̂(0) P o
∞→ β0.

(c2) The density f of X is supported on a bounded convex set with nonempty
interior Q ⊂ R

q and there exists b > 0 such that infx∈Q D0(x) ≥ b > 0.
(c3) The map x �→ D0(x) is uniformly continuous on Q. There exist 0 < α2 ≤ 1,

M1 > 0 and B0 ⊂ R
q, an open ball centred at β0, such that for any x ∈ R

q,
the maps β �→ Nβ(x) and β �→ Dβ(x) belongs to Cα2,M1(B0). Moreover, the
classes {(x, y) �→ gk,β(y, x) : β ∈ B0}, k = 1, 2, are bounded measurable
V C classes (we use the same terminology as in Giné and Guillou (2002),
including the measurability requirements).

(c4) Let K : Rq → R be a bounded measurable function with compact support.
There exists h0 > 0 such that, for every x ∈ Q and 0 < h ≤ h0,∫

K(u)du = 1,

∫
{(Q−x)/h}

K(u)du ≥ c > 0.

Moreover, there exists k1 ∈ N such that for each |l| ≤ k1 + 1, the class{
K(l)

(
x− ·
h

)
: h > 0, x ∈ R

q

}
is a bounded measurable V C class.

(c5) There exists 0 < α1 ≤ 1 such that, as n → +∞,

hn → 0,
nh

q+2(k1+α1)
n

| log(hn)|
→ +∞.
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Let V(I) denote the set of all the functions that take their values in the set I.
Define

Fn = A1,n/A2,n,

where

A1,n = {Ck1+α1,M1(Q) + EN,n} ∩ V [−M2,M2],

A2,n = {Ck1+α1,M1(Q) + ED,n} ∩ V [cb/2,M2],

EN,n =

{
x �→

∫
Nβ(x− hnu)K(u)du : β ∈ B0

}
,

ED,n =

{
x �→

∫
Dβ(x− hnu)K(u)du : β ∈ B0

}
,

and M2 = 2M1

∫
|K(u)|du.

Theorem 7. If (c1) to (c5) hold, we have

P o
∞(ŵ ∈ Fn) → 1,

logN[ ](ε,Fn, ‖ · ‖∞) ≤ const.ε−q/(k1+α1), for any ε > 0,

where const. depends on q, Q, k1 + α1, M1, b and K.

Proof. By (c1), we have that β̂(0) ∈ B0 with probability going to 1. Let

Δ̂N (x) = N̂(x)− E∞N̂(x),

Δ̂D(x) = D̂(x)− E∞D̂(x).

We consider the following three steps.

(i) P o
∞(Δ̂N ∈ Ck1+α1,M1(Q)) → 1 and P o

∞(Δ̂D ∈ Ck1+α1,M1(Q)) → 1,

(ii) P o
∞(N̂ ∈ A1,n) → 1 and P o

∞(D̂ ∈ A2,n) → 1 (note that this is the first
claim of the theorem).

(iii) Compute the bound on the bracketing numbers of Fn.

Proof of (i). We make the proof for Δ̂N since the treatment of Δ̂D is similar.
Given l = (l1, . . . , lq) such that |l| ≤ k1 + 1, we have,

∂(l)E∞[N̂(x)] = h−(q+|l|)
n E[g1,β̂(0)(Y,X)K(l)(h−1

n (x−X))].

Hence

Δ̂
(l)
N (x) =

1

nh
q+|l|
n

×

n∑
i=1

{
g1,β̂(0)(Yi, Xi)K

(l)(h−1
n (x−Xi))− E[g1,β̂(0)(Y,X)K(l)(h−1

n (x−X))]
}
,
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and, by (c3) and (c4), we can apply Lemma 8, stated in the Appendix, to get
that

sup
x∈Q

|Δ̂(l)
N (x)| = OP∞

(√
| log(hn)|
nh

q+2|l|
n

)
. (21)

Then, for 1 ≤ |l| ≤ k1, we know that Δ̂
(l)
N goes to 0 uniformly over Q, making

the derivatives of Δ̂N (with order smaller than or equal to k1), bounded by M1

with probability going to 1. Now we consider the Hölder property for Δ̂
(l)
N when

|l| = k1. For any |x− x′| ≤ hn, by the mean value theorem, we have that

|(Δ̂(l)
N (x)− Δ̂

(l)
N (x′))(x− x′)−α1 | ≤ |x− x′|1−α1 sup

z∈Q
|∇zΔ̂

(l)
N (z)|

≤ h1−α1
n sup

z∈Q
|∇zΔ̂

(l)
N (z)|,

which is, in virtue of (21), equal to a OP∞

(√
| log(hn)|

nh
q+2(k1+α1)
n

)
= oP (1). For any

|x− x′| > h, we have

|(Δ̂(l)
N (x)− Δ̂

(l)
N (x′))(x− x′)−α1 | ≤ 2h−α1

n sup
z∈Q

|Δ̂(l)
N (z)|,

which has the same order as the previous term. As a consequence, for |l| = k1,
we have shown that

sup
x 
=x′

|(Δ̂(l)
N (x)− Δ̂

(l)
N (x′))(x− x′)−α1 | = oP∞(1),

implying that Δ̂
(l)
N is α1-Holder (with constant M1) with probability going to 1.

Proof of (ii). For the first statement, using (i), it suffices to show that N̂ lies in
V [−M2,M2] with probability going to 1. Lemma 8 and condition (c3) yield

|N̂(x)| ≤ |E∞N̂(x)|+ sup
x∈Q

|Δ̂N (x)|

= |
∫

Nβ̂(0)(x− hnu)K(u)du|+ op(1)

≤ M1

∫
|K(u)|du+ op(1)

≤ 2M1

∫
|K(u)|du, with probability going to 1.

For the second statement, it suffices to show that D̂ lies in V [cb/2,M2] with
probability going to 1. To obtain the upper bound for this class, we mimic what
has been done above to treat N̂ . To obtain the lower bound, first write

E∞[D̂(x)]− (D0 ∗Khn)(x) =

∫
(Dβ̂(0)(x− hnu)−Dβ0(x− hnu))K(u)du,
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by condition (c3), it goes to 0, uniformly over x ∈ Q, in probability, . This yields

D̂(x) = (D0 ∗Khn)(x) + E∞[D̂(x)]− (D0 ∗Khn)(x) + Δ̂D(x)

≥ (D0 ∗Khn)(x)− sup
x∈Q

|E∞[D̂(x)]− (D0 ∗Khn)(x)| − sup
x∈Q

|Δ̂D(x)|

= (D0 ∗Khn)(x)− oP∞(1).

Define b(x, h) = infy∈Q, |y−x|≤hA D0(y) and M(x, h) = supy∈Q, |y−x|≤hA D0(y)
where A is such that, for every u ∈ R

q, K(u)I{|u|>A} = 0 (A is finite be-
cause K is compactly supported). Note that, by the uniform continuity of D0,
supx∈Q |M(x, h)− b(x, h)| → 0 as h → 0, it follows that

(D0 ∗Khn)(x)

=

∫
D0(x+ hnu)K(u)du

≥ b(x, hn)

∫
I{x+hnu∈Q}{K(u)}+du+M(x, hn)

∫
I{x+hnu∈Q}{K(u)}−du

= b(x, hn)

∫
I{x+hnu∈Q}K(u)du

+ (M(x, hn)− b(x, hn))

∫
I{x+hnu∈Q}{K(u)}−du

≥ b(x, hn)

∫
I{x+hnu∈Q}K(u)du− o(1)

≥ b

∫
{(Q−x)/hn}

K(u)du− o(1),

which is greater than cb/2 > 0, whenever n is large enough, by (c4).
Proof of (iii). We now bound the (ε, ‖ · ‖∞)-bracketing number of Fn. First,
Corollary 2.7.2, page 157, in van der Vaart and Wellner (1996) states that, for
every ε > 0,

logN[ ](ε, Ck1+α1,M1(Q), ‖ · ‖∞) ≤ const.ε−q/(k1+α1),

where const. depends only on q, Q, k1 + α1 and M1. Second, by assumption
(c3),

|
∫

(Nβ(x− hnu)−Nβ′(x− hnu))K(u)du| ≤ |β − β′|α2M1

∫
|K(u)|du,

|
∫

(Dβ(x− hnu)−Dβ′(x− hnu))K(u)du| ≤ |β − β′|α2M1

∫
|K(u)|du.

This makes the classes EN,n and ED,n being α2-Hölder in the index parameter.
Hence, from Theorem 2.7.11 in van der Vaart andWellner (1996), their (ε, ‖·‖∞)-
bracketing numbers are smaller than the (ε, | · |)-covering number of B0 (up to
some multiplicative constant in the ε). It is also smaller than the (ε, ‖ · ‖∞)-
bracketing numbers of Ck1+α1,M1(Q), given previously. Therefore, since the class
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A1,n (resp. A2,n) coincides with the set Ck1+α1,M1(Q) plus EN,n (resp. ED,n),
we conclude that, for every ε > 0,

logN[ ](ε,Aj,n, ‖ · ‖∞) ≤ const.ε−q/(k1+α1),

for j = 1, 2, where const. depends only on q, Q, k1 + α1, M1 and K. Now we
show that the previous bound is still valid for the class Fn = A1,n/A2,n. Let
[N1, N1], . . . , [Nn1

, Nn1 ] (resp. [D1, D1], . . . , [Dn2
, Dn2 ]) be (ε, ‖ · ‖∞)-brackets

that coverA1,n (resp.A2,n). By takingD1∨b, . . . , Dn2
∨b in place ofD1, . . . , Dn2

,
we can assume that the elements of the brackets of A2,n are larger than or equal
to b. By a similar argument, every brackets of A1,n are bounded by M2. Hence,
for any N ∈ A1,n and D ∈ A2,n, there exists 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, such
that

N i

Dj

≤ N

D
≤ N i

Dj

,∥∥∥∥N i

Dj

− N i

Dj

∥∥∥∥
∞

≤ const.ε,

where const. is a constant that depends only on b and M2. As a consequence
we have exhibited a (const.ε, ‖ · ‖∞)-bracketing with n1n2 elements, yielding to
the statement of the theorem.

Remark 10. On the one hand, no strong assumptions are imposed on the reg-
ularity of the targeted functions x �→ N0(x) and x �→ D0(x). Actually, we only
require the uniform continuity of x �→ D0(x) to hold. The reason is that we do

not use the consistency of N̂(x) (resp. D̂(x)) estimating N0(x) (resp. D0(x)).
On the other hand, the kernel needs to be many times differentiable. Hence,
our approach consists of approximating a function, non necessarily regular, by a
smooth function. In this way, we control the bracketing metric entropy generated
by the class of estimated functions. In light of Theorem 7, assumption (b4’)(ii) is
satisfied when k1+α1 > q/2 and when the bandwidth sequence hn → 0 such that

nh
q+2(k1+α1)
n /| log(hn)| → +∞. Provided the kernel function is smooth enough,

one can put k1+α1 = q/2+ δ/4, for some δ > 0. Then, it suffices to choose the
bandwidth such that nh2q+δ

n → +∞.

Remark 11. Another way to proceed is to consider the classes

EN =

{
x �→

∫
Nβ(x− hu)K(u)du : β ∈ B0, h > 0

}
,

ED =

{
x �→

∫
Dβ(x− hu)K(u)du : β ∈ B0, h > 0

}
,

in place of EN,n and ED,n. These classes are larger but they no longer depend
on n. To calculate the bracketing entropy of the spaces EN and ED, one might
consider the Lr(P )-metric rather than the uniform metric because the latter
would involve some difficulties at the boundary points.
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Remark 12. Examples of kernels that satisfy (c4) are given in Nolan and Pol-
lard (1987), Lemma 22, see also Giné and Guillou (2002). An interesting fact

is that {K̃ ((x− ·)/h) : h > 0, x ∈ R} is a uniformly bounded V C class of func-

tions, when K̃ has bounded variation. The assumption that
∫
{(Q−x)/h} K(u)du ≥

c > 0, for h0 ≥ h > 0, holds true if Q is a smooth surface, i.e., when the dis-
tance between x ∈ R

q and mathcalQ is a differentiable function of x. Note also
that in the one-dimensional case, it is always verified. Moreover, this condition
permits to include the case of non-smooth surfaces such as cubes.

4.4. Semiparametric estimation of the weights

The nonparametric approach involves a smoothing in the space R
q. It is well

known that the smaller the dimension q, the better the estimation. Although it
does not affect the asymptotic variance of β̂(ŵ) (no specific rate of convergence
of ŵ to w0 is required in (b5)(ii)), it certainly influences the small sample size
performances of the estimators.

There exist different ways to introduce a semiparametric procedure to esti-
mate w0. In the following, we rely on the single index approach. In our initial
regression model (19), the conditional mean of Y givenX depends only on βT

02X.
Given this, it is slightly stronger to ask that the conditional law of Y given X
is equal to the conditional law of Y given βT

02X, in other words, that

Y ⊥⊥ X|βT
02X, (22)

or equivalently that,

E(g(Y )|X) = E(g(Y )|βT
02X),

for every bounded measurable function g. Such an assumption has been intro-
duced in Li (1991) to estimate the law of Y given X. Here (22) is introduced
in a different spirit: since a linear regression model has already been imposed
in (19), condition (22) appears as an additional mild requirement, that serves
only the estimation of w0. The calculation of semiparametric estimators of w0

is done by using similar tools as in the previous section. In order to fully benefit
from condition (22), we realize the smoothing in a low-dimensional subspace of
R

q. We define the estimator of w0 by

ŵ(x) =
N̂β̂(0)(β̂

(0)T
2 x)

D̂β̂(0)(β̂
(0)T
2 x)

,

where, for every t ∈ R,

N̂β(t) = n−1
n∑

i=1

g2,β(Yi, Xi)Lhn(t− βT
2 Xi),

D̂β(t) = n−1
n∑

i=1

g1,β(Yi, Xi)Lhn(t− βT
2 Xi),
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with Lh(·) = h−1L(·/h). The proofs are more involved than in the nonparamet-

ric case notably because of the randomness of the space generated by β̂
(0)
2 on

which the smoothing is realized.

5. Simulations

The asymptotic analysis conducted in the previous sections demonstrates that,
in weighted linear regression, the estimation of w0 does not matter provided its
consistency, e.g., ŵ1 and ŵ2 might converge to w0 with different rates, whereas
β̂(ŵ1) and β̂(ŵ2) are asymptotically equivalent. Nevertheless when the sample
size is not very large, differences might arise between the procedures. In the next
we consider the three approaches investigated in the previous section, namely,
parametric, nonparametric and semiparametric. Each of these procedures results
in different rates of convergence of ŵ to w0. Here the purpose is two folds. First
to provide a clear picture of the small sample size performances of each method.
Second, to analyse, from a practical point of view, the relaxation of the regularity
conditions on w0.

In what follows, we consider the following heteroscedastic linear regression
model. Let (X,Y ), (Xi, Yi)i=1,...,n be independently and identically distributed
random variables. Suppose that

Y = β01 + βT
02X + σ0(X)ε,

where (X, ε) ∈ R
q+1 has a standard normal distribution and (β01, β02) =

(1, . . . , 1)/
√
q + 1. The weighted least square estimator is given by

β̂(w) = Σ̂(w)−1γ̂(w), (23)

with Σ̂(w) = n−1
∑n

i=1 X̃iX̃
T
i w(Xi), γ̂(w) = n−1

∑n
i=1 X̃iYiw(Xi) and X̃T

i =

(1, XT
i ), for i = 1, . . . , n. Let β̂(0) = (β̂

(0)
1 , β̂

(0)
2 ), with β̂

(0)
1 ∈ R and β̂

(0)
2 ∈ R

q,
denote the coordinates of the first-step estimator with constant weights. For
different sample sizes n and also several dimensions q, we consider two functions
for σ0: a smooth function and a not continuous function, respectively given by,
for every x ∈ R

q,

σ01(x) =
βT
02x

|β02|
and σ02(x) =

1

2
+ 2 · 1{βT

02x>0}.

In each case, k = 1, 2, the optimal weight function w0 = 1/σ2
0k is estimated by

these methods:

(i) Parametric: ŵk is computed using β̂(0) in place of β0 in the formula of w0k,
(ii) Nonparametric: Nadaraya-Watson procedure, ŵk is given by∑n

i=1 Khn(Xi − x)∑n
i=1(Yi − β̂

(0)
1 − β̂

(0)T
2 Xi)2Khn(Xi − x)

,
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(iii) Semiparametric: Nadaraya-Watson procedure in a reduced sample-based
space, ŵk is given by ∑n

i=1 Khn(Â(Xi − x))∑n
i=1(Yi − β̂

(0)
1 − β̂

(0)T
2 Xi)2Khn(Â(Xi − x))

,

where Â = P̂
(0)
2 + εI and P̂

(0)
2 denotes the orthogonal projector onto the

linear space generated by β̂
(0)
2 .

For (ii) and (iii), the kernel K is the Epanechnikov kernel given by K(u) =
cq(1 − |u|2)+, where cq is such that

∫
K(u)du = 1. For k = 1, 2, ŵk is initially

computed according to one of the method (i), (ii) or (iii), then the final estimator

of β0 is computed with β̂(ŵk) given by (23).
In practice, we find that choosing the bandwidth hn by cross validation is

reasonable. More precisely, considering the estimation of σ2
0(x) by σ̂2(x), it is

defined by

hn,cv = argminh>0

n∑
i=1

((Yi − β̂
(0)
1 − β̂

(0)T
2 Xi)

2 − σ̂2(−i)(Xi))
2,

where σ̂2(−i)(x) is either the leave-one-out nonparametric estimator of σ2
0(x)

given by (ii) or the leave-one-out semiparametric estimator of σ2
0(x) given by

(iii). Such a data-driven algorithm for hn has the advantage to select automat-
ically the bandwidth without regard for the underlying dimension of the semi-
and nonparametric estimators. In every examples, the semiparametric hn,cv was
smaller than the nonparametric hn,cv.

For the semiparametric method, the matrix Â denotes the orthogonal projec-
tor onto the space generated by β̂0 perturbed by ε in the diagonal. This permits
not to have a blind confidence in the first-step estimator β̂0 accounting for vari-
ations of w0 in the other directions. Hence ε is reasonably selected if εI has the

same order as the error P̂
(0)
2 −P

(0)
2 , where P

(0)
2 is the orthogonal projector onto

the linear space generated by β
(0)
2 . We have

|P̂ (0)
2 − P

(0)
2 |2F = 2trace((I − P

(0)
2 )P̂

(0)
2 ) =

2|(I − P
(0)
2 )β̂

(0)
2 |2

|β̂(0)
2 |2

.

The numerator is approximated by an estimator of the average value of its
asymptotic law in the case where ε ⊥⊥ X. It gives 2σ̂2n−1/2

∑q
k=1 λ̂

2
k where λ̂k

are the eigenvalues associated to the matrix (I − P̂
(0)
2 )Σ̂−1

2 (I − P̂
(0)
2 ), σ̂2 =

n−1
∑n

i=1(Yi − β̂0 − β̂T
0 Xi)

2 and Σ−1
2 denotes the q × q lower triangular block

of the inverse of n−1
∑n

i=1 X̃iX̃
T
i . As a consequence, ε is given by

ε =

√
2σ̂2

∑q
k=1 λ̂

2
k

nq|β̂|2
,

where
√
q appears as a normalizing constant.
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Fig 1. Each boxplot is based on 500 estimates of |β̂−β0|2 when q = 4 and σ0(x) =
βT
02x

|β02| . The

parametric, nonparametric (np) and semiparametric (sp) approaches are respectively based
on (i), (ii) and (iii).

Fig 2. Each boxplot is based on 500 estimates of |β̂−β0|2 when q = 16 and σ0(x) =
βT
02x

|β02| . The

parametric, nonparametric (np) and semiparametric (sp) approaches are respectively based
on (i), (ii) and (iii).

Figures 1 to 4 provide boxplots associated to the estimation error of each
method, parametric (i), nonparametric (ii), and semiparamteric (iii), according
to different values of n = 50, 100, 500, q = 4, 16 and σ0 = σ01, σ02. We also
consider the first-step estimator β̂(0) and a “reference estimator” computed with
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Fig 3. Each boxplot is based on 500 estimates of |β̂ − β0|2 when q = 4 and σ0(x) = 1
2
+

2 · 1{βT
02x>0}. The parametric, nonparametric (np) and semiparametric (sp) approaches are

respectively based on (i), (ii) and (iii).

Fig 4. Each boxplot is based on 500 estimates of |β̂ − β0|2 when q = 16 and σ0(x) = 1
2
+

2 · 1{βT
02x>0}. The parametric, nonparametric (np) and semiparametric (sp) approaches are

respectively based on (i), (ii) and (iii).

the unknown optimal weights, i.e., β̂(w0). In every case, the accuracy of each
method lies between the first step estimator and the reference estimator. In
agreement with Theorems 6 and 7, the gap between the reference estimator and
the method (i), (ii), (iii) diminishes as n increases. Each method (i), (ii), (iii),
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performs differently showing that their equivalence occurs only at very large
sample size.

Among the three methods under evaluation (i), (ii), (iii), the clear winner
is the semiparametric method (with selection of the bandwidth by cross vali-
dation). The fact that it over-rules the nonparametric estimator was somewhat
predictable, but the difference in accuracy with the parametric method is sur-
prising. In every situation, the variance and the mean of the error associated to
the semiparametric approach are smaller than the variance and the mean of the
others. Moreover, the nonparametric method performs as well as the parametric
method even when the dimension is large. In fact, both approaches are similarly
affected by the increase of the dimension. Finally, one sees that the choice of
the bandwidth by cross validation works well for both methods nonparametric
and semiparametric. In all cases, the estimator with hn,cv performs similarly to
the estimator with the optimal value of hn.

Appendix: Concentration rates for kernel regression estimators

The following result follows from the formulation of the Talagrand inequality
(Talagrand, 1994) given in Theorem 2.1 in Giné and Guillou (2002).

Lemma 8. Let (Y ∈ R, X ∈ Rq), (Y1, X1), (Y2, X2), . . . denote a sequence of
random variables independently and identically distributed such that X has a
bounded density f . Let K̃ : Rq → R be a bounded square integrable measurable
function and Ψ be a class of real-valued measurable functions defined on R

q+1.
If both classes Ψ and {K̃ ((x− ·)/h) : x ∈ R

q, h > 0} are bounded measurable
V C classes, then, for any sequence hn → 0 such that nhq

n/| log(hn)| → +∞, we
have, as n → +∞,

sup
ψ∈Ψ, x∈Rq

∣∣∣∣∣ 1n
n∑

i=1

{
ψ(Yi, Xi)K̃hn(x−Xi)− E[ψ(Y,X)K̃hn(x−X)]

}∣∣∣∣∣
= OP∞

⎛⎝√ | log(hn)|
nhq

n

⎞⎠ ,

where Kh(·) = K(·/h)/hq.

Proof. The empirical process to consider is indexed by the product class Ψ ×
{K̃((x− ·)/hn), x ∈ R

q}, which is uniformly bounded V C since the product
of two uniformly bounded V C classes remains uniformly bounded V C. The
variance satisfies

var(ψ(Y,X)K̃(h−1
n (x−X)) ≤ E

(
ψ(Y,X)2K̃(h−1

n (x−X))2
)

≤ ‖ψ‖2∞‖f‖∞hq
n

∫
K̃(u)2du,

and a uniform bound is given by ‖ψK̃‖∞ ≤ supψ∈Ψ ‖ψ‖∞‖K̃‖∞. The applica-
tion of Theorem 2.1 in Giné and Guillou (2002) gives the specified bound.
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