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Abstract: The data augmentation (DA) algorithm is considered a useful
Markov chain Monte Carlo algorithm that sometimes suffers from slow con-
vergence. It is often possible to convert a DA algorithm into a sandwich
algorithm that is computationally equivalent to the DA algorithm, but con-
verges much faster. Theoretically, the reversible Markov chain that drives
the sandwich algorithm is at least as good as the corresponding DA chain
in terms of performance in the central limit theorem and in the operator
norm sense. In this paper, we use the sandwich machinery to compare two
DA algorithms. In particular, we provide conditions under which one DA
chain can be represented as a sandwich version of the other. Our results are
used to extend Hobert and Marchev’s (2008) results on the Haar PX-DA
algorithm and to improve the collapsing theorem of Liu et al. (1994) and
Liu (1994). We also illustrate our results using Brownlee’s (1965) stack loss
data.
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1. Introduction

Suppose fX is an intractable density on X that we would like to explore. Consider
a data augmentation (DA) algorithm (Tanner and Wong, 1987) based on the
joint density f(x, y) on X × Y, which must satisfy

∫
Y
f(x, y) dy = fX(x). The

Markov chain, Φ = {Φm}∞m=0, underlying the DA algorithm has the Markov
transition density (Mtd) given by

k(x′ |x) =
∫
Y

fX|Y (x
′ | y) fY |X(y |x) dy .

In other words, k(· |x) is the density of Φm+1, given that Φm = x. It is well-
known and easy to see that the Markov chain driven by the DA algorithm is
reversible with respect to fX , and this of course implies that fX is an invariant
density. We assume throughout this section that all Markov chains on X are
Harris ergodic (see Section 2 for definition). The DA chain can be simulated
by drawing alternately from the two conditional densities defined by f(x, y).
If the current state is Φm = x, then Φm+1 is simulated in two steps: draw
Y ∼ fY |X(· |x), call the result y, and then draw Φm+1 ∼ fX|Y (· | y).

The DA algorithm is considered a useful algorithm that sometimes suffers
from slow convergence. It is often possible to convert a DA algorithm into a
sandwich algorithm that is computationally equivalent to the DA algorithm,
but converges much faster (see Khare and Hobert (2011), and the references
therein). Let fY denote the y-marginal density of f(x, y). The Mtd of the sand-
wich algorithm is given by

kQ(x
′ |x) =

∫
Y

∫
Y

fX|Y (x
′ | y′)Q(y, dy′) fY |X(y |x) dy ,

where Q(y, dy′) is a Markov transition function (Mtf) on Y that is reversible
with respect to fY . It is easy to see that kQ(x |x′) fX(x′) is symmetric in (x, x′),

so the Markov chain, Φ̃ = {Φ̃m}∞m=0, underlying the sandwich algorithm is
reversible with respect to fX . If the current state of the sandwich chain is
Φ̃m = x, then Φ̃m+1 can be simulated as follows. Draw Y ∼ fY |X(· |x), call the
observed value y, then draw Y ′ ∼ Q(y, ·), call the result y′, and finally draw
Φ̃m+1 ∼ fX|Y (· | y′). The first and third steps are exactly the two steps used
to simulate the DA algorithm, and the name “sandwich algorithm”, which was
coined by Yu and Meng (2011), is based on the fact that the extra draw from
Q(y, ·) is sandwiched between the draws from the two conditional densities.
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It is known that the sandwich chain always converges at least as fast as the
DA chain in the operator norm sense. Indeed, Hobert and Román (2011) show
that Yu and Meng’s (2011) Theorem 1 can be used to establish that

‖KQ‖ ≤ ‖Q‖‖K‖ ,

where K,KQ and Q denote the usual Markov operators defined by k, kQ and
Q(y, dy′), respectively, and ‖ ·‖ denotes the operator norm. (The operator norm
will be formally defined in Section 2, but for now it suffices to note that the
norm is between 0 and 1, and smaller is better.) Moreover, it follows from
Hobert and Marchev’s (2008) Corollary 1 that kQ is at least as good as k in
the efficiency ordering of Mira and Geyer (1999), which concerns performance
in the central limit theorem (CLT).

While the sandwich machinery was designed to improve a given DA algo-
rithm, it can also be used to compare two DA chains. In particular, suppose
that, in addition to the DA algorithm based on f(x, y), we have a second DA al-
gorithm based on another joint density f̃(x, y) on X×Y such that its x-marginal
density is fX . Suppose also that we have

k̃(x′ |x) =
∫
Y

f̃X|Y (x
′ | y) f̃Y |X(y |x) dy

=

∫
Y

∫
Y

fX|Y (x
′ | y′)Q(y, dy′) fY |X(y |x) dy , (1.1)

where f̃X|Y and f̃Y |X are conditional densities associated with f̃(x, y) and Q
is a Mtf on Y that is reversible with respect to fY . Then the results described
above imply that k̃ is at least as good as k in the efficiency ordering and in the
operator norm sense. The main result of this paper provides conditions under
which k̃ admits this sandwich representation (1.1). We now provide an overview
of our main result in the special case where X and Y are Euclidean spaces, and
f(x, y) and f̃(x, y) are densities with respect to Lebesgue measure.

Let f̃Y denote the y-marginal density of f̃(x, y). Suppose that there exits a
Mtf R on Y satisfying

f̃X|Y (x | y) =
∫
Y

fX|Y (x | y′)R(y, dy′)

and ∫
y∈Y

R(y, dy′) f̃Y (y) dy = fY (y
′) dy′ .

Then (1.1) holds with Q equal to the Mtf corresponding to the DA algorithm
for fY based on the joint distribution on Y × Y given by R(y, dy′) f̃Y (y) dy.

We now illustrate the use of our results with several applications. Our main
application involves generalizing the results of Hobert and Marchev (2008) (here-
after, H&M), who themselves generalized results of Liu and Wu (1999) (here-
after, L&W). L&W developed the PX-DA algorithm. The basic idea is to use
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f(x, y) to create an entire family of joint densities on X × Y such that the x-
marginal density of each member is fX . This allows for the construction of a class
of viable DA algorithms. To be specific, consider a class of functions tg : Y → Y
for g ∈ G such that, for each fixed g, tg(y) is one-to-one and differentiable in y.
We are assuming here that G is a group with identity element e. Assume further
that (a) te(y) = y for all y ∈ Y and (b) tg1g2(y) = tg1(tg2(y)) for g1, g2 ∈ G
and all y ∈ Y. Suppose that ν : G × X → [0,∞) is a conditional probability
density with respect to (unimodular) Haar measure � (see Section 3 for defini-
tion). Now, define a probability density f̃ (ν)(x, y, g) = f(x, tg(y)) |Jg(y)| ν(g |x)
on X×Y×G, where Jg(z) is the Jacobian of the transformation z = t−1

g (y). Let

f̃ (ν)(x, y) =

∫
G

f̃ (ν)(x, y, g) �(dg) .

Clearly, the x-marginal of f̃ (ν)(x, y) is the target, fX . Thus, each conditional
density ν(g |x) leads to a new DA algorithm. L&W also propose the Haar PX-
DA algorithm, which is a popular sandwich algorithm where Q(y, dy′) corre-
sponds to the move y → y′ = tg(y) with g (on G) drawn from the density (with
respect to �) proportional to fY (tg(y)) |Jg(y)|.

L&W establish that the Haar PX-DA algorithm is at least as good in the
operator norm sense as every PX-DA algorithm in the special case where X,Y
and G are Euclidean spaces and the group G is unimodular. H&M provide
extensions and generalizations of L&W’s results in the special case where ν(· |x)
does not depend on x. In particular, H&M show that L&W’s results hold on
more general spaces, and that Haar PX-DA is also at least as good as PX-DA
in the efficiency ordering. Moreover, H&M are able to remove a key regularity
condition that is required by L&W. In our main application, we show that all
of H&M’s results continue to hold in the more general case where ν(· |x) does
depend on x.

We also apply our results to improve the collapsing theorem (Liu et al., 1994;
Liu, 1994). To be specific, suppose there exists a joint density f(x, y, z) on X×Y×
Z such that

∫
Z
f(x, y, z) dz = f(x, y). Liu et al. (1994) refer to the DA algorithm

which iterates between drawing fY,Z|X and drawing fX|Y,Z as “grouping” and
the DA algorithm based on f(x, y) as “collapsing”. The collapsing theorem
implies that collapsing DA converges at least as fast as grouping DA in the
operator norm sense. We show that the collapsing DA chain is also at least as
good as the grouping DA chain in the efficiency ordering.

The remainder of this paper is organized as follows. Section 2 contains some
results from general state space Markov chain theory, our main result, and a
toy example. In Section 3, we apply the main result to extend H&M’s results on
the Haar PX-DA. We also illustrate our results using a PX-DA algorithm and
Choi and Hobert’s (2013) Haar PX-DA algorithm for Bayesian linear regression
with Laplace errors. Finally, our main result is used to improve the collapsing
theorem in Section 4.
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2. A comparison theorem

2.1. Markov chain background

Let P (x, dx′) be a Mtf on a topological space X equipped with its Borel σ-algebra
BX. Suppose P (x, dx′) is reversible with respect to a probability measure π.
Denote the Markov chain defined by P (x, dx′) as Φ = {Φm}∞m=0. Assume that
Φ is Harris ergodic (i.e., irreducible, aperiodic, and positive Harris recurrent).
As usual, let L2(π) be the vector space of real-valued, measurable functions on
X that are square-integrable with respect to π, and let L2

0(π) be the subspace
of mean-zero functions. This is a Hilbert space in which inner product of g, h ∈
L2
0(π) is defined as

〈g, h〉 =
∫
X

g(x)h(x)π(dx) ,

and the corresponding norm is, of course, given by ‖g‖ = 〈g, g〉1/2. The Mtf
P (x, dx′) defines an operator P on L2

0(π) that maps g ∈ L2
0(π) to

(Pg)(x) =

∫
X

g(x′)P (x, dx′) = E
[
g(Φm+1)

∣∣Φm = x
]
.

It is easy to see, using reversibility, that P is self-adjoint; that is, for all g, h ∈
L2
0(π), 〈Pg, h〉 = 〈g, Ph〉. The operator norm of P is defined as

‖P‖ = sup
{g∈L2

0(π):‖g‖=1}
‖Pg‖ .

A simple application of Jensen’s inequality shows that ‖P‖ ∈ [0, 1]. In fact,
‖P‖ provides a great deal of information about the convergence behavior of the
corresponding Markov chain Φ. For instance, Φ is geometrically ergodic if and
only if ‖P‖ < 1 (Roberts and Rosenthal, 1997). Moreover, results in Liu et al.
(1995) show that the smaller the norm, the faster the chain converges.

Assume that Markov chain Monte Carlo will be used to estimate the finite,
intractable expectation Eπg =

∫
X
g(x)π(dx). Assume further that there exists

a CLT for the ergodic average ḡm = 1
m

∑m−1
i=0 g(Φi); that is, there exists σ2

g ∈
(0,∞) such that, as m → ∞,

√
m(ḡm − Eπg) → N(0, σ2

g) in distribution. (If
there is no CLT, then we simply write σ2

g = ∞.) Suppose we have two Harris
ergodic Mtfs P and Q that have π as an invariant probability measure. Denote
σ2
g for the two Mtfs by σ2

g(P ) and σ2
g(Q). We say P is at least as good as Q in

the efficiency ordering, written P �E Q, if σ2
g(P ) ≤ σ2

g(Q) for every g ∈ L2(π)
(Mira and Geyer, 1999).

2.2. The main result

Let X and Y be separable metric spaces equipped with their Borel σ-algebras.
We will refer to such a space Y as a sub-Cauchy space if there exists a complete
separable metric space Ȳ such that Y is a Borel subset of Ȳ. We assume that Y



Comparison theorem for data augmentation algorithms 313

is sub-Cauchy. This is a weak assumption. For example, with Euclidean metric,
if Y = R

d, then Ȳ = R
d, and if Y = (0,∞)d, then Ȳ = [0,∞)d. Assume further

that μX and μY are σ-finite measures on X and Y, and that f(x, y) and f̃(x, y)
are two different probability densities on X × Y with respect to μX × μY such
that ∫

Y

f(x, y)μY (dy) =

∫
Y

f̃(x, y)μY (dy) = fX(x) .

In this context, the Mtd of the DA chain based on the joint density f(x, y) is

k(x |x′) =

∫
Y

fX|Y (x | y) fY |X(y |x′)μY (dy) ,

where fX|Y and fY |X are the conditional densities associated with f(x, y). Anal-

ogously, let k̃ be the Mtd of the DA chain for fX based on the joint density
f̃(x, y). As usual, let fY denote the y-marginal density of f(x, y), and let f̃Y and
f̃X|Y be the marginal and conditional densities defined by f̃(x, y). The following
result allows us to compare the two DA chains.

Theorem 2.1. Let K and K̃ denote the operators defined by k and k̃. Assume
that the Markov chains driven by k and k̃ are Harris ergodic. If there exists a
Mtf R on Y satisfying

f̃X|Y (x | y) =
∫
Y

fX|Y (x | y′)R(y, dy′) ,

and ∫
y∈Y

R(y, dy′) f̃Y (y)μY (dy) = fY (y
′)μY (dy

′) ,

then ‖K̃‖ ≤ γ2‖K‖ and k̃ �E k, where γ is the maximal correlation of the pair
(Y, Y ′) whose joint distribution is R(y, dy′) f̃Y (y)μY (dy).

Proof. Our assumptions about the space Y imply that every probability mea-
sure on Y is tight (see Parthasarathy, 1967, Theorem 3.2). It then follows from
Theorem 6 of Faden (1985) and Theorem 2.4.1 of Ramachandran (1979) that
there exists a Mtf R∗ on Y such that, for all y, y′′ ∈ Y,

R∗(y, dy′′) fY (y)μY (dy) = R(y′′, dy) f̃Y (y
′′)μY (dy

′′) . (2.1)

We now show that k̃ can be written as

k̃(x |x′) =

∫
Y

f̃X|Y (x | y) f̃Y |X(y |x′)μY (dy)

=

∫
Y

∫
Y

fX|Y (x | y′)Q(y, dy′) fY |X(y |x′)μY (dy) ,

where

Q(y, dy′) =

∫
y′′∈Y

R(y′′, dy′)R∗(y, dy′′) . (2.2)
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Indeed,

k̃(x |x′) =

∫
Y

f̃X|Y (x | y′′) f̃Y |X(y′′|x′)μY (dy
′′)

=

∫
Y

[∫
Y

fX|Y (x | y′)R(y′′, dy′)

]

×
[
f̃Y (y

′′)

fX(x′)

∫
Y

fX|Y (x
′| y)R(y′′, dy)

]
μY (dy

′′)

=

∫
Y

[∫
Y

[∫
Y
fX|Y (x | y′)R(y′′, dy′)

]
fY |X(y |x′)

fY (y)
R(y′′, dy)

]

× f̃Y (y
′′)μY (dy

′′)

=

∫
Y

∫
Y

fX|Y (x | y′)
[∫

y′′∈Y

R(y′′, dy′)R∗(y, dy′′)

]
fY |X(y |x′)μY (dy)

=

∫
Y

∫
Y

fX|Y (x | y′)Q(y, dy′) fY |X(y |x′)μY (dy) ,

where the penultimate equality follows from (2.1). Here, the Mtf Q(y, dy′) is
reversible with respect to fY since (2.2) indicates that the Markov chain defined
by Q(y, dy′) is a DA for fY based on the joint distribution (2.1). An application
of Hobert and Marchev’s (2008) Corollary 1 implies k̃ �E k. Moreover, it follows
from Hobert and Román (2011) that ‖K̃‖ ≤ ‖Q‖‖K‖, where Q is the operator
on L2

0(fY ) corresponding toQ(y, dy′). By Liu et al.’s (1994) Theorem 3.2, ‖Q‖ =
γ2. The proof is complete.

Remark 2.1. We note that, under the conditions in Theorem 2.1, k̃ is actually
the Mtd of a GIS algorithm based on f, f̃ and R∗ (see Yu and Meng, 2011;
Hobert and Román, 2011). Indeed, by (2.1), we have

k̃(x |x′) =

∫
Y

f̃X|Y (x | y′′) f̃Y |X(y′′|x′)μY (dy
′′)

=

∫
Y

∫
Y

f̃X|Y (x | y′′)
fX|Y (x

′| y)
fX(x′)

R(y′′, dy) f̃Y (y
′′)μY (dy

′′)

=

∫
Y

∫
Y

f̃X|Y (x | y′′)
fX|Y (x

′| y)
fX(x′)

R∗(y, dy′′) fY (y)μY (dy)

=

∫
Y

∫
Y

f̃X|Y (x | y′′)R∗(y, dy′′)fY |X(y |x′)μY (dy) .

Another application of (2.1) reveals that∫
y∈Y

R∗(y, dy′) fY (y)μY (dy) = f̃Y (y
′)μY (dy

′)

∫
Y

R(y′, dy) = f̃Y (y
′)μY (dy

′) .

This GIS representation suggests that, if we inappropriately design a GIS algo-
rithm, then we could end up with one of the original DA algorithms.
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Remark 2.2. When comparing DA algorithms, computing time and simulation
efforts should be taken into account in addition to the efficiency and speed of
convergence, but we will not get into that here.

2.3. A toy example

Consider the following well-known toy example involving a simple two-level
normal hierarchical linear model (see e.g., Liu and Wu, 1999; Yu and Meng,
2011)

Y | (θ, Z) ∼ N(θ + Z, 1) ,

Z | θ ∼ N(0, D) .
(2.3)

Here, θ is the parameter, Y is the observed data, Z is the latent variable, and D
is known positive constant. We assume that D �= 1. With a flat improper prior
on θ, the posterior is θ |Y ∼ N(Y, 1 +D), which is our target density. Treating
Z as the latent variable, the standard DA algorithm is simulated by drawing
alternately from the following two conditional distributions:

Z | (θ, Y ) ∼ N

(
D(Y − θ)

1 +D
,

D

1 +D

)
,

θ | (Z, Y ) ∼ N(Y − Z, 1) .

On the other hand, if we let Z̃ = Z + θ, and treat Z̃ as the latent data, then
the model can be rewritten as

Y | (θ, Z̃) ∼ N(Z̃, 1) ,

Z̃ | θ ∼ N(θ,D) .

This is called the centered parametrization (CP), whereas model (2.3) is called
the non-centered parametrization (NCP). If we put the same flat prior on θ, then
this model leads to a different DA algorithm, which iterates between drawing
Z̃ | (θ, Y ) and drawing θ | (Z̃, Y ):

Z̃ | (θ, Y ) ∼ N

(
θ +DY

1 +D
,

D

1 +D

)
,

θ | (Z̃, Y ) ∼ N(Z̃,D) .

Though both DAs have the same target distribution, they have completely dif-
ferent convergence behavior. Let k and k̃ denote Mtds of NCP and CP DA
chains, and let K and K̃ denote operators associated with k and k̃. It is known
that ‖K‖ = D

1+D and ‖K̃‖ = 1
1+D . Therefore, when D > 1, the CP DA algo-

rithm dominates NCP DA algorithm in the operator norm sense. On the other
hand, when D < 1, the operator norm ordering is reversed. Using Theorem 2.1,
we can show similar ordering results hold in terms of efficiency. Here is the
result.

Proposition 2.1. When D > 1, k̃ �E k. When D < 1, k �E k̃.
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Proof. Let f(θ, z | y) denote the density of (θ, Z) |Y in the above NCP model,
and let fθ|Z,Y and fZ|Y be the conditional and marginal densities defined by

f(θ, z | y). Similarly, denote the density of (θ, Z̃) |Y in the CP model as f̃(θ, z̃ | y),
and let f̃θ|Z̃,Y and f̃Z̃|Y be the associated conditional and marginal densities. It

is easy to see that fZ|Y (· | y) ∼ N(0, D) and f̃Z̃|Y (· | y) ∼ N(y, 1). We begin with
the case where D > 1. It suffices to establish the two conditions of Theorem 2.1.
Let r(w | z, y) denote the N(y − z,D − 1) density evaluated at w. It is easy to
show that∫

R

fθ|Z,Y (θ | z′, y) r(z′ | z, y) dz′ = (2πD)−
1
2 exp

{
− 1

D
(θ − z)2

}
= f̃θ|Z̃,Y (θ | z, y)

and ∫
R

r(z′ | z, y) f̃Z̃|Y (z | y) dz = (2πD)−
1
2 exp

{
− 1

2D
z′2

}
= fZ|Y (z

′ | y) .

An application of Theorem 2.1 yields the result.
We now prove the case where D < 1. Similarly, we establish the two condi-

tions of Theorem 2.1. Let r̃(w | z, y) denote the N(y−z, 1−D) density evaluated
at w. Then, we have∫

R

f̃θ|Z̃,Y (θ | z′, y) r̃(z′ | z, y) dz′ = (2π)−
1
2 exp

{
−1

2
(θ − y + z)2

}
= fθ|Z,Y (θ | z, y)

and ∫
R

r̃(z′ | z, y) fZ|Y (z | y) dz = (2π)−
1
2 exp

{
−1

2
(z′ − y)2

}
= f̃Z̃|Y (z

′ | y) .

Another application of Theorem 2.1 completes the proof.

It is interesting to compare the exact value of ‖K̃‖ with the upper bound
γ2‖K‖ from Theorem 2.1. Consider the case where D > 1. We know from
the proof of Proposition 2.1 that γ is equal to the maximal correlation of a
random pair (Z,Z ′) with joint density r(z′ | z, y) f̃Z|Y (z | y). This joint density
is bivariate normal, and it follows from Gebelein (1941) and Lancaster (1957)
that

γ =

√
Var

(
E(Z ′ |Z, Y )

∣∣Y )
Var(Z ′ |Y )

=

√
1

1 +D − 1
=

1√
D

.

Therefore,

γ2‖K‖ =
1

D
· D

1 +D
= ‖K̃‖ .

This example shows that the bound in Theorem 2.1 is tight.
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3. Extending Hobert and Marchev’s results on Haar PX-DA

In this section, we use Theorem 2.1 to show that H&M’s extensions of L&W’s
results continue to hold when ν does depend on x. We also illustrate our results
using Brownlee’s (1965) stack loss data.

3.1. Hobert and Marchev’s group structure

Let X,Y, μX and μY be as in Section 2.2, and let G be a group with identity
element e. Allow the group G to act topologically on the left of Y; that is, there
is a continuous function F : G × Y → Y such that F (e, y) = y for all y ∈ Y
and F (g1g2, y) = F (g1, F (g2, y)) for all g1, g2 ∈ G and all y ∈ Y. As is typically
done, we will denote the value of F at (g, y) by gy so, in this notation, the two
conditions are written ey = y and (g1g2)y = g1(g2y).

Assume that there exists a function j : G× Y → (0,∞) such that:

1. j(g−1, y) = 1
j(g,y) for all g ∈ G and all y ∈ Y,

2. j(g1g2, y) = j(g1, g2y) j(g2, y) for all g1, g2 ∈ G and all y ∈ Y, and
3. For all g ∈ G and all integrable functions h : Y → R,∫

Y

h(gy) j(g, y)μY (dy) =

∫
Y

h(y)μY (dy) .

As in L&W, suppose that Y ⊆ R
n, μY is Lebesgue measure on Y, and for each

fixed g ∈ G, F (g, ·) : Y → Y is differentiable. Then if we take j(g, y) to be the
Jacobian of the transformation y �→ F (g, y), the three properties listed above
can be easily verified from calculus.

3.2. Constructing general PX-DA and Haar PX-DA algorithms

As before, let f(x, y) be a probability density on X×Y with respect to μX ×μY

whose x-marginal density is fX . We construct a general PX-DA algorithm for
fX . The idea is to build a joint density, that is a general version of f̃ (ν)(x, y) of
L&W’s PX-DA described in the introduction, using the group structure on G.
This leads to a new DA algorithm. To be specific, define a probability density
on X× Y as follows:

f̃ (ν)(x, y) =

∫
G

f(x, gy) j(g, y) ν(x, dg) , (3.1)

where ν(x, ·) is a conditional probability measure on G given x ∈ X. It is easy to
see that the x-marginal density of f̃ (ν)(x, y) is fX , and the y-marginal density
is

mν(y) :=

∫
X

[∫
G

f(x, gy) j(g, y) ν(x, dg)

]
μX(dx) ,
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where we assumemν(y) is positive, finite for all y ∈ Y. (As in H&M, it is possible
to handle cases where mν(y) = ∞ on a set of Y that has μY -measure zero, but
we will not go into that here.) The associated conditional densities are

f̃
(ν)
X|Y (x | y) =

f̃ (ν)(x, y)

mν(y)
=

∫
G
f(x, g′y) j(g′, y) ν(x, dg′)

mν(y)

and f̃
(ν)
Y |X(y |x) =

∫
G
fY |X(gy |x) j(g, y) ν(x, dg). Our general PX-DA is a DA

with Mtd given by

kν(x |x′) =

∫
Y

f̃
(ν)
X|Y (x | y) f̃

(ν)
Y |X(y |x′)μY (dy) .

We note that if ν(x, ·) is free of x, then we recover H&M’s general PX-DA chain.
We now describe H&M’s general Haar PX-DA algorithm. H&M use the group

structure to construct a sandwich step, that behaves like a generalized version
of the sandwich step of L&W’s Haar PX-DA described in Section 1. Under the
assumptions in the previous section, there exists a left-Haar measure, �l, on G,
which is a nontrivial measure satisfying∫

G

h(g̃g) �l(dg) =

∫
G

h(g) �l(dg) (3.2)

for all g̃ ∈ G and all integrable functions h : G → R. This measure is unique up
to a multiplicative constant. Moreover, there exists a multiplier, �, called the
(right) modular function of the group, which relates the left-Haar and right-Haar
measures, �l and �r, onG such that �r(dg) = �(g−1)�l(dg). (A function χ : G →
(0,∞) is called a multiplier if χ is continuous and χ(g1g2) = χ(g1)χ(g2) for all
g1, g2 ∈ G.) Here, the right-Haar measure satisfies the obvious analogue of (3.2).
Groups for which � ≡ 1; that is, for which right-Haar and left-Haar measures
are equivalent, are called unimodular. We now state two useful formulas from
H&M that will be used later. If g̃ ∈ G and h : G → R is an integrable function,
then ∫

G

h(gg̃−1) �l(dg) = �(g̃)

∫
G

h(g) �l(dg) (3.3)

and ∫
G

h(g−1) �l(dg) =

∫
G

h(g)�(g−1) �l(dg) . (3.4)

As before, let fY be the y-marginal density of f(x, y), and assume without loss
of generality that

m(y) :=

∫
G

fY (gy) j(g, y) �l(dg)

is positive, finite for all y ∈ Y. A straightforward application of (3.3) shows that,
for y ∈ Y,

m(gy) = j(g−1, y)�(g−1)m(y) . (3.5)
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We now describe a recipe for using the group structure to build a Mtf that
is reversible with respect to fY . Let R be an operator on L2

0(fY ) that maps
h ∈ L2

0(fY ) to

(Rh)(y) =

∫
G

h(gy) fY (gy) j(g, y)

m(y)
�l(dg) . (3.6)

Then the corresponding Markov chain on Y evolves as follows. If the current
state is y, then the distribution of the next state is that of gy where g is a random
element drawn from the density (with respect to �l) fY (gy) j(g, y)/m(y). We
denote its Mtf by R(y, dy′). It is shown in H&M’s Proposition 3 and 4 that the
operator R on L2

0(fY ) is self-adjoint (with respect to fY ) and idempotent. The
Mtd of H&M’s general Haar PX-DA is

k∗(x |x′) =

∫
Y

∫
Y

fX|Y (x | y′)R(y, dy′) fY |X(y |x′)μY (dy) .

Together, H&M’s Proposition 1 and Theorem 4 imply that k∗ is itself a DA
algorithm. Precisely, k∗ is a DA algorithm based on the joint density

f∗(x, y) = fY (y)

∫
Y

fX|Y (x | y′)R(y, dy′) .

That is, k∗ can be written as

k∗(x |x′) =

∫
Y

∫
Y

fX|Y (x | y′)R(y, dy′) fY |X(y |x′)μY (dy)

=

∫
Y

f∗
X|Y (x | y) f∗

Y |X(y |x′)μY (dy) ,

where f∗
X|Y and f∗

Y |X are conditional densities associated with f∗(x, y).

3.3. Comparing General PX-DA and Haar PX-DA Algorithms

In this section, we establish that k∗ is at least as good as kν in the efficiency
ordering and in the operator norm sense. In fact, H&M’s Theorem 4 implies that
their general Haar PX-DA algorithm is at least as good as their general PX-
DA algorithm in the efficiency ordering and operator norm sense. Since H&M’s
general PX-DA is a special case of our general PX-DA, our result improves upon
their result. Here is our result.

Proposition 3.1. Let ν(x, ·) be a conditional probability measure on G given
x (∈ X). Assume that mν(y) and m(y) are positive and finite for all y ∈ Y. If
the Markov chains driven by kν and k∗ are Harris ergodic, then k∗ �E kν and
‖K∗‖ ≤ ‖Kν‖, where Kν and K∗ are the operators on L2

0(fX) defined by kν
and k∗.

Proof. Recall that kν is the DA Mtd based on the joint density

f̃ (ν)(x, y) =

∫
G

f(x, g′y) j(g′, y) ν(x, dg′)
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and that the y-marginal density of f̃ (ν)(x, y) is

mν(y) =

∫
X

[∫
G

f(x, g′y) j(g′, y) ν(x, dg′)

]
μX(dx) .

Let R̃(y, dy′) be the Mtf on Y with invariant density mν(y) that is constructed
according to the recipe in (3.6); that is, R̃ is what we would have ended up with
had we used mν(y) in place of fY (y). If we substitute mν(y) for fY (y) in the
definition of m(y), we have∫

G

mν(gy) j(g, y) �l(dg)

=

∫
G

[∫
X

∫
G

f(x, g′gy) j(g′, gy) ν(x, dg′)μX(dx)

]
j(g, y) �l(dg)

=

∫
X

∫
G

[∫
G

f(x, g′gy) j(g′g, y) �l(dg)

]
ν(x, dg′)μX(dx)

=

∫
X

∫
G

[∫
G

f(x, gy) j(g, y) �l(dg)

]
ν(x, dg′)μX(dx)

=

∫
G

[∫
X

f(x, gy) j(g, y)μX(dx)

]
�l(dg)

=

∫
G

fY (gy) j(g, y) �l(dg) = m(y) .

Hence, the function m(y) is the same whether we use fY or mν . Recall that k
∗

is the DA Mtd based on the joint density

f∗(x, y) = fY (y)

∫
Y

fX|Y (x | y′)R(y, dy′) .

Clearly, f∗
Y (y) =

∫
X
f∗(x, y)μX(dx) = fY (y), so

f∗
X|Y (x | y) =

∫
Y

fX|Y (x | y′)R(y, dy′) .

We now establish the two conditions of Theorem 2.1. We will first show that

f∗
X|Y (x | y) =

∫
Y

f̃
(ν)
X|Y (x | y

′) R̃(y, dy′) .

Indeed, using the definition of R̃ and calculation above, we have∫
Y

f̃
(ν)
X|Y (x | y

′) R̃(y, dy′)

=

∫
G

f̃
(ν)
X|Y (x | gy)

mν(gy) j(g, y)

m(y)
ρl(dg)

=

∫
G

∫
G

f(x, g′gy) j(g′, gy)

mν(gy)

mν(gy) j(g, y)

m(y)
ρl(dg) ν(x, dg

′)
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=

∫
G

∫
G

f(x, g′gy) j(g′g, y)

m(y)
ρl(dg) ν(x, dg

′)

=

∫
G

∫
G

f(x, gy) j(g, y)

m(y)
ρl(dg) ν(x, dg

′)

=

∫
G

fX|Y (x | gy)
fY (gy) j(g, y)

m(y)
ρl(dg)

=

∫
Y

fX|Y (x | y′)R(y, dy′) = f∗
X|Y (x | y) .

We proceed by demonstrating that, for y, y′ ∈ Y,

R̃(y, dy′) fY (y)μY (dy) = R(y′, dy)mν(y
′)μY (dy

′) (3.7)

to establish ∫
y∈Y

R̃(y, dy′) fY (y)μY (dy) = mν(y
′)μY (dy

′) .

It suffices to show that, for bounded functions h1, h2 on Y,∫
Y

(R̃h1)(y)h2(y) fY (y)μY (dy) =

∫
Y

(Rh2)(y)h1(y)mν(y)μY (dy) .

Indeed,∫
Y

(R̃h1)(y)h2(y) fY (y)μY (dy)

=

∫
G

∫
Y

h2(y)h1(gy)mν(gy) j(g, y)

m(y)
fY (y)μY (dy) ρl(dg)

=

∫
G

∫
Y

h2(g
−1y)h1(y)mν(y) fY (g

−1y)

m(g−1y)
μY (dy) ρl(dg)

=

∫
Y

∫
G

h2(g
−1y)h1(y)mν(y) fY (g

−1y) j(g−1, y)�(g−1)

m(y)
ρl(dg)μY (dy)

=

∫
Y

[∫
G

h2(gy) fY (gy) j(g, y)

m(y)
ρl(dg)

]
h1(y)mν(y)μY (dy)

=

∫
Y

(Rh2)(y)h1(y)mν(y)μY (dy) ,

where the third equality follows from (3.5), and the penultimate equality is due
to (3.4). An application of Theorem 2.1 implies k∗ �E kν and ‖K‖ ≤ γ2‖Kν‖,
where γ is the maximal correlation of the pair (Y, Y ′) whose joint distribution
is (3.7). We now show that γ = 1. As pointed out in the proof of Theorem 2.1,
γ2 is the norm of the operator Q on L2

0(mν) associated with the Mtf given by

Q(y, dy′) =

∫
y′′∈Y

R̃(y′′, dy′)R(y, dy′′) .
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We claim that Q(y, dy′) = R̃(y, dy′) for all y ∈ Y. Indeed, for h ∈ L2
0(mν) and

y ∈ Y, we have

(Qh)(y) =

∫
Y

(R̃h)(y′′)R(y, dy′′)

=

∫
G

(R̃h)(gy) fY (gy) j(g, y)

m(y)
�l(dg)

=

∫
G

∫
G

h(g′gy)mν(g
′gy) j(g′, gy)

m(gy)

fY (gy) j(g, y)

m(y)
�l(dg

′) �l(dg)

=

∫
G

∫
G

h(g′gy)mν(g
′gy) j(g′g, y) fY (gy)

m(gy)m(y)
�l(dg

′) �l(dg)

=

∫
G

∫
G

�(g−1)h(g′y)mν(g
′y) j(g′, y) fY (gy)

m(gy)m(y)
�l(dg

′) �l(dg)

=

[∫
G

h(g′y)mν(g
′y) j(g′, y)

m(y)
�l(dg

′)

]

×
[∫

G

�(g−1) fY (gy) j(g, y)

�(g−1)m(y)
�l(dg)

]
= (R̃h)(y) ,

where the fifth equality follows from (3.3) and the penultimate equality is due
to (3.5). Since R̃ is self-adjoint and idempotent, γ2 = ‖Q‖ = ‖R̃‖ = 1 (see, e.g.,
Conway, 1990, Proposition 3.3). Hence, the result follows.

Remark 3.1. Choi (2014) contains an alternative but more complicated proof
of Proposition 3.1.

3.4. An illustration using Brownlee’s stack loss data

We end this section with an illustration of the efficiency part of Proposition 3.1
by using a PX-DA algorithm and Choi and Hobert’s (2013) Haar PX-DA al-
gorithm for Bayesian linear regression with Laplace errors. To be specific, we
will develop a PX-DA algorithm using the joint density upon which Choi and
Hobert’s (2013) DA algorithm is based and the group structure under which
the Haar PX-DA algorithm is derived. We then compare the efficiency of the
PX-DA and Haar PX-DA algorithms on Brownlee’s (1965) stack loss dataset.

The Bayesian linear model with Laplace errors is formulated as follows. Let
{Yi}ni=1 be independent random variables such that

Yi = xT
i β + σεi ,

where xi ∈ R
p is a vector of known covariates associated with Yi, β ∈ R

p is a
vector of unknown regression coefficients, and σ ∈ R+ := (0,∞) is an unknown
scale parameter. The errors, {εi}∞i=1, are assumed to be iid from the Laplace

density with scale equal to two, so the common density is d(ε) := e−
|ε|
2 /4.

The standard default prior for (β, σ2) is an improper prior that takes the form
π(β, σ2) = (σ2)−1IR+(σ

2). For inferential purposes, we would like to sample
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from the posterior density of (β, σ2). Let y = (y1, . . . , yn)
T be the vector of

observed responses. The posterior density of (β, σ2) is given by

fβ,σ2|Y (β, σ
2 | y) = 1

c(y)

1

4nσn
exp

{
− 1

2σ

n∑
i=1

|yi − xT
i β|

}
(σ2)−1IR+(σ

2) ,

(3.8)
where

c(y) =

∫
R+

∫
Rp

1

4nσn
exp

{
− 1

2σ

n∑
i=1

|yi − xT
i β|

}
(σ2)−1dβ dσ2 .

As usual, let X denote the n × p matrix whose ith row is equal to xT
i , and

let C(X) denote the column space of X. We assume throughout that X has
full rank and y /∈ C(X) since these are necessary and sufficient conditions for
c(y) < ∞ (Choi and Hobert, 2013, Proposition 1). A DA algorithm and the
Haar PX-DA algorithm for exploring this intractable posterior are described
in Choi and Hobert (2013) (hereafter, C&H). The DA algorithm is based on
introducing a latent variable Z = {Zi}ni=1, so the joint posterior density of β, σ2

and Z, say f(β, σ2, z | y), is given by

1

c(y)

[
n∏

i=1

z
1
2
i

(2π)
1
2 (σ2)

1
2

exp

{
−zi

2

(yi − xT
i β)

2

σ2

}]

×
[

n∏
i=1

1

8z2i
e
− 1

8zi IR+(zi)

]
(σ2)−1IR+(σ

2) . (3.9)

A straightforward calculation using the well-known normal/inverse Gamma rep-
resentation of the Laplace density shows that∫

R
n
+

f(β, σ2, z | y) dz = fβ,σ2|Y (β, σ
2 | y) .

C&H’s DA algorithm simply iterates between draws from the associated condi-
tional densities, fβ,σ2|Z,Y (β, σ

2 | z, y) and fZ|β,σ2,Y (z |β, σ2, y), in the usual way.
C&H show that the two conditionals can be specified as follows.

• The conditional distribution of (β, σ2) is described as

β |σ2 = σ̃2, Z = z, Y = y ∼ Np

(
θ, σ̃2(XTD−1X)−1

)
, and marginally,

σ2 |Z = z, Y = y ∼ IG

(
n− p

2
,
yTD−1y − θT (XTD−1X)θ

2

)
,

where θ = (XTD−1X)−1XTD−1y and D is a diagonal matrix whose ith
diagonal element is z−1

i . Also, when we write W ∼ IG(α, γ), we mean that
W has density proportional to

w−α−1e−γ/wIR+(w) ,

where α and γ are strictly positive.
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• Z1, . . . , Zn are conditionally independent with

Zi |β = β̃, σ2 = σ̃2, Y = y ∼
{
Inv Gau

(
σ̃

2|yi−xT
i β̃| ,

1
4

)
if |yi − xT

i β̃| > 0

IG
(
1
2 ,

1
8

)
if |yi − xT

i β̃| = 0

Here, when we write W ∼ Inv Gau(μ, λ), we mean that W has density
given by √

λ

2πw3
exp

{
−λ(w − μ)2

2μ2w

}
IR+(w) ,

where μ and λ are strictly positive.

C&H’s Haar PX-DA algorithm is derived under the group G = R+, which
acts on R

n
+ (the space of the latent variable Z) through scalar multiplication.

In particular, the sandwich step is formed using the recipe described in (3.6)
with j(g, z) = gn and �l(dg) = dg/g, and fY equal to the z-marginal density of
(3.9). It is shown that the sandwich step corresponds to the move z → z′ = gz
with g drawn from IG(n,

∑n
i=1

1
8zi

) distribution.
We now develop a PX-DA algorithm using (3.9) and the group structure on

G. Consider a conditional probability measure, I(σ2, dg), on G given (β, σ2) that
depends on σ2 but not on β and has a point mass at σ2. (Note that σ2 lives
on R+, so I(σ2, dg) is legitimate.) As described in (3.1), define a probability
density such that

f̃ (I)(β, σ2, z | y) =
∫
G

f(β, σ2, gz | y) gn I(σ2, dg) .

A straightforward manipulation reveals that f̃ (I)(β, σ2, z | y) is equal to

1

c(y)

[
n∏

i=1

(
2π

zi

)− 1
2

exp
{
−zi

2
(yi − xT

i β)
2
}]

×
[

n∏
i=1

1

8σ2
z−2
i exp

{
− 1

8σ2zi

}
IR+(zi)

]
(σ2)−1IR+(σ

2) .

By construction, the (β, σ2)-marginal density of f̃ (I)(β, σ2, z | y) is the target
(3.8), and the DA algorithm based on the new joint density f̃ (I)(β, σ2, z | y) is

a PX-DA algorithm. The associated conditional densities, f̃
(I)
β,σ2|Z,Y (β, σ

2 | z, y)
and f̃

(I)
Z|β,σ2,Y (z |β, σ2, y), to simulate the PX-DA algorithm can be easily derived

using the similar arguments in Section 2 of C&H, along with the conditional
independence of β and σ2 given (z, y) as follows.

• β and σ2 are conditionally independent with

β |Z = z, Y = y ∼ Np

(
θ, (XTD−1X)−1

)
, and

σ2 |Z = z, Y = y ∼ IG

(
n,

n∑
i=1

1

8zi

)
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Table 1

Results based on 105 iterations

Parameter
Results for the Results for C&H’s

PX-DA algorithm Haar PX-DA algorithm

σ2 Estimate Standard error Estimate Standard Error
2.054 0.008703 2.064 0.004173

• Z1, . . . , Zn are conditionally independent with

Zi |β = β̃, σ2 = σ̃2, Y = y ∼
{
Inv Gau

(
σ̃−1

2|yi−xT
i β̃| ,

1
4σ̃2

)
if |yi − xT

i β̃| > 0

IG
(
1
2 ,

1
8σ̃2

)
if |yi − xT

i β̃| = 0

We implement the PX-DA algorithm and C&H’s Haar PX-DA algorithm on
Brownlee’s (1965) stack loss data. The data are from the operation of a plant for
the oxidation of ammonia to nitric acid, measured on 21 consecutive days. The
dataset consists of {(yi, xi1)}21i=1, where xi1 is a covariate indicating the air flow
to the plant, and yi is the percentage of ammonia lost (times 10). We consider
the model

Yi = β0 + β1xi1 + σεi ,

where εi’s are iid with the common Laplace density d(ε), with the standard
default prior π(β, σ2). It can be easily verified (using C&H’s necessary and
sufficient conditions for posterior propriety described above) that the posterior
density is proper. For all Markov chains, we choose the initial value of σ2 to be
1 and the initial value of β to be the maximum likelihood estimate under the
standard linear model (with Gaussian errors).

We run the PX-DA and C&H’s Haar PX-DA algorithms for a burn-in period
of 4 × 105 iterations. The next 105 iterations are used to obtain the posterior
expectation for the two Markov chains, and we adopt the batch means method
to estimate the asymptotic variances. (See Jones et al. (2006) for precise formula
and theoretical properties of the batch means estimator.) For this particular ex-
ample, we are interested in estimating the posterior expectation of h(β, σ2) = σ2

as Yu and Moyeed (2001) fit similar Bayesian regression models with fixed scale
parameter (σ2 = 1). Also, similar arguments to the proof of C&H’s Proposition
1 imply that, in the current setting, |h(β, σ2)|3 is integrable with respect to
the posterior. Table 1 provides the simulation results. Note that the estimated
asymptotic standard error for the PX-DA algorithm is 2.09 times as large as
the corresponding value for C&H’s Haar PX-DA algorithm. This suggests that,
in this particular example, the PX-DA algorithm requires about 2.092 = 4.35
times as many iterations as C&H’s PX-DA algorithm to achieve the same level
of precision.

4. Improving the collapsing theorem

Let X,Y, μX and μY be as in Section 2.2. Let Z be a separable metric space
equipped with its Borel σ-algebra, and assume that Z is sub-Cauchy. Assume



326 H. M. Choi and J. P. Hobert

also that μZ is a σ-finite measure on Z. As before, suppose fX is an intractable
density with respect to μX on X that we would like to explore. Let f : X ×
Y × Z → [0,∞) be a joint density with respect to μX × μY × μZ such that∫
Y

∫
Z
f(x, y, z)μZ(dz)μY (dy) = fX(x). As usual, let fX|Y,Z , fY,Z|X , fX|Y and

fY |X be conditional densities associated with f . Consider two DA chains based

on Mtds k and k̃ given by

k(x |x′) =

∫
Y

∫
Z

fX|Y,Z(x | y, z) fY,Z|X(y, z |x′)μZ(dz)μY (dy) ,

k̃(x |x′) =

∫
Y

fX|Y (x | y) fY |X(y |x′)μY (dy) .

Denote the operators on L2
0(fX) corresponding to k and k̃ by K and K̃. It

follows from Liu et al. (1994) and Liu (1994) that ‖K̃‖ ≤ ‖K‖, which is called
the collapsing theorem. Here, we use Theorem 2.1 to improve the collapsing
theorem in terms of efficiency ordering.

Proposition 4.1. Assume k and k̃ are Harris ergodic. Then ‖K̃‖ ≤ ‖K‖ and
k̃ �E k.

Proof. Let π be an arbitrary density on Z with respect to μZ , and let fX,Y denote

the marginal density associated with f . It is easy to see that k̃ can be written
as the DA Mtd based on the joint density f∗(x, y, z) = fX,Y (x, y)π(z), which
is simulated by drawing alternately from the associated conditional densities
f∗
Y,Z|X and f∗

X|Y,Z . Indeed, f
∗
X|Y,Z(x | y, z) = fX|Y (x | y) and f∗

Y,Z|X(y, z |x) =

fY |X(y |x)π(z), so we have

∫
Y

∫
Z

f∗
X|Y,Z(x | y, z) f∗

Y,Z|X(y, z |x′)μZ(dz)μY (dy)

=

∫
Y

∫
Z

fX|Y (x | y) fY |X(y |x′)π(z)μZ(dz)μY (dy) = k̃(x |x′) .

We now establish the two conditions of Theorem 2.1. Let R be a Mtf on Y × Z
defined by

R
(
(y, z), (dy′ × dz′)

)
= I(y, dy′) fZ|Y (z

′| y′)μZ(dz
′) ,

where I(y, dy′) is the trivial Mtf that is a point mass at y, and fZ|Y is the
conditional density associated with f . Then∫

Y

∫
Z

fX|Y,Z(x | y′, z′)R
(
(y, z), (dy′ × dz′)

)
=

∫
Y

[∫
Z

fX|Y,Z(x | y′, z′) fZ|Y (z
′ | y′)μZ(dz

′)

]
I(y, dy′)

=

∫
Y

fX|Y (x | y′) I(y, dy′) = fX|Y (x | y) = f∗
X|Y,Z(x | y, z) .
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Since f∗
Y,Z(y, z) =

∫
X
f∗(x, y, z)μX(dx) = fY (y)π(z), we have∫

y∈Y

∫
z∈Z

R
(
(y, z), (dy′ × dz′)

)
f∗
Y,Z(y, z)μZ(dz)μY (dy)

= fZ|Y (z
′ | y′)μZ(dz

′)

∫
y∈Y

[∫
Z

π(z)μZ(dz)

]
I(y, dy′) fY (y)μY (dy)

= fZ|Y (z
′ | y′) fY (y′)μY (dy

′)μZ(dz
′)

= fY,Z(y
′, z′)μY (dy

′)μZ(dz
′) .

An application of Theorem 2.1 implies k̃ �E k and ‖K̃‖ ≤ γ2‖K‖, where γ
is the maximal correlation of the random pair ((Y, Z), (Y ′, Z ′)), whose joint
distribution is

R
(
(y, z), (dy′ × dz′)

)
f∗
Y,Z(y, z)μY (dy)μZ(dz) .

We now show that γ = 1. It suffices to establish that, for some function g(y, z)
on Y × Z such that 0 < Var{g(Y ′, Z ′)} < ∞,

Var [E {g(Y ′, Z ′) |Y, Z}] = Var {g(Y ′, Z ′)} .

Take an arbitrary nonzero function h ∈ L2
0(fY ), and define a function g(y, z) on

Y×Z as g(y, z) = h(y). It is easy to see that 0 < Var{g(Y ′, Z ′)} < ∞ and that,
for all (y, z) ∈ Y × Z,

E {g(Y ′, Z ′) | (Y, Z) = (y, z)}

=

∫
Y

∫
Z

h(y′)R
(
(y, z), (dy′ × dz′)

)
=

∫
Y

h(y′)

[∫
Z

fZ|Y (z
′ | y′)μZ(dz

′)

]
I(y, dy′) = h(y) .

So, we have

Var [E {g(Y ′, Z ′) |Y, Z}] =
∫
Y

∫
Z

h2(y) f∗
Y,Z(y, z)μZ(dz)μY (dy)

=

∫
Y

h2(y) fY (y)

∫
Z

π(z)μZ(dz)μY (dy)

=

∫
Y

h2(y) fY (y)μY (dy)

= Var {h(Y ′)} = Var {g(Y ′, Z ′)} ,

which completes the proof.
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