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Abstract: In large-scale modern data analysis, first-order optimization
methods are usually favored to obtain sparse estimators in high dimensions.
This paper performs theoretical analysis of a class of iterative thresholding
based estimators defined in this way. Oracle inequalities are built to show
the nearly minimax rate optimality of such estimators under a new type of
regularity conditions. Moreover, the sequence of iterates is found to be able
to approach the statistical truth within the best statistical accuracy geo-
metrically fast. Our results also reveal different benefits brought by convex
and nonconvex types of shrinkage.
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1. Introduction

Big data naturally arising in machine learning, biology, signal processing, and
many other areas, call for the need of scalable optimization in computation.
Although for low-dimensional problems, Newton or quasi-Newton methods con-
verge fast and have efficient implementations, they typically do not scale well
to high dimensional data. In contrast, first-order optimization methods have re-
cently attracted a great deal of attention from researchers in statistics, computer
science and engineering. They iterate based on the gradient (or a subgradient) of
the objective function, and have each iteration step being cost-effective. In high
dimensional statistics, a first-order algorithm typically proceeds in the following
manner

β(t+1) = P ◦ (β(t) − α∇l(β(t))), (1)

where P is an operator that is easy to compute, ∇l denotes the gradient of the
loss function l, and α gives the stepsize. Such a simple iterative procedure is suit-
able for large-scale optimization, and converges in arbitrarily high dimensions
provided α is properly small.

P can be motivated from the perspective of statistical shrinkage or regular-
ization and is necessary to achieve good accuracy when the dimensionality is
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moderate or high. For example, a proximity operator [11] is associated with
a convex penalty function. But the problems of interest may not always be
convex. Quite often, P is taken as a certain thresholding rule Θ in statisti-
cal learning, such as SCAD [5]. The resulting computation-driven estimators,
which we call Θ-estimators, are fixed points of β = Θ(β −∇l(β);λ). To study
the non-asymptotic behavior of Θ-estimators (regardless of the sample size and
dimensionality), we will establish some oracle inequalities.

During the last decade, people have performed rigorous finite-sample anal-
ysis of many high-dimensional estimators defined as globally optimal solutions
to some convex or nonconvex problems—see [3], [19], [2], [9], [20], [14], among
many others. Θ-estimators pose some new questions. First, although nicely, an
associated optimization criterion can be constructed for any given Θ-estimator,
the objective may not be convex, and the estimator may not correspond to
any functional local (or global) minimum. Second, there are various types of
Θ-estimators due to the abundant choices of Θ, but a comparative study re-
garding their statistical performance in high dimensions is lacking in the lit-
erature. Third, Θ-estimators are usually computed in an inexact way on big
datasets. Indeed, most practitioners (have to) terminate (1) before full com-
putational convergence. These disconnects between theory and practice when
using iterative thresholdings motivate our work.

The rest of the paper is organized as follows. Section 2 introduces the Θ-
estimators, the associated iterative algorithm–TISP, and some necessary nota-
tion. Section 3 presents the main results, including some oracle inequalities, and
sequential analysis of the iterates generated by TISP. Section 4 provides proof
details.

2. Background and notation

2.1. Thresholding functions

Definition 1 (Thresholding function). A thresholding function is a real val-
ued function Θ(t;λ) defined for −∞ < t < ∞ and 0 ≤ λ < ∞ such that (i)
Θ(−t;λ) = −Θ(t;λ); (ii) Θ(t;λ) ≤ Θ(t′;λ) for t ≤ t′; (iii) limt→∞ Θ(t;λ) = ∞;
(iv) 0 ≤ Θ(t;λ) ≤ t for 0 ≤ t < ∞.

A vector version of Θ (still denoted by Θ) is defined componentwise if either
t or λ is replaced by a vector. From the definition,

Θ−1(u;λ) := sup{t : Θ(t;λ) ≤ u}, ∀u > 0 (2)

must be monotonically non-decreasing and so its derivative is defined almost
everywhere on (0,∞). Given Θ, a critical number LΘ ≤ 1 can be introduced
such that dΘ−1(u;λ)/ du ≥ 1− LΘ for almost every u ≥ 0, or

LΘ := 1− ess inf{ dΘ−1(u;λ)/ du : u ≥ 0}, (3)
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where ess inf is the essential infimum. For the perhaps most popular soft-
thresholding and hard-thresholding functions

ΘS(t;λ) = sgn(t)(|t| − λ)+, ΘH(t;λ) = t1|t|≥λ,

LΘ equals 0 and 1, respectively.
For any arbitrarily given Θ, we construct a penalty function PΘ(t;λ) as fol-

lows

PΘ(t;λ) =

∫ |t|

0

(Θ−1(u;λ)− u) du =

∫ |t|

0

(sup{s : Θ(s;λ) ≤ u} − u) du (4)

for any t ∈ R. This penalty will be used to make a proper objective function for
Θ-estimators.

The threshold τ(λ) := Θ−1(0;λ) may not equal λ in general. For ease in
notation, in writing Θ(·;λ), we always assume that λ is the threshold parameter,
i.e., λ = τ(λ), unless otherwise specified. Then an important fact is that given
λ, any thresholding rule Θ satisfies Θ(t;λ) ≤ ΘH(t;λ), ∀t ≥ 0, due to property
(iv), from which it follows that

PΘ(t;λ) ≥ PH(t;λ), (5)

where

PH(t;λ) =

∫ |t|

0

(Θ−1
H (u;λ)− u) du = (−t2/2 + λ|t|)1|t|<λ + (λ2/2)1|t|≥λ. (6)

In particular, PH(t;λ) ≤ P0(t;λ) :=
λ2

2 1t �=0 and PH(t;λ) ≤ P1(t;λ) := λ|t|.
When Θ has discontinuities, such as t = ±λ in ΘH(t;λ), ambiguity may

arise in definition. To avoid the issue, we assume the quantity to be thresholded
never corresponds to any discontinuity of Θ. This assumption is mild because
practically used thresholding rules have few discontinuity points and such dis-
continuities rarely occur in real applications.

2.2. Θ-estimators

We assume a model

y = Xβ∗ + ε, (7)

where X is an n× p design matrix, y is a response vector in R
n, β∗ is the

unknown coefficient vector, and ε is a sub-Gaussian random vector with mean
zero and scale bounded by σ, cf. Definition 2 in Section 4 for more detail. Then
a Θ-estimator β̂, driven by the computational procedure (1), is defined as a
solution to the Θ-equation

ρβ = Θ(ρβ +XTy/ρ−XTXβ/ρ;λ), (8)

where ρ, the scaling parameter, does not depend on β. Having ρ appropriately
large is crucial to guarantee the convergence of the computational procedure.
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All popularly used penalty functions are associated with thresholdings, such
as the �r (0 < r ≤ 1), �2, SCAD [5], MCP [18], capped �1 [21], �0, elastic net
[22], Berhu [10, 6], �0+�2 [12], to name a few. Table 1 lists some examples. From
a shrinkage perspective, thresholding rules usually suffice in statistical learning.

Equation (8) can be re-written in terms of the scaled deign X̃ = X/ρ and
the corresponding coefficient vector β̃ = ρβ

β̃ = Θ(β̃ + X̃
T
y − X̃

T
X̃β̃;λ). (9)

We will show that the λ in the scaled form does not have to adjust for the
sample size, which is advantageous in regularization parameter tuning.

A simple iterative procedure can be defined based on (8) or (9):

β̃
(t+1)

= Θ(β̃
(t)

+ X̃
T
y − X̃

T
X̃β̃

(t)
;λ),β(t+1) = β̃

(t+1)
/ρ, (10)

which is called the Thresholding-based Iterative Selection Procedure (TISP)
[12]. From Theorem 2.1 of [13], given an arbitrary Θ, TISP ensures the following

function-value descent property when ρ ≥ ‖X‖2

2−LΘ
:

f(β(t+1);λ) ≤ f(β(t);λ). (11)

Here, the energy function (objective function) is constructed as

f(β;λ) =
1

2
‖Xβ − y‖22 +

p∑
j=1

P (ρ|βj |;λ), (12)

where the penalty P can be PΘ as defined in (4), or more generally,

P (t;λ) = PΘ(t;λ) + q(t;λ), (13)

with q an arbitrary function satisfying q(t, λ) ≥ 0, ∀t ∈ R and q(t;λ) = 0
if t = Θ(s;λ) for some s ∈ R. Furthermore, we can show that when ρ >

‖X‖2/(2− LΘ), any limit point of β(t) is necessarily a fixed point of (8), and
thus a Θ-estimator. See [13] for more detail. Therefore, f is not necessarily
unique when Θ has discontinuities—for example, penalties like the capped �1,

P0(t;λ) =
λ2

2 1t �=0 and PH are all associated with the same ΘH . Because of the
many-to-one mapping from penalty functions to thresholding functions, iterat-
ing (1) with a well-designed thresholding rule is perhaps more convenient than
solving a nonconvex penalized optimization problem. Indeed, some penalties
(like SCAD) are designed from the thresholding viewpoint.

The following theorem shows that the set of Θ-estimators include all locally
optimal solutions of 1

2‖Xβ − y‖22 +
∑p

j=1 PΘ(|βj |;λ) =: fΘ(β).

Theorem 1. Let β̂ be a local minimum point (or a coordinate-wise minimum

point) of fΘ(·). If Θ is continuous at β̂ +XTy −XTXβ̂, β̂ must satisfy β =
Θ(β +XTy −XTXβ;λ).
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Table 1

Some examples of thresholding functions and their associated quantities

soft ridge hard
Θ (t − λsgn(t))1|t|>λ

t
1+η t1|t|>λ

LΘ 0 −η 1

PΘ λ|t| η
2 t

2

{
− 1

2 t
2 + λ|t|, if |t| < λ

1
2λ

2, if |t| ≥ λ

P min(λ|t|, λ2

2 ) (‘capped �1’),
λ2

2 1t �=0

elastic net (η ≥ 0) berhu (η ≥ 0) hard-ridge (η ≥ 0)

Θ
t−λsgn(t)

1+η 1|t|≥λ

⎧⎪⎨
⎪⎩

0 if |t| < λ

t − λsgn(t) if λ ≤ |t| ≤ λ + λ/η
t

1+η if |t| > λ + λ/η

t
1+η 1|t|>λ

LΘ −η 0 1

PΘ λ|t| + 1
2ηt

2

{
λ|t| if |t| ≤ λ/η
ηt2

2 + λ2

2η if |t| > λ/η.

{
− 1

2 t
2 + λ|t|, if |t| < λ

1+η
1
2ηt

2 + 1
2

λ2

1+η , if |t| ≥ λ
1+η .

P 1
2

λ2

1+η 1t �=0 + η
2 t

2 (‘�0 + �2’)

scad (a > 2) mcp (γ ≥ 1)

Θ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if |t| ≤ λ

t − λ sgn(t), if λ < |t| ≤ 2λ
(a−1)t−aλ sgn(t)

a−2 , if 2λ < |t| ≤ aλ

t, if |t| > aλ

⎧⎪⎨
⎪⎩

0, if |t| < λ
t−λsgn(t)

1−1/γ
, if λ ≤ |t| < γλ

t, if |t| ≥ γλ

LΘ 1/(a − 1) 1/γ

PΘ
dP
dt =

⎧⎪⎨
⎪⎩

λ sgn(t), if |t| ≤ λ
aλ sgn(t)−t

a−1 , if λ < |t| ≤ aλ

0, if |t| > aλ

{
− t2

2γ + λ|t|, if |t| < γλ
γλ2

2 , if |t| ≥ γλ
= 1

γ PH(t; γλ)

lr (0 < r < 1, ζ ≥ 0)

Θ

{
0, if |t| ≤ ζ1/(2−r)(2 − r)(2 − 2r)(r−1)/(2−r)

sgn(t)max{ζ1/(2−r)[r(1 − r)]1/(2−r) ≤ θ ≤ |t| : θ + ζrθr−1 = |t|}, otherwise.(The set is a singleton.)

LΘ 1
P ζ|t|r
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The converse is not necessarily true. Namely, Θ-estimators may not guarantee
functional local optimality, let alone global optimality. This raises difficulties in
statistical analysis. We will give a novel and unified treatment which can yield
nearly optimal error rate for various thresholdings.

3. Main results

To address the problems in arbitrary dimensions (with possibly large p and/or
n), we aim to establish non-asymptotic oracle inequalities [4]. For any β =
[β1, . . . , βp]

T , define

J (β) = {j : βj 
= 0}, J(β) = |J (β)| = ‖β‖0. (14)

Recall P1(t;λ) = λ|t|, P0(t;λ) = λ2

2 1t �=0, PH(t;λ) = (−t2/2 + λ|t|)1|t|<λ +
(λ2/2)1|t|≥λ. For convenience, we use P1(β;λ) to denote λ‖β‖1 when there is
no ambiguity. P0(β;λ) and PH(β;λ) are used similarly. We denote by � an
inequality that holds up to a multiplicative constant.

Unless otherwise specified, we study scaled Θ-estimators satisfying equation
(9), where β̃ = ρβ, X̃ = X/ρ, and ρ ≥ ‖X‖2 (and so ‖X̃‖2 ≤ 1). By abuse
of notation, we still write β for β̃, and X for X̃. As mentioned previously, we
always assume that Θ is continuous at β̂+XTy−XTXβ̂ in Sections 3.1 & 3.2;
similarly, Section 3.3 assumes that Θ is continuous at β(t) +XTy−XTXβ(t).

The past works on the lasso show that a certain incoherence requirement
must be assumed to obtain sharp error rates. In most theorems, we also need to
make similar assumptions to prevent the design matrix from being too collinear.
We will state a new type of regularity conditions, which are called comparison
regularity conditions, under which oracle inequalities and sequential statistical
error bounds can be obtained for any Θ.

3.1. PΘ-type oracle inequalities under R0

In this subsection, we use PΘ to make a bound of the prediction error of Θ-
estimators. Our regularity condition is stated as follows.

Assumption R0(δ, ϑ,K,β, λ) Given X, Θ, β, λ, there exist δ > 0, ϑ > 0,
K ≥ 0 such that the following inequality holds for any β′ ∈ R

p

ϑPH(β′ − β;λ) +
LΘ

2
‖β′ − β‖22

≤ 2− δ

2
‖X(β′ − β)‖22 + PΘ(β

′;λ) +KPΘ(β;λ).

(15)

Roughly, (15) means that 2‖X(β′ − β)‖22 can dominate LΘ‖β′ − β‖22 with
the help from PΘ(β

′;λ) and KPΘ(β;λ) for some K > 0.
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Theorem 2. Let β̂ be any Θ-estimator satisfying β = Θ(β+XTy−XTXβ;λ)
with λ = Aσ

√
log(ep) and A a constant. Then for any sufficiently large A, the

following oracle inequality holds for β ∈ R
p

E[‖Xβ̂ −Xβ∗‖22] � ‖Xβ −Xβ∗‖22 + PΘ(β;λ) + σ2, (16)

provided R0(δ, ϑ,K,β, λ) is satisfied for some constants δ > 0, ϑ > 0, K ≥ 0.

Theorem 2 is applicable to any Θ. Let’s examine two specific cases. First,
consider LΘ ≤ 0, which indicates that PΘ is convex. Because PH ≤ PΘ and
PH is sub-additive: PH(t + s) ≤ PH(t) + PH(s) due to its concavity [20],
R0(δ, ϑ,K,β, λ) is always satisfied (for any δ ≤ 2, 0 < ϑ ≤ 1, K ≥ ϑ).

Corollary 1. Suppose Θ satisfies LΘ ≤ 0. Then, (16) holds for all correspond-
ing Θ-estimators, without requiring any regularity condition.

In the case of hard-thresholding or SCAD thresholding, PΘ(β;λ) does not
depend on the magnitude of β, and we can get a finite complexity rate in the
oracle inequality. Also, R0 can be slightly relaxed, by replacing KPΘ(β;λ) with
KP0(β;λ) in (15). We denote the modified version by R′

0(δ, ϑ,K,β, λ).

Corollary 2. Suppose that Θ corresponds to a bounded nonconvex penalty sat-
isfying PΘ(t;λ) ≤ Cλ2, ∀t ∈ R, for some constant C > 0. Then in the setting
of Theorem 2,

E[‖Xβ̂ −Xβ∗‖22] � ‖Xβ −Xβ∗‖22 + σ2J(β) log(ep) + σ2, (17)

provided R′
0(δ, ϑ,K,β, λ) is satisfied for some constants δ > 0, ϑ > 0, K ≥ 0.

Remark 1. The right-hand side of the oracle inequalities involves a bias term
‖Xβ−Xβ∗‖22 and a complexity term PΘ(β;λ). Letting β = β∗ in, say, (16), the
bias vanishes, and we obtain a prediction error bound of the order σ2J∗ log(ep)
(omitting constant factors), where J∗ denotes the number of nonzero compo-
nents in β∗. On the other hand, the existence of the bias term ensures the
applicability of our results to approximately sparse signals. For example, when
β∗ has many small but nonzero components, we can use a reference β with a
much smaller support than J (β∗) to get a lower error bound, as a benefit from
the bias-variance tradeoff.

Remark 2. When R0 holds with δ > 1, the proof of Theorem 2 shows that the
multiplicative constant for ‖Xβ−Xβ∗‖22 can be as small as 1. The correspond-
ing oracle inequalities are called ‘sharp’ in some works [7]. This also applies to
Theorem 3. Our proof scheme can also deliver high-probability form results,
without requiring an upper bound of ‖X‖2.
Remark 3. Corollary 2 applies to all “hard-thresholding like” Θ, because when
Θ(t;λ) = t for |t| > cλ, PΘ(t;λ) ≤ c2λ2. It is worth mentioning that the er-
ror rate of σ2J∗ log(ep) cannot be significantly improved in a minimax sense.
In fact, under the Gaussian noise contamination and some regularity condi-
tions, there exist constants C, c > 0 such that inf β̌ supβ∗:J(β∗)≤J E[‖X(β̌ −



On the finite-sample analysis of Θ-estimators 1881

β∗)‖22)/(CPo(J))] ≥ c > 0, where β̌ denotes an arbitrary estimator of β∗ and
Po(J) = σ2{J + J log(ep/J)}. See, e.g., [9] for a proof. The bound in (17)
achieves the minimax optimal rate up to a mild logarithm factor for any n and
p.

3.2. P0-type oracle inequalities under R1

This part uses P0 instead of PΘ to make an oracle bound. We will show that
under another type of comparison regularity conditions, all thresholdings can
attain the essentially optimal error rate given in Corollary 2. We will also show
that in the case of soft-thresholding, our condition is more relaxed than many
other assumptions in the literature.

Assumption R1(δ, ϑ,K,β, λ) Given X, Θ, β, λ, there exist δ > 0, ϑ > 0,
K ≥ 0 such that the following inequality holds for any β′ ∈ R

p

ϑPH(β′ − β;λ) +
LΘ

2
‖β′ − β‖22 + PΘ(β;λ)

≤ 2− δ

2
‖X(β′ − β)‖22 + PΘ(β

′;λ) +Kλ2J(β).

(18)

Theorem 3. Let β̂ be a Θ-estimator and λ = Aσ
√

log(ep) with A a sufficiently

large constant. Then E[‖Xβ̂ −Xβ∗‖22] � ‖Xβ −Xβ∗‖22 + λ2J(β) + σ2 holds
for any β ∈ R

p if R1(δ, ϑ,K,β, λ) is satisfied for some constants δ > 0, ϑ > 0,
K ≥ 0.

Remark 4. Some fusion thresholdings, like those associated with elastic net,
Berhu and Hard-Ridge (cf. Table 1), involve an additional �2 shrinkage. In the
situation, the complexity term in the oracle inequality should involve both J(β)
and ‖β‖22. We can modify our regularity conditions to obtain such �0+�2 bounds
using the same proof scheme. The details are however not reported in this
paper. In addition, our results can be extended to Θ-estimators with a step-
size parameter. Given λ > 0 and 0 < α ≤ 1, suppose λα is introduced such
that αPΘ(t;λ) = PΘ(t;λα) for any t. Then, for any β̂ as a fixed point of
β = Θ(β − αXTXβ + αXTy;λα), an analogous result can be obtained (the
only change is that LΘ is replaced by LΘ/α).

To give some more intuitive regularity conditions, we suppose PΘ is concave
on [0,∞). Examples include �r (0 ≤ r ≤ 1), MCP, SCAD, and so on. The con-
cavity implies PΘ(t + s) ≤ PΘ(t) + PΘ(s), and so PΘ(β

′
J ;λ) − PΘ(βJ ;λ) ≤

PΘ((β
′ − β)J ;λ) and PΘ(β

′
J c ;λ) = PΘ((β

′ − β)J c ;λ), where J c is the com-
plement of J and βJ is the subvector of β indexed by J . Then R1 is implied
by R′

1 below for given J = J (β).

Assumption R′
1(δ, ϑ,K,J , λ) Given X, Θ, J , λ, there exist δ > 0, ϑ > 0,

K ≥ 0 such that for any Δ ∈ R
p,
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PΘ(ΔJ ;λ) + ϑPH(ΔJ ;λ) +
LΘ

2
‖Δ‖22

≤ 2− δ

2
‖XΔ‖22 +Kλ2J + PΘ(ΔJ c ;λ)− ϑPH(ΔJ c ;λ),

(19)

or

(1 + ϑ)PΘ(ΔJ ;λ) +
LΘ

2
‖Δ‖22 ≤ 2− δ

2
‖XΔ‖22 +Kλ2J + (1− ϑ)PΘ(ΔJ c ;λ).

(20)

When Θ is the soft-thresholding, it is easy to verify that a sufficient condition
for (20) is

(1 + ϑ)‖ΔJ ‖1 ≤ K
√
J‖XΔ‖2 + ‖ΔJ c‖1, (21)

for some ϑ > 0 and K ≥ 0. (21) has a simper form than R1. In the following, we
give the definitions of the RE and the compatibility condition [2, 16] to make a
comparison to (21).

Assumption RE(κRE , ϑRE ,J ). Given J ⊂ [p], we say thatX ∈ R
n×p satisfies

RE(κRE , ϑRE ,J ), if for positive numbers κRE , ϑRE > 0,

J‖XΔ‖22 ≥ κRE‖ΔJ ‖21, (22)

or more restrictively,

‖XΔ‖22 ≥ κRE‖ΔJ ‖22, (23)

for all Δ ∈ R
p satisfying

(1 + ϑRE)‖ΔJ ‖1 ≥ ‖ΔJ c‖1. (24)

Assume RE(κRE , ϑRE ,J ) holds. When (1 + ϑRE)‖ΔJ ‖1 ≤ ‖ΔJ c‖1, (21)
holds trivially with ϑ = ϑRE ; otherwise, (22) indicates (1 + ϑ)‖ΔJ ‖1 ≤
K
√
J‖XΔ‖2 with K = (1 + ϑRE)/

√
κRE . So intuitively, we have the following

relationship:

(23) + (24) ⇒ (22) + (24) ⇒ (21) ⇒ (20) ⇒ (19) ⇒ (18).

In particular, R1 is less demanding than RE.

Next, let’s compare the regularity conditions required by ΘS and ΘH to
achieve the nearly optimal error rate. Recall R1(δ, ϑ,K,β, λ) and R′

0(δ, ϑ,K,
β, λ) in Theorem 3 and Corollary 2, respectively

ϑPH(β′ − β;λ) + λ‖β‖1 ≤ 2− δ

2
‖X(β′ − β)‖22 + λ‖β′‖1 +Kλ2J,

ϑPH(β′ − β;λ) +
1

2
‖β′ − β‖22 ≤ 2− δ

2
‖X(β′ − β)‖22 + PH(β′;λ) +Kλ2J.
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R′
0(δ, ϑ,K,β, λ) implies R1(δ, ϑ,K + 1,β, λ). Indeed, for Δ = β′ − β,

λ‖β‖1 − λ‖β′‖1 ≤ λ‖ΔJ ‖1 − λ‖β′
J c‖1

≤ 1

2
λ2J +

1

2
‖ΔJ ‖22 − PH(β′

J c ;λ)

≤ 1

2
λ2J +

1

2
‖ΔJ ‖22 − PH(β′;λ) + PH(β′

J ;λ)

≤ 1

2
λ2J +

1

2
‖ΔJ ‖22 − PH(β′;λ) + P0(β

′
J ;λ)

≤ λ2J +
1

2
‖ΔJ ‖22 − PH(β′;λ).

On the other hand, Corollary 2 studies when all ΘH -estimators have the
optimal performance guarantee, while practically, one may initialize (10) with
a carefully chosen starting point.

Theorem 4. Given any Θ, there exists a Θ-estimator (which minimizes (12))
such that (16) holds without requiring any regularity condition. In particular, if
Θ corresponds to a bounded nonconvex penalty as described in Corollary 2, then
there exists a Θ-estimator such that (17) holds free of regularity conditions.

Theorem 4 does not place any requirement on X. So it seems that applying
ΘH may have some further advantages in practice. (How to efficiently pick a
ΘH -estimator to completely remove all regularity conditions is however beyond
the the scope of the current paper. For a possible idea of relaxing the conditions,
see Remark 6.)

Finally, we make a discussion of the scaling parameter ρ. Our results so far
are obtained after performing X ← X/ρ with ρ ≥ ‖X‖2. The prediction error
is invariant to the transformation. But it affects the regularity conditions.

Seen from (8), 1/ρ2 is related to the stepsize α appearing in (1), also known
as the learning rate in the machine learning literature. From the computational
results in Section 2.2, ρ must be large enough to guarantee TISP is convergent.
The larger the value of ρ is, the smaller the stepsize is (and so the slower the
convergence is). Based on the machine learning literature, slow learning rates are
always recommended when training a nonconvex learner (e.g., artificial neural
networks). Perhaps interestingly, in addition to computational efficiency reasons,
all our statistical analyses caution against using an extremely large scaling when
LΘ > 0. For example, R′

0(δ, ϑ,K,β, λ) for an unscaled X reads ϑPH(ρ(β′ −
β);λ) + ρ2‖β′ − β‖22/2 ≤ (2− δ)‖X(β′ − β)‖22/2 + PH(ρβ′;λ) +Kλ2J , which
becomes difficult to hold when ρ is very large. This makes the statistical error
bound break down easily. Therefore, a good idea is to have ρ just appropriately
large (mildly greater than ‖X‖2). The sequential analysis of the iterates in the
next part also supports the point.

3.3. Sequential algorithmic analysis

We perform statistical error analysis of the sequence of iterates defined by TISP:
β(t+1) = Θ(β(t) +XTy −XTXβ(t);λ), where ‖X‖2 ≤ 1 and β(0) is the start-
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ing point. The study is motivated from the fact that in large-scale applications,
Θ-estimators are seldom computed exactly. Indeed, why bother to run TISP
till computational convergence? How does the statistical accuracy improve (or
deteriorate) at t increases? Lately, there are some key advances on the topic. For
example, [1] showed that for convex problems (not necessarily strongly convex),
proximal gradient algorithms can be geometrically fast to approach a globally
optimal solution β̂ within the desired statistical precision, under a set of condi-
tions. We however care about the statistical error between β(t) and the genuine
β∗ in this work.

We will introduce two comparison regularity conditions (analogous to R0

and R1) to present both PΘ-type and P0-type error bounds. Hereinafter, denote
(βTAβ)1/2 by ‖β‖A, where A is a positive semi-definite matrix.

Assumption S0(δ, ϑ,K,β,β′, λ) Given X, Θ, β, β′, λ, there exist δ > 0, ϑ > 0,
K ≥ 0 such that the following inequality holds

ϑPH(β′ − β;λ) +
LΘ + δ

2
‖β′ − β‖22

≤ ‖X(β′ − β)‖22 + PΘ(β
′;λ) +KPΘ(β;λ).

(25)

Assumption S1(δ, ϑ,K,β,β′, λ) Given X, Θ, β, β′, λ, there exist δ > 0, ϑ > 0,
K ≥ 0 such that the following inequality holds

ϑPH(β′ − β;λ) +
LΘ + δ

2
‖β′ − β‖22 + PΘ(β;λ)

≤ ‖X(β′ − β)‖22 + PΘ(β
′;λ) +Kλ2J(β).

(26)

(25) and (26) require a bit more than (15) and (18), respectively, due to
‖X‖2 ≤ 1. The theorem and the corollary below perform sequential analysis of
the iterates and reveal the explicit roles of δ, ϑ,K (which can often be treated
as constants).

Theorem 5. Suppose S0(δ, ϑ,K,β∗,β(t), λ) is satisfied for some δ > 0, ϑ > 0,
K ≥ 0, then for λ = Aσ

√
log(ep)/

√
(δ ∧ ϑ)ϑ with A sufficiently large, the

following error bound holds with probability at least 1− Cp−cA2

:

1 + δ

2
‖β(t+1) − β∗‖2(I−XTX) ≤

1

2
‖β(t) − β∗‖2(I−XTX) + (K + 1)PΘ(β

∗;λ),

(27)

where C, c are universal positive constants.
Similarly, under the same choice of regularity parameter, if S1(δ, ϑ,K,β∗,

β(t), λ) is satisfied for some δ > 0, ϑ > 0, K ≥ 0, (28) is true with probability

at least 1− Cp−cA2

:

1 + δ

2
‖β(t+1) − β∗‖2(I−XTX) ≤

1

2
‖β(t) − β∗‖2(I−XTX) +Kλ2J∗. (28)
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Corollary 3. In the setting of Theorem 5, for any initial point β(0) ∈ R
p, we

have

‖β(t) − β∗‖2(I−XTX) ≤ κt‖β(0) − β∗‖2(I−XTX) +
κ

1− κ
K ′PΘ(β

∗;λ), (29)

‖β(t) − β∗‖2(I−XTX) ≤ κt‖β(0) − β∗‖2(I−XTX) +
κ

1− κ
K ′′λ2J∗, (30)

under S0(δ, ϑ,K,β∗,β(s), λ) and S1(δ, ϑ,K,β∗,β(s), λ), 0 ≤ s ≤ t − 1, respec-

tively, with probability at least 1−Cp−cA2

. Here, κ = 1/(1+ δ), K ′ = 2(K+1),
K ′′ = 2K.

Remark 5. We can get some sufficient conditions for S0 and S1, similar to the
discussions made in Section 3.2. When ‖X‖2 is strictly less than 1, (25) can be
relaxed to ϑPH(β′ − β;λ) + (LΘ + δ)‖β′ − β‖22/2 ≤ (2 + δ)‖X(β′ − β)‖22/2 +
PΘ(β

′;λ) + KPΘ(β;λ) for some δ > 0. The proof in Section 4.4 also gives
expectation-form results, with an additional additive term Cσ2/(δ ∧ ϑ) in the
upper bounds. Similar to Remark 4, we can also study Θ-iterates with stepsize
α, in which case the weighting matrix in (27)-(30) changes from I − XTX
to I/α − XTX, and the factor (LΘ + δ)/2 in (25) and (26) is replaced by
(LΘ + δ)/(2α).

Remark 6. Theorem 5 still applies when δ, ϑ,K and λ are dependent on t. For
example, if we use a varying threshold sequence, i.e., β(t+1) = Θ(β(t) +XTy−
XTXβ(t);λ(t)), then (30) becomes

‖β(t) − β∗‖2(I−XTX) ≤ κt‖β(0) − β∗‖2(I−XTX) +K ′′J∗
t−1∑
s=0

κt−sλ2
s.

This allows for much larger values of λs to be used in earlier iterations to attain
the same accuracy. It relaxes the regularity condition required by applying a
fixed threshold level.

At the end, we re-state some results under ρ > ‖X‖2, to get more intuition
and implications. For a general X (unscaled), (30) reads

‖β(t) − β∗‖2(ρ2I−XTX) ≤ κt‖β(0) − β∗‖2(ρ2I−XTX) +
κ

1− κ
K ′′σ2λ2J∗.

Set ρ to be a number slightly larger than ‖X‖2, i.e., ρ = (1 + ε)‖X‖2, ε > 0.

Then, we know that the prediction error ‖Xβ(t)−Xβ∗‖22 decays geometrically
fast to O(σ2J∗ log(ep)) with high probability, when ε, δ, ϑ, K are viewed as
constants; a similar conclusion is true for the estimation error. This is simply
due to

ρ2 − ‖X‖22
‖X‖22

‖β(t)−β∗‖2XTX ≤ (ρ2−‖X‖22)‖β(t)−β∗‖22 ≤ ‖β(t)−β∗‖2(ρ2I−XTX).

Accordingly, there is no need to run TISP till convergence—one can terminate
the algorithm earlier, at, say, tmax = log{ρ2‖β(0)−β∗‖2/(Kσ2λ2J∗)} /log(1/κ),
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without sacrificing much statistical accuracy. The formula also reflects that the
quality of the initial point affects the required iteration number.

There are some related results in the literature. (i) As mentioned previously,
in a broad convex setting [1] proved the geometric decay of the optimization

error ‖β(t) − β̂‖ to the desired statistical precision, where β̂ is the convergent
point. [8] extended the conclusion to a family of nononvex optimization prob-
lems, and they showed that when some regularity conditions hold, every local
minimum point is close to the authentic β∗. In comparison, our results are de-
rived toward the statistical error between β(t) and β∗ directly, without requiring
all local minimum points to be statistically accurate. (ii) [21] showed a similar
fast-converging statistical error bound for an elegant multi-stage capped-�1 reg-
ularization procedure. However, the procedure carries out an expensive �1 op-
timization at each step. Instead, (10) involves a simple and cheap thresholding,
and our analysis covers any Θ.

4. Proofs

Throughout the proofs, we use C, c, L to denote universal non-negative con-
stants. They are not necessarily the same at each occurrence. Given any matrix
A, we use R(A) to denote its column space. Denote by PA the orthogonal
projection matrix onto R(A), i.e., PA = A(ATA)+AT , where + stands for the
Moore-Penrose pseudoinverse. Let [p] := {1, · · · , p}. Given J ⊂ [p], we use XJ
to denote a column submatrix of X indexed by J .

Definition 2. ξ is called a sub-Gaussian random variable if there exist con-
stants C, c > 0 such that P{|ξ| ≥ t} ≤ Ce−ct2 , ∀t > 0. The scale (ψ2-norm)
for ξ is defined as σ(ξ) = inf{σ > 0 : E exp(ξ2/σ2) ≤ 2}. ξ ∈ R

p is called
a sub-Gaussian random vector with scale bounded by σ if all one-dimensional
marginals 〈ξ,α〉 are sub-Gaussian satisfying ‖〈ξ,α〉‖ψ2 ≤ σ‖α‖2, ∀α ∈ Rp.

Examples include Gaussian random variables and bounded random variables
such as Bernoulli. Note that the assumption that vec (ε) is sub-Gaussian does
not imply that the components of ε must be i.i.d.

We begin with two basic facts. Because they are special cases of Lemma 1
and Lemma 2 in [13], respectively, we state them without proofs.

Lemma 1. Given an arbitrary thresholding rule Θ, let P be any function sat-

isfying P (θ;λ) − P (0;λ) = PΘ(θ;λ) + q(θ;λ) where PΘ(θ;λ) �
∫ |θ|
0

(sup{s :
Θ(s;λ) ≤ u} − u) du, q(θ;λ) is nonnegative and q(Θ(t;λ)) = 0 for all t. Then,

β̂ = Θ(y;λ) is always a globally optimal solution to minβ
1
2‖y− β‖22 +P (|β|;λ).

It is the unique optimal solution provided Θ(·;λ) is continuous at |y|.

Lemma 2. Let Q0(β) = ‖y − β‖22/2 + PΘ(|β|;λ). Denote by β̂ the unique

minimizer of Q0(β). Then for any δ, Q0(β̂ + δ)−Q0(β̂) ≥ (1− LΘ)‖δ‖22/2.
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4.1. Proof of Theorem 1

Let s(u;λ) := Θ−1(u;λ)−u for u ≥ 0. Assume β̂ is a local minimum point (the
proof for a coordinate-wise minimum point follows the same lines). We write fΘ
as f for simplicity. Let δf(β;h) denote the Gateaux differential of f at β with

increment h: δf(β;h) = limε→0+
f(β+εh)−f(β)

ε . By the definition of PΘ, δf(β,h)
exists for any h ∈ R

p. Let l(β) = 1
2‖Xβ − y‖22. We consider the following

directional vectors: dj = [d1, · · · , dp]T with dj = ±1 and dj′ = 0, ∀j′ 
= j. Then
for any j,

δl(β;dj) = djx
T
j (Xβ − y), (31)

δPΘ(β;dj) =

{
s(|βj |)sgn(βj)dj , if βj 
= 0,

s(|βj |), if βj = 0.
(32)

Due to the local optimality of β̂, δf(β̂;dj) ≥ 0, ∀j. When β̂1 
= 0, we obtain

xT
1 (Xβ̂−y)+s(|β̂1|;λ)sgn(β̂1) = 0. When β̂1 = 0, xT

1 (Xβ̂−y)+s(|β̂1|;λ) ≥ 0

and −xT
1 (Xβ̂−y)+ s(|β̂1|;λ) ≥ 0, i.e., |xT

1 (Xβ̂−y)| ≤ s(|β̂1|;λ) = Θ−1(0;λ).
To summarize, when f achieves a local minimum or a coordinate-wise minimum
(or more generally, a local coordinate-wise minimum) at β̂, we have

β̂j 
= 0 ⇒ Θ−1(|β̂j |;λ)sgn(β̂j) = β̂j − xT
j (Xβ̂ − y) (33)

β̂j = 0 ⇒ Θ(xT
j (Xβ − y);λ) = 0 (34)

When Θ is continuous at β̂j − xT
j (Xβ̂ − y), (33) implies that β̂j = Θ(β̂j −

xT
j (Xβ̂− y);λ). Hence β̂ must be a Θ-estimator satisfying β = Θ(β+XTy−

XTXβ;λ).

4.2. Proofs of Theorem 2 and Theorem 3

Given Θ, let β̂ be any Θ-estimator, β be any p-dimensional vector (non-random)

and Δ = β̂ − β. The first result constructs a useful criterion for β̂ on basis of
Lemma 1 and Lemma 2.

Lemma 3. Any Θ-estimator β̂ satisfies the following inequality for any β ∈ R
p

1

2
‖X(β̂ − β∗)‖22 +

1

2
ΔT (XTX − LΘI)Δ

≤ 1

2
‖X(β − β∗)‖22 + PΘ(β;λ)− PΘ(β̂;λ) + 〈ε,XΔ〉,

(35)

where Δ = β̂ − β.

To handle 〈ε,XΔ〉, we introduce another lemma.
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Lemma 4. Suppose ‖X‖2 ≤ 1 and let λo = σ
√

log(ep). Then there exist
universal constants A1, C, c > 0 such that for any constants a ≥ 2b > 0, the
following event

sup
β∈Rp

{2〈ε,Xβ〉 − 1

a
‖Xβ‖22 −

1

b
[PH(β;

√
abA1λ

o)]} ≥ aσ2t (36)

occurs with probability at most C exp(−ct)p−cA2
1 , where t ≥ 0.

The lemma plays an important role in bounding the last stochastic term in
(35). Its proof is based on the following results.

Lemma 5. Suppose ‖X‖2 ≤ 1. There exists a globally optimal solution βo to
minβ

1
2‖y −Xβ‖22 + PH(β;λ) such that for any j : 1 ≤ j ≤ p, either βo

j = 0 or
|βo

j | ≥ λ.

Lemma 6. Given X ∈ R
n×p and J : 1 ≤ J ≤ p, define Γ′

J = {α ∈ R
p : ‖α‖2 ≤

1,α ∈ R(XJ ) for some J : |J | = J}. Let P ′
o(J) = σ2{J + log

(
p
J

)
}. Then for

any t ≥ 0,

P

(
sup
α∈Γ′

J

〈ε,α〉 ≥ tσ +
√

LP ′
o(J)

)
≤ C exp(−ct2), (37)

where L,C, c > 0 are universal constants.

Let R = sup1≤J≤p supΔ∈ΓJ
{〈ε,XΔ〉 − 1

2bPH(Δ;
√
abA1λ

o) − 1
2a‖XΔ‖22},

with λo, A1 given in Lemma 4. (The starting value of J is 1 because when
J(Δ) = 0, 〈ε,XΔ〉 = 0.) Substituting it into (35) gives

1

2
‖X(β̂ − β∗)‖22 +

1

2
ΔT (2XTX − LΘI)Δ

≤1

2
‖X(β − β∗)‖22 + PΘ(β;λ)− PΘ(β̂;λ) +

1

2b
PH(Δ;

√
abA1λ

o)

+
1

2a
‖XΔ‖22 +

1

2
‖XΔ‖22 +R

≤1

2
‖X(β − β∗)‖22 + PΘ(β;λ)− PΘ(β̂;λ) +

1

2b
PH(Δ;

√
abA1λ

o)

+
1

2
(1 +

1

a
)‖XΔ‖22 +R.

Because P(R ≥ aσ2t) ≤ C exp(−ct), we know E[R] � aσ2.
Let λ = Aλo with A = A1

√
ab and set b ≥ 1/(2ϑ). The regularity condition

R0(δ, ϑ,K,β, λ) implies that

1

2b
PH(Δ;λ) +

LΘ

2
‖Δ‖22 ≤ 2− δ

2
‖XΔ‖22 + PΘ(β̂;λ) +KPΘ(β;λ). (38)

Choose a to satisfy a > 1/δ, a ≥ 2b. Combining the last two inequalities gives

E[‖X(β̂ − β∗)‖22]



On the finite-sample analysis of Θ-estimators 1889

≤‖X(β − β∗)‖22 + 2(K + 1)PΘ(β;λ) + E[(1 +
1

a
− δ)‖XΔ‖22] + 2E[R]

�‖X(β − β∗)‖22 + PΘ(β;λ) + σ2, (39)

with the last inequality due to ‖XΔ‖22 ≤ (1+1/c)‖X(β−β∗)‖22+(1+c)‖X(β̂−
β∗)‖22 for any c > 0.

The proof of Theorem 3 follows the lines of the proof of Theorem 2, with (38)
replaced by

1

2b
PH(Δ;λ) +

LΘ

2
‖Δ‖22 + PΘ(β;λ) ≤

2− δ

2
‖XΔ‖22 + PΘ(β̂;λ) +Kλ2J(β),

and (39) replaced by

E[‖X(β̂ − β∗)‖22]

≤‖X(β − β∗)‖22 + 2Kλ2J(β) + E[(1 +
1

a
− δ)‖XΔ‖22] + 2E[R]

�‖X(β − β∗)‖22 + λ2J(β) + σ2.

The details are omitted.

4.3. Proof of Theorem 4

From the proof of Lemma 5, there exists a Θ-estimator β̂ which minimizes
f(β) = l(β) + PΘ(β;λ). This means that the term 1

2Δ
T (XTX − LΘI)Δ can

be dropped from (35). Following the lines of Section 4.2, (17) holds under a
modified version of R0(δ, ϑ,K,β, λ), which replaces (15) with

ϑPH(β′ − β;λ) ≤ 1− δ

2
‖X(β′ − β)‖22 + PΘ(β

′;λ) +KPΘ(β;λ). (40)

Using the sub-additivity of PH , we know that any design matrix satisfies (40)
for any 0 < ϑ ≤ 1, δ ≤ 1, K ≥ ϑ.

4.4. Proof of Theorem 5 and Corollary 3

Let f(β) = l(β) + PΘ(β;λ) where l(β) = 1
2‖Xβ − y‖22.

Lemma 7. Let β(t+1) = Θ(β(t) + XTy − XTXβ(t);λ). Then the following
‘triangle inequality’ holds for any β ∈ R

p

1− LΘ

2
‖β(t+1) − β‖22 +

1

2
‖β(t+1) − β(t)‖2I−XTX

≤ 1

2
‖β(t) − β‖2I−XTX + f(β)− f(β(t+1)).
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Letting β = β∗ in the lemma, we have

1

2
‖β(t+1) − β∗‖2XTX+(1−LΘ)I +

1

2
‖β(t+1) − β(t)‖2I−XTX + PΘ(β

(t+1);λ)

≤1

2
‖β(t) − β∗‖2I−XTX + 〈ε,X(β(t+1) − β∗)〉+ PΘ(β

∗;λ).

Moreover, under S0(δ, ϑ,K,β∗,β′, λ) with β′ = β(t+1),

ϑPH(β(t+1) − β∗;λ) +
1 + δ

2
‖β(t+1) − β∗‖22 −KPΘ(β

∗;λ)

≤1

2
‖β(t+1) − β∗‖2XTX+(1−LΘ)I + PΘ(β

(t+1);λ) +
1

2
‖β(t+1) − β∗‖2XTX .

Combining the last two inequalities gives

1 + δ

2
‖β(t+1) − β∗‖2I−XTX +

1

2
‖β(t+1) − β(t)‖2I−XTX

+
δ

2
‖β(t+1) − β∗‖2XTX + ϑPH(β(t+1) − β∗;λ)

≤1

2
‖β(t) − β∗‖2I−XTX + (K + 1)PΘ(β

∗;λ) + 〈ε,X(β(t+1) − β∗)〉.

Let ΓJ = {β ∈ R
p : J(β) = J}, λo = σ

√
log(ep). We define an event E with

its complement given by

Ec � {sup
β

{2〈ε,Xβ〉 − 1

a
‖Xβ‖22 −

1

b
[PH(β;

√
abA1λ

o)]} ≥ 0}.

By Lemma 4, there exists a universal constant L such that for any A2
1 ≥ L,

a ≥ 2b > 0, P (Ec) ≤ Cp−cA2
1 . Clearly, E implies

〈ε,X(β(t+1) − β∗)〉 ≤ 1

2a
‖β(t+1) − β∗‖2XTX +

1

2b
PH(β(t+1) − β∗;

√
abA1λ

o).

(41)

Take b = 1/(2ϑ), a = 1/(δ ∧ϑ), A1 ≥
√
L, and λ = A1

√
abλo. Then, on E we

get the desired statistical accuracy bound

1 + δ

2
‖β(t+1) − β∗‖2I−XTX ≤ 1

2
‖β(t) − β∗‖2I−XTX + (K + 1)PΘ(β

∗;λ).

The bound under S1 can be similarly proved. Noticing that (41) holds for
any t, Corollary 3 is immediately true.

4.5. Proofs of Lemmas

4.5.1. Proof of Lemma 3

Let f(β) = l(β) + PΘ(β;λ) with l(β) = 1
2‖Xβ − y‖22. Define

g(β,γ) = l(β) + 〈∇l(β),γ − β〉+ 1

2
‖γ − β‖22 + PΘ(γ;λ). (42)
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Given β, g(β,γ) can be expressed as

1

2
‖γ − (β −∇l(β))‖22 + PΘ(γ;λ) + c(β),

where c(β) depends on β only.

Let β̂ be a Θ-estimator satisfying β̂ = Θ(β̂ −XTXβ̂ +XTy;λ). Based on
Lemma 1 and Lemma 2, we have

g(β̂, β̂ +Δ)− g(β̂, β̂) ≥ 1− LΘ

2
‖Δ‖22,

from which it follows that

f(β̂ +Δ)− f(β̂) ≥ 1

2
ΔT (XTX − LΘI)Δ.

This holds for any Δ ∈ R
p.

4.5.2. Proof of Lemma 4.

Let

lH(β) = 2〈ε,Xβ〉 − 1

a
‖Xβ‖22 −

1

b
[PH(β;

√
abA0λ

o)]

l0(β) = 2〈ε,Xβ〉 − 1

a
‖Xβ‖22 −

1

b
[P0(β;

√
abA0λ

o)],

and EH = {supβ∈Rp lH(β) ≥ atσ2}, and E0 = {supβ∈Rp l0(β) ≥ atσ2}. Because
P0 ≥ PH , E0 ⊂ EH . We prove that EH = E0. The occurrence of EH implies that
lH(βo) ≥ atσ2 for any βo defined by

βo ∈ argmin
β

1

a
‖Xβ‖22 − 2〈ε,Xβ〉+ 1

b
[PH(β;

√
abA0λ

o)],

With a ≥ 2b > 0, Lemma 5 states that there exists at least one global minimizer
βoo satisfying PH(βoo;

√
abA1λ

o) = P0(β
oo;

√
abA1λ

o) and thus lH(βoo) =
l0(β

oo). This means that sup l0(β) ≥ l0(β
oo) = lH(βoo) ≥ atσ2. So EH ⊂ E0,

and it suffices to prove Ec
0 occurs with high probability, or more specifically,

P(E0) ≤ C exp(−ct)p−cA2
1 .

Given 1 ≤ J ≤ p, define ΓJ = {β ∈ R
p : J(β) = J}. Let R =

sup1≤J≤p supβ∈ΓJ
{〈ε,Xβ〉− 1

2bP0(β;
√
abA1λ

o)− 1
2a‖Xβ‖22}. We will use Lem-

ma 6 to bound its tail probability.

Let P ′
o(J) = σ2{J + log

(
p
J

)
}. We claim that

P[ sup
β∈ΓJ

{〈ε,Xβ〉 − 1

2a
‖Xβ‖22 − aLP ′

o(J)} > atσ2] ≤ C exp(−ct). (43)
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Indeed,

2〈ε,Xβ〉 − 1

a
‖Xβ‖22 − 2aLP ′

o(J)

≤2〈ε,Xβ/‖Xβ‖2〉‖Xβ‖2 − 2‖Xβ‖2
√

LP ′
o(J)−

1

2a
‖Xβ‖22

=2‖Xβ‖2
(
〈ε,Xβ/‖Xβ‖2〉 −

√
LP ′

o(J)
)
− 1

2a
‖Xβ‖22

≤2‖Xβ‖2
(
〈ε,Xβ/‖Xβ‖2〉 −

√
LP ′

o(J)
)
+
− 1

2a
‖Xβ‖22

≤2a
(
〈ε,Xβ/‖Xβ‖2〉 −

√
LP ′

o(J)
)2

+
,

(44)

where the last inequality is due to Cauchy-Schwarz inequality. (43) now follows
from Lemma 6.

Set A1 ≥ 4
√
L. We write P0(β;λ

o) with β ∈ ΓJ as P0(J ;λ
o). Noticing

some basic facts that (i) P ′
o(J) ≤ CJ log(ep) ≤ CP0(J ;λ

o) due to Stirling’s
approximation, (ii)

√
(A2

1/2)P0(J ;λo) ≥
√
LP ′

o(J) +
√
cA2

1P0(J ;λo) for some
c > 0, and (iii) J log(ep) ≥ log p+ J for any J ≥ 1, we get

P(R ≥ aσ2t)

≤
p∑

J=1

P

(
a sup
β∈ΓJ

(
〈ε,Xβ/‖Xβ‖2〉 −

√
(A2

1/2)P0(J ;λo)

)2

+

≥ aσ2t

)

=

p∑
J=1

P( sup
α∈Γ′

J

〈ε,α〉 −
√

(A2
1/2)P0(J ;λo) ≥ σ

√
t)

≤
p∑

J=1

P( sup
α∈Γ′

J

〈ε,α〉 −
√

LP ′
o(J) ≥

√
tσ +

√
cA2

1P0(J ;λo))

≤
p∑

J=1

C exp(−ct) exp{−cA2
1(J + log(p))}

≤C exp(−ct)

p∑
J=1

exp(−cA2
1 log p) exp(−cA2

1J)

≤C exp(−ct)p−cA2
1 ,

where the last inequality due to the sum of geometric series.

4.5.3. Proof of Lemma 5.

Similar to the proof of Lemma 3, we set fH(β) = l(β) + PH(β;λ) with l(β) =
1
2‖Xβ − y‖22 and construct gH(β,γ) = fH(γ) + 1

2‖γ − β‖22 − (l(γ) − l(β) −
〈∇l(β),γ − β〉). Under ‖X‖2 ≤ 1, for any (β,γ),

gH(β,γ)− fH(γ) =
1

2
(γ − β)T (I −XTX)(γ − β) ≥ 0.
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Let βo be a globally optimal solution to minβ fH(β). Then γo := ΘH(βo −
XTXβo +XTy;λ) gives

fH(γo) ≤ gH(βo,γo) ≤ gH(βo,βo) = fH(βo),

with the second inequality due to Lemma 1. Therefore, γo must also be a global
minimizer of fH , and by definition, γo demonstrates a threshold gap as desired.

4.5.4. Proof of Lemma 6.

By definition, {〈ε,α〉 : α ∈ Γ′
J} is a stochastic process with sub-Gaussian

increments. The induced metric on Γ′
J is Euclidean: d(α1,α2) = σ‖α1 −α2‖2.

To bound the metric entropy logN (ε,Γ′
J , d), whereN (ε,Γ′

J , d) is the smallest
cardinality of an ε-net that covers Γ′

J under d, we notice that α is in a J-
dimensional ball in R

p. The number of such balls {PXJ ∩Bp(0, 1) : J ⊂ [p]} is
at most

(
p
J

)
, where Bp(0, 1) denotes the unit ball in R

p. By a standard volume
argument (see, e.g., [17]),

logN (ε,Γ′
r,J , d) ≤ log

(
p

J

)
(
Cσ

ε
)J = log

(
p

J

)
+ J log(Cσ/ε), (45)

where C is a universal constant. The conclusion follows from Dudley’s integral
bound [15].

4.5.5. Proof of Lemma 7

We use the notation in the proof of Lemma 3 with g defined in (42). By Lemma

1 and Lemma 2, we obtain g(β(t),β) − g(β(t),β(t+1)) ≥ 1−LΘ

2 ‖β(t+1) − β‖22,
namely,

〈∇l(β(t)),β − β(t+1)〉+ PΘ(β)− PΘ(β
(t+1)) +

1

2
‖β − β(t)‖22

−1

2
‖β(t) − β(t+1)‖22 ≥ 1− LΘ

2
‖β(t+1) − β‖22.

To cancel the first-order term, we give two other inequalities based on second-
order lower/upper bounds:

l(β)− l(β(t))− 〈∇l(β(t)),β − β(t)〉 ≥ 1

2
‖β(t) − β‖2XTX ,

l(β(t)) + 〈∇l(β(t)),β(t+1) − β(t)〉 − l(β(t+1)) ≥ −1

2
‖β(t+1) − β(t)‖2XTX .

Adding the three inequalities together gives the triangle inequality.
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