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Abstract: By virtue of long-memory time series, it is illustrated in this pa-
per that white noise calculus can be used to handle subtle issues of stochas-
tic integral convergence that often arise in the asymptotic theory of time
series. A main difficulty of such an issue is that the limiting stochastic inte-
gral cannot be defined path-wise in general. As a result, continuous mapping
theorem cannot be directly applied to deduce the convergence of stochas-
tic integrals

∫ 1
0 Hn(s) dZn(s) to

∫ 1
0 H(s) dZ(s) based on the convergence of

(Hn, Zn) to (H,Z) in distribution. The white noise calculus, in particular
the technique of S-transform, allows one to establish the asymptotic results
directly.
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1. Introduction

Stochastic integrals are widely used in the asymptotic theories of time series
problems. For example, functionals of Brownian motion are employed in [5] to
derive the asymptotic distributions of the least squares estimates of the autore-
gressive processes in the presence of unit roots. To test the long-memoryness of
a non-stationary time series, [9] extend the results of [7] and develop a fractional
Dickey-Fuller test that is based on stochastic integrals involving both Brownian
motions and fractional Brownian motions. Functionals of fractional Brownian

2035

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1070
mailto:easterlyng@gmail.com
mailto:nhchan@sta.cuhk.edu.hk


2036 C. T. Ng and N. H. Chan

motion are also considered in [26] in the unit-root problems. In [4], the frac-
tional Dickey-Fuller statistic is modified to test the fractional cointegration of
multivariate non-stationary time series. See [3, 8, 25] and [27] for other existing
results of the fractional cointegration. The convergence to stochastic integral is
essential to all these asymptotic theories.

Theory of stochastic integral is summarized in [17, 24], and [10]. In particular,
[10] provides a general framework so that stochastic integrals can even be defined
over a Lie-group. This enhances many applications in physics. However, the
stochastic integral convergence is mainly used in the construction of stochastic
integrals. For example, in Section 2.3 of [10], the convergence theory is developed
to approximate the rough paths of integrand and integrator by smooth paths.
Convergence theory is also needed to define stochastic integrals in Ito’s sense and
in Stratonovich’s sense. Going beyond the construction problem of stochastic
integrals, it is unclear if such convergence theories can be applied directly to
establish asymptotic results in statistics.

The general theory of stochastic integral convergence is discussed in [20].
Subsequent works include [12] and [6], giving the theoretical foundations of the
unit-root test method proposed in [9]. It is worth noting that the convergence
results of [20] are established under certain conditions that require justifications.
In this paper, questions are raised related to the use of continuous mapping
theorem and functional central limit theorem in the above-mentioned works. To
circumvent such difficulties, an alternative approach that based on the white
noise calculus is considered in this paper. In particular, the technique of S-
transform is used. For the details of the white noise calculus, one may refer to
[13, 19, 18, 14], and [15].

To illustrate the ideas, the fractional Dickey-Fuller test statistic in [9] is revis-
ited in particular. The asymptotic results of the fractional Dickey-Fuller statistic
can be generalized to test the fractional cointegration of bivariate time series.
It is a future research direction to explore further applications of white noise
calculus in statistics involving higher dimensional data. Let Xn1, Xn2, . . . , Xnn

be the observed time series. Suppose that Xni =
∑i

j=1 εnj , for i = 1, 2, . . . ,
where εn1, εn2, . . . , εnn are independent and identically distributed random vari-
ables with distribution function F (·) , zero mean, unit variance, and finite fourth

moment. Let d ∈ [0, 1) . Define ΔdXni =
∑i−1

j=0 πj(d)Xn,i−j , where πj(d) are

the coefficients in the Taylor series of (1− z)d . The following test statistics are
used in [9],

φ̂ols =

∑n
i=2 ΔXniΔ

dXn,i−1∑n
i=2(Δ

dXn,i−1)2
, (1.1)

S2
T = n−1

n∑
i=2

(ΔXni − φ̂olsΔ
dXn,i−1)

2 , (1.2)

tφ̂ols
=

∑n
i=2 ΔXniΔ

dXn,i−1

ST (
∑n

i=2(Δ
dXn,i−1)2)

1/2
. (1.3)
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The asymptotic distributions of (1.1)–(1.3) are taken as examples in this paper
to demonstrate the application of S-transform in asymptotic theory. In the case
d ∈ (1/2, 1) , the sequence ΔdXn,i−1 can be approximated by a stationary time
series. Therefore, the denominators in (1.1) and (1.3) can be handled using
ergodic theorem. Moreover, the numerators can be approximated by a Normal
distribution according to the martingale central limit theorem. The difficult
part lies in dealing with the case d ∈ [0, 1/2) . The following theorem will be
established.

Theorem 1.1. (See [9]) Suppose that d ∈ [0, 1/2) . Let

U (1)
n =

n∑
i=2

ΔXniΔ
dXn,i−1 , (1.4)

U (2)
n =

n∑
i=2

(ΔdXn,i−1)
2 , (1.5)

U (3)
n =

n∑
i=2

(ΔXn,i−1)
2 , (1.6)

U (1) =
1

(1− 2d)1/2Γ(1− d)

∫ 1

0

Wd(t) dB(t) , (1.7)

U (2) =
1

(1− 2d)Γ2(1− d)

∫ 1

0

W 2
d (t) dt , (1.8)

U (3) = 1 , (1.9)

where B(t) is a standard Brownian motion and Wd(t) is the Type II fractional
Brownian motion,

Wd(t) = (1− 2d)1/2
∫ t

0

(t− s)−d dB(s) , for t ≥ 0 ,

see [22] and [9]. Then

(n−(1−d)U (1)
n , n−2(1−d)U (2)

n , n−1U (3)
n )

converges in distribution to (U (1), U (2), U (3)) .

In Section 2, the concepts in white-noise calculus useful to the stochastic inte-
gral convergence are discussed. In Section 3, white-noise calculus, in particular,
the technique of S-transform is used to furnish the proof of Theorem 1.1. In Sec-
tion 4, the extension of the results in Section 3 to the fractional cointegration
test is discussed. The technical lemmas are given in the Appendix.

2. Stochastic integral convergence: Theoretical background

In this section, we examine the feasibility of using (i) functional central limit
theorem and (ii) white-noise calculus to establish the convergence of stochastic
integrals. Let (Hn, Zn) , n = 1, 2, . . . be a sequence of cadlag stochastic processes
defined over probability measure spaces (Ωn,Fn, μn) .
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2.1. Functional central limit theorem approach

The stochastic integral convergence theory in [20] relies on the continuous map-
ping theorem and functional central limit theorem. By assuming that (Hn, Zn)
converges in distribution to some stochastic process (H,Z) under the Skorohod
topology of the cadlag function space D[0,∞) , [20] establish the convergence

of Jn =
∫ 1

0
Hn(s) dZn(s) in distribution to J =

∫ 1

0
H(s) dZ(s) using continuous

mapping theorem. Indeed, the convergence in distribution can be established if
the following hold:

(i) There exists a functional J operating on all (h, z) ∈ D2[0,∞) so that for
all ω ∈ Ωn, Jn(ω) = J (Hn(ω), Zn(ω)) and J(ω) = J (H(ω), Z(ω)) for all
ω ∈ Ω , and

(ii) the functional J is continuous in the Skorokhod topology at all points
(h, z) ∈ D2[0,∞).

It should be noted that in both (i) and (ii), the qualifier “all” is crucial.
It is not guaranteed that the continuous mapping theorem holds if “all” is
replaced by “almost surely” or “with probability going to one”. Observe that
the operator (h, z) �→ limΔ→0

∑
h(si)[z(ti+1 − ti)] cannot be defined for all

h ∈ D[0,∞) unless z(s) has finite variation, see [24]. Here Δ is the mesh size. It
is also a well-known fact that there exists z(s) with infinite variation in D[0,∞) .
Therefore, there are “holes” in the functional. To overcome such a difficulty, [20]
consider an operation Iδ(h) that approximates h by stepwise function, where
δ > 0 is chosen arbitrarily small. Though results of the continuity of Iδ under
the Skorokhod topology for each δ has been obtained in their Lemma 6.1, such
continuity is only guaranteed almost surely. The continuity of the functional

(h, z) �→
∫ 1

0
(Iδ(h))(s) dz(s) entails Lemma 6.1, equations (1.12), and (1.13) in

[20] and therefore holds only almost surely.

2.2. White noise calculus approach

To circumvent the difficulties related to the use of continuous mapping theorem
and functional central limit theorem, an alternative approach that based on the
white noise calculus is considered in this paper. The crucial idea is that ran-
dom variables and stochastic process can be “characterized” by the so-called S-
transform that is deterministic, see [23] and [21]. That means that there is a one-
one correspondence between L2 random variables and their S-transforms. As a
result, limits and integrals can be defined indirectly through the S-transform.
If (Ωn,Fn, μn) and (Ω,F , μ) are all the same and are Gaussian measures, then
it is shown in [1] that the convergence of S-transform pointwise is equivalent
to the convergence in L2 . [23] also give similar results of equivalence, however,
the convergence is defined in a topology that is coarser than the L2 topology.
Therefore, the results of [1] is more relevant to the applications in statistics.

Let Xnt , t = 1, 2, . . . , n , n = 1, 2, 3, . . . be an array of random variables
such that (Xn1, Xn2, . . . , Xnn) is defined over probability spaces (Ωn,Fn, μn) .
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To establish the results of L2 convergence, new random variables X̃ni , i =
1, 2, . . . , n , n = 1, 2, 3, . . . are constructed over a common probability mea-
sure space (Ω,F , μ) such that (X̃n1, X̃n2, . . . , X̃nn) has the same distribution as
(Xn1, Xn2, . . . , Xnn) . Here, we maintain that establishing L2 convergence can be
simpler than establishing the convergence in distribution in certain situations.
However, L2 convergence requires that all random variables are defined over
the same probability space. Therefore, in this subsection, X̃ni , i = 1, 2, . . . , n ,
n = 1, 2, 3, . . . are constructed over a common probability space (Ω,F , μ) such
that (X̃n1, X̃n2, . . . , X̃nn) has the same law as (Xn1, Xn2, . . . , Xnn) . This allows
us to study the convergence in distribution indirectly through L2 convergence.

Suppose that (Ω,F , μ) is constructed so that B(t;ω) , t ∈ R is a standard
Brownian motion. The detailed methods of constructing (Ω,F , μ) can be found
in [17] and [14]. Equip (Ω,F , μ) with the filtration Ft generated by B(t) . To con-
struct (X̃n1, X̃n2, . . . , X̃nn) , consider the following Skorohod embedding scheme.
Let 0 = τn0 ≤ τn1 ≤ τn2 ≤ . . . ≤ τnn be the stopping times as prescribed on
p.516–518 of [2] so that ε̃ni = n1/2(Bτni −Bτn,i−1) has the same distribution as

εni , E(τni−τn,i−1) = n−1 , and E(τni−τn,i−1)
2 < 4n−2 .Define X̃ni =

∑i
j=1 ε̃nj .

The S-transform is applied to derive the asymptotic distribution of the statis-
tics (1.1)–(1.3). The definition of S-transform is given below.

Definition 2.1. Let S(R) be the Schwarz space, i.e. the space of rapidly de-
creasing functions on R . The S-transform of a random variable U ∈ L2 is
defined as the functional that maps η ∈ S(R) to

SU(η) = E

{
U exp

[∫
R

η(t) dB(t)− 1

2

∫
R

η2(t) dt

]}
.

Theorem 2.2 of [1] suggests that U ∈ L2 and the S-transform can be uniquely
determined by each other. Moreover, Theorem 2.3 of the same paper establishes
the equivalence between

1. E(Ũn − U)2 → 0 and
2. both EŨ2

n → EU2 and SŨn(η) → SU(η) for all η ∈ S(R) .

The S-transform of the stochastic integrals JB =
∫ 1

0
H(t) dB(t) and JL =∫ 1

0
H(t) dt can be obtained via

SJB(η) =
∫ 1

0

η(t)S(H(t))(η) dt ,

SJL(η) =
∫ 1

0

S(H(t))(η) dt . (2.1)

There are at least two merits of using the S-transform approach. The first one
is that for each η ∈ S(R) , both SŨn(η) and SU(η) are deterministic real-valued
scalars. This makes it easy to establish convergence results. The second one is
that joint convergence of (Ũn, Ṽn) in distribution to (U, V ) can be established
component by component. This is not true in general unless all variables are
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defined on the same probability space and the convergence is in the L2 sense.
If Ũn converges in L2 to U and Ṽn converges in L2 to V , Markov inequality
suggests that for any δ > 0 ,

P ((Ũn − U)2 + (Ṽn − V )2 > δ2) ≤ δ−2E((Ũn − U)2 + (Ṽn − V )2) → 0 .

Therefore the Euclidean distance between (Ũn, Ṽn) and (U, V ) goes to zero in
probability. Slutsky’s lemma suggests that (Ũn, Ṽn) = (U, V )+(Ũn−U, Ṽn−V )
converges in distribution to (U, V ) .

3. S-transform and fractional Dickey-Fuller statistic

In this section, the technique of S-transform described in Section 2 is used to
study the asymptotic behavior of fractional Dickey-Fuller statistic. Theorem 1.1
is a direct consequence of the following proposition.

Proposition 3.1. Let U (1) , U (2) , and U (3) be defined in (1.7), (1.8), and (1.9)
respectively and

Ũ (1)
n =

n∑
i=2

ΔX̃niΔ
dX̃n,i−1 ,

Ũ (2)
n =

n∑
i=2

(ΔdX̃n,i−1)
2 ,

Ũ (3)
n ) =

n∑
i=2

(ΔX̃n,i−1)
2 .

If d ∈ [0, 1/2) , then

(n−(1−d)Ũ (1)
n , n−2(1−d)Ũ (2)

n , n−1Ũ (3)
n )

converges in distribution to (U (1), U (2), U (3)) .

Remark 3.1. In Proposition 3.1, X̃ can further be replaced by X since
(X̃n1, X̃n2, . . . , X̃nn) has the same distribution as (Xn1, Xn2, . . . , Xnn) . Theo-
rem 1.1 then follows immediately.

New proof based on S-transform. Throughout the paper, the notation a∧ b and
a ∨ b refer to min{a, b} and max{a, b} respectively.

From the discussion following Definition 2.1, we see that the limiting distri-

bution of the triple (Ũ
(1)
n , Ũ

(2)
n , Ũ

(3)
n ) can be obtained component by component

provided that they all converge in L2 to random variables defined on the same
probability space. Throughout the proof, if no confusion is made, πi refers to
πi(d− 1) , i = 1, 2, . . . , n . The coefficients πj can be approximated by Stirling’s
formula as

πj(d− 1) =
Γ(j + 1− d)

j!Γ(1− d)
≈ j−d

Γ(1− d)
, (3.1)

see [16].
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Rewrite

Ũ (1)
n =

n∑
i=2

ε̃ni

i−2∑
j=0

πj ε̃n,i−j−1 , (3.2)

Ũ (2)
n =

n∑
i=2

i−2∑
j=0

π2
j ε̃

2
n,i−j−1 + 2

n∑
i=3

i−3∑
j=0

i−2∑
�=j+1

πjπ�ε̃n,i−j−1ε̃n,i−�−1

= Ũ (2,1)
n + 2Ũ (2,2)

n . (3.3)

The quantities Ṽ
(1)
n and Ṽ

(2)
n defined below will be used in the approximation

to Ũ
(1)
n (η) and Ũ

(2)
n (η) respectively,

Ṽ (1)
n = n

n∑
i=2

i−2∑
j=0

πj

[
B

(
i

n

)
−B

(
i− 1

n

)]
(3.4)

·
[
B

(
i− j − 1

n

)
−B

(
i− j − 2

n

)]
, (3.5)

Ṽ (2)
n =

n∑
i=2

i−2∑
j=0

π2
j

[
B

(
i− j − 1

n

)
−B

(
i− j − 2

n

)]2

+ 2

n∑
i=2

i−3∑
j=0

i−2∑
�=j+1

πjπ�

[
B

(
i− j − 1

n

)
−B

(
i− j − 2

n

)]

·
[
B

(
i− 	− 1

n

)
−B

(
i− 	− 2

n

)]
= Ṽ (2,1)

n + 2Ṽ (2,2)
n . (3.6)

Proof of (1.9). Clearly, from the law of large number, Ũ
(3)
n converges in proba-

bility to Eε2 .

Proof of (1.7). Lemma A.3 suggest that n−2(1−d)E[Ũ
(1)
n ]2 → E[U (1)]2 . Next,

we show that n−(1−d)SṼ (1)
n (η) → SŨ (1)(η) . The S-transform of Ṽ

(1)
n (η) can be

obtained using Lemma A.1 as follows,

SṼ (1)
n (η) = n exp

(
−1

2

∫
R

η2(t) dt

)
·

n∑
i=2

i−2∑
j=0

πjEexp

(∫ ∞

i/n

η(t) dB(t)

)

· E
{
exp

(∫ i/n

(i−1)/n

η(t) dB(t)

)
·
[
B

(
i

n

)
−B

(
i− 1

n

)]}

· E
{
exp

(∫ (i−1)/n

−∞
η(t) dB(t)

)
·
[
B

(
i− j − 1

n

)
−B

(
i− j − 2

n

)]}
.

= n

n∑
i=2

i−2∑
j=0

πj

∫ i/n

(i−1)/n

η(t) dt

∫ (i−j−1)/n

(i−j−2)/n

η(t) dt .
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Since all rapidly-decreasing functions are bounded, the integrals on the right-
hand side of the above expression are all O(n−1) . Using (3.1), standard argu-
ments can then be used to show that as n → ∞ ,

n−(1−d)SṼ (1)
n (η) → 1

Γ(1− d)

∫ 1

0

η(t)

∫ t

0

(t− s)−dη(s) ds . (3.7)

The integral on the right-hand side exists for d ∈ [0, 1/2) . To show that this
limit is the same as SU (1) , consider the formula (2.1) and Lemma A.1,

SU (1)(η) =
1

Γ(1− d)
exp

(
−1

2

∫
R

η2(t) dt

)

·
∫ 1

0

η(t)E

{
exp

(∫ ∞

−∞
η(s) dB(s)

)
·
∫ t

0

(t− s)−d dB(s)

}
dt

=
1

Γ(1− d)

∫ 1

0

η(t)

∫ t

0

(t− s)−dη(s) ds dt ,

which is the same as the limit (3.7).

Below, we show that the error S[Ũ (1)
n − Ṽ

(1)
n ](η) = o(n1−d) and therefore is

negligible. Define

Mn,k,j =
1

2
[B(τn,k+j)−B(τnk)]

2 − 1

2

j∑
�=1

[B(τn,k+�)−B(τn,k+�−1)]
2 , (3.8)

Nn,k,j =
1

2

[
B

(
k + j

n

)
−B

(
k

n

)]2

− 1

2

j∑
�=1

[
B

(
k + 	

n

)
−B

(
k + 	− 1

n

)]2
, (3.9)

Ln,k,j = S[Mn,k,j −Nn,k,j ](η) . (3.10)

In Lemma A.2, choose 0 < δ < 1 . Then,

Ln,k,j =
1

2
S
{[

B(τn,k+j)−B(τnk)

]2
−
[
B

(
k + j

n

)
−B

(
k

n

)]2

−
[
τn,k+j − τnk

]
+

j

n

}
(η)

− 1

2

j∑
�=1

S
{[

B(τn,k+�)−B(τn,k+�−1)

]2

−
[
B

(
k + 	

n

)
−B

(
k + 	− 1

n

)]2
−
[
τn,k+� − τn,k+�−1

]
+

1

n

}
(η)

= O([j/n](3−δ)/2 ∧ j1/2n−(2−δ)/2) +O(j[1/n](3−δ)/2 ∧ jn−(2−δ)/2)

= O([j/n](3−δ)/2 ∧ j1/2n−(2−δ)/2) . (3.11)
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Employing summation by parts,

Ũ (1)
n = n

n∑
i=2

πi−2B(τn,i−1) · [B(τni)−B(τn,i−1)]

− n

n∑
i=3

i−2∑
j=1

[B(τn,i−1)−B(τn,i−1−j)] · [B(τni)−B(τn,i−1)] · [πj − πj−1]

= nπn−2Mn,0,n − n

n∑
i=3

Mn,0,i−1 · [πi−2 − πi−3]

− n
n−2∑
k=1

Mn,k,n−k · [πn−k−1 − πn−k−2]

+ n

n−2∑
k=1

n−k−1∑
j=2

Mn,k,j · [πj − 2πj−1 + πj−2]

Similarly,

Ṽ (1)
n = nπn−2Nn,0,n − n

n−1∑
i=2

Nn,0,i · [πi−1 − πi−2]

− n
n−2∑
k=1

Nn,k,n−k · [πn−k−1 − πn−k−2]

+ n

n−2∑
k=1

n−k−1∑
j=2

Nn,k,j · [πj − 2πj−1 + πj−2] .

From (3.11), Ln,0,n ≤ O(n−(1−δ)/2) , Ln,0,i ≤ O(i1/2n−(2−δ)/2) , Ln,k,n−k ≤
O((n − k)1/2n−(2−δ)/2) , Ln,k,j ≤ O((j/n)(3−δ)/2) for j <

√
n , and Ln,k,j ≤

O(j1/2n−(2−δ)/2) for j ≥ √
n . Using Stirling’s formula (3.1) and the facts that

πj − πj−1 = O(j−d−1) and πj − 2πj−1 + πj−2 = O(j−d−2) , it can be checked

that if 0 < δ < 1 is chosen, nπn−2Ln,0,n , n
∑n−1

i=2 Ln,0,i · [πi−1 − πi−2] , and

n
∑n−2

k=1 Ln,k,n−k[πn−k−1 − πn−k−2] are all o(n1−d) . In addition, if 0 < δ <
1/2− d is chosen, then

n

n−2∑
k=1

n−k−1∑
j=2

Ln,k,j · [πj − 2πj−1 + πj−2]

= n

(
n−√

n−1∑
k=1

√
n−1∑
j=2

+

n−√
n−1∑

k=1

n−k−1∑
j=

√
n

+

n−2∑
k=n−√

n

n−k−1∑
j=2

)

Ln,k,j · [πj − 2πj−1 + πj−2]

≤ O

(
n(1+δ)/2

√
n∑

j=2

j−d−(1+δ)/2

)
+O

(
n(2+δ)/2

∞∑
j=

√
n

j−d−3/2

)
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+O

(
nδ/2

√
n∑

j=2

j−d−(1+δ)/2

)

= O(n−d/2+(3+δ)/4) +O(n−d/2+(3+2δ)/2) +O(n−d/2+(1−δ)/4)

= o(n1−d) .

Therefore, the error S[Ũ (1)
n − Ṽ

(1)
n ](η) is negligible.

Proof of (1.8). From Lemma A.3, n4(1−d)E[Ũ
(2)
n ]2 → E[U (2)]2 . Consider the

convergence of S-transform. Using Lemma A.1,

SṼ (2,1)
n (η) = n · exp

(
−1

2

∫
R

η2(t) dt

)
·

n∑
i=2

i−2∑
j=0

π2
j

E

{
exp

(∫
R

η(t) dB(t)

)
·
[
B

(
i− j − 1

n

)
−B

(
i− j − 2

n

)]2}

= n

n∑
i=2

i−2∑
j=0

π2
jE

{
1

n
+

(∫ (i−j−1)/n

(i−j−2)/n

η(t) dt

)2
}
.

Since rapidly-decreasing functions must be bounded, the terms |
∫ (i−j−1)/n

(i−j−2)/n
η(t)dt|

are uniformly bounded by O(n−1) quantities and therefore are negligible. Then,
the approximation formula (3.1) yields

n−2(1−d)SṼ (2,1)
n (η) → 1

Γ2(1− d)

∫ 1

0

∫ t

0

s−2d ds dt .

Similarly,

SṼ (2,2)
n (η)

= n · exp
(
−1

2

∫
R

η2(t) dt

)
·

n∑
i=2

i−2∑
j=1

i−2∑
�=j+1

πjπ�

· Eexp

(∫ ∞

(i−�−1)/n

η(t) dB(t)

)

· E
{
exp

(∫ (i−�−1)/n

(i−�−2)/n

η(t) dB(t)

)[
B

(
i− 	− 1

n

)
−B

(
i− 	− 2

n

)]2}

· E
{
exp

(∫ (i−�−2)/n

−∞
η(t) dB(t)

)

·
[
B

(
i− j − 1

n

)
−B

(
i− j − 2

n

)]2}
.

= n
n∑

i=2

i−2∑
j=1

i−2∑
�=j+1

πjπ� ·
(∫ (i−j−1)/n

(i−j−2)/n

η(t) dt

)
·
(∫ (i−�−1)/n

(i−�−2)/n

η(t) dt

)
.
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By virtue of the approximation formula (3.1) and symmetry of the function
s−du−dη(t− s)η(t− u), we have

n−2(1−d)SṼ (2,2)
n (η) → 1

Γ2(1− d)

∫ 1

0

∫ t

0

∫ t

s

s−du−dη(t− s)η(t− u) du ds dt

=
1

2Γ2(1− d)

∫ 1

0

(∫ t

0

(t− s)−dη(s) ds

)2

dt .

SU (2)(η) can be obtained using the formula (2.1) and Lemma A.1,

(1− 2d)−1S
{∫ 1

0

W 2
d (t) dB(t)

}
(η)

= exp

(
−1

2

∫
R

η2(t) dt

)

·
∫ 1

0

E

{
exp

(∫ ∞

−∞
η(s) dB(s)

)
·
(∫ t

0

(t− s)−d dB(s)

)2
}
dt

=

∫ 1

0

{(∫ t

0

(t− s)−dη(s) ds

)2

+

∫ t

0

(t− s)−2dds

}
dt .

It follows that SU (2)(η) is the same as limn→∞ SṼ (2)
n (η) .

Next, we show that the error

S[Ũ (2)
n − Ṽ (2)

n ](η) = [SŨ (2,1)
n (η)− SṼ (2,1)

n (η)] + 2[SŨ (2,2)
n (η)− SṼ (2,2)

n (η)]

is o(n2(1−d)) and therefore is negligible. Define the quadratic variation processes

Qni =

i∑
j=1

[B(τnj)−B(τn,j−1)]
2 ,

Rni =

i∑
j=1

[B(j/n)−B((j − 1)/n)]2 .

Then,

Ũ (2,1)
n = n

n−2∑
j=0

π2
jQn,n−j−1 .

Applying summation by parts,

Ũ (2,2)
n = n

n∑
i=3

πi−2

i−3∑
j=0

πjB(τn,i−j−2) · [B(τn,i−j−1)−B(τn,i−j−2)]

− n

n∑
i=3

i−4∑
j=0

i−2∑
�=j+2

πj [B(τn,i−j−2)−B(τn,i−�−1)]

· [B(τn,i−j−1)−B(τn,i−j−2)] · [π� − π�−1]
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= n

n∑
i=3

πi−2Mn,0,i−1 + n

n∑
i=3

πi−2

i−3∑
j=1

Mn,0,i−j−1 · [πj − πj−1]

− n

n∑
i=3

i−2∑
�=0

Mn,i−�−1,�−1 · [π� − π�−1]

− n

n∑
i=3

i−2∑
�=2

�−2∑
j=1

Mn,i−�−1,�−j−1 · [πj − πj−1] · [π� − π�−1] .

Similarly, using the notation defined in (3.8) to (3.10),

Ṽ (2,1)
n = n

n−2∑
j=0

π2
jRn−j−1

Ṽ (2,2)
n = n

n∑
i=3

πi−2Nn,0,i−1 + n

n∑
i=3

πi−2

i−3∑
j=1

Nn,0,i−j−1 · [πj − πj−1]

− n
n∑

i=3

i−2∑
�=0

Nn,i−�−1,�−1 · [π� − π�−1]

− n

n∑
i=3

i−2∑
�=2

�−2∑
j=1

Nn,i−�−1,�−j−1 · [πj − πj−1] · [π� − π�−1] .

Using Stirling’s formula (3.1) and Lemma A.2, if 0 < δ < 1 is chosen, then

S[Ũ (2,1)
n − Ṽ (2,1)

n ](η) ≈ n

n−2∑
j=0

j−2dS[Qn,n−j−1 −Rn,n−j−1](η)

= O(n(3+δ)/2−2d)

= o(n2−2d) .

From (3.11),

Ln,0,i−1 ≤ O(i1/2n−(2−δ)/2) ,

Ln,0,i−j−1 ≤ O(i1/2n−(2−δ)/2) ,

Ln,i−�−1,�−1 ≤ O(	1/2n−(2−δ)/2) ,

Ln,i−�−1,�−j−1 ≤ O(	1/2n−(2−δ)/2) .

In addition,
∑∞

j=1 j
−d−1 = O(1) . Consequently, if δ is chosen so that 0 < δ <

1− 2d , S[Ũ (2,2)
n − Ṽ

(2,2)
n ](η) = o(n2−2d) .

4. Beyond the fractional Dickey-Fuller unit root test

The application of Theorem 1.1 is not limited to the unit root test. In this
section, we illustrate that Theorem 1.1 can be used to establish the asymptotic
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theory of residual-based test for fractional cointegration for a bivariate time
series. The purpose of this section is to provide further examples of white noise
calculus for a bivariate time series.

Consider the following model. Let (Yn1, Zn1), (Yn2, Zn2), . . . , (Ynn, Znn) be
the observed time series and ϑn1, ϑn2, . . . , ϑnn and εn1, εn2, . . . , εnn are indepen-
dent and identically distributed random variables with zero mean, unit variance,
and finite fourth moment. Without loss of generality, assume that Var(εni) = 1 .
Suppose that Zni = Δ−d0ϑni and Yni = βZni+Xni , and Xni = Δ−d1εni , where
1/2 < d0 ≤ 1 and 0 ≤ d1 < d0−1/2 are unknown parameters. We are interested
in testing H0: (d0, d1) = (d∗0, d

∗
0) against H1: (d0, d1) = (d∗0, d

∗
1) . To construct

the test statistic, β can be estimated by either (i) regressing Δd∗
0Yni against

Δd∗
0Zni or (ii) regressing Yni against Zni . These two cases are considered in

subsections 4.1 and 4.2 respectively.

4.1. Regression with fractional differencing

Let

X̂ni = Yni − β̂Zni , (4.1)

β̂ =

∑n
i=1 Δ

d∗
0YniΔ

d∗
0Zni∑n

i=1(Δ
d∗
0Zni)2

, (4.2)

φ̂ =

∑n
i=2 Δ

d∗
0 X̂niΔ

d∗
1 X̂n,i−1∑n

i=2(Δ
d∗
1 X̂n,i−1)2

, (4.3)

S2
T = n−1

n∑
i=2

(Δd∗
0 X̂ni − φ̂olsΔ

d∗
1 X̂n,i−1)

2 , (4.4)

tφ̂ =

∑n
i=2 Δ

d∗
0 X̂niΔ

d∗
1 X̂n,i−1

ST

(∑n
i=2(Δ

d∗
1 X̂n,i−1)2

)1/2
. (4.5)

The special case d∗0 = 1 was considered in [4]. However, in view of the dis-
cussions given in Section 2.1, the asymptotic results were not completely satis-
factory as they were derived using the arguments of [9]. The following theorem
is now established rigorously.

Theorem 4.1. Let d = 1− d∗0 + d∗1 and

(U (1)
n , U (2)

n , U (3)
n )

=

( n∑
i=2

Δd∗
0 X̂niΔ

d∗
1 X̂n,i−1,

n∑
i=2

(Δd∗
1 X̂n,i−1)

2,

n∑
i=2

(Δd∗
0 X̂n,i−1)

2

)
.

If 1/2 < d∗0 ≤ 1 and 0 ≤ d∗1 < d∗0−1/2 , then under the null hypothesis (d0, d1) =
(d∗0, d

∗
0) ,

(n−(1−d)U (1)
n , n−2(1−d)U (2)

n , n−1U (3)
n )

converges in distribution to (U (1), U (2), U (3)) , where U (1) , U (2) , and U (3) are
defined in (1.7), (1.8), and (1.9) respectively.
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Proof. Suppose that the null hypothesis (d0, d1) = (d∗0, d
∗
0) is true. Using the

fact that X̂ni = Xni − (β̂ − β)Zni ,

n∑
i=2

Δd∗
0 X̂niΔ

d∗
1 X̂n,i−1

=

n∑
i=2

Δd∗
0XniΔ

d∗
1Xn,i−1 − (β̂ − β)

n∑
i=2

Δd∗
0ZniΔ

d∗
1Xn,i−1

− (β̂ − β)
n∑

i=2

Δd∗
1XniΔ

d∗
0Zn,i−1 + (β̂ − β)2

n∑
i=2

Δd∗
0ZniΔ

d∗
1Zn,i−1 .

The first term can be rewritten as

n∑
i=2

Δ(Δ−1εni)Δ
d(Δ−1εn,i−1) .

Since Δ−1εni is an I(0) process, Theorem 1.1 suggests that the asymptotic
distribution (after normalization) is the same as that of U (1) . From Lemma A.3,
Δd∗

0 ẐniΔ
d∗
1 X̂n,i−1 , Δ

d∗
0 X̂niΔ

d∗
1 Ẑn,i−1 , and Δd∗

0 ẐniΔ
d∗
1 Ẑn,i−1 are all Op(n

1−d) .

To establish the convergence result of U
(1)
n , it suffices to show that β̂−β = op(1) .

Clearly, under the null hypothesis,

β̂ − β =

∑n
i=1 εniϑni∑n

i=1 ε
2
ni

= Op(n
−1/2) .

The results of U
(2)
n and U

(3)
n can be established similarly.

Remark. It is possible to generalize this theorem to higher dimensional time
series. The proofs, however, become substantially more technical and tedious,
and are not directly related to the main theme, white noise calculus, of this
paper. For this reason, such kind of generalizations will not be pursued in this
paper. They will be dealt with in a future research project under a different
context.

4.2. Regressing without Fractional Differencing

Let

X̂ni = Yni − β̂olsZni , (4.6)

β̂ols =

∑n
i=1 YniZni∑n

i=1 Z
2
ni

. (4.7)

For simplicity, suppose that ϑn1, ϑn2, . . . , ϑnn and εn1, εn2, . . . , εnn are indepen-
dent N(0, 1) random variables so that following simple embedding scheme can
be used. Let B(t) be a standard Brownian motion. Define ϑni = n1/2(B(i/n)−
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B((i−1)/n)) and εni = n1/2(B(1+i/n)−B(1+(i−1)/n)) , i = 1, 2, . . . , n . With
such random variables defined over the same probability space, S-transform can
be used to establish the following two propositions. The proofs are very similar
to that of Theorem 1.1 and are omitted here.

Proposition 4.1. Let d = 1− d∗0 and

UY Z
n =

n∑
i=2

YniZni , (4.8)

UZZ
n =

n∑
i=2

Z2
ni , (4.9)

UY Z =
1

(1− 2d)Γ2(1− d)

∫ 1

0

Wϑ
d (t)W

ε
d(t) dt , (4.10)

UZZ =
1

(1− 2d)Γ2(1− d)

∫ 1

0

[Wϑ
d (t)]

2 dt , (4.11)

where B(t) is a standard Brownian motion and Wϑ
d (t) and W ε

d(t) are the Type
II fractional Brownian motions,

Wϑ
d (t) = (1− 2d)1/2

∫ t

0

(t− s)−d dB(s) , for 0 ≤ t < 1 ,

W ε
d(t) = (1− 2d)1/2

∫ 1+t

1

(1 + t− s)−d dB(s) , for 0 ≤ t < 1 .

Then (n−2(1−d)UY Z
n , n−2(1−d)UZZ

n ) converges in distribution to (UY Z , UZZ) .

Proposition 4.2. Let d = 1− d∗0 + d∗1 and

U (1,XZ)
n =

n∑
i=2

Δd∗
1XniΔ

d∗
0Zn,i−1 , (4.12)

U (2,XZ)
n =

n∑
i=2

Δd∗
1Xn,i−1Δ

d∗
1Zn,i−1 , (4.13)

U (3,XZ)
n =

n∑
i=2

Δd∗
0Xn,i−1Δ

d∗
0Zn,i−1 , (4.14)

U (1,XZ) =
1

(1− 2d)1/2Γ(1− d)

∫ 1

0

W ε
d(t) dB(t) , (4.15)

U (2,XZ) =
1

(1− 2d)Γ2(1− d)

∫ 1

0

Wϑ
d (t)W

ε
d(t) dt , (4.16)

U (3,XZ) = 0 , (4.17)

where B(t) is a standard Brownian motion and Wϑ
d (t) and W ε

d(t) are the Type
II fractional Brownian motions,
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Wϑ
d (t) = (1− 2d)1/2

∫ t

0

(t− s)−d dB(s) , for 0 ≤ t < 1 ,

W ε
d(t) = (1− 2d)1/2

∫ 1+t

1

(1 + t− s)−d dB(s) , for 0 ≤ t < 1 .

Then (n−(1−d)U
(1,XZ)
n , n−2(1−d)U

(2,XZ)
n , n−1U

(3,XZ)
n ) converges in distribution

to (U (1,XZ), U (2,XZ), U (3,XZ)) .

The asymptotic distributions can therefore be obtained as in the proof of
Theorem 4.1 using for example,

n∑
i=2

Δd∗
0 X̂niΔ

d∗
1 X̂n,i−1

=

n∑
i=2

Δd∗
0XniΔ

d∗
1Xn,i−1 − (β̂ols − β)

n∑
i=2

Δd∗
0ZniΔ

d∗
1Xn,i−1

− (β̂ols − β)

n∑
i=2

Δd∗
1XniΔ

d∗
0Zn,i−1 + (β̂ols − β)2

n∑
i=2

Δd∗
0ZniΔ

d∗
1Zn,i−1 .

Here, we see that the test statistics in subsection 4.1 allow simpler desmmcrip-
tion of the asymptotic distributions.

Appendix A: Technical lemmas

Lemma A.1. Let C be a 2× 2 symmetric positive-definite matrix and g(x) be
a function so that the integral

I(g) =
1

2π|C|1/2
∫
R2

g(x) exp

(
y − 1

2
(x, y)C−1(x, y)T

)
dx dy

exists. Then,

I(g) =
exp(C22/2)√

2πC11

∫
R

g(x+ C12) exp

(
− 1

2C11
x2

)
dx .

Proof. This can be shown easily using completing squares techniques.

Lemma A.2. For any integers 1 ≤ k < i ≤ n , real number 0 < δ < 2 , and
rapidly-decreasing function η(·) ,

S[τni − τnk − (i− k)/n](η) = O(n−1(i− k)1/2) , (A.1)

S
{
[B(τni)−B(τnk)]

2 − [B(i/n)−B(k/n)]
2 − [τni − τnk] + (i− k)/n

}
(η)

= O([(i− k)/n](3−δ)/2 ∧ (i− k)1/2n−(2−δ)/2) . (A.2)
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Proof of (A.1). It follows from Cauchy-Schwarz inequality and the fact that

Φ = exp

(∫
R

η(t) dB(t)− 1

2

∫
R

η2(t) dt

)

has moments of any orders.

Proof of (A.2). Let Θ(t) =
∫ t

−∞ η(t) dt , B̃(t) = B(t)−Θ(t) ,

Φ(T ) = exp

(∫ T

0

η(t) dB(t)− 1

2

∫ T

0

η2(t) dt

)
.

For any T > 1 ,

E
{
Φ(T )

(
[B(τni ∧ T )−B(τnk ∧ T )]

2 − [(τni ∧ T )− (τnk ∧ T )]
)}

= E

{
Φ(T )

([
B̃(τni ∧ T )− B̃(τnk ∧ T )

]2
− [(τni ∧ T )− (τnk ∧ T )]

)}

+ 2

[
Θ

(
i

n

)
−Θ

(
k

n

)]
· E

{
Φ(T )

[
B̃(τni ∧ T )− B̃(τnk ∧ T )

]}

+ E

{
Φ(T )

[
Θ

(
i

n

)
−Θ

(
k

n

)]2}

+ 2E

{
Φ(T )

[
B̃(τni ∧ T )− B̃(τnk ∧ T )

]

·
[
Θ(τni ∧ T )−Θ(τnk ∧ T )−Θ

(
i

n

)
+Θ

(
k

n

)]}

+ E

{
Φ(T ) [Θ(τni ∧ T )−Θ(τnk ∧ T )]

·
[
Θ(τni ∧ T )−Θ(τnk ∧ T )−Θ

(
i

n

)
+Θ

(
k

n

)]}

+

[
Θ

(
i

n

)
−Θ

(
k

n

)]

· E
{
Φ(T )

[
Θ(τni ∧ T )−Θ(τnk ∧ T )−Θ

(
i

n

)
+Θ

(
k

n

)]}
= I1(T ) + I2(T ) + I3(T ) + I4(T ) + I5(T ) + I6(T ) .

It can be checked from Lemma A.1 that

I3(T ) = E

{
Φ(T )

([
B

(
i

n

)
−B

(
k

n

)]2
− i− k

n

)}
.

Since both B(t) and B2(t)− t are martingales, I1(T ) = I2(T ) = 0 by virtue of
Girsanov’s theorem and Doob’s optional stopping theorem. Note that for any
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rapidly-decreasing function η(·) ,

sup
t≥0

|Θ(t)| ≤
∫
R

|η(s)|ds < ∞ .

Moreover, both B̃(τni) and B̃(τnk) have finite second moments by definition.
Then, taking T → ∞ , bounded convergence theorem guarantees that

S
{
[B(τni)−B(τnk)]

2 − [B(i/n)−B(k/n)]
2 − [τni − τnk] + (i− k)/n

}
(η)

= 2E

{
Φ
[
B̃(τni)− B̃(τnk)

]
·
[
Θ(τni)−Θ(τnk)−Θ

(
i

n

)
+Θ

(
k

n

)]}

+ E

{
Φ [Θ(τni)−Θ(τnk)] ·

[
Θ(τni)−Θ(τnk)−Θ

(
i

n

)
+Θ

(
k

n

)]}

+

[
Θ

(
i

n

)
−Θ

(
k

n

)]
· E

{
Φ

[
Θ(τni)−Θ(τnk)−Θ

(
i

n

)
+Θ

(
k

n

)]}
= I4 + I5 + I6 .

In addition,

E{Φ[B̃(τni)− B̃(τnk)]
2} = E {Φ [τni − τnk]} ≤ (EΦ2)1/2 · [E(τni − τnk)

2]1/2

= O((i− k)/n) . (A.3)

Note that for any rapidly-decreasing function η(·) ,

sup
t≥0

|Θ(t)| ≤
∫
R

|η(s)|ds < ∞ and sup
t≥0

|η(t)| < ∞ .

Then, for any real number 0 < δ < 2 ,

E
{
Φ [Θ(τni)−Θ(τnk)]

2
}

≤
{
2 sup

t≥0
|Θ(t)|

}δ

E
{
Φ [Θ(τni)−Θ(τnk)]

2−δ
}

≤
{
2 sup

t≥0
|Θ(t)|

}δ {
sup
t≥0

|η(t)|
}2−δ

E
{
Φ [τni − τnk]

2−δ
}

≤
{
2 sup

t≥0
|Θ(t)|

}δ {
sup
t≥0

|η(t)|
}2−δ

(EΦ2/δ)δ/2 ·
{
E [τni − τnk]

2
}1−δ/2

= O([(i− k)/n]2−δ) (A.4)

and similarly,

E

{
Φ

[
Θ(τni)−Θ

(
i

n

)]2}

=

{
2 sup

t≥0
|Θ(t)|

}2δ{
sup
t≥0

|η(t)|
}2−2δ

(EΦ1/δ)δ ·
{
E

[
τni −

i

n

]2}1−δ

= O(n−(1−δ)) . (A.5)
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Using the bounds (A.4) and (A.5), it can be seen that

E

{
Φ

[
Θ(τni)−Θ(τnk)−Θ

(
i

n

)
+Θ

(
k

n

)]2}

≤ 2E

{
Φ

[
Θ(τni)−Θ

(
i

n

)]2}
+ 2E

{
Φ

[
Θ(τnk)−Θ

(
k

n

)]2}

≤ O(n−(1−δ))

and

E

{
Φ

[
Θ(τni)−Θ(τnk)−Θ

(
i

n

)
+Θ

(
k

n

)]2}

≤ 2E
{
Φ [Θ(τni)−Θ(τnk)]

2
}
+ 2E

{
Φ

[
−Θ

(
i

n

)
−Θ

(
k

n

)]2}

≤ O([(i− k)/n]2−δ) .

Equivalently,

E

{
Φ

[
Θ(τni)−Θ(τnk)−Θ

(
i

n

)
+Θ

(
k

n

)]2}

≤ O([(i− k)/n]2−δ ∧ n−(1−δ)) . (A.6)

The bounds (A.3) to (A.6), together with Cauchy-Schwarz inequality suggest
that

I4 + I5 + I6 = O([(i− k)/n](3−δ)/2 ∧ (i− k)1/2n−(2−δ)/2) .

Lemma A.3. Let U (1) and U (2) be defined in (1.7)–(1.8). Define

E1 =
1

Γ2(1− d)

∫ 1

0

∫ 1

t

(t− s)−2d ds dt ,

E21 =
2

Γ4(1− d)

∫ 1

0

∫ 1

t1

∫ t1

0

∫ t2

0

(t1 − u)−2d(t2 − v)−2d dv du dt2 dt1 ,

E22 =
2

Γ4(1− d)

∫ 1

0

∫ 1

t1

∫ t1

0

∫ t1

0

(t1 − u)−d(t1 − v)−d

· (t2 − u)−d(t2 − v)−ddv du dt2 dt1 .

Then,

E[U (1)]2 = E1 , (A.7)

E[U (2)]2 = E21 + E22 , (A.8)

Let (ϑn1, εn1), (ϑn2, εn2), . . . , (ϑnn, εnn) be independent and identically distributed
with zero mean and finite fourth moment. Then,

n−2(1−d)E

⎧⎨
⎩

n∑
i=2

ϑni

i−2∑
j=0

πjεn,i−j−1

⎫⎬
⎭

2

→ Eε2 · Eϑ2 · E1 , (A.9)



2054 C. T. Ng and N. H. Chan

n−4(1−d)E

⎧⎨
⎩

n∑
i=2

⎛
⎝i−2∑

j=0

πjϑn,i−j−1

⎞
⎠ ·

⎛
⎝i−2∑

j=0

πjεn,i−j−1

⎞
⎠
⎫⎬
⎭

2

→ Eϑ2 · Eε2 · E22 + (Eϑε)2 · E21 . (A.10)

Proof. Identity (A.7) follows from the Itô’s isometry. Identity (A.9) is shown as
follows,

n−2(1−d)E

⎧⎨
⎩

n∑
i=2

ϑni

i−2∑
j=0

πjεn,i−j−1

⎫⎬
⎭

2

= n−2(1−d)Eε2 · Eϑ2 ·
n−1∑
k=1

n∑
i=k+1

π2
i−k−1

→ 1

Γ2(1− d)
Eε2 · Eϑ2 ·

∫ 1

0

∫ 1

t

(t− s)−2d ds dt .

Next, consider Identity (A.10). For any integers 2 ≤ i1 ≤ i2 ≤ n ,

E

⎧⎨
⎩

i1−2∑
j=0

πj1ϑn,i1−j−1

⎫⎬
⎭ ·

⎧⎨
⎩

i1−2∑
j=0

πj1εn,i1−j−1

⎫⎬
⎭

·

⎧⎨
⎩

i2−2∑
j=0

πjϑn,i2−j−1

⎫⎬
⎭ ·

⎧⎨
⎩

i2−2∑
j=0

πjεn,i2−j−1

⎫⎬
⎭

= E

{
i1−1∑
a=1

i1−1∑
b=1

πi1−a−1πi1−b−1ϑnaεnb

}
·
{

i2−1∑
a=1

i2−1∑
b=1

πi2−a−1πi2−b−1ϑnaεnb

}

= [Eϑ2] · [Eε2] ·
i1−1∑
a=1

i1−1∑
b=1

πi1−a−1πi2−a−1πi1−b−1πi2−b−1

+ (Eϑε)2 ·
i1−1∑
a=1

i2−1∑
b=1

π2
i1−a−1π

2
i2−b−1

+ {Eϑ2ε2 − 2(Eϑε)2} ·
i1−1∑
a=1

π2
i1−a−1π

2
i2−a−1 .

Using Stirling’s approximation (3.1), as i1 → ∞ , the last sum on the right-hand
side is

i1−1∑
a=1

π2
i1−a−1π

2
i2−a−1 ≈ 1

Γ4(1− d)

i1−1∑
a=1

(i1 − a)−2d(i2 − a)−2d

≤ 1

Γ4(1− d)

i1−1∑
a=1

(i1 − a)−4d

= O(i
(1−4d)∨0
1 ) .
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The second sum
i1−1∑
a=1

i2−1∑
b=1

π2
i1−a−1π

2
i2−b−1 = O(i1−2d

1 · i1−2d
2 )

dominates the last sum if d ∈ [0, 1/2) . Then, standard arguments show that

E

⎧⎨
⎩

n∑
i=2

⎛
⎝i−2∑

j=0

πjϑn,i−j−1

⎞
⎠ ·

⎛
⎝i−2∑

j=0

πjεn,i−j−1

⎞
⎠
⎫⎬
⎭

2

≈ 2Eϑ2 · Eε2 ·
n∑

i=2

i−1∑
a=1

i−1∑
b=1

π2
i−a−1π

2
i−b−1

+ 2(Eϑε)2 ·
n−1∑
i1=2

n∑
i2=i1+1

i1−1∑
a=1

i2−1∑
b=1

π2
i1−a−1π

2
i2−b−1

+ 2Eϑ2 · Eε2 ·
n−1∑
i1=2

n∑
i2=i1+1

i1−1∑
a=1

i1−1∑
b=1

πi1−a−1πi2−a−1πi1−b−1πi2−b−1

≈ 2n4(1−d)

Γ4(1− d)
Eϑ2 · Eε2 ·

∫ 1

0

∫ 1

t1

∫ t1

0

∫ t2

0

(t1 − u)−2d(t2 − v)−2d dv du dt2 dt1

+
2n4(1−d)

Γ4(1− d)
(Eϑε)2

·
∫ 1

0

∫ 1

t1

∫ t1

0

∫ t1

0

(t1 − u)−d(t1 − v)−d(t2 − u)−d(t2 − v)−d dv du dt2 dt1.

Similar arguments show that

E

⎧⎨
⎩

n∑
i=2

{
i−1∑
a=1

(
i− a− 1

n

)−d [
B
(a

n

)
−B

(
a− 1

n

)]}2
⎫⎬
⎭

2

yields the same limit except for the multiplier n4(1−d) . This gives Identity (A.8).
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