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work we provide sharp conditions for the consistent recovery of relevant
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optimal rates for the two-group case. We validate our theoretical results
with numerical analysis.
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1. Introduction

We consider a problem of multi-group classification in the high-dimensional
setting, where the number of variables p is much larger than the number of
observations n. Given n independent observations {(X;,Y;),i=1,...,n} from
a joint distribution (X,Y) on RP x {1,...,G}, our goal is to learn a rule that
will classify a new data point X € R? into one of the G groups.

In a low dimensional setting (when p < n), Fisher’s Linear Discriminant
Analysis (FLDA) is a classical approach for obtaining a classification rule in
the multi-group setting. Let ng, be the number of samples in the group g, ny =
[{i|Y; = g}|, and let X, =n* > _i|v,;—g Xi be the gth group sample mean. Let
W be a pooled sample covariance matrix,

G
W=mn-aG6)" Z(ng —1)S,, (1.1)

9=1

where S; = (ny, — 1)7! Dilvimg(Xi — X,)(X; — X,). Furthermore, let D =
[D1,...,Dg_1] € RP*(G=1) he the matrix of sample mean contrasts between G
groups, with

VT Zgzl ng(Xg - XT-H)
1
\/ﬁ\/ZZ:l Ng E;; Ng

D,

FLDA estimates vectors {vg}gz_ll, which are linear combinations of p variables,

through the following optimization program
TrHnT
= DD
vy = arg max {v v}
st. v Wou=1; (1.3)
v Woy =0 for ¢’ <g.

These combinations are called canonical vectors and they define the (G — 1)-
dimensional eigenspace of the matrix W~'DDT (see, for example, Chapter 11.5
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of [13]). Given the matrix V € RP*(G=1 of vectors {vg}ggf, a new data point
X € RP? is classified into group g if

G=arg min (X —X,) VIVTWV)WT(X - X,) —2log 2. (1.4)
ge{1,...,.G} n

This rule is a sample version of the optimal classification rule derived under

the assumption of multivariate Gaussian class-conditional distributions with a

common covariance matrix [14, Chapter 3.9]. Throughout the paper, we will

assume that X | Y = g ~ N(pg, X).

Unfortunately when the number of samples is small compared to the number
of variables, the classification rule described above does not perform well [1, 19].
As a result a large body of literature has emerged to deal with classification in
high-dimensions. To prevent overfitting, these methods assume that the optimal
classification rule depends only on the few s variables out of p. In the context of
classification rule (1.4), this means that the matrix of canonical vectors V only
uses s of these variables, that is, V' is row-sparse. In the context of binary clas-
sification (G = 2), we point the reader to [3, 5, 6, 9, 11, 12, 19, 20, 23, 25] and
references therein for recent progress on high-dimensional classification. Work
on multi-group classification is less abundant. Initial progress has been reported
in [4, 17, 18, 24], however, theoretical properties of the proposed methods were
not studied. In a recent work, Gaynanova et al. [7] propose a convex estima-
tion procedure that simultaneously estimates all the discriminant directions and
establish sufficient conditions under which the correct set of discriminating vari-
ables is selected.

The focus of this paper is on establishing optimal conditions under which the
Multi-Group Sparse Discriminant Analysis (MGSDA) procedure [7], described
in §2, consistently recovers the relevant variables for classification. Consistent
variable selection is an important property, since many domain scientist use the
selected variables for hypothesis generation, downstream analysis and scientific
discovery. [7] established equivalence between MGSDA and direct sparse dis-
criminant analysis in the two-group case [12] and, therefore, MGSDA is also
equivalent to methods proposed in [4] and [6] as shown in [11]. Furthermore,
[7] extended the proof technique of [12] to show variable selection consistency,
which does not lead to optimal sample size scaling [9]. In this paper, we use a re-
fined proof strategy to establish consistent variable selection in the multi-group
(with G = O(1)) case under the same sample size scaling as in the two-group
case, which is optimal in the minimax sense [9]. In particular, we establish that
the sample size n needs to satisfy

02 KIE34 e (o) (G - Dslon((p— o) log(n)

in order for MGSDA to recover the correct variables. Here A is an index set of
nonzero variables, s is the cardinality of A, K is a fixed constant independent
fromn, p, sand G, and 0.4 = X;; — EjAEZi‘EAj. high-level, we will follow the
primal-dual strategy used in [9], however, there are a number of details that re-
quire more careful analysis in order to establish the desired scaling. In particular,
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[7] showed that {vg}fgf from (1.3) correspond to the columns of V.= W~!DR,
where R is a (G —1)-dimensional orthogonal matrix. Furthermore, at the optima
{vg}g’:ll, the objective values in (1.3) are equal to the non-zero eigenvalues of
DTW=1D. However, [7] separately considers the deviations of W~1 and D from
their population counterparts, which is not sufficient to establish the optimal
scaling of (n, p, s) for consistent variable selection. In contrast, here we consider
these quantities jointly. In the two-group case, W'D is a vector and DT W 1D
is a scalar, which allows [9] to use concentration inequalities for y? distributed
random variables to achieve the optimal rate. In the multi-group case, one needs
to characterize the joint distribution of the columns of W=D and the behavior
of the ||[DTW~1D||2, hence an analysis different from [9] is required. In particu-
lar, we use the distributional results of [2] to characterize W1 D and the results
from random matrix theory [21, 22] to characterize ||[DTW ~1D|,.

The rest of the paper is organized as follows. In §2, we summarize the notation
used throughout the paper and introduce the MGSDA procedure. In §3, we
study the population version of the MGSDA estimator. Our main result is stated
in §4. Illustrative simulation studies, which corroborate our theoretical findings,
are provided in §5. Technical proofs are given in §7.

2. Preliminaries

In this section, we introduce the notation and the Multi-Group Sparse Discrim-
inant Analysis problem.

For a vector v € R? we define ||v]|s = /> i, vZ, lvlli = D0 [vils [[v]lee =
max; |v;|. We use e; to define a unit norm vector with jth element being equal to
1. For a matrix M we define by m; the ith row of M and by M; the jth column
of M. We also define [|M oc,o = max; [[miz, | Mlloo = M [loo,00 = max; [lm]|1

IMll2 = omax(M) and [[M|[p = /32, >°; mZ;. Given an index set A, we define

M4 4 to be the submatrix of M with rows and columns indexed by A. For two
sequences {a,} and {b,}, we write a, = O(b,) to define a, < Cb, for some
positive constant C. We write a,, = o(by,) to define a,b,! — 0.

The MGSDA estimator [7] is found as the solution to the following convex
optimization problem

i _ . 1 T 1 T 2 e
V—argVERrngl{lGD{§TT(V WV)+3|D V—IHF+)\;HU1‘H2 (21

where W and D are defined in (1.1) and (1.2), respectively. The sparsity of
the estimated canonical vectors V' is controlled by the user specified parameter
A > 0. Note that the ¢5-norm penalty encourages the rows of V' to be sparse
leading to the variable selection. The same penalty is used in the group lasso
setting to select groups of non-zero variables [26]. When A = 0 and W is non-
singular, V = (W + DDT)~1D spans the (G — 1)-dimensional eigenspace of
W-1DD?!. Since the classification rule (1.4) is invariant with respect to linear
transformations, the MGSDA coincides with classical sample canonical correla-
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tion analysis. Intuitively, the three components of the objective function in (2.1)
minimize the within-class variability, control the level of between-class variabil-
ity and provide regularization by inducing sparsity respectively.

In the next two sections, we study conditions under which the MGSDA con-
sistently recovers the correct set of discriminant variables.

3. Variable selection in the population setting

In this section, we analyze MGSDA in the limit of infinite amount of data. This
allows us to understand the limitations of the procedure for consistent variable
selection.

Let m, be the prior group probabilities, P(Y; = g) = my. Let pug be the
population within-group mean, p, = E(X; | ¥; = g). Let ¥ be the population
within-group covariance matrix, Cov(X; | ¥; = g) = ¥, and A € RP*(G=1 he
the matrix of population mean contrasts between G groups with rth column

VTl Zgzl 7g(lg — fir41)
+1 '
\/Z;:l Tg ZZ=1 Tg

The population canonical vectors are eigenvectors of matrix Y "*AAT. The col-
umn vectors of matrix ¥ = X~'A define the (G — 1)-dimensional eigenspace of
Y~LAA? [7]. Since the canonical vectors determine the variables that are rele-
vant for the classification rule, in the high-dimensional setting we assume that
the matrix ¥ is row sparse. Let A be the support of ¥, A = {i | ||¥;|2 # 0},
and s be the cardinality of A, s = |A|.

The population version of MGSDA optimization problem is

A,

G - 1 T LT 2 - _
qjargngrylecl){2Tr(V EV)+2||V A I||F+)\;||UZH2 . (31

Compared to the optimization program in (2.1), in (3.1) we assume access to
the population covariance ¥ and mean contrasts A. Theorem 1 characterizes
conditions under which ¥ = (¥},0] ) and HejT\I/AHQ # 0 for all j € A.

Theorem 1. Suppose that
ISacaSihsalloo2 < 1 (3.2)
and the tuning parameter A in (3.1) satisfies
U nin
(Baa+AsA1) oo (L+ A4 AAlR)”

A< \|| (3.3)

where Ui = minje 4 He;'—\I/AHQ = minjc ||e;rZ_1AH2. Then the solution ¥ to
(3.1) s of the form ¥ = (\/I\/},O;:S)T, where
Upa=U (I +ALSTEAL) T = A(Saa + AsAL) 54, (3.4)

and sa s the sub-gradient of Y. 4 |illa. Furthermore, we have that
He;r(:[}A”Q # 0 for all j € A.
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Theorem 1 provides sufficient conditions (3.2) and (3.3) under which the
solution to (3.1) recovers the true support A. The condition (3.2) is of the
same form as the irrepresentable condition in a multi-task regression [16]. The
condition (3.3) relates the tuning parameter A and the minimal signal strength
Unin- The tuning parameter A\ should not be too large, so that the relevant
variables in A are nonzero. The upper bound depends on the minimal signal
strength W,,;, and the classification difficulty characterized by [[ALZ A4z
Note that [[(Zaa + AaAL) oo < V5[(Zaa + AaAL) 72, therefore it is
sufficient for A\ to satisfy

\I/min

A< — .
Vsl (Baa + AaA L)z (1+ AR 4 AAl2)

(3.5)

Equation (3.4) provides an explicit form for the solution U. Note that it esti-
mates W4 up to the linear transformation (7 +A}%7 A 4)~! and the bias term
due to the penalty. The linear transformation has no effect on the support or
the classification assignment due to invariance of classification rule (1.4). The
bias term has no effect on the support as long as A satisfies (3.3). Note that
Theorem 1 of [9] is a special case of our result in the two-group case.

4. Consistent variable selection of MGSDA

In this section, we establish our main result on the sample complexity needed
for the variable selection consistency of the MGSDA.
We require the following assumptions.

(C1) Irrepresentability. There exists a constant « € (0,1] such that
[SacaSiasallos <1 - o
(C2) Minimal signal strength. There exists a constant K, > 0 such that
Vinin = min lleS @ all

> M5l(Zaa+AaA0%) 2%

_ _ (G — 1) log(slog(n))
x (1+Kw [IIIAXEAZAAHbVl] (1+ \/gleag(zfai;)jj . :
Irrepresentable condition is commonly used in the high-dimensional literature
as a way to ensure exact variable selection of lasso like procedures [27, 22, 16, 9].
The second condition is commonly known as a beta-min condition and it states
that the relevant variables should have sufficiently large signal in order for the

procedure to distinguish them from noise. R
Let A be the support of V defined in (2.1), A = {i : ||t;]]2 # 0}.

Theorem 2. Assume that the conditions (C1) and (C2) are satisfied. Further-
more, suppose that the sample size satisfies

w2 K (1mxsya ) IZ516(G — slog((p— o) og(n)
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for some absolute constant K > 0. If the tuning parameter \ is selected as

)

JEA®

A> Ka(L+ JALETh Aully) ! \/ (rsr) E=22lp =gt

where Ky is an absolute constant that does not depend on the problem parame-
ters, then the MGSDA procedure defined in (2.1) satisfies

A=A,
with probability at least 1 — O(log™* (n)).

Theorem 2 is the finite sample version of Theorem 1. The main result states
that the set of relevant variables will be recovered with high probability when the
sample size n is of the order O(slog(p)) and the minimal signal strength is of the
order O(y/n~tslog(p)). The /s term in the minimal signal strength condition
comes from the substitutions of [|[(Sa4+AAAL) oo by |(Zaa+AsAL) o
Theorem 2 significantly improves on the result in [7] which requires n to be of
the order O(s%log(ps)) and Wi, to be of the order O(y/n~1s2log(ps)). These
improvements are achieved through the joint characterization of the distribution
of W1 D4 and deviations of | D W 4 Dalls from ALY Aulls. When G = 2,
Theorem 2 recovers minimax optimal sample size scaling of [9]. In [9] there

is an additional factor \/ ALE: A4z V1] in the conditions for the tuning
parameter A\, which we avoid due to the use of a different proof technique.

4.1. Outline of the proof

The proof of Theorem 2 is based on the primal-dual witness technique [22]. In
the course of the proof, one proposes a solution V to (2.1) and verifies that the
optimality conditions are satisfied. _ B

We will verify that the vector (VIL;r ,0M) T, where V4 is the solution to the
following oracle optimization program

% ; 1 T Lot 2
Va=arg min o Te(VIWaaV) + 5 |IDAV — |7 + )\; llvill2,

satisfies the Karush-Kuhn-Tucker conditions for (2.1). The next lemma charac-
terizes the form of the oracle solution Vjy.

Lemma 3. The oracle solution satisfies
Va = WiiDa(I + DAWiiDA) ™ = X(Waa +DaD}) 54,
where s 4 is sub-gradient of Y. 4 [[Uill2-

Lemma 4 provides the sufficient conditions for the estimator (‘N/IL;F,OT)T to
be the oracle solution.
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Lemma 4. If
I(Waca + DacDJ)Va — Dacllooz < A; .
min le; WiiDallz > M(Waa + DaD}) Mloo(l + [DAW 1D all2),  (4.2)

then V.= (V00T and ||6JT‘~/A||2 #0 for all j € A.

Lemma 4 is deterministic in nature. We proceed to show that (4.1) and (4.2)
are satisfied with high probability under conditions of Theorem 2. In particular,
next theorem established that the correct variables j, j € A, are estimated as
nonzero by V4

Theorem 5. Under conditions of Theorem 2, with probability at least 1 —
O(log™(n))

min lef WiiDallz > M(Waa +DaD ) oo (1 + I1DAW 34D allz)-

To complete the proof, in the following theorem we establish that the wrong
variables j, j € A¢, are zero in V.

Theorem 6. Under conditions of Theorem 2, with probability at least 1 —
O(log™(n)) ~
[(Waca +DacD3)Va = Daclloo2 < A

5. Simulation results

We conduct several simulations to numerically illustrate finite sample properties
of the MGSDA for the task of variable selection. The number of groups G = 3
and we change the size of the set A, s € {10, 20, 30}, and the ambient dimension
p € {100,200,300}. The sample size is set as n = Oslog(p) where 0 is a control
parameter that is varied. We report how well the MGSDA estimator recovers
the set of variables A as the control parameter 6 varies. According to Theorem 2,
the MGSDA recovers the correct variables when n = Kslog(p) for some K > 0
and this will be illustrated in our simulations.

Next, we describe the data generating model. We set P(Y = g) = % for
g€{1,2,3} and X | Y = g ~ N (g, ) with

pr1 =0, pe=(1,...,1,0,...,0)" and puz=(1,...,1,-1,...,-1,0,...,0)".
N N — N N— e N——
s p—s s/2 s/2 p—s

We specify the covariance matrix ¥ as

N = EAA Os><p—s
Op—sxs Ip—s

and consider two cases for the component X4 4:

1. Toeplitz matrix, where Xpr = [Egplaper and g = plob with p e
{0,0.25,0.5,0.75,0.9}, and

2. equal correlation matrix, where ¥, = p when a # b and o, = 1, p €
{0,0.25,0.5,0.75,0.9}.
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Toeplitz matrix
s=20 s=30

g

d

0

=d

et

3
g
210 - - p =100
: i =
n o p = 200
g 5 - )
£ - p =300
T 0-
10 - -ﬁ
o
5- o
0_
el
I
o
©

10 -

N L

0_ 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4 1 2 3 4

Scaled sample size n/(s - log(p))

F1G 1. Performance of the MGSDA estimator averaged over 100 simulation runs. Plots
of the rescaled sample size n/(slog(p)) versus the Hamming distance between A and
A for the Toeplitz matriz (see main text for details). Columns correspond to the size
of A, s € {10,20,30}, and rows correspond to different correlation strengths p €
{0,0.25,0.5,0.75,0.9}. Each subfigure shows three curves, corresponding to the problem sizes
p € {100, 200, 300}.

Finally, we set the penalty parameter as

_ -1 Jlog(p—s
A= 05 (L+ [afEzhALl) Ty e =)

for all cases, as suggested by Theorem 2. For each setting, we report the Ham-
ming distance between the estimated set A and the true set A averaged over
200 independent simulation runs.

Figure 1 and Figure 2 illustrate finite sample performance of the MGSDA
procedure. The Hamming distance is plotted against the control parameter 6,
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Equal correlation matrix
s=10 s=20 s=30

¥
'EHEE ESEE AuEnn

0

Ge0=d

g
<
gm— = ~~p=100
g 5. S  ——p=200
B= o
£ \ \ —= p =300
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5- \ 3
o
O—MM
10-
o
]
5- 5
—memm
0 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 1 2 3 4 1 2 3 4

Scaled sample size n/(s - log(p))

F1G 2. Performance of the MGSDA estimator averaged over 100 simulation runs. Plots
of the rescaled sample size n/(slog(p)) versus the Hamming distance between A and
A for equal correlation matriz (see main text for details). Columns correspond to the
size of A, s € {10,20,30}, and rows correspond to different correlation strengths p €
{0,0.25,0.5,0.75,0.9}. Each subfigure shows three curves, corresponding to the problem sizes
p € {100,200, 300}.

which represents the rescaled number of samples. Each figure contains a num-
ber of subfigures, which correspond to different simulation settings. Columns
correspond to different number of relevant variables, |A| = s € {10,20, 30},
and rows correspond to different values of p, p € {0,0.25,0.5,0.75,0.9}. Each
subfigure contains three curves for different problem sizes p € {100,200, 300}.
We observe that as the control parameter 6 increases the MGSDA procedure
starts to recover the true set of variables, A, irrespective of the problem size,
therefore, illustrating that our theoretical results describe well the finite sample
performance of the procedure.
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6. Discussion

In this paper we consider the problem of variable selection in discriminant anal-
ysis. This is the first time that the consistent variable selection in the multi-class
setting has been established under the same conditions as in the two-class set-
ting. Throughout the paper we have assumed that the number of classes G does
not increase with the sample size n, however this condition is not necessary
for consistent variable selection and is used for the simplicity of exposition. We
hope to address this issue in future work.

7. Technical proofs
7.1. Proof of Theorem 1
Using the Karush-Kuhn-Tucker conditions, we have that any solution T of (3.1)
satisfies
(Saa+AUA DT 4 + (Zane + AaA )T ae — Ay = —Asa; (7.1)
(EACA + AACAX)@A + (EACAC + AACA;C)@AC — Age = —As4ec. (72)

~

We proceed to verify that these conditions are satisfied by ¥ = (\TJL 07)T where

\/I\I:X is given in (3.4). It is immediately clear that (7.1) is satisfied. We proceed
to show that (7.2) is also satisfied. In particular, we show that

1(Saca + Aac ANV 4 — Apefloca < A
Since UX'A = A, it follows that Y 4c4X ;4 As = A sc. Therefore,
(Saca +AucA}) Ty
= (Daca + AacAD)(TA(I + ALY LA™ = AN (Baa + AaA])ts4)
= Y acaX A AL+ ALS AL T+ AL AL AL+ AL E AT
—AZ4eA(BA F AUA ) i 4 — AU A (Ba + AAA]) sy
=Aac(I+ AL AD) T H Auc(T - (T+ALZ LAY
—ASaca(S0h — Taada(l + AL AL TTALS Y )sa
—AMAAAL(S3h — S Aal + ARZ AL AT Y )sa
=Ape = ADacaX 354+ A (T + AL T AL TIALS sa
“AALALS T 54 F AL ALS L AL+ AL AN TIALY L sa
=Ape = ADacaX 54 FAAAA LT hsa — AMAAA Y sa
=Ape —ADge X 54
By assumption (3.2),
[(Saca + AacAL) WA — Apellooz = MZacaX 1y sallc2 < A,

which verifies that U also satisfies (7.2).
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To complete the proof, we show that no component of T A 1s set to zero. From
(3.4),

e;»r‘?A = e;r\IJA(I + AXEZ‘}L‘AA)_1 — )\e;»r(ZAA + AAAI)_lsA.

Since
1
T Ty—1 A -1 T
e; WAl + A 35 0AA > — e; Uy
H ] ( AAA ) ||2 |||I+A—AFEA}4AA”|2H ] ||2
\Ijmin
T ARSI AR

and

IAe] (Saa+AaA))  salla S M(Zaa+ AaAL) oo
the result follows.
Proof of Lemma 3 and 4. The proof follows the proof of Theorem 1. O
Proof of Theorem 5. From Lemma 11, with probability at least 1 —O(log™*(n))

I(Was+DaDD) Moo < Vol(Saa+AaA]) (l +0 ( M)) |

From Lemma 14, with probability at least 1 — O(log™*(n))
IDAWiaDallz < CIARE S Axll2
Lo ((G — 1)slog(log(n
n

Dy yiagesaa, Ctn) )

Therefore, with probability at least 1 — O(log™*(n))
MWaa +DaDA) oo (L + IDAW 4 Dall2)
< A5[(Zaa+Aad)) 2 x

X (1 +C AR5 Al v 1] <1 + \/ G-1) 10g(1og<n))>> .

n

On the other hand, from Lemma 7, with probability at least 1 — O(log™*(n))
o Tor—1

fjnelgl ||€j WaaDall2

[ Ts—1
2 g_rggllej DPPTAVIERS

n

x (1 -0 <\/ AT A4l v 1] max(s3 ), &~ B8] ))

> Wy (1 -0 <\/ IATZAA Al v 1] max(S34), (G-1) log(slog(n»)) .

The final result follows from the condition on the sample size n and (C2). O
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Lemma 7. With probability at least 1 —log™*(n), Vj € A

(G — 1)log(slog(n)) )

le] WaaDall2
lle SahAall2

n

> 1-0 (\/IaTzrhaab v 13
Proof of Lemma 7. By triangle inequality
le] WiADa — e] $34A4lls < lle] WikDa — e] S35 Dallz
+ e S3hDa —ef S35 A
Consider the first term,
lef WiiDa — e 34 Dall2

Tr—1 Ty —1
DaWane;  DaXiyae

T -1 Ty —1 .
€; W i a€j €; YA€

Ty-1,
€ X 4€; 1

<ej Wiie; + el S35 Dalls

T -1,
e; Waae;

From [9, Lemma 14], Vj € A

ejTZZi‘ej log(slog(n))

n

—1| <0y

e;'—WLllej
with probability at least 1 — (log(n))~!. Further, using Lemma 10

Try—1 Ty—1
DaWaaej  DaXaac

TW-le.  oTole |l [HioHyy' — HioHoy' |2 = | Hi2Hzy' — pan 2,
i W aa€ IRV

2

where ~ A
H12H2721|DA ~ tG*l(dH7/’[/H7FH>

with degrees of freedom dy = n — s — G + 2, mean ug = H12H2_21 and scale

-1 Ty -1
EAAeje]. b))

parameter I'y = i(DXRDA)/(e;EZiej) with R = %3} — - Hence,
j HAACH
JE Y2y PPN Yl ayn
HioH —py = —222_  and  ||HyoHyy' — ppl)p = 222
1214199 1204 7 Jdn | H12 22 w2 ZH/dH

where yg ~ N(0,Ig_1) and zg ~ XﬁH are independent. Therefore,

o c o .
P <||H12H221 — prll2 < 6_1) =P (||H12H221 —pull; < 6—1)
\ € 2
P yl—lq—{FHyH < €1
Zu/dy ~ e
> Py Tayn < e1,Zn/dy > )
> P(yiTuyn < e)P(Zu/du > €).
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Since Zg ~ x3,,, by Lemma 1 in [10] for all y >0

2
P(Zy/dg >1—-y) > 1—exp (dHyZ> .

Since yg ~ N (0, Ig_1), using Proposition 1.1 in [§]

P(yI—SFHyH > Tr(Ty) + 24/ Te(P%)t + 2T ]lot) < exp(—t).

Combining the above displays,

~ o~ Tr(Ty) + 24/ Tr(T2)t + 2||T 5|2t
||H12H221LLH||2S\/ Ll 2y ot v Al
with probability at least
y?
(1 —exp(=1))(1 — exp(~dn 7))
=1 — (exp(—t) + exp(—dpy®/4) — exp(—t) exp(—dpy?/4)).
Setting it to be 1 — O(log™*(n)) for all j € A, we get t = log(slog(n)), y =

2 log(slog(n))

n—s—G+2 and

| Hi2Hsy' — w2

Tr(ar) + 2/ Tr(T) log(s log(n)) + 2[|Ta[|2 log(s log(n))

log(slog(n))
1-2 ng—s—g+2

Since Tr(T'y) < (G —1)|T x|z and Tr(T'%) < (G —1)?||Tx||3, the above display
can be rewritten as

| Hi2Hy,' — prll

< 4| CilTa[l2(G — 1) log(slog(n)) (1 +0 ( M))

n

for some constant C;. Hence, there exists constant C' > 0 such that with prob-
ability at least 1 — O(log™*(n))

|Hi2Hy' — prllz < CVITE]2(G — 1) log(slog(n)).

Using the definition of R,

1 1

r = DIRD

IT £ |2 ns G 2%, 1D 4 RD All2
1 1

IN

| DFE R4 Dalle:

n787G72(22}4)]J
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Applying Lemma 13, with probability at least 1 —log™"(n)

1 1
—5-G—2(Z3h);

27

Pl < O (ISR YAV ISR

Therefore, with probability at least 1 — log™"(n)

Bz — pnlle < O ( \/ IATS3h A4z v 1] (G - 1>log<slog<n>>) .

(San)si n
Consider ||e;r§];hl4DA - e;'—Z;LAA||2. From Lemma 8,
YhDa~N (EA;AA, 27;1}4 ® IG_l) .
Hence,
P(lle; S34Da—e] SiaAall2 > €)

< P(VG=Te]$34Da - ¢/ S3hAAlI = €)

n€2
S2G-Dew (_2(2&);';‘(0 - 1)> '

Let € = /2(S34),5(G — 1)128CE=Dsloso) ey for all j € A

log(2(G — 1)slog(n))

T =34 — ] B3k Al < \/2(274)5(G - )
with probability at least 1 —log™'(n). Also,
lej SahDallz < llef 34Da — e] 34 Aull2 + e Zah Al

log(2(G — 1)310g(n)).

<lej SaaAallz + \/Q(EZZ)J&(G —1)

Combining the above displays, with probability at least 1 — (log(n))~!, for all
jeA
lej WiiDa — e X35 04]
1 [AXSAAAll2 V 1] (G — 1) log(slog(n))
< Ci(X44)55 1
(Xaa)is n

_ log(slog(n _ log(slog(n
e ERhAalaCay B | i) (6 - 1y ealeloen)

- - _ G —1)log(slog(n
< 1T =3Bl AT Al v 1] (53, (E = D To8()

The final result follows form triangle inequality. O
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Proof of Theorem 6. Since (n—G)W ~ Wy(n—G,¥), then (n—G)W =UU ",
where U € RP*("=G) with columns u; %i./\/'(O, Y). Let

ED = DAc — EACAEEiDA;
EU = UAc — EACAZ;‘}L‘UA with (n - G)WACA = UAcUX.

Then,

Dae =S 4ca¥ 34 Da + Ep;
(n — G)WACA = UAcU;lr
= (ZacaX AUa+ Ep)U4 =X 4caX i(n — G)Waa + EyUy .

and therefore

(Waea 4+ Dac D}V — Dye
=(Xaca¥ \Waa+ (n— G EyU, + (BacaX 4Da + Ep)D})x
X (WaaDa(I +DiWiiDa)™ = A(Waa + DaD}) 'sa)
~ Y aca¥ 4Da — Ep
=X 4caX 34 Da((I + DAW D) + DAW i Da(l + DAWiiDa) ™t = 1)
+ D4 AS A (AW AA(Wan +DaDy) 'sa —ADAD S (Waa +DaDj) tsa)
+(n—G) ' ByUs(WiaDa(I + DAWaDa)~ = A(Waa+ DaDj) 'sa)
+ Ep(DAWaDa(I+DiWiiDa)™t —AD)(Waa +DaD}y) tsa—1I)
= AZpea¥ hsa+ (n—G) T EGU L (Waa +DaD)) (Da — Asa)
— Ep(AD ) (Waa +DaD3) 'sa+ (I+DyW,iiDa)™ ")
== A04ea¥  sa+ (n—G) T EyUL (Waa + DaD}) " (Da — Asa)
— Ep(I+ D WaiiDa) "(AD W isa + 1)

We would like to establish the following:

AL acaSihsallos <A1=—a)  (7.3)

l(n = G) " EyUiWasDa(I + DAiWiiDa) oo < Aa/4 (7.4)
M(n =G EgUAW AL+ WaiDaDg)  saflec2 < Aa/4 (7.5)
MED(I+DiWaaDa) "DiWisallo2 < Aa/4 (7.6)

IED(I + DAWiDa) oo 2 < Aar/4. (7.7)

1. Show [[Ep(I+ D W iDa)  oo2 < Aa/4.
Consider Ep = Y4caX 43 Da — Dac. Since ¥X'A = A, it follows that
EACAZX}L‘AA = Aye. Hence E(Dgc) = Ape = EACAEZ}L‘AA. Therefore
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E(Ep) = 0. Moreover,
Cov(Ep,Da) = Cov(Saca¥4Da — Dac,Da)
= Cov(SacaX 4Da, Da) — Cov(Dac, D)
=Y 4caX 1 Cov(Da) — Cov(Dac, Da)
= D acaD 3} Cov(Da) — Lac a2} Cov(Dy)
=0.

From Lemma 8, for all j € A¢
e;rED ~N (07 %ajj.AIG_l)
where 0.4 = X;; — ZjAEZ}L‘EAj and ejTED is independent of D 4. Note that
IEp(I + DAW3ADA) oo = max ] Ep(I + DEW;ADa) "

maX;cAe ||€;|—ED||2
T 14 omin(DAW4Da)

< JE
< maxle; Epll2

Using Proposition 1.1 in [8]

N llej Epll3
jeac L 7irA

L (6-1) VG =TD)loa(lp—s)loa(m) ,los((p ) 1og<n>>}

- n n

with probability at least 1 — log™'(n). Hence, with probability at least 1 —
log ™" (n)

TEAI? _ _
- lle; DIIQS(Q((G 1) log((p s)log(n))>’
JEAC  0jj5.A n

or equivalently

n

(G — 1) log((p — s)log(n))
max lej Epllz <O <\/jnelfj‘§§0jj~A '

2. Show M|Ep(I + DIW D) 'DiWisallee2 < Aa/4.
Since ejTED ~N (07 n_lajj.AIG_l), it follows that

e, Ep(I+D W Da) "DiWyisa
Oij. _ _ _ _
~ N (o, LA WaaDa(l + DEWiaDa) QDZWAQXSA) .

Following the above arguments, the following event has probability at least
1 —log '(n)
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M

jEAC

{ le] Ep(I+ D W iDa) ' DiW 1saL™"/2||3

Ujj-A

n

<o (G- Dloalln =)o) }

where L = s \WiiDa(I + DIW;1Da) 2D} W isa. This implies that with
probability at least 1 —log™*(n)
le] Ep(I+ DIWiaDa) " DIW,4sall3
max
jEAC 0jj-A

< L]0 (“’ — 1) log((p — s) log<n>>)

n

By triangle inequality
ILllz = IsAWaaDa(I +DAW 4D ) *DAW Cisall
_ - - —-1/2
< shWaksallal(Z + DAWADA) ' DAW Y3
< llsaWaiasallz
< sllsallZ 2 IWaallz

< sIWaalle-

From Lemma 9 in [22], with probability at least 1 — log™*(n)

Witk < 15 (14 0 (D))

n

Combining the above displays, with probability at least 1 — O(log™"(n))

llef Ep(I + DYWiADA) " DIWiksal
jEAC 0jj.-A

< I=34120 <(G — 1)slog((p — s) log(n))) |

n

or equivalently

max He;ED(I + DAW iDA) 'DiW isall2

<0 (\/IIZZZIIQ max . (G — 1)slog((p — s) 10g(n))> |

n

3. Show |[(n— G) 'EgU WiiDaA(I+DiWiiDa) Yoo < Aa/4.
By definition Eyy = Uaec — S 4c4% 14 Ua, hence

VeC(EU) ~ N(O, YAcpc.a R Infg)
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and is independent of U 4. Therefore
1
—1,T
(Tl — G) €; Ey ~ N <O7 4(71 — G>2 Ujj-AIn—G> )

where 0jj.A = Z]‘j - ZjAZZ}qu]* Conditional on X 4,

1 _ _ _
n_GejTEUUXWAjDA(IJrDIWAjDA) !

~N (0, %(I +DIWiDa) 'DIW iDa(I + DZWAjDA)—1> .

Let (I + D W iDa) *DIW iDa(I + DJW,1D4)~! = L. Then by Propo-
sition 1.1 in [8]

M

JEAC

l(n = G)~te] EvU WiiDa(I + DWW iDa) ' L1 3
Tjj-A

(G—1) /(G —1)log((p—s)log(n)) ,  log((p—s)log(n))
= n—G +2 n—G +2 n—G }

with probability at least 1 —log™"(n). Therefore,

N

jeAC

[(n = G)~'e] ByUJWiaDa(I + DWaDa)" (I3
Tjj-A

SHLMO<

(G—mma@—@mgm»}
n—G

with probability at least 1 — log™'(n). Since
VLI2 = (I + DAWZADA) " DAWZADAU + DAWZADA) o
= (I + DAW3Da) 2DyWiDallz <1,
with probability at least 1 — log™'(n)

g M = G) el ByUIWaDa(I+ DWW, iDa)7![3
jeAs 0jj-A

<0 ((G — 1)10i((j)5 s) log(n))> ’

or equivalently

max
jeAs

(n—G) 'e] BEuUAW aDa(I+ DyWiiDa) |2

<o (\/%%Jjj_A(G - 1)10%1((?5 ) log(n))> |




2026 I. Gaynanova and M. Kolar

4. Show \|(n —G) 'EyU W s(I +WiiDaD}) 'salles < Xa/4.
Since (n — G)~'e] By ~ N (0,(n — G) %0 .41, _c), it follows that

G jEUUA(WAA+DADA) SA

T5i. _ _
~N (0, ﬁSX(WAA + DAD:D 1I/VJL\,L;(VVAA + DAD:D 18A> .

Similar to parts 2 and 3, with probability at least 1 — log™*(n)

1 _
— GG;FEUUX(WAA + DADX) 18A||2

maX||
JEAcC
<0 <\/|||L||2 max o4 (G —1)log((p— s) 10g(n))> |
jEAe n
where

ILll2 = Ish(Waa + DaD}) 'Waa(Waa + DaD})  sallo
IW X (Waa+DaD})  sall3

§S||| 1/2W—1/2( W—1/2DADAW—1/2) W—1/2”|2
—1/2 —12 —12

< s+ Wi 2DaD W) T BIW L 13

< s|Wiile.

Following the same argument as in part 2, with probability at least 1—(’)(log71 n)

max||

1 _
jeAe Ge}EUU;(WAA+DAD}) Lsalle

<0 <\/||2A}4|||2§2% _— (G = 1slog((p — s) log(n))> |

n

Combining 1-4 . The equations (7.4)—(7.7) are satisfied with probability at
least 1 — (’)(log_l(n)) if for some constants C; > 0 and Cy >0

(G — 1)slog((p — ) log(n))

> O /1252
o=z 1\/” AA|”2§2?45§UJJA

and

maxao;i.A
jEA® A n—=G

«

s Lo \/ (G = 1)log((p — 5)log(n)

These inequalities are satisfied by (C1) and the conditions on sample size n and
tuning parameter A from Theorem 2. O

7.2. Auzillary technical results

Lemma 8. If X;|Y; = g ~ N(ug, %) fori=1,...,n, then
D~N(A+01),2/n®I+0(1); (n—G)W,~W(E,n-Qq).
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Remark 9. The bias term o(1) does not depend on either s or p, and therefore
we don’t consider this term in the remaining analysis.

Proof of Lemma 8. The result for W is trivial. The definition of D and the
multivariate normality assumption on X; imply D ~ N(up,Xp1 ® Lpa). It
remains to show up = A+ o(1), ¥p1 = X/n and Xps = I. Consider the rth
column of D,

ERALS ! 22:1 ng()_(g — Xr41)

D,
r r+1
\/ﬁ\/zg:1 Ng Zg:l Ng

and the rth column of A,

VTl 2221 (kg — pirs1)
+1 ’
\/Z;:l Tg Z;=1 Tg

Note that E(X;—X;) = p;—pu; for alli, j € {1,...,G}. Moreover, (n,...,ng) ~
Mult(n, (m1,...,7g)), and therefore E(n;/n) = m and Cov(n;/n,n;/n) =
mym;/n for all 4,5 € {1,...,G}. Hence,

E(D,) = E(E(Dy|n1,...,nqg))

V41 22:1 ngE(Xy = Xoy1)lna, ..., n6)

A,

=E
r+1
\/ﬁ\/Egzl Ng Zg:l Ng
N Y Nr+1 Zgzl ng (g — Hr+1)
T r+1
\/ﬁ\/Zgzl Ng ZgJ:rl Ng
=A, +0(1).
First, consider the case ny/n = m, for all g € {1,...,G}. Since the groups are
independent,
Cov(D,)

=E{(D, - A)(D, —A,)"}
E{ (S0 @ = ) = r@ri1 = pr40)) (S (@1 = 1) = 7(@rs1 = i)

Gr(r+1)
_ S B{(@ — i) (@i — o) T} A P EA{(Zrg1 — prg1) @1 — pirg1) T}
Gr(r+1)
Gt e T
and for s > r
Cov(D,, Dy)

=E{(D, - A,)(Ds - A,)"}
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E{ (7@ = 1) = 1(@rin = por41) (i (@ = 1) = 8301 — o))"
N Gy/r(r+1)s(s+1)
_ S EB{(@ — ) (@ — pa) T} — rE{(Zrg1 — porg1) (@1 — prs1) T}
Gy/r(r+1)s(s+1)

1 Y
G e M
The final result follows since |n;/n — m;| = o(1). O
Lemma 10. R
—A_ A4 Da ~tgo1(dy, pu, Th)
e¢j Waaej

with degrees of freedom dg =n—s— G+ 2, mean pyg = DXEZ}L‘eJ—/(e;EZAej)
and scale parameter 'y = i(DXRDA)/(e;rZZZej) with

-1 —1
R—yx-1 EAAeje;rZAA
— “AA T TZ—_l
€5 265
Proof of Lemma 10. Let

- (DWA—EAZDA DXEAie]’> o (Hll H12>

GIZXADA 6;22114(?]' HFQ H22
and ~ N
f[ _ DIWZiDA DZW;}XBJ _ H11 H12
e;»ng}‘DA e;rngej HITQ Hoo
Tor—1,. ~ o~
By definition, ZA244% — 1) F;! Let M = (D4 e;)T € R9%*. Then H can be
€; Waati

rewritten as H = MY, M T and Has H= MW iMT. Since (n — G)Was ~
Ws(n — G, 44) and rank(M) = G, by [15, Theorem 3.2.11]

(n—G)H " ~Wa(n—s, H),

or equivalently

f[wW&l(n—s—i—G—i—l,H).

n—
By definition of R, Hi1.o = DJRD4. Using [2, Theorem 3], ﬁlgﬁ{; has
density

_1 — G-1 n—s
fo o (X) = [DARDA|2|e] Siae;| ™= T(2=5H)
H12H2_21 - ,n.(Gfl)/Z F(n755G+2)

x|+ e S3kej(DARDA) ™ (X — HinHy' ) (X — HipHyy') |72 =s40),
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Since |[I +uv'|=1+u'v,

-1 - G-1 n—s
fa o aa(X) = [DARDA|"2lej She;| "= T(2=5H)
Hi2H,, m(G-1)/2 F(n755G+2)

x (1+ €] Sihe; (X = HinHy)T(DERDA) (X — HipHzh) 20

This density corresponds to a (G — 1)-dimensional elliptical ¢-distribution with
n — s — G + 2 degrees of freedom, mean E(ngngl) = H12H;21 and
1 DIRD,
1 .
n—s—=GelY e

COV(E12FI2_21) =

Lemma 11. With probability at least 1 — O(log™* (n))

_ _ slog(log(n
IWastDaDE) oo < Vl(SantAsAT) 2 (1 ) ( w» .
Proof of Lemma 11. First, we prove that unconditional distribution of X4; €
R* ¢ = 1,...,n, is sub-gaussian: for all x € R*, < X 4;,x > is sub-gaussian.
Since X 4;Y; = g ~ N(p1ga, Xaa), Xa; can be expressed as

Xai = Cai + Za,

where Za; ~ N(0,X44) and P(Ca; = pga) = my for g = 1,...,G. Let T =
(Xai,x), ¢ = (Caqyz) and Z = (Za;,x). Then & = ¢ + z. Consider the sub-
gaussian norm of Z [21, Definition 5.7]

1, = supd /2 (E[7%) .
d>1

By triangle inequality, ||Z|/y, < ||¢]ly, + [|Z]ly,- Note that ||¢]|y, is finite for all
x since Cy; is a bounded random vector, and ||Z]|y, is finite for all = since Z4;
is a zero-mean gaussian random vector. It follows that ||Z||,, is finite for all x,
hence X 4; is unconditionally sub-gaussian.

By definition, ¥ 44 +A AA:'; is unconditional population covariance matrix of
Xaqgand Wysa+D ADX is unconditional sample covariance matrix of X 4. Using
Theorem 5.39 in [21], with probability at least 1 — log™'(n)

(244 + AAA L) "Y2(Wan +DaDY)(Zan + AsA) V2 — 1),

slog(log(n))

<C

By submultiplicity of operator norm,
(Waa+DaD3)™" = (Saa+AaAL) o
< (Zaa+AaAL) 2%
X [[(Saa + AaA)Y2(Waa +DaD ) H(Zaa + AaA))Y2 — 1.
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Therefore, with probability at least 1 —log™*(n)

I(Waa+DaDj) ™" — (Saa+AaA)) 2

slog(log(n
< CU(San+ Asa]) oy L0ELET).

n
By triangle inequality,
I(Waa+DaD)y) o
<N(Saa+AaAL) Moo + 1(Saa + AaAL) ™ = (Waa+DaD)y) M
<Vsl[(Saa+ AaAL) 2 + Vsl (Saa + AaA )T = (Waa+ DaD )72

< Vol(Saa + AaAL) o <1 ) < M)) .

O

n

Lemma 12. With probability at least 1 —log™*(n)

- - _ G — 1) log(log(n
IDF234Da ~ DIWsADAll < CID]S Dy (G 1os1o8tn),
Proof of Lemma 12. By submultiplicity of operator norm,

IDAS 4Da — DAW 4 Dall
<|DAE3hDall2ll — (DAS 4 DA) " 2D Wi DA(DIE 4 DA) 2 2.

By Theorem 3.2.5 and Theorem 3.2.11 in [15],
(n = G)D A4 DA) P (DIWADA) (DA 4 Da)? ~ Wei(n— s —1,1).
By Lemma 9 in [22], with probability at most 2exp (—(n — s — 1)t?/2),

(DAL Z4DA) T 2DAW ADA(D S 4 D)™ = 1|l
(n—G)Yd(n—-—s—1,G—1,t)
n—s—1

>

)

where

2
§(n51,G1’t)2< (H'+t>+< Gj]’+t>
n—s—1 n—s—1

‘o /2log(2logn))
B n—s—1

Then with probability at least 1 — log™*(n)

Let

n—s—1

1= = (DATaADA) EDAW A DA(DIE 3 Da) 2 ~ I
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< 8\/2(6' - 1)10g(2log(n)).

n—s—1

Hence, with probability at least 1 —log™'(n)
I(DAZ4D4) " 2DAWADA(D AN D )2 ~ 1]l
- C\/(G — 1)log(log(n)) .

n

Lemma 13. With probability at least 1 —log™*(n)
IDAX A Dallz < (G = DIAIZ 4 A2
Lo <(G — 1)slog(log(n
n

INISEREVRCES 1Zg(1°g(n))> |

Proof of Lemma 13. Since DXZZLD A is a positive semi-definite matrix,
IDAS34Dallz < Te(DAT34Da).
Recall that Dy ~ N (A4, X 44/n @ I). Therefore for all ¢ € {1, .., (G — 1)}
ne; DyY Y\ Daei ~ x2 (ne;rAXZ;}L‘AAeZ—) .
From [9, Lemma 11], for all ¢ € {1,..,(G — 1)}, with probability at least 1 —
log™"(n),
e:DIZ;‘}L‘DAei < ejAKZE}L‘AAei

Lo (slog((G — 1)log(n))

n

Vv \/GIAXEA}LXAAQ' IOg((G - 1) 10g(”))> ’

n
or equivalently
Tr(Dy¥53Da) < Te(ARE 4 A)
—1)sl — 1)1
o <<G )slog((G — 1) log(n)) ,,

n

ey EE D log<n>>> |

n

Since Tr(ALX5A4) < (G = DJALE 4 A4]2 and G = O(1), it follows that
with probability at least 1 — log™"'(n)
IDAXZADall2 < (G — DIAREL A2

) ((G — 1)slog(log(n

Dy fiateisaat S ”lzg“‘)g(””) ;=

Lemma 14. With probability at least 1 — O(log™*(n))
IDAWiaDallz < CIARE Al
Lo <(G — 1)slog(log(n
n

Dy J1areihaa, @ kff(log(n))) |
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Proof of Lemma 14. By triangle inequality and Lemma 13,

IDAWAD All2 =

IDIWADAl
IDIS34Dal:
_ IDIWiDaAl
= IDE=3hDall;

((G — 1)slog(log(n

IDAS3AD All2

((G ~DIALS A Al

+0

Dy, \/|||A;z;;AA||2 (G -1) lzg(log(n))) )

From Lemma 12, with probability at least 1 — log™*(n)

IDAWiaDalla _ DAY 4Dallz + IDAW 44 Da — DS Dall2

IDAE34Dallz ~ IDAS 34 Dall2
. C\/(G — 1) log(log(n))
n
<c'.

Combining with the previous display, we obtain with probability at least 1 —
O(log™*(n)) that

IDAWiDallz < CIALS Al

+0

((G — 1)slog(log(n

Dy yiagmgaanC el )
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