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With the growing size of problems at hand, convexity has become preponderant
in modern statistics. Indeed, convex relaxations of NP-hard problems have been
successfully employed in a variety of statistical problems such as classification
[2, 16], linear regression [7, 5], matrix estimation [8, 12], graphical models [15, 9]
or sparse principal component analysis (PCA) [10, 4]. The paper “Hypothesis
testing by convex optimization” by Alexander Goldenshluger, Anatoli Juditsky
and Arkadi Nemirovski, hereafter denoted by GJN, brings a new perspective on
the role of convexity in a fundamental statistical problem: composite hypothesis
testing. The role of this problem is illustrated in the light of several interesting
applications in Section 4 of GJN.

One of the key insights in GJN is that there exists a pair of distributions, one
in each of the composite hypotheses and on which the statistician should focus
her efforts. Indeed, Theorem 2.1(ii) guarantees that any test that is optimal for
this simple hypothesis problem is also near optimal for the composite hypothesis
problem. Moreover, this pair can be found by solving a convex optimization
problem. While convexity does not necessarily imply tractability, the convex
problem considered here may become simple to the point that closed solutions
exist even though no succinct description of the hypothesis sets may be known.
This point is illustrated below.

Unlike the papers cited above, where the original problem to be solved is
non-convex, GJN assumes given convex hypotheses (or finite unions of convex
hypotheses). Hereafter, we investigate the performance of the proposed test
when convexity is artificial and arises as a relaxation of a non-convex problem.

Let us consider two examples that fall under the umbrella of combinatorial
testing problems [1]. Such problems are defined as follows. Assume that one
observes a Gaussian random vector X ∼ N (μ, In) for some μ ∈ R

n. Let p ∈
{0, 1}n be a sparsity pattern [17]. Given a class P ⊂ {0, 1}n of sparsity patterns,
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we are interested in the following hypothesis testing problem:

H0 : μ = 0 ∈ R
d vs H1 : μ ∈ λP ,

where λP = {λp : p ∈ P} for some λ > 0. The question is: “How large should
λ be in order to test with a pre-specified small risk?”. Here, the risk of a test is
defined as in GJN.

Several classes of sparsity can be considered [1] but perhaps two of them have
more direct statistical relevance. The first one is the class of k-sparse vectors
defined as Pn

1 = {p ∈ {0, 1}n,
∑

j pj = k}. The problem becomes detection
of sparse means, which has applications in various problems including signal
processing and steganography. To describe the second problem, assume that
n = d2 and fix an arbitrary bijection T : Rn → R

d×d, onto the space of d×d real
matrices. The class P2 of k-clusters (or cliques) is defined as the set Pn

2 = {p ∈
{0, 1}n : T (p) = qq�, q ∈ Pd

1 }. In other words, these are the sparsity patterns
p such that T (p) is the adjacency matrix of a clique of size k in an otherwise
empty graph of size d. The class P2 of sparsity patterns has applications in
clustering [6, 14] and sparse PCA [3, 4].

These combinatorial testing problems do not fall in the category of good
observation schemes as defined in GJN because the class Y = λP is not convex.
Moreover, these two sets are of size that is exponential in k and performing the
simple hypothesis tests

H0 : μ = 0 ∈ R
d vs H1 : μ = λp,

for all p ∈ Pn
i ,∈ {1, 2} as recommended in Section 3.1 of GJN is simply in-

tractable. To circumvent this limitation, let us explore a convexification of the
problem and study instead

H0 : μ = 0 ∈ R
d vs H1 : μ ∈ λ conv(P),

where conv(P) denotes the convex hull of P and is defined as the smallest convex
set that contains P . In the case of Pn

1 and Pn
2 , these convex sets are polytopes.

Even so, optimization over polytopes may not be tractable. For example, some
polytopes are known to not have a description involving a small number of
linear constraints [18] and are therefore not amenable to linear programming.
Fortunately, the optimization problems that are required by GJN admit an ex-
plicit solution in these two specific cases. Indeed, it follows from equation (7)
in GJN that a near optimal test can be found by testing H0 : μ = 0 against
H1 : μ = λμ̄ where μ̄ is the point in the polytope conv(P) with the smallest
Euclidean norm. For both polytopes conv(Pn

1 ) and conv(Pn
1 ), such a vector can

be easily computed analytically.

We begin with Pn
1 . In this case, it is simply the vector μ̄1 = (k/n)1n, where

1n ∈ R
n denotes the all-ones vector. Moreover, the optimal test of 0 versus μ̄1

has small risk as soon as λ ≥ C
√
n/k for some positive constant C. This rate is

known to be optimal when k 	 √
n but is suboptimal for smaller values of k [1].
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In the case of Pn
2 , it can be shown that

T (μ̄2) =
k(k − 1)

d(d− 1)
1d1

�
d +

k(d− k)

d(d− 1)
Id,

so that the optimal test of 0 versus μ̄2 has small risk as soon as λ ≥ Cd/k2 for
some positive constant C. As before this rate is optimal if k 	

√
d but a better

rate can be achieved if k 

√
d [6, 14]. As a result, it seems that convexifying

the problems in that way is too coarse for very sparse cases.
While in appearance the two problems seem to have the same computational

limitations, they are in reality quite different from this point of view. Indeed, on
the one hand, detecting a sparse mean μ ∈ Pn

1 can be solved in a very efficient
way by simply looking at the k largest entries of X [1]. On the other hand,
a recent line of work has shown that optimal detection for k-clusters may not
be solvable efficiently if one wishes to use a computationally efficient procedure
such as the one employed in GJN. Indeed, sparse PCA [3] and sub-matrix de-
tection [14] both have the k-cluster structure and are known to be intrinsically
computationally hard to solve optimally if one believes in the planted clique
conjecture [11, 13].
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