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1. Introduction

We observe an i.i.d. random sample Y1, . . . , Yn ∈ RD from a distribution Q that
lies on a d dimensional manifold M with d < D. The goal is to estimate the
unknown manifold M based on the sample {Yi}.

Manifold learning is an active area of research in machine leaning, applied
mathematics as well as statistics, but not much optimality theory regarding
the rates of convergence has been developed. To the best of our knowledge
the optimal convergence rates for estimating manifolds are only considered by
Genovese et al. (2012a,b) (henceforth GPVW) under a minimax criterion. Con-
vergence rates of their theoretical estimators are compared to the lower bounds.
However, their upper and lower bounds do not match. To fill in the gap, this
paper establishes the optimal rates of convergence by a novel lower bound ar-
gument.

GPVW considered three noise models–noiseless, clutter and additive model–
for Q. Noiseless model assumes that sample is obtained from a distribution G
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supported on M. The clutter model assumes that sample is from G with proba-
bility π and from U with probability 1−π, where U is a uniform distribution on
a compact set K ⊂ RD with nonempty interior. We only consider the noiseless
model.

Following GPVW we measure the loss by means of the Hausdorff distance

H(A,B) = inf{ε > 0 : A ⊆ B ⊕ ε and B ⊆ A⊕ ε}

where A⊕ ε = {x ∈ RD : ||x−A|| ≤ ε} where || · || denotes Euclidean distance.
For a suitably chosen set M of compact, d-dimensional manifolds in RD and,
for each M ∈ M, a suitable set Q(M) of probability measures concentrated on M
(see Section 2), they worked with the the maximum expected loss

Λn(M̂) := sup
M∈M

sup
Q∈Q(M)

EQH(M̂n,M)

based on the sample Y1, . . . , Yn from Q. They constructed a sequence of estima-
tors for which

Λn(M̂) = O
(
γ2/d
n

)
where γn = n−1 logn

and also showed that

inf
M̂

Λn(M̂) ≥ cγ2/d
n (logn)−2/d = cn−2/d (1)

for some constant c that depended on M. The proof of the lower bound is based
on the testing between two smooth manifolds where the first manifold looks like
a squashed ball with a flat region and the second manifold coincides with the
first one except a small bump on the flat area, such that these two manifolds
are not statistically distinguished.

The main contribution of our paper (Theorem 1 in Section 2) is to establish

a uniform lower bound for Λn(M̂) of order γ
2/d
n , thereby determining the true

minimax rate for one of the manifold estimation problems considered by GPVW.
We use a method, first presented by Le Cam (1973), in the form used by Yu

(1997). In our setting the method becomes: if M0 and M1 are subsets of M
for which inf{H(M0,M1) : M0 ∈ M0, M1 ∈ M1} ≥ 2γ, for some positive
constant γ, then

Λn(M̂) ≥ γ sup
Pi∈co(Qn

i )

|P0 ∧ P1| (2)

where Qn
i denotes the set of all n-fold product measures Qn

i with Qi ∈ Q(Mi)
for i = 1, 2 and co(·) denotes the convex hull. The quantity |P0 ∧ P1| is called
the testing affinity. It equals 1 minus half of the L1 distance between P0 and P1.

The general analog of inequality (2) is best known for the case where bothM0

and M1 are singleton subsets, a situation sometimes referred to as “two-point
testing”. GPVW used that method to establish their lower bound (1). The sit-
uation where only one of the Mi’s is a singleton set has been used by many
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authors (see Tsybakov 2009, Section 2.7.5 for example). The full power of in-
equality (2) has, to our knowledge, only been effectively applied in the paper by
Cai and Low (2011). In the present paper we employ (2) by means of an embed-
ding of an occupancy problem into the manifold problem. We bound the affinity
bewteen two convex hulls (mixtures) using combinatorial arguments involving
the hypergeometric distribution. In Section 2, we give some intuition behind our
construction and the reasons why it does not suffice to have even one of the Mi

a singleton set.
Proofs for the main results are given in Section 3. We collect proofs for

auxiliary lemmas in Section 4.

2. Main theorems

In this section we introduce lower bound results and intuitions behind them.
The lower bounds, together with upper bounds in Genovese et al. (2012b), yield
minimax rates of convergence.

First, we describe the setting in detail. Assume that M is a compact C1 Rie-
mannian submanifold without boundary in RD, and contained in some compact
set K ⊂ RD with nonempty interior. In addition, we need a regularity con-
dition for the curvature of the manifold M. Define Δ(M) to be the largest r
such that each point in M ⊕ r has a unique projection onto M. As proved by
Niyogi et al. (2006, Section 6), Δ(M), which is usually called condition num-
ber, controls the curvature of the manifold. We assume that the d dimen-
sional manifold M satisfies Δ(M) ≥ κ, where κ is a fixed positive constant.
Let M(κ) := {M : Δ(M) ≥ κ,M ⊆ K}, and G(M) be a set of distributions Q
whose densities q with respect to the uniform measure on M satisfy

0 < b(M(κ)) ≤ inf
y∈M

q(y) ≤ sup
y∈M

q(y) ≤ B(M(κ)) < ∞ (3)

where b(M(κ)) and B(M(κ)) may depend on M(κ) but not on the particular
manifold M.

Here is the intuition behind our main result, Theorem 1. Consider a one
(d = 1) dimensional closed smooth curve M in a two dimensional space (D = 2),
and observe n points uniformly distributed on M. Without loss of generality,
assume that the length of the curve is 1. The maximum gap among those points
is of an order of logn

n with high probability. That means there exists at least one

connected piece of the manifold of length of order logn
n on which we have no

observations. The locally quadratic approximation error of the interpolation of
smooth manifold yields a possibly unavoidable estimation error of ( logn

n )2. This
idea can be carried over to a general d dimensional manifold in RD with d < D
by dividing the manifold into an order of n

logn disjoint pieces with a diameter

of an order ( log n
n )1/d for each.

Theorem 1. Let Y1, . . . , Yn be i.i.d. sample from a distribution Q where Q is
supported on a manifold M ∈ M(κ), and Q ∈ G(M). Then there is a constant c,
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not depending on n but depending on d, and b and B defined in Equation (3),
such that

inf
M̂

sup
Q∈Q

EQn [H(M̂,M(Q))] ≥ c

(
logn

n

)2/d

.

The following two remarks explain why a naive “one versus a mixture” testing
can not lead to the desired lower bound in Theorem 1 and the intuition for the
testing of two convex hulls. We use an 
 bn if an ≤ C1bn and bn ≤ C2an where
C1, C2 are constants not depending on n. Denote by L1(P,Q) :=

∫
|p− q|dμ the

L1 distance between P and Q, where μ is a dominating measure, and p and q
are the densities of P and Q respectively.

Remark 1 (One versus a mixture). In many cases including sparse support
recovery in high dimensional estimation, one (null) versus a mixture (alter-
native) testing gives tight bounds. For instance, consider the problem of esti-
mating the multivariate standard normal mean vector θ ∈ Rn with covariance
matrix In/n. Then it can be shown that for the parameter space satisfying∑n

i=1 1{θi �= 0} = 1, the magnitude of the nonzero θi needs to be at least of an

order of
√

log n
n for consistent support recovery by one versus a mixture testing

of Le Cam. However, this same reasoning does not work for manifold estimation
by simply considering a test of one manifold versus a mixture of many manifolds
with one bump for each. Consider a base manifold M0 (defined in (14)) as the
null. For the alternatives, we can construct the set of manifolds M having one
bump deviated from M0 such that H(M0,M) 
 ( log n

n )2/d for all M ∈ M. Define
the uniform distributions Q0 := U(M0) and Q := U(M) ∈ Q on these manifolds.
We find that L1(Q

n
0 ,

1
|Q|
∑

Q∈Q Qn) converges to 2. These two distributions are

very different from each other. This can be understood as follows. Based on one
sample from any manifold of M, with high probability there is at least one ob-
servation lying on the bump, thus we instantly know that the null hypothesis is
wrong. This is different from the multivariate normal mean estimation problem,
for which based on a sample generated from the alternative one can not tell
whether there is a nonzero θi and where the location of the nonzero θi is. See
Remark 3 for the exact calculation of the L1 distance.

Remark 2 (A mixture versus a mixture). From Remark 1, we see that the
problem of estimating a set of manifolds with at most one bump for each
is not hard enough for establishing the desired lower bound. A large set of
manifolds with 2m = n/(t log n), for some t ∈ (0, 1/2), number of inward and
outward bumps are constructed. Two subsets of manifolds M0 = {M0j} and
M1 = {M1j′} are selected. Manifolds in M0 have m = n/(2t logn) outward
bumps, while manifolds in M1 have either m + 1 or m − 1 outward bumps on
M0, such that H(M0j ,M1j′) 
 ( log n

n )2/d for all M0j ∈ M0 and M1j′ ∈ M1.
Consider the uniform distributions on M0j , that is, Q0j := U(M0j), and simi-
larly Q1j′ := U(M1j′). In Section 3 it will be shown that L1(

1
|Q0|

∑
Q0j∈Q0

Qn
0j ,

1
|Q1|

∑
Q1j′∈Q1

Qn
1j′) converges to 0, which implies we can not distinguish two

convex hulls from observations. The intuition behind the L1 distance calcula-
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Fig 1. Constructed manifolds for case d = 1,m = 2: M0j (top), M1j′(bottom). Here we used
larger base manifold for illustration.

tion is that for observations generated from either class there will be several
bumps without any observation lying there, thus it seems to be impossible to
distinguish one convex hull from the other from those observations. See Section
3 for details of a rigorous justification.

Combining the upper bound in Theorem 3 in Genovese et al. (2012b) and
the improved lower bound in Theorem 1, we have the following corollary.

Corollary 2. Let Y1, . . . , Yn be i.i.d. sample from a distribution Q where Q is
supported on a manifold M ∈ M(κ), and Q ∈ G(M). Then

inf
M̂

sup
Q∈Q

EQn

[
H(M̂,M(Q))

]


(
logn

n

)2/d

.

Theorem 1 can be easily extended to a so called clutter model, for which
we observe i.i.d. observations Y1, . . . , Yn ∈ RD from a mixture distribution
(1 − π)U(K) + πG, where U(K) is a uniform distribution on K and π ∈ (0, 1).
Construct the same set of manifolds which are used in the proof of Theorem 1.
Clearly the Hausdorff distance between any manifold in each set is at least
(logn/n)2/d (up to a constant) as in the proof of Theorem 1, thus it suffices to
show that the testing affinity in (2) is bounded away from zero in the clutter
model. See the proof of Theorem 3 for calculation.
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Theorem 3. Let Y1, . . . , Yn be i.i.d. sample from a distribution Q = (1 −
π)U(K) + πG, where G ∈ G(M) is supported on a manifold M ∈ M(κ). Then
there is a constant c, not depending on n but depending on d, π, and b and B
defined in Equation (3), such that

inf
M̂

sup
Q

EQn

[
H(M̂,M(Q))

]
≥ c

(
logn

n

)2/d

.

Combining the upper bound in Theorem 5 by Genovese et al. (2012b), we
obtain the following optimal rates of convergence.

Corollary 4. Let Y1, . . . , Yn be i.i.d. sample from a distribution Q = (1 −
π)U(K) + πG, where G ∈ G(M) is supported on a manifold M ∈ M(κ). Then

inf
M̂

sup
Q

EQn

[
H(M̂,M(Q))

]


(
logn

n

)2/d

.

3. Proof of main results

In this section we derive the lower bounds in Theorems 1 and 3. The key tech-
nique is Le Cam’s method for testing two convex hulls. Consider a set of dis-
tributions Q, supported on a manifold M ∈ M. Let M̂ be the estimator of
M = M(Q) based on i.i.d. sample Y1, . . . , Yn from Q. Let H be the Hausdorff
distance. Le Cam (1973) establishes a minimax lower bound as follows. See also
Yu (1997).

Lemma 5 (Le Cam’s method). Suppose that there are subsets M0 and M1 of
M that are 2γ separated, in the sense that H(M0,M1) ≥ 2γ for all M0 ∈ M0

and M1 ∈ M1. Suppose that Q0 and Q1 are subsets of Q for which M(Q0) ∈ M0

for Q0 ∈ Q0 and M(Q1) ∈ M1 for Q1 ∈ Q1. Denote the cardinality of the set
Q by |Q|. Then

sup
Q∈Q

EQnH(M̂,M(Q)) ≥ γ

∣∣∣∣∣∣
⎛⎝ 1

|Q0|
∑

Q0∈Q0

Qn
0

⎞⎠ ∧

⎛⎝ 1

|Q1|
∑

Q1∈Q1

Qn
1

⎞⎠∣∣∣∣∣∣ .
The proof of Theorem 1 consists of the following 4 steps: (i) construction of

two finite sub-parameter spaces M0 and M1 which are separated of an order of
( log n

n )2/d, (ii) simplification of the L1 representation, (iii) reduction of the L1

distance to a combinatorial counting, and finally (iv) bounding the L1 distance
by studying combinatorics through the tail probability bounds for the traditional
occupancy problems and hypergeometric distribution.

3.1. Construction of finite sub-parameter spaces

The construction extends the manifold with one bump in Genovese et al. (2012a)
to the case of multiple bumps. In particular, M0 corresponds to the set of
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manifolds with m outward bumps among 2m possible perturbations while M1

corresponds to the set of manifolds with m+1 or m− 1 outward bumps. These
bumps are disjoint and congruent, and the volume of each bump is of order
logn/n. Lemma 6 shows that there exist suitable constructions for these sets
M0 and M1 in order to use Le Cam’s method.

Lemma 6. Let 2m := n/(t logn) 
 γ−d/2 for some t ∈ (0, 1/2), N0 =
(
2m
m

)
,

and N1 =
(

2m
m+1

)
+
(

2m
m−1

)
. Then there exists two sets of compact C1 Riemannian

manifold M0 = {M0j , j = 1, . . . , N0} and M1 = {M1j′ , j
′ = 1, . . . , N1} such

that all the manifolds in M0 and M1 satisfy the condition number assumption,
that is, (M0 ∪M1) ⊆ M(κ), and

inf
j′=1,...,N1

inf
j=1,...,N0

H(M0j ,M1j′) ≥ 2γ.

3.2. A simplified L1 representation

In order to consider the L1 distance between distributions on these manifolds,
we introduce some more notation. Part of manifolds without bumps is denoted
as m := ∩N0

j=1M0j ∩N1

j′=1 M1j′ . Part of manifolds with bumps are denoted with

m
+
l and m

−
l for l = 1, . . . , 2m where m+

l means the outward bump (m−
l meaning

the inward bump) where the order l does not play a crucial role because of the
symmetry. For instance, by defining m0j := ∪l∈R0jm

+
l ∪l∈Rc

0j
m

−
l ,

M0j = m ∪l∈R0j m
+
l ∪l∈Rc

0j
m

−
l =: m ∪m0j . (4)

For later use, we also denote ml := m
+
l ∪ m

−
l . Then we suppose μ as a dom-

inating uniform measure on ∪N0
j=1M0j ∪N1

j′=1 M1j′ . We let Q0j be the uniform
probability measure on M0j (i.e. Q0j := U(M0j)) with a density q0j respect to
μ and similarly define Q1j′ and q1j′ on M1j′ .

By construction, μ(m) = C0 (where C0 is a constant only depending on d)
and μ(m+

l ) = μ(m−
l ) = cγd/2 for all l = 1, . . . , 2m (see the proof of Theorem 2

by Genovese et al. (2012b)). Then μ(M0j) = μ(M1j′) = C0+(2m)cγd/2 =: C for
all j = 1, . . . , N0 and j′ = 1, . . . , N1, where C only depends on the dimension d
by the choice of m 
 γ−d/2. Accordingly, for j = 1, . . . , N0 and j′ = 1, . . . , N1,

dQ0j

dμ
(x) := q0j(x) =

1

C
1{x∈M0j} =

1

C
1{x∈m∪m0j}

dQ1j′

dμ
(x) := q1j′(x) =

1

C
1{x∈M1j′} =

1

C
1{x∈m∪m1j′}.

Lemma 7 gives an upper bound for the L1 distance between two mixtures of
distributions on the constructed manifolds as an expression with two functions
f̄0 and f̄1 which take nonzero values only on the part of manifolds with bumps.

Lemma 7. Let f̄0(x) := 1
N0

∑N0

j=1

∏n
i=1 f0j(xi) := 1

N0

∑N0

j=1

∏n
i=1(1{xi∈m0j}/

μ(m0j)) and f̄1(x) := 1
N1

∑N1

j′=1

∏n
i=1 f1j′(xi) := 1

N1

∑N1

j′=1

∏n
i=1(1{xi∈m1j′}/
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μ(m1j′)). Then we have

L1

(
1

N0

N0∑
j=1

Qn
0j ,

1

N1

N1∑
j′=1

Qn
1j′

)
≤
∫ ∣∣f̄0(x)− f̄1(x)

∣∣ dμn. (5)

3.3. From L1 to combinatorics

Before starting the detailed calculations of (5), let us emphasize that the den-
sity values

∏n
i=1 f0j(xi) are determined (as a nonzero fixed value 1/(C −C0)

n)
only by the specified perturbations in m0j . In order to use some combinatorial
ideas, we divide the whole integral region ∪n

i=1

{
xi ∈ (∪2m

l=1ml)
}
into 2m disjoint

regions S1, . . . , S2m for which

∪n
i=1

{
xi ∈ (∪2m

l=1ml)
}
= ∪2m

u=1{(x1, . . . , xn) ∈ Su},

and each Su, 1 ≤ u ≤ 2m, is composed of disjoint union of u unique ml’s among
2m number of possible ml’s. In other words, each disjoint region in Su has the
shape ml1×ml2×. . .×mln with u unique ml’s so that |∪k{lk}| = u. Accordingly,
we let S1 = mn

1 ∪ mn
2 ∪ . . . ∪ mn

2m and S2 = (m1 × m
n−1
2 ) ∪ (m1 × m

n−1
3 ) ∪ . . .

∪(mn−1
2m−1×m2m),. . .,S2m = (m1×m2× . . .mn−2m+1

2m )∪ . . .∪(mn−2m+1
1 ×m2× . . .

×m2m).

Now, we evaluate the integral (5). First note that each Su are disjoint, which
gives ∫

|f̄0(x)− f̄1(x)| =
2m∑
u=1

∫
Su

|f̄0(x)− f̄1(x)|.

For notational convenience, we define a representative disjoint region in Su as
su := m1 × m2 × . . . × mu × . . . × mu = m1 × m2 × . . . × mu−1 × mn−u+1

u .
More precisely, let s1 = mn

1 , s2 = m1 × m
n−1
2 , s3 = m1 × m2 × m

n−2
3 , . . . , and

s2m = m1 ×m2 × . . .×m
n−2m+1
2m .

By Lemma 8, a result for the traditional occupancy problem, we have the
total number Υu of disjoint regions in each Su satisfies,

Υu =

(
2m

u

)[ u∑
l=0

(
u

l

)
(−1)l(u− l)n

]
, u = 1, . . . , 2m. (6)

Lemma 8. Consider the distribution of n balls in 2m bins, assuming that each
ball has the equal probability n−2m of being placed in each bin. Suppose Υu be
the total number of cases with u unique bins (i.e. 2m−u empty bins). Then (6)
holds.

Proof. For the proof, see page 2 by Kolchin et al. (1978).

Using the Equation (6), we simplify the right side of (5) as follows in Lemma 9.
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Lemma 9. Let I1 = {l : max(u−m, 0) ≤ l ≤ min(m,u)}, I2 = {l : max(u−m+
1, 0) ≤ l ≤ min(m+1, u)}, and I3 = {l : max(u−m−1, 0) ≤ l ≤ min(m−1, u)}.
Define

�l :=

(
u

l

) ∣∣∣∣∣
(
2m−u
m−l

)
1I1(

2m
m

) −
(
2m−u
m+1−l

)
1I2 +

(
2m−u
m−1−l

)
1I3

2
(

2m
m−1

) ∣∣∣∣∣ .
Then we have ∫

|f̄0(x)− f̄1(x)| =
2m∑
u=1

Υu

∫
su

∣∣f̄0(x)− f̄1(x)
∣∣

=
2m∑
u=1

Υu

(2m)n

u∑
l=0

�l. (7)

3.4. Bounding the L1 distance

In this final step, we shall prove that

(7) :=

2m∑
u=1

Υu

(2m)n

u∑
l=0

�l = O(1/ log n).

We start to consider bounds for the quantity Υu/(2m)n, whose limiting distri-
bution is found in the traditional occupancy problems. Let Ψn be the random
variable corresponding to the number of nonempty bins when we throw n balls
into 2m bins. Then Υu/(2m)n is the probability of having Ψn = u in this
regime. Define αn := (2m) exp(−n/(2m)) = n1−t/(t logn) → ∞ (by recalling
2m = n/(t logn) with 0 < t < 1/2). By applying Theorem 2 of Kamath et al.
(1994), for a large n satisfying n(1−2t)/ log n ≥ (t/θ2) log(2n2), for any θ > 0,

P(|Ψn − (2m− αn)| ≥ θαn) ≤ 2 exp

(
−θ2

n(1−2t)

t logn

)
≤ 1

n2
= o

(
1

n

)
,

which implies that we only need to calculate
∑u

l=0 �l for the range of Ψn ∈
[2m − αn − θαn, 2m − αn + θαn] =: [u.l, u.u] since we know that

∑
l �l ≤ 2.

Observing this with (7),∫
|f̄0(x)− f̄1(x)| =

u.u∑
u=u.l

P(Ψn = u)

u∑
l=0

�l + o

(
1

n

)
. (8)

Now we focus on the first term in (8). Since αn = o(m), for the range of u ∈
[u.l, u.u], we have simpler regions for the indices, e.g. I1 = {l : u−m ≤ l ≤ m},
I2 = {l : u − m + 1 ≤ l ≤ m + 1}, and I3 = {l : u − m − 1 ≤ l ≤ m − 1}.
Hence we need to treat 4 cases outside of the common region I1 ∩ I2 ∩ I3 = {l :
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u−m+ 1 ≤ l ≤ m− 1} separately. When l = m or l = u−m, for a sufficiently
large n,

�l =

(
u

u−m

) ∣∣∣∣∣ 1(
2m
m

) (1− 1

2

m+ 1

m
(2m− u)

)∣∣∣∣∣ = O
( αn

2αn

)
= o

(
1

n

)
.

When l = u−m− 1 or l = m+ 1,

�l =

(
u

m+1

)
2
(

2m
m+1

) = O

(
1

2αn

)
= o

(
1

n

)
.

Substituting these into the calculations, we have

u.u∑
u=u.l

P(Ψn = u)

u∑
l=0

�l =

u.u∑
u=u.l

P(Ψn = u)

(
2�m + 2�m+1 +

m−1∑
l=u−m+1

�l

)

=
u.u∑

u=u.l

P(Ψn = u)
m−1∑

l=u−m+1

�l + o

(
1

n

)
. (9)

Now, for the range of u − m + 1 ≤ l ≤ m − 1 (where u.l ≤ u ≤ u.u), we can
further simplify �l as follows,

m−1∑
l=u−m+1

�l =

m−1∑
l=u−m+1

(
u
l

)(
2m−u
m−l

)(
2m
m

) ∣∣∣∣1− 1

2

m+ 1

m

(
m− u+ l

m+ 1− l
+

m− l

m− u+ 1 + l

)∣∣∣∣
=:

m−1∑
l=u−m+1

p2m,u,m(l)

∣∣∣∣1− 1

2

m+ 1

m

(
m− u+ l

m+ 1− l
+

m− l

m− u+ 1 + l

)∣∣∣∣
(10)

where p2m,u,k(x) =
(ux)(

2m−u
k−x )

(2mk )
is the hypergeometric probability with parameters

(2m,u, k).
Then let us consider the random variable Z with P(Z = l) = p2m,u,m(l).

From the property of the hypergeometric distribution, we know EZ = u
2 .

Lemma 10. Let Z be the Hypergeometric random variable with parameters
(m,u, k). That is,

P(Z = z) =

(
u
z

)(
m−u
k−z

)(
m
u

) .

Denote p = u/m. Then, for some η ≥ 0,

P(|Z − E(Z)| ≥ ηk) ≤ 2

((
p

p+ η

)p+η (
1− p

1− p− η

)1−p−η
)k

.

In addition, if 0 ≤ η ≤ 1− p, then

P(|Z − E(Z)| ≥ ηk) ≤ 2 exp(−2η2k).
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Proof. For the one side inequality proof, see Hoeffding (1963) or Chvátal (1979).
Then we obtain the other side of the inequality using symmetry.

By the tail probability provided in Lemma 10, with replacing EZ with its
expectation u/2 and k with m, we note that for 0 ≤ η ≤ u/(2m)

P

(
|Z − u

2
| ≥ ηm

)
≤ 2 exp(−2η2m). (11)

Here we take η := αn/(m logn) → 0 so that for 0 < t < 1/2

η2m = α2
n/(m(logn)2) = 4n1−2t/(logn)2 → ∞.

Based on the small tail probabilities, we divide the summation in (10) into two
regions, {l : |l−u/2| ≤ αn/ logn} and {l : |l−u/2| > αn/ log n}. For the second
region, by bounding the absolute term in (10) by O(1/m) (since the absolute
term has the largest value for the smallest l = u−m+1 or the largest l = m−1),∑

|l−u/2|>αn/ logn

�l ≤ O(1/m)
∑

|l−u/2|>αn/ logn

p2m,u,m(l) ≤ o(1/n) (12)

where the last inequality is followed by the tail probability (11). For the first
region, we bound the absolute term with the largest index l = u/2 + αn/ logn
(this absolute term has the smallest value at u/2) where u ∈ [2m−αn−θαn, 2m−
αn + θαn]:∣∣∣∣1− 1

2

m+ 1

m

(
m− u+ l

m+ 1− l
+

m− l

m− u+ 1 + l

)∣∣∣∣
=

∣∣∣∣∣1− 1

2

m+ 1

m

(
m− u

2 − αn

logn

m− u
2 + αn

logn + 1
+

m− u
2 + αn

logn

m− u
2 − αn

logn + 1

)∣∣∣∣∣ = O

(
1

logn

)
.

Hence, ∑
|l−u/2|≤αn/ logn

�l ≤ O

(
1

logn

) ∑
|l−u/2|≤αn/ logn

p2m,u,m(l) ≤ O

(
1

logn

)
. (13)

Considering both regions,
∑m−1

l=u−m+1 �l = O (1/ logn) → 0, which implies∫
|f̄0(x) − f̄1(x)| = O(1/ logn) via (8) and (9). Therefore, the claim is proved.

Now we combine all of the above ideas into the proof.

3.5. Proof of main results

Proof of Theorem 1. From the first step, we construct M0 := {M0j , j = 1, . . . ,
N0} and M1 = {M1j′ , j′ = 1, . . . , N1} where H(M0j ,M1j′) ≥ 2γ for all
j = 1, . . . , N0 and j′ = 1, . . . , N1. Then we simplified the L1 distance be-
tween mixture densities from these two groups via equations (5) and (7). Fi-
nally in the last step, via equations (8), (9), (12), and (13), we have shown that
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L1(
1
N1

∑
j Q

n
0j ,

1
N1

∑
j′ Q

n
1j′) → 0 where Q0j = U(M0j) and Q1j′ = U(M1j′)

with the choice of γd/2 
 m 
 n/ log n. By Lemma 5,

sup
Q∈Q

EQnH(M̂,M(Q)) ≥ γ

⎛⎝1− 1

2
L1

⎛⎝ 1

N1

∑
j

Qn
0j ,

1

N1

∑
j′

Qn
1j′

⎞⎠⎞⎠
→ γ 


(
logn

n

)d/2

,

which proves the theorem.

Proof of Theorem 3. We construct the same set of manifolds M0 and M1 as in
the noiseless model. By construction, H(M0j ,M1j′) ≥ 2γ. Again we claim that

L1

(
1
N0

∑
j Q

n
0j ,

1
N1

∑N1

j′=1Q
n
1j′

)
→ 0 where Q0j = (1− π)U(K) + πU(M0j) and

Q1j′ = (1 − π)U(K) + πU(M1j′) with the choice γd/2 
 m 
 n/ log n, which
gives the lower bound (logn/n)2/d by Lemma 5.

Here we let the dominating measure μ := U(K) +U(m∪ (∪2m
l=1ml)). By sym-

metry and singular property of U(K) and U(M0j) or U(M1j′),

L1

⎛⎝ 1

N0

N0∑
j=1

Qn
0j ,

1

N1

N1∑
j′=1

Qn
1j′

⎞⎠
=

n∑
k=1

βn,k,πL1

⎛⎝ 1

N0

N0∑
j=1

Uk(M0j),
1

N1

N1∑
j′=1

Uk(M1j′)

⎞⎠ .

Now, using the exact same idea in Lemma 11, we have

L1

⎛⎝ 1

N0

N0∑
j=1

Uk(M0j),
1

N1

N1∑
j′=1

Uk(M1j′)

⎞⎠
≤ L1

⎛⎝ 1

N0

N0∑
j=1

Un(M0j),
1

N1

N1∑
j′=1

Un(M1j′)

⎞⎠ ,

which implies by Theorem 1 and
∑n

k=1 βn,k,π = 1− (1− π)n ≤ 1,

L1

⎛⎝ 1

N0

N0∑
j=1

Qn
0j ,

1

N1

N1∑
j′=1

Qn
1j′

⎞⎠ ≤ L1

⎛⎝ 1

N0

N0∑
j=1

Un(M0j),
1

N1

N1∑
j′=1

Un(M1j′)

⎞⎠
→ 0.

Remark 3 (Continuation of Remark 1). As explained in Remark 1, we use a
base manifold M0 defined in (14) as the null. Then, we construct the alternatives
having one inward bump:

Mj = {(u, bj(u), 0D−d−1) : u ∈ Bd} ∪ {(u,−a(u), 0D−d−1) : u ∈ Bd}
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for j = 1, . . . ,m where m 
 n/ log n such that

bj(u) =

{
a(u) if u ∈ Bd\

(
{u : ||uj || ≤

√
4γκ+ 3γ2}

)
2(κ+ γ)− b̃j(u) if u ∈ {u : ||uj || ≤

√
4γκ+ 3γ2},

where b̃j(u) is defined exactly the same as before in Step 1. By construction,
Δ(M0) ≥ κ, Δ(Mj) ≥ κ, and H(M0,Mj) ≥ 2γ for all j = 1, . . . ,m. Then
using the same counting method, we can evaluate the L1 distance between
Q0 := U(M0) and mixtures of Qj := U(Mj). Denote Ψ̃n as the random variable
of the number of nonempty bins when we throw n balls into m bins, then
E[Ψ̃n] = m− α̃n (where α̃n = m exp(−n/m) = o(m)). Then,

L1

(
Q0,

1

m

m∑
j=1

Qj

)
=

2

m

m∑
j=1

j
Υj

mn
=

2

m
E[Ψ̃n] → 2,

which proves that Q0 and mixtures of Qj are distinguishable.

4. Proofs of auxiliary lemmas

4.1. Proof of Lemma 6

We define a base manifold for u ∈ Rd with the notation Bd := Bd(0, 1 + κ+ γ)
where γ ≤ κ/3,

M0 = {(u, a(u), 0D−d−1) : u ∈ Bd} ∪ {(u,−a(u), 0D−d−1) : u ∈ Bd} (14)

where

a(u) =

{
κ+ γ for ||u|| ≤ 1√

(κ+ γ)2 − (||u|| − 1)2 for 1 < ||u|| ≤ 1 + κ+ γ.

The radius 1 + κ + γ of this base manifold is larger than the radius 1 + κ ap-
peared in Genovese et al. (2012a). Larger radius is chosen such that manifold M
with bumps (which will be constructed on M0) satisfies the curvature condition
Δ(M) ≥ κ.

We consider 2m := n/(t logn) 
 γ−d/2 (for some t ∈ (0, 1/2)) number of
bumps on M0. Let R0j(R1j′) be a set of m (m + 1 or m − 1) integers out
of 1, . . . , 2m for j = 1, . . . , N0 (j′ = 1, . . . , N1). For instance, we let R01 =
{1, 2, . . . ,m}, R02 = {1, 3, . . . ,m + 1},. . ., R0N0 = {m + 1, . . . , 2m}. Similarly,
R11 = {1, 2, . . . ,m − 1},R12 = {1, 3, . . . ,m}, . . . ,R1N1 = {m, . . . , 2m}. By
construction, N0 =

(
2m
m

)
and N1 =

(
2m
m−1

)
+
(

2m
m+1

)
.

For the first group M0, we consider m outward bumps and m inward bumps.
For j = 1, . . . , N0,

M0j = {(u, b0j(u), 0D−d−1) : u ∈ Bd} ∪ {(u,−a(u), 0D−d−1) : u ∈ Bd}
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where b0j(u) is equal to a(u) except 2m regions such that

b0j(u) =

⎧⎪⎪⎨⎪⎪⎩
a(u) if u ∈ Bd\

(
∪2m
l=1{u : ||ul|| ≤

√
4γκ+ 3γ2}

)
b̃l(u) if u ∈ ∪l∈R0j{u : ||ul|| ≤

√
4γκ+ 3γ2}

2(κ+ γ)− b̃l(u) if u ∈ ∪l∈Rc
0j
{u : ||ul|| ≤

√
4γκ+ 3γ2},

and

b̃l(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ +
√
(κ+ γ)2 − ||ul||2

if ||ul|| ≤ 1
2

√
4γκ+ 3γ2

2(κ+ γ)−
√

(κ+ γ)2 −
(
||ul|| −

√
4γκ+ 3γ2

)2
if 1

2

√
4γκ+ 3γ2 < ||ul|| ≤

√
4γκ+ 3γ2.

where Rc
0j := {1, . . . , 2m}\R0j and ul = u − ιl = (u1, . . . , ud) − (ιl1, . . . , ιld)

denoting (ιl1, . . . , ιld) as the center point of the bumps. By construction, there
exist 2m number of centers, namely ι1, . . . , ι2m.

For the second group, M1 consists of manifolds M1j′ , j′ = 1, . . . , N1 similar
to M0j but with m+ 1 or m− 1 outward bumps which in turn means m− 1 or
m+ 1 inward bumps. That is, for j′ = 1, . . . , N1,

M1j′ = {(u, b1j′(u), 0D−d−1) : u ∈ Bd} ∪ {(u,−a(u), 0D−d−1) : u ∈ Bd}

where b1j′(u) is equal to a(u) except 2m regions

b1j′(u) =

⎧⎪⎪⎨⎪⎪⎩
a(u) if u ∈ Bd\

(
∪2m
l=1{u : ||ul|| ≤

√
4γκ+ 3γ2}

)
b̃l(u) if u ∈ ∪l∈R1j′ {u : ||ul|| ≤

√
4γκ+ 3γ2}

2(κ+ γ)− b̃l(u) if u ∈ ∪l∈Rc
1j′

{u : ||ul|| ≤
√
4γκ+ 3γ2},

where b̃l(u) is defined exactly the same as before.

Genovese et al. (2012b) constructed one bump on the similar kind of base
manifold M̃0 whose uniform measure on the manifold with that bump is about
γd/2. The shape of the bump is a union of two portions of spheres, and the
bump is centered at (0, . . . , 0) ∈ Rd and defined on ||u|| ≤

√
4γκ− γ2. And also

the Hausdorff distance from M̃0 is γ. Here we consider slightly modified bumps,
located not only on the one region but located as many disjoint regions as
possible on M0. In other words, we seek the maximal number of disjoint bumps
which also guarantees the Hausdorff distance from M0 being γ. For d = 1 case,
we can construct those bumps on each disjoint interval with length

√
4γk + 3γ2

(which is upper bounded by
√
5γκ since γ ≤ κ/3). For general d dimensional

manifolds, by using grid points separated by
√
γ in each dimensions, there exist

at least γ−d/2 (of order) number of disjoint bumps on the region {||u|| ≤ 1}.
Thus, we let 2m 
 γ−d/2.
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Then we need to check if these satisfy the condition for the model. Note that
each outward bump is just magnified version of the bump used by Genovese et al.
(2012b). Indeed, these bumps are constructed with parts of sphere with radius
κ+ γ located on different regions of M0. Each inward bump is just the reflected
version of the outward bump. Thus, constructed manifolds have no manifold
boundary and Δ(M0j) ≥ κ and Δ(M1j′) ≥ κ for all j, j′ = 1, . . . , 2m. Also we
check H(M0j ,M1j′) ≥ 2γ for all j = 1, . . . , N0, and j′ = 1, . . . , N1 because there
is always at least one different spot in M0j and M1j′ .

4.2. Proof of Lemma 7

To conveniently express the L1 distance between mixtures, we use the notation
x := (x1, . . . xn) and x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Then we expand the
product term as follows,

n∏
i=1

(
1{xi∈M0j}

)
=

n∏
i=1

(
1{xi∈m} + 1{xi∈m0j}

)
= 1{x∈m} +

n∑
i=1

1{x−i∈m,xi∈m0j} +
∑
i �=j

1{x−(i,j)∈m,xi,xj∈m0j}

. . .+

n∑
i=1

1{xi∈m,x−i∈m0j} + 1{x∈m0j}.

Using the above expression,

Cn
( 1

N0

N0∑
j=1

qn0j −
1

N1

N1∑
j′=1

qn1j′
)
=

1

N0

N0∑
j=1

n∏
i=1

1{xi∈M0j} −
1

N1

N1∑
j′=1

n∏
i=1

1{xi∈M1j′}

=

n∑
i=1

1{x−i∈m}

⎛⎝ 1

N0

N0∑
j=1

1{xi∈m0j} −
1

N1

N1∑
j′=1

1{xi∈m1j′}

⎞⎠
+
∑
i �=j

1{x−(i,j)∈m}

⎛⎝ 1

N0

N0∑
j=1

1{xi,xj∈m0j} −
1

N1

N1∑
j′=1

1{xi,xj∈m1j′}

⎞⎠
+ . . .+

n∑
i=1

1{xi∈m}

⎛⎝ 1

N0

N0∑
j=1

1{x−i∈m0j} −
1

N1

N1∑
j′=1

1{x−i∈m1j′}

⎞⎠
+

⎛⎝ 1

N0

N0∑
j=1

1{x∈m0j} −
1

N1

N1∑
j′=1

1{x∈m1j′}

⎞⎠ .

By symmetry, and also using the disjoint property between m and m0j , and
m and m1j′ , L1 distance is actually equal to the following,
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L1

⎛⎝ 1

N0

N0∑
j=1

Qn
0j ,

1

N1

N1∑
j′=1

Qn
1j′

⎞⎠
=

∫ ∣∣∣∣∣∣ 1N0

N0∑
j=1

n∏
i=1

(
1

C
1{xi∈M0j}

)
− 1

N1

N1∑
j′=1

n∏
i=1

(
1

C
1{xi∈M1j′}

)∣∣∣∣∣∣ dμn

=

n∑
k=1

β
n,k,

C0
C

∫ ∣∣∣∣∣∣ 1N0

N0∑
j=1

k∏
i=1

(
1{xi∈m0j}
C − C0

)
− 1

N1

N1∑
j′=1

(
k∏

i=1

1{xi∈m1j′}

C − C0

)∣∣∣∣∣∣ dμk

=

n∑
k=1

β
n,k,

C0
C
L1

⎛⎝ 1

N0

N0∑
j=1

Uk(m0j),
1

N1

N1∑
j′=1

Uk(m1j′)

⎞⎠ , (15)

where the second equality is followed by μ(m) = C0, μ(m0j) = μ(m1j′) = C−C0

with the binomial coefficient notation βn,k,p :=
(
n
k

)
pn−k(1 − p)k, and the last

equality is obtained by definition.

By Lemma 11, the L1 expression in (15) can be further upper bounded,

L1

⎛⎝ 1

N0

N0∑
j=1

Uk(m0j),
1

N1

N1∑
j′=1

Uk(m1j′)

⎞⎠
≤ L1

⎛⎝ 1

N0

N0∑
j=1

Un(m0j),
1

N1

N1∑
j′=1

Un(m1j′)

⎞⎠ ,

which gives the desired upper bound

L1

⎛⎝ 1

N0

N0∑
j=1

Qn
0j ,

1

N1

N1∑
j′=1

Qn
1j′

⎞⎠
≤ L1

⎛⎝ 1

N0

N0∑
j=1

Un(m0j),
1

N1

N1∑
j′=1

Un(m1j′)

⎞⎠ .

Lemma 11. Let U(m0j) be the uniform measure on m0j defined in (4). Define
U(m1j′) similarly. Then for k < n,

∣∣∣∣∣
∑N0

j=1 U
k(m0j)

N0
∧
∑N1

j′=1 U
k(m1j′)

N1

∣∣∣∣∣ ≥
∣∣∣∣∣
∑N0

j=1 U
n(m0j)

N0
∧
∑N1

j′=1 U
n(m1j′)

N1

∣∣∣∣∣ ,
and
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L1

⎛⎝ 1

N0

N0∑
j=1

Uk(m0j),
1

N1

N1∑
j′=1

Uk(m1j′)

⎞⎠
≤ L1

⎛⎝ 1

N0

N0∑
j=1

Un(m0j),
1

N1

N1∑
j′=1

Un(m1j′)

⎞⎠ .

Proof. Note that L1(P,Q) = 2(1− |P ∧Q|). Thus it is enough to prove the first
claim. Let m0j∗ and m1j′∗ be the pair satisfying μ(m0j∗ ∩m1j′∗) = (2m−1)cγd/2

which share all the bumps except one location. By construction μ(m0j ∩m1j′) ≤
(2m− 1)cγd/2 for all j = 1, . . . , N0 and j′ = 1, . . . , N1. Then,

∫
min

⎛⎝ 1

N0

N0∑
j=1

dUn(m0j),
1

N1

N1∑
j′=1

dUn(m1j′)

⎞⎠
=

∫
min

⎛⎝ 1

N0

N0∑
j=1

dUn−1(m0j)dU(m0j),
1

N1

N1∑
j′=1

dUn−1(m1j′)dU(m1j′)

⎞⎠
≤
∫

min

⎛⎝ 1

N0

N0∑
j=1

dUn−1(m0j)dU(m0j∗),
1

N1

N1∑
j′=1

dUn−1(m1j′)dU(m1j′∗)

⎞⎠
=

2m− 1

2m

∫
min

⎛⎝ 1

N0

N0∑
j=1

dUn−1(m0j),
1

N1

N1∑
j′=1

dUn−1(m1j′)

⎞⎠ .

We can continue the same calculation for a smaller value for k, which proves
the claim.

4.3. Proof of Lemma 9

First, we consider the simplest case u = 1 with the integral region mn
1 . Then

the only one perturbation region m1 in the constructed manifold will affect the
density. Suppose m1 takes the outward perturbation m

+
1 . Then,

∫
(m+

1 )n

∣∣∣∣∣∣ 1N0

N0∑
j=1

n∏
i=1

1{xi ∈ m0j} −
1

N1

N1∑
j′=1

n∏
i=1

1{xi ∈ m1j′}

∣∣∣∣∣∣
becomes the comparison problem between counting how many m0j can take
(m+

1 ) and counting how many m1j′ can take (m+
1 ). If m1 takes the inward per-

turbation m
−
1 , then we can ask similar question with replacing m

+
1 to m

−
1 from

the previous sentence. Again, we can ask the same question for other region ml

for l = 2, . . . , 2m. By symmetry, by defining the representative region in S1 as
s1 := mn

1 ,
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S1

|f̄0(x)− f̄1(x)| = Υ1

∫
s1

|f̄0(x)− f̄1(x)|,

where Υ1 is the total number of unique region in S1 as defined in (6).
We extend the same idea to S2. Then only two perturbation regions on the

constructed manifold will affect the joint density. First consider the region m1

andm2. Irrelevant to whether the integral region asml
1×m

n−l
2 ormn−l

1 ×ml
2 where

l (1 ≤ l < n) is some arbitrary integer, the density
∏n

i=1(1{xi ∈ m0j}/μ(m0j))
becomes nonzero as long as m0j contains perturbations defined on m1 and m2.
Suppose m1 takes m+

1 and m2 takes m−
2 . Then∫

(m+
1 )l×(m−

2 )n−l

∣∣∣∣∣∣ 1N0

N0∑
j=1

n∏
i=1

1{xi ∈ m0j} −
1

N1

N1∑
j′=1

n∏
i=1

1{xi ∈ m1j′}

∣∣∣∣∣∣
becomes the comparison problem between counting how many m0j can take
m

+
1 ,m

−
2 , and counting how many m1j′ can take m+

1 ,m
−
2 for any l = 1, . . . , n− 1.

Again, it would not make any difference if we change the region of the pertur-
bations as long as the unique number u of regions is 2.

In general, since it is more complicate, we first only consider the region with-
out specifying perturbation shape. With the same intuition as before, we have
the same density value on any disjoint regions in Su, say, m1×m2×. . .mu×mn−u

u

or m2
1 × m2

2 × . . .× m2
u × mn−2u

u . Indeed, we only need to count how many m0j

and m1j′ would contain each specific perturbation (combinations of outward and
inward on these regions m1, . . . ,mu; we will explain how to calculate these in de-
tail later). Similarly as before, by symmetry, considering the region m1, . . . ,mu

or m2, . . . ,mu+1 would not make any difference.
For notational convenience, we define the representative disjoint region in Su

as su := m1×m2× . . .×mu× . . .×mu = m1×m2× . . .×mu−1×mn−u+1
u . More

precisely, s2 = m1 × m
n−1
2 , s3 = m1 × m2 × m

n−2
3 , . . ., and s2m = m1 × m2 ×

. . .×m
n−2m+1
2m . Then, by symmetry as explained,∫ ∣∣f̄0(x)− f̄1(x)

∣∣ = 2m∑
u=1

∫
Su

∣∣f̄0(x)− f̄1(x)
∣∣ = 2m∑

u=1

Υu

∫
su

∣∣f̄0(x)− f̄1(x)
∣∣ .
(16)

Now, we evaluate the above integrals. First, we consider
∫
s1
|f̄0(x) − f̄1(x)|.

As explained before, on (m−
1 )

n
,
∏n

i=1 f0j(xi) are either zero or 1/μ(m0j)
n =

1/(2mcγd/2)n, and
∫
m

−
1
. . .
∫
m

−
1
dμn = (cγd/2)n. Then∫

s1

∣∣f̄0(x)− f̄1(x)
∣∣

=
1

μ(m0j)n

∫
(m−

1 )
n

∣∣∣∣∣∣ 1N0

N0∑
j=1

1{x∈(m0j∩m
−
1 )n} −

1

N1

N1∑
j′=1

1{x∈(m1j′∩m
−
1 )n}

∣∣∣∣∣∣
+

1

μ(m0j)n

∫
(m+

1 )
n

∣∣∣∣∣∣ 1N0

N0∑
j=1

1{x∈(m0j∩m
+
1 )n} −

1

N1

N1∑
j′=1

1{x∈(m1j′∩m
+
1 }n)

∣∣∣∣∣∣
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=

(
1

2m

)n
∣∣∣∣∣∣ 1N0

N0∑
j=1

1{m−
1 ⊂m0j} −

1

N1

N1∑
j′=1

1{m−
1 ⊂m1j′}

∣∣∣∣∣∣
+

(
1

2m

)n
∣∣∣∣∣∣ 1N0

N0∑
j=1

1{m+
1 ⊂m0j} −

1

N1

N1∑
j′=1

1{m+
1 ⊂m1j′}

∣∣∣∣∣∣ .
Thus we need to count how many of m0js contain m

−
1 (and m

+
1 ) for the first

group and how many of m1j′s contain m
−
1 (and m

+
1 ) for the second group. In

fact, there exist
(
2m−1

m

)
number of m0js contain m

−
1 . This is since after fixing

m
−
1 , there are 2m−1 number of regions m2, . . . ,m2m left for choosing m number

of m+s. Recall that the first group of manifolds has m number of + (outward)s,
then automatically the regions not choosing +’s will take values on−’s. Similarly
there exist

(
2m−1
m−1

)
number of m0js that contain m

+
1 (fixing m

+
1 , there are 2m−1

number of m2, . . . ,m2m left for choosing m− 1 number of +’s). For the second
group m1j′ , there exist

(
2m−1
m+1

)
+
(
2m−1
m−1

)
number of manifolds with m

−
1 and(

2m−1
m

)
+
(
2m−1
m−2

)
number of manifolds with m

+
1 .

We extend the same idea for a general su = (m1×m2× . . .×mu−1×mn−u+1
u )

consisting of first u unique regions. For now, suppose u ≤ m− 1. The counting
ideas are still working. First, count separately for the case of l number of +’s on
m1× . . .×mu. Clearly l can take values from 0 to u. For choosing the location of
this l number of +’s, there exist

(
u
l

)
number of possible cases. Consider for the

case of 0 number of + (that is, l = 0 case) on the region m1× . . .×mu. Then we
need to pick m number of +’s out of 2m− u number of regions mu+1, . . . ,m2m.
Thus, for l = 0, there exist

(
u
0

)(
2m−u

m

)
number of m0js. For more general l

number of +’s, there exist
(
u
l

)(
2m−u
m−l

)
number of m0js, and with the exact same

ideas there exist
(
u
l

)((
2m−u
m+1−l

)
+
(
2m−u
m−1−l

))
number of m1j′s. Thus for the case

u ≤ m− 1, we have the exact expression∫
su

|f̄0(x)− f̄1(x)|dμn =

(
1

2m

)n u∑
l=0

(
u

l

) ∣∣∣∣∣
(
2m−u
m−l

)
N0

−
(

2m−u
m+1−u

)
+
(
2m−u
m−1−l

)
N1

∣∣∣∣∣ .
Now, we consider the case where u ≥ m. Then we need to be more careful in

deciding the possible range of l. For the extreme case, if u = 2m, then we know
that + numbers should be fixed as m among 2m regions for the first group,
which restricts the range of l as l = m. After choosing this location, there is no
freedom left, since there should be a unique 2m regions, which determines the
exact form of the manifolds. Also in this case, there does not exist manifolds in
the second group (since those cannot have m number of +’s and m number of
−’s). Similarly for the first group case, either m + 1 or m − 1 number of +’s
should be fixed with no freedom. This yields∫

s2m

|f̄0(x)− f̄1(x)| =
(

1

2m

)n
[∣∣∣∣∣
(
2m
m

)
N0

− 0

∣∣∣∣∣+
∣∣∣∣∣0−

(
2m
m+1

)
N1

∣∣∣∣∣+
∣∣∣∣∣0−

(
2m
m−1

)
N1

∣∣∣∣∣
]

= 2

(
1

2m

)n

.
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The other cases can be considered in the similar way by restricting the range of
the indices.

Combining these ideas, the exact evaluation of the L1 distance between
1
N0

∑N0

j=1U
n(m0j) and

1
N1

∑N1

j′=1U
n(m1j′) is obtained as follows,∫ ∣∣f̄0(x)− f̄1(x)

∣∣ (17)

=

2m∑
u=1

Υu

(2m)n

u∑
l=0

(
u

l

) ∣∣∣∣∣
(
2m−u
m−l

)
1I1(

2m
m

) −
(
2m−u
m+1−l

)
1I2 +

(
2m−u
m−1−l

)
1I3

2
(

2m
m−1

) ∣∣∣∣∣
=:

2m∑
u=1

Υu

(2m)n

u∑
l=0

�l

where I1 = {l : max(u−m, 0) ≤ l ≤ min(m,u)}, I2 = {l : max(u−m+ 1, 0) ≤
l ≤ min(m+ 1, u)}, and I3 = {l : max(u−m− 1, 0) ≤ l ≤ min(m− 1, u)}, and
by defining

�l :=

(
u

l

) ∣∣∣∣∣
(
2m−u
m−l

)
1I1(

2m
m

) −
(
2m−u
m+1−l

)
1I2 +

(
2m−u
m−1−l

)
1I3

2
(

2m
m−1

) ∣∣∣∣∣ .
Note that for u ≤ m− 1, all these range becomes 0 ≤ l ≤ u; but for u ≥ m,

we will have certain differences. For instance, if u > m, then l = u−m− 1 ∈ I3
(but not in I1 and I2), l = u−m ∈ I1 and I3 but not in I2. l = m ∈ I1 and I2
but not in I3, l = m+ 1 ∈ I2 but not in I1 and I3.
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Chvátal, V. (1979). The tail of the hypergeometric distribution. Discrete
Mathematics 25 (3), 285–287. MR0534946

Genovese, C., M. Perone-Pacifico, I. Verdinelli, and L. Wasserman

(2012a). Minimax manifold estimation. Journal of machine learning re-
search (3), 1263–1291. MR2930639

Genovese, C. R.,M. Perone-Pacifico, I. Verdinelli, and L. Wasserman

(2012b). Manifold estimation and singular deconvolution under hausdorff loss.
The Annals of Statistics 40 (2), 941–963. MR2985939

Hoeffding, W. (1963). Probability inequalities for sums of bounded random
variables. The Annals of Statistics 58 (301), 13–30. MR0144363

http://www.ams.org/mathscinet-getitem?mr=2816346
http://www.ams.org/mathscinet-getitem?mr=0534946
http://www.ams.org/mathscinet-getitem?mr=2930639
http://www.ams.org/mathscinet-getitem?mr=2985939
http://www.ams.org/mathscinet-getitem?mr=0144363


1582 A. K. H. Kim and H. Zhou

Kamath, A., R. Motwani, K. Palem, and P. Spirakis (1994). Tail bounds
for occupancy and the satisfiability threshold conjecture. In Foundations of
Computer Science, 1994 Proceedings., 35th Annual Symposium on, pp. 592–
603. MR1346284

Kolchin, V. F., B. A. Sevast’yanov, and V. P. Chistyakov (1978). Ran-
dom allocations. Washington, D.C.: V. H. Winston & Sons. Translated from
the Russian, Translation edited by A. V. Balakrishnan, Scripta Series in Math-
ematics. MR0471016

Le Cam, L. (1973). Convergence of estimates under dimensionality restrictions.
The Annals of Statistics 1, 38–53. MR0334381

Niyogi, P., S. Smale, and S. Weinberger (2006). Finding the homology
of submanifolds with high confidence from random samples. Discrete and
computational geometry 39, 419–441. MR2383768

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. New
York: Springer-Verlag. MR2724359

Yu, B. (1997). Assouad, Fano, and Le Cam. In D. Pollard, E. Torgersen, and
G. L. Yang (Eds.), A Festschrift for Lucien Le Cam, pp. 423–435. New York:
Springer-Verlag. MR1462963

http://www.ams.org/mathscinet-getitem?mr=1346284
http://www.ams.org/mathscinet-getitem?mr=0471016
http://www.ams.org/mathscinet-getitem?mr=0334381
http://www.ams.org/mathscinet-getitem?mr=2383768
http://www.ams.org/mathscinet-getitem?mr=2724359
http://www.ams.org/mathscinet-getitem?mr=1462963

	Introduction
	Main theorems
	Proof of main results
	Construction of finite sub-parameter spaces
	A simplified L1 representation
	From L1 to combinatorics
	Bounding the L1 distance
	Proof of main results

	Proofs of auxiliary lemmas
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 9

	Acknowledgement
	References

