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Abstract: Empirical Bayes methods are designed in selecting massive
variables, which may be inter-connected following certain hierarchical struc-
tures, because of three attributes: taking prior information on model pa-
rameters, allowing data-driven hyperparameter values, and free of tuning
parameters. We propose an iterated conditional modes/medians (ICM/M)
algorithm to implement empirical Bayes selection of massive variables, while
incorporating sparsity or more complicated a priori information. The it-
erative conditional modes are employed to obtain data-driven estimates of
hyperparameters, and the iterative conditional medians are used to esti-
mate the model coefficients and therefore enable the selection of massive
variables. The ICM/M algorithm is computationally fast, and can easily
extend the empirical Bayes thresholding, which is adaptive to parameter
sparsity, to complex data. Empirical studies suggest competitive perfor-
mance of the proposed method, even in the simple case of selecting massive
regression predictors.
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1. Introduction

Selecting variables in problems with a large number of predictors is a chal-
lenging yet critical problem in analyzing high-dimensional data. Because high-
dimensional data are usually of relatively small sample sizes, successful variable
selection demands appropriate incorporation of a priori information. A funda-
mental piece of information is that only a few of the variables are significant
and should be included into the underlying models, leading to a fundamental
assumption of sparsity in variable selection (Fan and Li, 2001). Many meth-
ods have been developed to take full advantage of this sparsity assumption,
mostly built upon thresholding procedures (Donoho and Johnstone, 1994), see
Tibshirani (1996), Fan and Li (2001), and others.

Recently, many efforts have been devoted to selecting variables from massive
candidates by incorporating rich a priori information accumulated from histor-
ical research or practices. For example, Yuan and Lin (2006) defined group-wise
norms for grouped variables. For graph-structured variables, Li and Li (2010)
and Pan et al. (2010) proposed to use Laplacian matrices and Lγ norms, respec-
tively. Li and Zhang (2010) and Stingo et al. (2011) both employed Bayesian
approaches to incorporate structural information of the variables, both formu-
lating Ising priors.

Markov chain Monte Carlo (MCMC) algorithms have been commonly em-
ployed to develop Bayesian variable selection, see George and McCulloch (1993),
Carlin and Chib (1995), Li and Zhang (2010), Stingo et al. (2011), and others.
However, MCMC algorithms are computationally intensive and may be diffi-
cult to assign appropriate hyperparameters. On the other hand, penalty-based
variable selection usually demands careful selection of certain tuning parame-
ters (e.g. Fan and Li, 2001; Li and Li, 2010; Pan et al., 2010; Tibshirani, 1996;
Yuan and Lin, 2006), which challenges high-dimensional data analysis. Although
cross-validation has been widely suggested to choose tuning parameters, it may
be infeasible in certain situations, in particular the case that many variables
rarely vary. Recently, Sun and Zhang (2012) proposed the scaled sparse linear
regression to attach the tuning parameter to the estimable noise level.
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Empirical Bayes methods can be advantageous in high-dimensional data anal-
ysis because of no need to choose tuning parameters. They also allow incorporat-
ing a priori information while modeling uncertainty of such prior information
using hyperparameters. For example, Johnstone and Silverman (2004) mod-
eled the sparse normal means using a spike-and-slab prior. The mixing rate of
the Dirac spike and slab is taken as a hyperparameter to achieve data-driven
thresholding, and resultant empirical Bayes estimates are therefore adaptive
to sparsity of the high-dimensional parameters. As demonstrated by Johnstone
and Silverman (2004), this empirical Bayes method can work better than tradi-
tional thresholding estimators. One important contribution of this paper is to
develop a new algorithm which allows to construct such empirical Bayes variable
selection with complex data.

We propose an iterative conditional modes/medians (ICM/M) algorithm for
easy implementation and fast computation of empirical Bayes variable selection
(EBVS). Similar to the iterated conditional modes (Besag, 1986), iterative con-
ditional modes are for optimization of hyperparameters and parameters other
than regression coefficients. Iterative conditional medians are used to enforce
variable selection. As shown in Johnstone and Silverman (2004) and Zhang et al.
(2010), when mixture priors are utilized, posterior medians can lead to thresh-
olding rules and thus help screen out small and insignificant variables. Further-
more, ICM/M makes it easy to incorporate complicated priors for the purpose of
selecting variables out of massive structured candidates. Taking the Ising prior
as an example (Li and Zhang, 2010), we illustrate such strength of ICM/M.

The rest of this paper is organized as follows. In the next section, we will
propose the ICM/M algorithm for empirical Bayes variable selection (EBVS).
We also explore to control false discovery rates (FDR) using conditional poste-
rior probabilities. We implement the ICM/M algorithm in Section 3 for high-
dimensional linear regression models, only assuming that non-zero regression
coefficients are few. In Section 4, the ICM/M algorithm is shown when incor-
porating a priori information on graphical relationship between the predictors.
Simulation studies are carried out in both Sections 3 and 4 to evaluate the
performance of the corresponding ICM/M algorithms. An application to a real
dataset from a genome-wide association study (GWAS) is presented in Section 5.
We conclude this paper with a discussion in Section 6.

In the rest of this paper, the j-th component of a vector parameter, say β, is
denoted by βj ; β−j denotes all the components of β except the j-th component;
and βj:k includes components of β from βj to βk. The parameter with a paren-

thesized superscript, say β̂(k), indicates an estimate from the k-th iteration.

2. The method

2.1. Iterated conditional modes/medians

Consider a general variable selection problem with a likelihood function given by,

L(Y;Xβ;φ), (2.1)
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where Y is a n × 1 random vector, X is a n × p matrix containing values of p
variables, β is a p×1 parameter vector with the j-th component βj representing
the effects of the j-th variable to the model, and φ includes all other auxiliary
parameters.

A typical variable selection task is to identify non-zero components in β, that
is, to select important variables out of the p candidates. For convenience, define
τj = I{βj 6= 0}, which indicates whether the j-th variable should be selected into
the model. Further denote τ = (τ1, τ2, . . . , τp)

t. Here we consider an empirical
Bayes variable selection, which assumes priors,

{
β ∼ π(β|τ, ψ1)× π(τ |ψ2),
φ ∼ π(φ|ψ3),

(2.2)

where ψ = (ψt
1, ψ

t
2, ψ

t
3)

t includes all hyperparameters.
To avoid high-dimensional integrals, here we cycle through coordinates to

obtain the estimate of each component of (β, φ, ψ) iteratively,





β̂j = β̂j(β̂−j , φ̂, ψ̂),

φ̂j = φ̂j(β̂, φ̂−j , ψ̂),

ψ̂j = ψ̂j(β̂, φ̂, ψ̂−j).

(2.3)

Indeed, with properly chosen priors of φ and ψ, both φ̂j = φ̂j(β̂, φ̂−j , ψ̂,Y,X)

and ψ̂j = ψ̂j(β̂, φ̂, ψ̂−j ,Y,X) can be obtained by maximizing the fully condi-
tional posterior, i.e.,

{
φ̂j = φ̂j(β̂, φ̂−j , ψ̂) = mode(φj |Y,X, β̂, φ̂−j , ψ̂),

ψ̂j = ψ̂j(β̂, φ̂, ψ̂−j) = mode(ψj |Y,X, β̂, φ̂, ψ̂−j).
(2.4)

When each β̂j is also obtained by maximizing its fully conditional posterior,
it suggests the iterated conditional modes (ICM) algorithm by Besag (1986).

However, calculation of conditional mode for β̂j is either infeasible or practi-
cally undesirable (due to lack of variable selection function). Indeed, Bayesian
or empirical Bayes variable selection for high-dimensional data usually follows
a spike-and-slab prior on each βj (e.g. Ishwaran and Rao, 2005; Mitchell and
Beauchamp, 1988), and it induces a spike-and-slab posterior for each βj . With
a Dirac spike, it is infeasible to obtain the mode of such a spike-and-slab poste-
rior. However, its median can be zero and allows to select the median probability
model as suggested by Barbieri and Berger (2004). Henceforth, following John-

stone and Silverman (2004), we construct β̂j = β̂j(β̂−j , φ̂, ψ̂,Y,X) as median of
the fully conditional posterior, i.e.,

β̂j = β̂j(β̂−j , φ̂, ψ̂) = median(βj |Y,X, β̂−j , φ̂, ψ̂). (2.5)

With the iterative conditional median for βj , and conditional modes for φj
and ψj respectively, for Bayesian update of a component conditional on all
other components, we hereafter propose the iterated conditional medians/modes
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(ICM/M) algorithm for implementing the empirical Bayes variable selection. As
shown later, the ICM/M algorithm allows an easy extension of the (general-
ized) empirical Bayes thresholding methods by Johnstone and Silverman (2004)
and Zhang et al. (2010) to dependent data. Obviously, with a consistent ini-

tial point of (β̂, φ̂, ψ̂), the cycling Bayesian updates of this algorithm lead to a

well-established estimate (β̂, φ̂, ψ̂).

2.2. Evaluation of variable importance

When proposing a statistical model, we are primarily interested in evaluating the
importance of variables besides its predictive ability. For example, the objective
of high-dimensional data analysis is to identify a list of J predictors that are
most important or significant among p predictors. This is a common practice in
biomedical research using high-throughput biotechnologies, ranking all markers
and selecting a short list of candidates for follow-up studies.

In the Bayesian approach, inference on the importance of each variable can
be done through its marginal posterior probability P (βj 6= 0|Y,X). However,
this quantity involves high-dimensional integrals which is difficult to calculate
even in the case of moderate p. Furthermore, the marginal posterior probability
may not be meaningful when the predictors are highly correlated (which usually
occurs in a large p small n data set). For example, suppose predictors X1 and
X2 are linearly dependent and both predictors are associated with a response
variable. The marginal posterior probability of X1 being included in the model
might be very high and dominates the marginal posterior probability of X2

being included in the model.
We propose a local posterior probability to evaluate the importance of a

variable. That is, conditional on the optimal point {β̂j , φ̂, ψ̂} obtained from
empirical Bayes variable selection through ICM/M algorithm, the importance
of a variable is evaluated by its full conditional posterior probability,

ζj = P (βj 6= 0|Y,X, β̂−j , φ̂, ψ̂). (2.6)

Such a probability has a closed form which can be easily computed. We will
show later in simulation studies that the local posterior probability is a good
indicator to quantify the importance of variables.

Another challenging question is how large the list of important predictors
should be. In many papers in the literature, see Brenner et al. (2001) and Syed
and Hecht (1997) for example, the numbers of important variables reported are
arbitrary. For instance, some laboratories may be interested in the top ten genes.
Typically, however, there is an interest to create the list so that type-I and type-
II errors are controlled (Dudoit et al., 2003). False discovery rate (FDR) control
is widely used in high-dimensional data analysis since it is less conservative
and has more power than controlling the familywise error rate (Benjamini and
Hochberg, 1995).

With the local posterior probability ζ and assumption that true β is known,
we can report a list containing predictors having the posterior probability greater
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than some bound κ, 0 ≤ κ < 1. Given the data, true FDR can be computed as

FDR(κ) =

p∑

j=1

I{βj = 0, ζj > κ}
/ p∑

j=1

I{ζj > κ}. (2.7)

Newton et al. (2004) proposed the expected FDR given the data in Bayesian
scheme as

F̂DR(κ) =

p∑

j=1

(1 − ζj)I{ζj > κ}
/ p∑

j=1

I{ζj > κ}. (2.8)

Therefore we can select predictors to report by controlling F̂DR(κ) at a desired
level.

3. Selection of sparse variables

Here we consider the empirical Bayes variable selection for the following regres-
sion model with high dimensional data,

Y = Xβ + ǫ, ǫ ∼ N(0, σ2In). (3.1)

Further assume that the response is centered and the predictors are standard-
ized, that is, Yt1n = 0, Xt1n = 0p, and

Xt
jXj = n− 1, j = 1, . . . , p,

where Xj is the j-th column of X, i.e., X = (X1,X2, . . . ,Xp).

Let Ỹj = Y − Xβ + Xjβj . Assuming all model parameters except βj are
known, βj has a sufficient statistic

1

n− 1
Xt

jỸj ∼ N

(
βj ,

1

n− 1
σ2

)
. (3.2)

To capture the sparsity of regression coefficients, we put an independent prior
on each scaled βj as follows,

βj|σ iid∼ (1− ω)δ0(·) + ωγ(·|σ), (3.3)

where δ0(·) is a Dirac delta function at zero, γ(·|σ) is assumed to be a probability
density function. This mixture prior implies that βj is zero with probability
(1− ω) and is drawn from the nonzero part of prior, γ(·|σ), with probability ω.
As suggested by Johnstone and Silverman (2004), a heavy-tailed prior such as
Laplace distribution is a good choice for γ(·|σ), that is,

γ(βj |σ) =
α
√
n− 1

2σ
exp

(
−α

√
n− 1

σ
|βj |

)
, (3.4)

where α > 0 is a scale parameter. We take Jeffreys’ prior on σ as π(σ) ∝ 1/σ
(Jeffreys, 1946).

Note that there is a connection of using Laplace priors and the lasso. Indeed,
setting ω = 1 in (2.4) and (3.3) leads to a lasso estimate with α related to a
tuning parameter in the lasso, see details in Tibshirani (1996). Our empirical
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Bayes variable selection allows a data-driven optimal choice of ω. Indeed, a data-
driven optimal α can also be obtained through the conditional mode suggested
by (2.4), which avoids the issue brought by a tuning parameter to lasso (while
lasso usually relies on cross validation to choose an optimal tuning parameter).
Johnstone and Silverman (2004) also suggested a default value α = 0.5, which
in general works well.

3.1. The algorithm

Here we implement the ICM/M algorithm described in (2.4) and (2.5). Note that
φ = σ, and ψ = (ω, α) or ψ = ω depending on whether α is fixed. Throughout
this paper, we fix α = 0.5 as suggested by Johnstone and Silverman (2004).

To obtain β̂
(k+1)
j = median(βj |Y,X, β̂(k+1)

1:(j−1), β̂
(k)
(j+1):p, σ̂

(k), ω̂(k)), we notice

the sufficient statistic of βj in (3.2) and it is therefore easy to calculate β̂
(k+1)
j

as stated below. Indeed, β̂
(k+1)
j is an empirical Bayes thresholding estimator as

shown in Johnstone and Silverman (2004).

Proposition 3.1. With pre-specified values of σ and β−j,
1

n−1X
t
jỸj is a suffi-

cient statistic for βj w.r.t the model (3.1). Furthermore, the iterative conditional
median of βj in the ICM/M algorithm can be constructed as the posterior median
of βj in the following Bayesian analysis,





1
σ
√
n−1

Xt
jỸj |βj ∼ N

(√
n−1
σ

βj , 1
)
,

βj ∼ (1 − ω)δ0(βj) + ω
√
n−1
4σ exp

(
−

√
n−1
2σ |βj |

)
.

The conditional mode σ̂(k+1) = mode(σ|Y,X, β̂(k+1), ω̂(k)) has an explicit
solution,

σ̂(k+1) =
1

4d

(
c+

√
c2 + 16d||Y −Xβ̂(k+1)||2

)
,

where c =
√
n− 1‖β̂(k+1)‖1, and d = n+‖β̂(k+1)‖0+1. Furthermore, the condi-

tional mode ω̂(k+1) = mode(ω|Y,X, β̂(k+1), σ̂(k+1)) can be easily calculated as

ω̂(k+1) = ‖β̂(k+1)‖0
/
p.

3.2. Simulation studies

To evaluate the performance of our proposed empirical Bayes variable selection
(EBVS) via ICM/M algorithm, we simulated data from model (3.1) with large p
small n, i.e., p = 1,000 and n = 100. There are a total of 20 non-zero regression
coefficients which are β1 = · · · = β10 = 2 and β101 = · · · = β110 = 1. The
error standard deviation σ is set to one. The predictors are partitioned into ten
blocks, each including 100 predictors which are serially correlated at the same
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Fig 1. Comparison of median prediction errors of lasso (dotted), adaptive lasso (dash-dotted),
scaled lasso (thin solid), and EBVS (thick solid) by averaging over 100 datasets simulated for
each ρ in Section 3.2.

level of correlation coefficient ρ. We simulated 100 datasets for ρ taking values
in {0, 0.1, 0.2, . . . , 0.9} respectively.

EBVS was compared with two popular approaches, i.e., the lasso by Tib-
shirani (1996), and the adaptive lasso by Zou (2006). The scaled lasso by Sun
and Zhang (2012) was also applied to the simulated datasets. Ten-fold cross-
validation was used to choose optimal tuning parameters for lasso and adaptive
lasso respectively. The median values of prediction error, false positive, and
false negative rates were reported for each approach based on the 100 simulated
datasets.

As shown in Figure 1, EBVS performs much better than the other three
methods in terms of prediction error. In particular, when ρ ≥ 0.3, EBVS con-
sistently reported median prediction error approximately at 1.5. In comparison
of lasso and adaptive lasso, adaptive lasso has smaller prediction error when
ρ < 0.3; but lasso has smaller prediction error when ρ > 0.3.

It is known that lasso can inconsistently select variables under certain condi-
tions, and adaptive lasso was proposed for solving this issue (Zou, 2006). Figure 2
showed that lasso has very high false positive rates (more than 50%), and adap-
tive lasso significantly reduces the false positive rates especially when ρ ≥ 0.2.
Indeed, lasso has much larger false positive rates than all other methods. It is
interesting to observe that EBVS has zero false positive rates except in the case
that ρ = 0.5 and ρ = 0.9. All methods have very low false negative rates.

Recently, Meinshausen et al. (2009) proposed a multi-sample-split method
to construct p-values for high-dimensional regressions, especially in the case
that the number of predictors is larger than the sample size. Here we applied
this method, as well as EBVS, to each simulated dataset with a total of 50
sample-splits, and compared its performance with that of ζi defined in (2.6).
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Fig 2. Comparison of false positive rates (top) and false negative rates (bottom). Averaging
over 100 datasets simulated for each ρ in Section 3.2, the false positive/negative rates were
calculated for lasso (dotted), adaptive lasso (dash-dotted), scaled lasso (thin solid), and EBVS
(thick solid).

For each predictor, Figure 3 plotted the median of − log10(1 − ζi), truncated
at 10, against the median of − log10(p-value) across 100 datasets simulated
from the regression model with ρ = 0.5 and ρ = 0.9 respectively. For either
model, ζi can clearly distinguish true positives (i.e., predictors with τi 6= 0) from
true negatives (i.e., predictors with τi = 0). However, as shown in Figure 3.b
where ρ = 0.9, there is no clear cutoff of p-values to distinguish between true
positives and true negatives. Here we also observed that FDR(κ) can be well

approximated by F̂DR(κ) (results are not shown), with both dropped sharply
to zero for κ > 0.05. We therefore can select κ to threshold ζi for the purpose
of controlling FDR.
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Fig 3. Comparison of the local posterior probabilities (with − log10(1 − ζ) truncated at 10)
and p-values in evaluating variable importance by EBVS, with ρ = 0.5 (top) and ρ = 0.9
(bottom). Each plot is based on 100 datasets simulated in Section 3.2. True positives are
indicated by crosses and true negatives are indicated by circles.

4. Selection of structured variables

When the information of structural relationships among predictors is available,
it is unreasonable to assume an independent prior on each βj , j = 1, . . . , p as
described in the previous section. Instead, we introduce an indicator variable
τj = I{βj 6= 0}. Then, the prior distribution of β is set to be dependent on



Iterated conditional modes/medians algorithm 1253

τ = (τ1, . . . , τp)
T . Specifically, given τj , βj has the mixture distribution

βj|τj ∼ (1 − τj)δ0(βj) + τjγ(βj), (4.1)

where γ(·) is the Laplace density with the scale parameter α.
The relationship among predictors can be represented by an undirected graph

G = (V,E) comprising a set V of vertices and a set E of edges. In this case, each
node is associated with a binary valued random variable τj ∈ {0, 1} and there is
an edge between two nodes if two covariates are correlated. The following Ising
model (Onsager, 1943) is employed to model the a priori information on τ ,

P (τ) =
1

Z(a, b)
exp



a

∑

i

τi + b
∑

<i,j>∈E

τiτj



 , (4.2)

where a and b are two parameters, and

Z(a, b) =
∑

τ∈{0,1}p

exp



a

∑

i

τi + b
∑

<i,j>∈E

τiτj



 .

The parameter b corresponds to the “energies” associated with interactions
between nearest neighboring nodes. When b > 0, the interaction is called ferro-
magnetic, i.e., neighboring τi and τj tend to have the same value. When b < 0,
the interaction is called antiferromagnetic, i.e., neighboring τi and τj tend to
have different values. When b = 0, there is no interaction, and the prior gets
back to independent and identical Bernoulli distribution. The value of a + b
indicates the preferred value of each τi. That is, if a+ b > 0, τi tends to be one;
if a+ b < 0, τi tends to be zero.

4.1. The algorithm

Next, we describe the ICM/M algorithm to develop empirical Bayes variable
selection with Ising prior (abbreviated as EBVSi) to incorporate the structure
of predictors in modeling process. We assume the Ising prior as homogeneous
Boltzmann model, but the algorithm can be extended to more general priors.
With α = 0.5, the ICM/M algorithm described in (2.4) and (2.5) can be pro-
ceeded with φ = σ and ψ = (ω, a, b).

For the hyperparameters a and b, we will calculate the conditional mode
of (a, b) simultaneously. Conceptually, we want (â(k+1), b̂(k+1)) maximizing the
prior likelihood P (τ) in (4.2). However, it requires to compute Z(a, b) by sum-
ming up p-dimensional space of τ , which demands intensive computation espe-
cially for a large p. Many methods have been proposed for approximate calcula-
tion, see Geyer (1991), Geyer and Thompson (1992), Zhou and Schmidler (2009)
and others. Here we will consider the composite likelihood approach (Varin et al.,
2011) which is widely used when the actual likelihood is not easy to compute. In

particular, (â(k+1), b̂(k+1)) will be obtained by maximizing a pseudo-likelihood
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function, a special type of composite conditional likelihood and a natural choice
for a graphical model (Besag, 1975).

With the Ising prior on τ (k), the pseudo-likelihood of (a, b) is as follows,

Lp(a, b) =

p∏

i=1

P (τ
(k)
i |τ (k)−j , a, b) =

p∏

i=1

exp
{
τ
(k)
i (a+ b

∑
<i,j>∈E τ

(k)
j )

}

1 + exp
{
a+ b

∑
<i,j>∈E τ

(k)
j

} .

The surface of such a pseudo-likelihood is much smoother than the joint likeli-
hood and therefore easy to maximize (Liang and Yu, 2003). The resultant esti-

mator (â(k+1), b̂(k+1)) by maximizing Lp(a, b) is biased for a finite sample size,
but it is asymptotically unbiased and consistent (Guyon and Kunsch, 1992;
Mase, 2000; Varin et al., 2011). The implementation of the pseudo-likelihood
method is fast and straightforward which is feasible for large scale graphs. In-
deed, â(k+1) and b̂(k+1) are the logistic regression coefficients when the binary

variable τ̂
(k)
i is regressed on

∑
<i,j>∈E τ̂

(k)
j for i = 1, . . . , p.

As shown in the previous sections, the conditional median β̂
(k+1)
j can be

constructed on the basis of the following proposition.

Proposition 4.1. With pre-specified values of σ, a, b, and β−j,
1

n−1X
t
jỸj is

a sufficient statistic for βj w.r.t the model (3.1). Furthermore, the iterative
conditional median of βj in the ICM/M algorithm can be constructed as the
posterior median of βj in the following Bayesian analysis,





1
σ
√
n−1

Xt
jỸj |βj ∼ N

(√
n−1
σ

βj , 1
)
,

βj ∼ (1−̟j)δ0(βj) +̟j

√
n−1
4σ exp

(
−

√
n−1
2σ |βj |

)
,

where the probability ̟j is specified as follows,

̟−1
j = 1 + exp

{
− a− b

∑

k:<j,k>∈E

τk

}
.

The conditional mode σ̂(k+1) = mode(σ|Y,X, β̂(k+1) , ω̂(k)) has an explicit
solution,

σ̂(k+1) =
1

4d

(
c+

√
c2 + 16d||Y −Xβ̂(k+1)||2

)
,

where c =
√
n− 1‖β̂(k+1)‖1, and d = n+ ‖β̂(k+1)‖0 + 1.

4.2. Simulation studies

Here we simulated large p small n datasets from model (3.1) with structured
predictors, i.e., the values of βj depend on correlated τj . We here consider two
different correlation structures of τi. Both EBVS and EBVSi were applied to
each simulated dataset, and they were compared with three other methods, i.e.,
lasso, adaptive lasso, and scaled lasso.
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Fig 4. Comparison of median prediction errors of lasso (dotted), adaptive lasso (dash-dotted),
scaled lasso (thin solid), EBVS (dashed), and EBVSi (thick solid) by averaging over 100
datasets simulated for each ρ in Case I of Section 4.2.

Case I. Markov Chain For each j = 1, . . . , p, βj = 0 if τj = 0; and if τj = 1,
βj is independently sampled from a uniform distribution on [0.3, 2]. The indi-
cator variables τ1, . . . , τp form a Markov chain with the transition probabilities
specified as follows,

P (τj+1 = 0|τj = 0) = 1− P (τj+1 = 1|τj = 0) = 0.99;

P (τj+1 = 0|τj = 1) = 1− P (τj+1 = 1|τj = 1) = 0.5.

The first indicator variable τ1 is sampled from Bernouli(0.5). The error variance
is fixed at one. For each individual, its predictors were simulated from AR(1)
with correlation coefficient ρ ranging from 0 to 0.9 with step 0.1.

The median prediction error rates of all methods are shown in Figure 4. EBVS
performed slightly better than adaptive lasso, and both performed much better
than lasso and scaled lasso. Lasso, adaptive lasso, scaled lasso, and EBVS all
presented varying prediction error rates when ρ goes from 0 to 0.9. However,
the prediction error rates of EBVSi are rather stable for varying values of ρ,
and are much smaller than those of the other four methods.

Shown in Figure 5 are the false positive rates and false negative rates of
different methods. Not surprisingly, lasso has false positive rates over 70%, much
higher than that of other methods. Adaptive lasso significantly reduces the false
positive rates, which is still more than 10%. On the other hand, the false positive
rates of both EBVS and EBVSi are less than 10%. Indeed, EBVS reported false
positive rates at zero for different values of ρ; and EBVSi reported false positive
rates at zero when ρ < 0.6, and 0.1 when ρ ≥ 0.6. However, EBVSi reported
false negative rates less than EBVS. Therefore, EBVS tends to select correct
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Fig 5. Comparison of false positive rates (top) and false negative rates (bottom). Averaging
over 100 datasets simulated for each ρ in Case I of Section 4.2, the false positive/negative
rates were calculated for lasso (dotted), adaptive lasso (dash-dotted), scaled lasso (thin solid),
EBVS (dashed), and EBVSi (thick solid).

true positives by including fewer true positives in the final model than the
model obtained by EBVSi. We then conjecture that, when covariates are highly
correlated, EBVSi tends to select more variables into the model. In particular,
if one covariate is selected into the model, EBVSi tends to include its highly
correlated neighboring predictors into the model.

Figure 6 shows FDR(κ) and F̂DR(κ) of EBVSi for the models with ρ = 0.5
and ρ = 0.9 respectively (we also observed that FDR(κ) of EBVS is similar to
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Fig 6. Plots of median true FDR (solid) and estimated FDR (dotted) versus κ based on the
results of applying EBVSi to 100 data simulated for Case I in Section 4.2, with ρ = 0.5 (top)
and ρ = 0.9 (bottom) respectively.

that of EBVSi, results are not shown). Overall, the estimate F̂DR(κ) dominates
FDR(κ), i.e., the true FDR. Therefore, we will be conservative in selecting

variables when controlling FDR using F̂DR(κ). For example, if one would like
to list important predictors while controlling FDR at 0.1 for the model with
ρ = 0.9, κ should be set around 0.1 based on FDR(κ). However, one can set κ

around 0.4 based on F̂DR(κ), which suggests a true FDR as low as zero.

Plotted in Figure 7 are the p-values calculated using the multi-sample-split
method (Meinshausen et al., 2009) against ζj for each predictor. For both EBVS
and EBVSi, ζj quantified variable importance better than p-values in terms of
distinguishing true positives from true negatives. Overall, EBVSi outperforms
EBVS since it provides larger values of ζ for true positives, while both EBVS
and EBVSi keep true negatives with ζj close to zero. Indeed, EBVS produced ζj
close to 0 for several true positives while EBVSi produced larger values of ζj for
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a. EBVS, ρ = 0.5 b. EBVS, ρ = 0.9
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c. EBVSi, ρ = 0.5 d. EBVSi, ρ = 0.9
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Fig 7. Comparison of local posterior probabilities (with − log10(1 − ζ) truncated at 10) and
p-values in evaluating variable importance by EBVS and EBVSi. Each plot is based on 100
datasets simulated for Case I in Section 4.2. True positives are indicated by crosses and true
negatives are indicated by circles.

these true positives. We then summarize empirically that, by incorporating a
priori information, EBVSi has more power to detect true positives than EBVS.

Case II. Pathway Information To mimic a real genome-wide association
study (GWAS), we took values of some single nucleotide polymorphisms (SNPs)
in the Framingham dataset (Cupples et al., 2007) to generate X in model (3.1).
Specifically, 24 human regulatory pathways were retrieved from Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database, and involved 1,502 genes. For
each gene involved in these pathways, at most two SNPs listed in the Framing-
ham dataset were randomly selected out of those SNPs residing in the genetic
region. If no SNP could be found within the genetic region, a nearest neigh-
boring SNP would be identified. A total of 1,782 SNPs were selected. We first
identified 952 unrelated individuals out of the Framingham dataset, and used
them to generate predictor values of the training dataset. For the rest of the
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Table 1

Results of Simulation Studies with Pathway Information (Case II)

Method Prediction Error (s.e.) False Positive (s.e.) False Negative (s.e.)
LASSO 30.6928(.4050) .6905(.0004) .0204(.0004)
LASSOa 206.1994(.5726) .0744(.0017) .1266(.0002)
LASSO∗

s
368.6464(6.1308) .1290(.0077) .1475(.0012)

EBVS 95.3686(1.8820) .0118(.0010) .0970(.0008)
EBVSi 21.7731(.2320) .0308(.0015) .0394(.0003)

∗ The results of the scaled lasso excluded seven datasets. Applying the scaled lasso to these
seven datasets reported the median prediction error at 2.45 × 1010, false positive rate at
.7059, and false negative rate at .0043.

Framingham dataset, we identified 653 unrelated individuals to generate predic-
tor values of the test dataset. Five pathways were assumed to be associated with
the phenotype Y . That is, all 311 SNPs involved in these five pathways were
assumed to have nonzero regression coefficients, which were randomly sampled
from a uniform distribution over [0.5, 3]. With the error variance at five, a total
of 100 datasets were simulated.

As shown in Table 1, lasso has relatively low prediction error. However, its
median false positive rate is as high as 69%, much higher than others. Adap-
tive lasso (LASSOa), on the other hand, has very large prediction error, but
its false positive rate is much smaller than lasso. EBVS presented the lowest
false positive rate among all the methods, and its false negative rate is also
smaller than that of adaptive lasso. Indeed, with initial values obtained from
lasso, EBVS reduces the false positive rate from lasso by more than 98%. By
incorporating the pathway information using an Ising prior on τ , EBVSi re-
ported the lowest prediction error. Furthermore, EBVSi compromised between
lasso, adaptive lasso, and EBVS to balance well between the false positive rate
and false negative rate. Scaled lasso (LASSOs) performed unstably in analyzing
our simulated datasets, and it selected more than 800 positives in seven of the
simulated datasets.

5. Real data analysis

The empirical Bayes variable selection using ICM/M algorithm was applied to
the Framingham dataset (Cupples et al., 2007) to find SNPs associated with
vitamin D level. The SNPs of the dataset were preprocessed following common
criteria of GWAS, that is, both missingness per individual and missingness per
SNP are less than 10%; minor allele frequency (MAF) is no less than 5%; and
the significance level of Hardy-Weinberg test on each SNP is 0.001. It resulted
in a total of 370,773 SNPs, and 84,834 of them resided in 2,167 genetic regions
involving 112 pathways relevant to vitamin D level. We pre-screened SNPs by
selecting those having p-values of univariate tests smaller than 0.1, and ended
with 7,824 SNPs for the following analysis. As in Section 4.2, a training dataset
and a test dataset were constructed with 952 and 519 unrelated individuals
respectively. The response variable is the log-transformed vitamin D level.
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Table 2

Prediction Errors for the Framingham Dataset

Method Prediction Error No. of Identified SNPs
LASSO .2560 14
LASSOa .2085 5
LASSOs .2066 25
EBVS .2078 1
EBVSi .2121 5

Table 3

Results of Analyzing the Framingham Data Using LASSO, Adaptive LASSO, Scaled
LASSO, EBVS, and EBVSi

Chromosome-SNP
1-3887 4-0894 4-1174 5-2773 8-5143 17-3907 17-9089

β̂ LASSO .0412 0 .0355 .0402 0 0 0
LASSOa .1521 0 .0434 .1539 -.0200 0 .0167
LASSOs .0990 -.0112 .0528 .1366 -.0207 0 .0294
EBVS 0 0 0 .3778 0 0 0
EBVSi .2417 -.0542 0 .3047 -.0857 .1093 0

p-value∗ LASSO .2694 1 1 .6050 1 1 1
LASSOa .2060 1 1 .0031 1 1 1
LASSOs 1 1 1 .0328 1 1 1
EBVS .3138 1 1 .0187 1 1 1
EBVSi .0837 1 1 .0034 1 1 1

ζ EBVS .1277 .0133 .0347 .9976 .0981 .0869 .0966
EBVSi .7609 .5275 .3269 .9718 .7464 .8450 .0009

∗ p-values were calculated using the multi-sample-split method.

We applied lasso, adaptive lasso, scaled lasso, EBVS, and EBVSi to the
training dataset, and calculated the prediction errors using the test dataset.
The results are reported in Table 2. While identifying much more SNPs than
all other methods, lasso reported the largest prediction error. Other than scaled
lasso (LASSOs), EBVS has the smallest prediction error though it identified
only one SNP. Adaptive lasso (LASSOa) and EBVSi each identified five SNPs,
and their prediction errors are slightly higher than that of EBVS.

Presented in Table 3 are the seven SNPs identified to have non-zero regression
coefficients by adaptive lasso, EBVS, and EBVSi. Each SNP is identified by the
chromosome it resides in and four digits. The only SNP, 5-2773, which was
identified by EBVS, was identified by all other methods. While adaptive lasso
and EBVSi each identified five SNPs with non-zero regression coefficients, there
are only three commonly identified SNPs, i.e., 1-3887, 5-2773, and 8-5143. The
two SNPs on chromosome 17, i.e., 17-3907 identified by EBVSi and SNP 17-9089
identified by EBVS, neighbor each other with 16k bases in between. However
the two SNPs on chromosome 4 are far apart from each other.

As in the previous section, we also took the multi-sample-split method to
calculate p-values based on 50 sample splits for all methods. When we followed
Benjamini and Hochberg (1995) to control FDR at 0.1, none of these methods
reported any significant SNPs, though adaptive lasso and EBVSi reported SNP
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5-2773 with the p-value as small as 0.0031 and 0.0034 respectively. Instead,
when controlling F̂DR(κ) ≤ 0.1 for both EBVS and EBVSi, EBVS identified
only SNP 5-2773, and EBVSi identified both SNP 5-2773 and 17-3907, with
κ = 0.8. Note that SNP 17-3907 is one of the neighboring pair on chromosome
17. As shown in the simulation studies, F̂DR(κ) usually overestimated FDR(κ),
so we expect that FDR(.08) < 0.1 for both EBVS and EBVSi.

6. Discussion

We intend to extend empirical Bayes thresholding (Johnstone and Silverman,
2004) for high-dimensional dependent data, allowing incorporation of compli-
cated a priori information on model parameters. An iterative conditional modes/
medians (ICM/M) algorithm is proposed to cycle through each coordinate of
the parameters for a Bayesian update conditional on all other coordinates. The
idea of cycling through coordinates has been revived recently for analyzing high
dimensional data. For example, the coordinate descent algorithm has been sug-
gested to obtain penalized least squares estimates, see Fu (1998), Daubechies
et al. (2004), Wu and Lange (2008), and Breheny and Huang (2011). However,
direct application of the coordinate descent algorithm here is challenged with
the spike-and-slab posteriors.

Without a priori information other than that regression coefficients are sparse,
many lasso-type methods have been proposed with some tuning parameters. It
is difficult to select a value for the tuning parameters, and in practice the cross-
validation method is widely used. However, high-dimensional data are usually
of small sample sizes, and available model fitting algorithms demand intensive
computation, both of which disfavor the cross-validation method. In particu-
lar, when genome-wide association studies focus more and more on complex
diseases associated with rare variants (Nawy, 2012), the limited data usually
contain large number of SNPs which differ in a small number of individuals. It
is almost infeasible to take a cross-validation method as the small number of
unique individuals for a rare variant is more likely to be included in the same
fold. Instead, the proposed ICM/M algorithm obtains data-driven hyperparam-
eters via conditional modes, which takes full advantage of each observation in
the small sample.

With a large number of predictors and complicated correlation between esti-
mates, classical p-values are difficult to compute and it is therefore challenging to
evaluate the significance of selected predictors. Wasserman and Roeder (2009),
and Meinshausen et al. (2009) recently proposed to calculate p-values by split-
ting the samples. That is, when a sample is split into two folds, one fold is used
as the training data to select variables, and the other is used to calculate p-values
of selected variables. Similar to applying the cross-validation method, splitting
samples significantly reduces the power of variable selection and p-value calcu-
lation, especially for high-dimensional data of small sample sizes. Again, it is
almost not feasible to apply such a splitting method to genome-wide association
studies with rare variants.
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As shown in Section 4, an Ising model as (4.2) can be used to model a priori
graphical information on predictors. Maximizing pseudo-likelihood approach is
utilized to obtain the conditional mode of the Ising model parameters, and there-
fore the ICM/M algorithm can be easily implemented. Indeed, at each iteration
of the ICM/M algorithm, we cycle through all parameters by obtaining condi-
tional modes/medians of one parameter (or a set of parameters), and therefore,
many classical approximation methods for low-dimensional issues may be used
to simplify the implementation. On the other hand, the Ising prior (4.2) can also
be modified to incorporate more complicated a priori information on predictors.
For example, we may multiply a weight wij to the interaction τiτj to model the
known relationship between the i-th and j-th predictors. A copula model may
be established to model more complicated graphical relationship between the
predictors.

For high-dimensional data, stochastic search has been employed to imple-
ment Bayesian variable selection, see Hans et al. (2007), Bottolo and Richard-
son (2010), Li and Zhang (2010), Stingo et al. (2011), and others. The reviewers
pointed out that Rockova and George (2014) recently proposed EMVS as an
EM approach for rapid Bayesian variable selection. EMVS assumes the “spike-
and-slab” Gaussian mixture prior on each βj ,

βj |ωj ∼ (1− ωj)N(0, ν0σ
2) + ωjN(0, ν1σ

2),

where ωj is a prior probability, ν1 takes either a prespecified large value or a g-
prior, and ν0 is suggested to explore a sequence of positive values with ν0 < ν1.
With an absolutely continuous spike, EMVS estimates ωj at the E-step, and
estimates βj at the M-step. Note that a positive ν0 will not automatically yield
a sparse estimate of β, which has to be sparsified using a prespecified threshold.
However, the ICM/M algorithm estimates a common ω based on a conditional
mode, and estimates βj based on a conditional median which enables variable
selection following Johnstone and Silverman (2004). We also propose a local
posterior probability to evaluate the importance of the predictor, which helps
control the false discovery rate.

Acknowledgements

This work was partially supported by NSF CAREER award IIS-0844945,
U01CA128535 from the National Cancer Institute, and the Cancer Care En-
gineering project at the Oncological Science Center of Purdue University. We
would like to thank the Editor and the Associate Editor for their insightful
comments on the paper, which led to improvement of the manuscript.

The Framingham Heart Study is conducted and supported by the National
Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston Uni-
versity (Contract No. N01-HC-25195). This manuscript was not prepared in
collaboration with investigators of the Framingham Heart Study and does not
necessarily reflect the opinions or views of the Framingham Heart Study, Boston
University, or NHLBI.



Iterated conditional modes/medians algorithm 1263

Funding for SHARe Affymetrix genotyping was provided by NHLBI Contract
N02-HL-64178. SHARe Illumina genotyping was provided under an agreement
between Illumina and Boston University.

Appendix A: Technical details of the ICM/M algorithms

A.1. The algorithm in Section 3.1

Given β̂(k), σ̂(k), and ω̂(k) from the k-th iteration, the (k + 1)-st iteration of

ICM/M algorithm can proceed in the order of β̂
(k+1)
1 , . . . , β̂

(k+1)
p , σ̂(k+1), and

ω̂(k+1), based on their fully conditional distributions.
Let {

Ỹj = Y −∑j−1
l=1 Xlβ

(k+1)
l −∑p

l=j+1 Xlβ
(k)
l ,

zj = Xt
jỸj

/
(σ̂(k)

√
n− 1).

Following Proposition 3.1, β̂
(k+1)
j is updated as the median value of its posterior

distribution conditional on (zj, ω̂
(k), σ̂(k)).

Let

F̃ (k+1)(0|zj) = P (βj ≥ 0|zj, ω̂(k), σ̂(k))

=
1− Φ(0.5− zj)

[1− Φ(zj + 0.5)]ezj +Φ(zj − 0.5)
,

and ωj = P (βj 6= 0|zj, ω̂(k), σ̂(k)) which can be calculated as follows,

ω−1
j = 1 + 4(1/ω̂(k) − 1)

(
Φ(zj − 0.5)

φ(zj − 0.5)
+

1− Φ(zj + 0.5)

φ(zj + 0.5)

)−1

.

If zj > 0, as shown in Johnstone and Silverman (2005), the posterior median

β̂
(k+1)
j is zero if ωjF̃

(k+1)(0|zj) ≤ 0.5; otherwise,

β̂
(k+1)
j =

σ̂(k)

√
n− 1

{
zj − 0.5− Φ−1

(
[1− Φ(zj + 0.5)]ezj +Φ(zj − 0.5)

2ωj

)}
.

If zj < 0, β̂
(k+1)
j can be calculated on the basis of its antisymmetry property.

That is, when a function β̂(zj) = β̂(k+1) is defined, then β̂(−zj) = −β̂(zj).
The conditional mode σ̂(k+1) can be easily derived following the fact that

σ̂(k+1) = mode(σ|Y,X, β̂(k+1)), and the conditional mode ω̂(k+1) can be easily

derived following the fact that ω̂(k+1) = mode(ω|β̂(k+1)).

A.2. The algorithm in Section 4.1

Following Proposition 4.1, β̂
(k+1)
j is updated as the median value of its posterior

distribution conditional on (zj, ˆ̟ j , σ̂
(k)), where ˆ̟ j is calculated as follows,

ˆ̟−1
j = 1 + exp

{
− â(k+1) − b̂(k+1)

∑

l:<j,k>∈E

τ̂l

}
,
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with τ̂l = I{β̂(k+1)
l 6= 0} for l = 1, . . . , j − 1; and τ̂l = I{β̂(k)

l 6= 0} for l =
j + 1, . . . , p.

The conditional median β̂
(k+1)
j can be calculated following A.1, except that

the posterior probability ωj = P (βj 6= 0|zj, ˆ̟ j , σ̂
(k)) should be updated as

follows,

ω−1
j = 1 + 4(1/ ˆ̟ j − 1)

(
Φ(zj − 0.5)

φ(zj − 0.5)
+

1− Φ(zj + 0.5)

φ(zj + 0.5)

)−1

.
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