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Université Grenoble Alpes, Laboratoire Jean-Kuntzmann
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Abstract: We propose punctual and functional estimators for the local
variance of pseudo-diffusions driven by Gaussian noises. The consistency
and asymptotic normality are shown. The proofs are simplified by using the
Central Limit Theorem for non-linear functionals belonging to Itô-Wiener’s
Chaos, of Peccati-Nualart-Tudor. Besides, a simulation study is made to
assess the performance of those estimators. This study reveals, through
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various examples, that the estimators give good approximations for the
true local variance.
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1. Introduction

Recently there has been an increasing interest in models of stochastic differential
equations (SDE) driven by fractional processes. Examples of such an interest
are the recent books of Prakasa Rao (2010) and Mishura (2008). These SDE
arise when modeling data obtained from real measurements of some physical,
environmental or economic phenomena. For example, we can cite among other
areas: fractional models for studying high frequency financial data, tracking
of pollutant particles on water surfaces, turbulent fluids and medical imaging.
Among these models, the more usual one is the fractional pseudo-diffusion driven
by a fractional Brownian motion (fBm), see Nualart and Răşcanu (2002). In
the present article we tackle the estimation problems for the following pseudo-
diffusion models.

dX(t) = σ(t) dY (t) + µ(t) dt t ≥ 0,

where the functions σ(·) and µ(·) are deterministic or random functions and Y
is a Gaussian process whose covariance structure is given below, but that can
be considered as a smooth perturbation of a fractional process. The solutions
X can be viewed as a generalization of the cited pseudo-diffusion.

We will study three different models.

• Fractional pseudo-diffusion with deterministic coefficients (fDdc).
In this case, the functions σ and µ are real and deterministic.

• Generalized fractional Orstein-Uhlenbeck processes (gfOUp). Here,
σ is a deterministic function and µ(t) is random defined in the following
form. Introducing the function µ̃(x) = −λx, we set µ(t) = µ̃ ◦ X(t) and
more generally we set µ(t) = µ̃(X(t)).

• Fractional pseudo-diffusion with random coefficients (fDrc). In
this last case σ(t) = σ(Y (t)) and µ(t) = µ(Y (t)).

The goal of this work is to study the estimation of the local variance function
σ(·), both in a functional framework and also estimating σ(t) for each point t
belonging to the domain of the function.

It is important to point out that the estimation procedure needs only one
trajectory observation and asymptotics are established when the norm of the
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mesh, where the trajectory is observed, tends to zero. Therefore our study is
infilled in nature. As we mentioned, the class of integrators Y includes smooth
perturbations of fBm and also stationary processes whose covariance function
r(·) behaves as 1− |t|2H when t → 0. The estimators are built with the second
order increments. In previous works, Berzin, Latour and León (2014) and Berzin
and León (2008), we pinpointed the quality of these statistics for estimating the
Hurst parameter and some functionals of the local variance. In this framework,
punctual estimation of σ(·) is studied for the first time, even in the case where
the integrator Y is the fBm. Note that the caseH = 1/2, the true diffusion case,
was studied by Soulier (1998) and Genon-Catalot, Laredo and Picard (1992).

For punctual estimation we get consistency and asymptotic normality results
similar to those obtained for Brownian diffusions, see Soulier (1998). They are
also similar to those obtained for the density estimation for weakly independent
samples. The proofs of the asymptotic behavior of the estimators are consid-
erably simplified by using the method of Peccati and Tudor (2005) to obtain
central limit theorem for non-linear functionals of Gaussian processes.

In the case of (fDrc) we obtain in Theorem 5.5 a new and astonishing result
that can be related to the results on the local time of ordinary diffusions of
Florens-Zmirou (1989) and Jacod (2000).

Let us mention that there is an increasing literature about statistics in frac-
tional models. Among others, we can cite the aforementioned two books and
the references therein. Also in Tudor and Viens (2007) the authors give a very
interesting approach to the estimation of the drift in the model dX(t) = dbH(t)
+θµ(X(t)) dt, where θ is a parameter and bH is the fBm of parameter H . More
recently and more in the mind of the present work, we can cite the article about
the parametric estimation in fractional Orsntein-Uhlenbeck processes written
by Xiao, Zhang and Xu (2011) where the authors estimate both the diffusion
and the drift.

The article has eight sections including this introduction. Section 2 describes
the studied models. Section 3 establishes the hypothesis and the notations. Sec-
tion 4 and 5 contain the results. In Section 6, we report an intensive simulation
study to assess our estimators. The obtained results exhibit a very good asymp-
totic behavior of the estimators and moreover the whole section can serve as a
guide to design future simulations of the same type. Sections 7, 8 contain the
proofs of the results. An Appendix providing useful tools is also included.

2. Studied models

2.1. Fractional pseudo-diffusions with deterministic coefficients
(fDdc)

In the following, σ and µ are real functions; obviously, we assume that σ is pos-
itive. Consider the stochastic process Xµ satisfying the pseudo-diffusion model

dXµ(t) = σ(t) dY (t) + µ(t) dt, t ≥ 0 (2.1)
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where Y is a centered Gaussian process satisfying the equation

Y (t) =

∫ +∞

−∞
[exp(itλ)− 1]

√
f(λ) dW (λ) (2.2)

where W stands for the standard Brownian motion and where the function f
can be written as

f(λ) =
1

2π
|λ|−2H−1

+G(λ), (2.3)

with G an even positive integrable function.
We tackle the estimation problem of the function σ in model (2.1). An ex-

ample of such a process Y is given by

Y (t) = bH(t) + Z(t)− Z(0),

where both bH and Z are Gaussian independent processes. We assume that Z is
stationary with covariance function given by Ĝ, the Fourier transform ofG, while
bH is a fractional Brownian motion (fBm) with Hurst parameter 0 < H < 1
and covariance function

E [bH(t)bH(s)] =
1

2
v22H

[
|t|2H + |s|2H − |t− s|2H

]

where

v22H = [Γ(2H + 1) sin(πH)]
−1

, (2.4)

see for instance Samorodnitsky and Taqqu (1994). Note that bH is a zero mean
process. Using the chaos representation for the fBm (see Hunt (1951)), we can
write

bH(t) =
1√
2π

∫ +∞

−∞
[exp(iλt)− 1] |λ|−H− 1

2 dW (λ), t ≥ 0,

so the fBm is a particular case of (2.2) with G ≡ 0.
With our techniques we can study the case where in model (2.1), Y is a

centered stationary Gaussian process defined by

Y (t) =

∫ +∞

−∞
exp(itλ)

√
f(λ) dW (λ), (2.5)

where f(λ) = f0(λ) +G(λ), G is as before and f0 is an integrable even function

such that for 0 < t ≤ 1, f̂0(t) = 1− L(t)t2H = r(t), 0 < H < 1, limt→0+ L(t) =
C0 > 0 and L(t) − C0 = O(t2H) as t → 0+. We suppose that L is an even non
negative function with three continuous derivatives except at the origin where
L satisfies

1. tL′(t) = O(1);
2. t2L′′(t) = O(1), as t → 0+.
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Furthermore, we suppose that |((L(t) − C0)t
2H)′′′| ≤ Ct4H−3, for t ∈ ]0, 1].

A centered Gaussian stationary process with covariance r given by r(t) = e−|t|2H

is an example of such a process. We will refer to this process as the stationary
fractional exponential covariance process in short, the sfec process. Finally, in
model (2.1) Y could also be defined as

Y (t) = Y1(t)− Y1(0), (2.6)

where process Y1 plays the role of Y in equation (2.5). We assume that the
function σ belongs to C1 on [ 0; 1 ] and that function µ is Lipschitz on [ 0; 1 ].
Then, for Y solution of (2.2), (2.5) or (2.6), the solution of (2.1) is

Xµ(t) = Xµ(0)+Y (t)σ(t)−Y (0)σ(0)−
∫ t

0

σ′(u)Y (u) du+

∫ t

0

µ(u) du. (2.7)

See Nualart and Răşcanu (2002). When the function µ is such that µ ≡ 0, we
note Xµ = X0.

2.2. Generalized fractional Orstein-Uhlenbeck processes (gfOUp)

In the following σ is positive and belongs to C1 on [ 0; 1 ]. Our techniques also
allow the study of the case where Xλ is a stochastic process satisfying the linear
SDE:

dXλ(t) = σ(t) dY (t)− λXλ(t) dt, λ > 0 and t ≥ 0, (2.8)

Y satisfying (2.2), (2.5) or (2.6).
Let us note that Xλ is not included in the framework induced by model (2.1).

However it is quite close to the latter one if we consider that the drift µ(t) in
(2.1) is random being −λX(t). The solution of (2.8) is given by

Xλ(t) = e−λt

(
Xλ(0) +

∫ t

0

σ(u)eλu dY (u)

)
(2.9)

Note that if σ(u) is constant and Y is a fBm (G ≡ 0 in equation (2.2)), this pro-
cess is nothing else than the fractional Orstein-Uhlenbeck process, see Cheridito,
Kawaguchi and Mæjima (2003).

We also consider the following model

dXλ(t) = σ(t) dbH(t) + µ(Xλ(t)) dt, t ≥ 0, (2.10)

where bH is the fBm with parameter H > 1
2 , σ is positive and belongs to C1

on [ 0; 1 ] and µ is a Lipschitz function on R. These conditions on H , σ and µ,
ensure that there exists a unique process Xλ solution of the SDE (2.10). The
solution of (2.10) is given by

Xλ(t) = Xλ(0) + bH(t)σ(t) −
∫ t

0

σ′(u)bH(u) du+

∫ t

0

µ(Xλ(u)) du (2.11)

Furthermore Xλ has almost-surely (H − δ)-Hölder continuous trajectories on
[ 0; 1 ]. See Nualart and Răşcanu (2002).
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Note that in the particular case where σ(u) is constant and µ(x) = −λx, this
process is also the fractional Orstein-Uhlenbeck process. For this reason (2.9)
and (2.11) will be named generalized fractional Orstein-Uhlenbeck processes, in
short gfOUp and we will note both of them Xλ.

2.3. Fractional pseudo-diffusions with random coefficients

Y as solution of (2.2), (2.5) or (2.6) has zero quadratic variations for H > 1
2 .

See Lemma 7.1 page 962. So if we suppose that σ is positive and belongs to
C1 on R and µ is a continuous function on R, we can consider the following
pseudo-diffusion model in the sense of pathwise integrals, say for t ≥ 0 and
H > 1

2 ,

dXr(t) = σ(Y (t)) dY (t) + µ(Y (t)) dt. (2.12)

Here the variance and the drift are both random. The solution Xr of (2.12) is
given by

Xr(t) = Xr(0) +

∫ Y (t)

0

σ(u) du+

∫ t

0

µ(Y (u)) du, (2.13)

see Lin (1995).

3. Hypothesis and notations

In the following, N∗ is the set N∗ = {x ∈ Z : x > 0}.
For n ∈ N

∗ − {1}, let ∆nbH the second order increments of the process bH ,
defined as ∆nbH(i),

∆nbH(i) =
nH

σ2H
δnbH(i), i = 0, 1, . . . , n− 2,

where δn is given by

δnbH(i) =
[
bH( i+2

n )− 2bH( i+1
n ) + bH( i

n )
]
,

with σ2
2H = v22H(4− 22H).

Thus the process ∆nbH is a centered stationary Gaussian process with vari-
ance 1. Its covariance function is given by ρH(i − j) for i, j = 0, 1, . . . , n − 2,
where ρH(x), for x ∈ R, is

ρH(x) =
1

2(4− 22H)

[
−6 |x|2H + 4 |x+ 1|2H

− |x+ 2|2H − |x− 2|2H + 4 |x− 1|2H
]
. (3.1)
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Also if Un is a random variable with support {0, 1, . . . , n − 2}, we define the
random variable U∗

n on [ 0; 1 [ by

U∗
n(u) = Un(i), if u ∈

[
i

n−1 ;
i+1
n−1

[
.

We use Hermite polynomials, denoted by Hp. They satisfy

exp(tx− t2/2) =

+∞∑

p=0

Hp(x)t
p/p!

and give an orthogonal system for the standard Gaussian measure φ(x) dx. If
h ∈ L2(φ(x) dx) then,

h(x) =
+∞∑

p=0

hpHp(x) and ‖h‖22,φ =
+∞∑

p=0

h2
pp!.

Mehler’s formula (see Breuer and Major (1983)) leads to a simple form to
compute the covariance between two L2 functions of Gaussian random variables.
In fact, if k ∈ L2(φ(x) dx) and is written as k(x) =

∑+∞
p=0 kpHp(x) and if (X,Y )

is a centered Gaussian random vector with correlation ρ and unit variance then

E[h(X)k(Y )] =

+∞∑

p=0

hpkpp!ρ
p. (3.2)

Let g be a function in L2(φ(x) dx) such that

g(x) =

+∞∑

p=1

gpHp(x), with ‖g‖22,φ =

+∞∑

p=1

g2pp! < +∞

and let Ag = {p : p ≥ 2 and gp 6= 0}. We suppose that Ag 6= ∅. We define the
Hermite rank of g as the smallest p such that the coefficient gp is different from
zero.

We shall write

σ2
g =

+∞∑

p=1

g2pp!
+∞∑

r=−∞
ρpH(r) (resp. σ̃2

g =
+∞∑

p=1

g2pp!

∫ +∞

−∞
ρpH(x) dx). (3.3)

Note that since
∑+∞

r=−∞ ρH(r) = 0 (resp.
∫ +∞
−∞ ρH(x) dx = 0), then if Ag = ∅,

in such a case σ2
g = σ̃2

g = 0.

Let K be a C2 density function with a compact support in [−1; 1 ] such that∫ 1

−1 uK(u) du = 0.
Furthermore, let

χ2 =
1

2

∫ +1

−1

u2K(u) du, (3.4)
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and

κ2 =

∫ +1

−1

K2(u) du. (3.5)

We assume that G defined in (2.3) for models (2.1), (2.8) and (2.12) is an even

function such that
∫ +∞
−∞ |λ|3 G(λ) dλ < +∞.

Notations Throughout the paper, we use the following notations:

• C stands for a generic constant and when such a constant depends on
a trajectory ω, we write C(ω). The value of this generic constant may
change during a proof.

• The random variable N denotes a standard Gaussian random variable.
• For a function h, h′, h′′ and h′′′ will be the first, second and third deriva-
tives of h.

• For a function h, h(k) will be the kth derivative of h, k ∈ N.
• Law−−→ indicates the convergence in law while

Stable−−−−→ if for the stable con-
vergence. See Podolskij and Vetter (2010) for the definion of stable con-
vergence.

4. Functional estimation results for σ

In this section, we proceed to the functional estimation of σ in the four models
described in Section 2, by equations (2.1), (2.8), (2.10) and (2.12).

4.1. For the fDdc

We suppose that in model (2.1) the function µ is Lipschitz on [ 0; 1 ] while the
function σ belongs to C1 on [ 0; 1 ] and is strictly positive on this interval.

4.1.1. Almost sure convergence of the increments of Xµ

For Xµ solution of model (2.1), with Y solution of (2.2), (2.5) or (2.6), we
observe Xµ on a grid { i

n , i = 0, 1, . . . , n}, n ∈ N
∗ − {1}, from which we can

compute the second order increments, denoted by ∆nXµ(i),

∆nXµ(i) = a(n)δnXµ(i), i = 0, 1, . . . , n− 2, (4.1)

where δn is given by

δnXµ(i) =
[
Xµ(

i+2
n )− 2Xµ(

i+1
n ) +Xµ(

i
n )
]
, (4.2)

and where

a2(n) =





n2H

σ2
2H

, for model (2.2);

{
2
[
3− 4r( 1n ) + r( 2

n )
]}−1

, for models (2.5) and (2.6);

(4.3)

with σ2
2H = v22H(4− 22H).
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The process ∆nXµ is Gaussian with mean Fn,µ(i) and variance σ2
n(i)

Fn,µ(i) = a(n)

(∫ i+2
n

i+1
n

µ(u) du−
∫ i+1

n

i
n

µ(u) du

)
(4.4)

and
σ2
n(i) = Var[∆nXµ(i)] = E[∆2

nX0(i)]. (4.5)

Theorem 4.1. Almost surely for all continuous function h on [ 0; 1 ] and for
all real k ≥ 1,

1

n− 1

n−2∑

i=0

h( i
n )

|∆nXµ(i)|k

E[|N |k]
−→

n→+∞

∫ 1

0

h(u)σk(u) du.

Remark 4.1. When µ ≡ 0, the convergence holds for all real k > 0.

Remark 4.2. In Theorem 3.33 of Berzin, Latour and León (2014), the last
convergence is obtained for a fBm.

Let us give an outline of the proof of Theorem 4.1. We need Lemma 4.1.

Lemma 4.1. For any interval [ a; b ] ⊆ [ 0; 1 ] and for all k ∈ N
∗ we almost

surely have,

∫ b

a

((∆nX0)
∗)k(u) du −→

n→+∞

(∫ b

a

σk(u) du

)
E[Nk].

This lemma implies that if we consider ([ a; b ],B[ a; b ],
λ

b−a ) as a probability
space, λ being the Lebesgue measure and B[a; b ], the Borel sets of [ a; b ], then
for all interval [ a; b ] ⊆ [ 0; 1 ], almost surely (∆nX0)

∗ weakly converges to
σ(U)⊗N , where U is an uniform random variable on [ a; b ] independent of N .

Thus, by a density argument, we get that almost surely for all continuous
function h on [ 0; 1 ] and for all real k > 0,

∫ 1

0

h(u) |(∆nX0)
∗|k (u) du −→

n→+∞

(∫ b

a

h(u)σk(u) du

)
E[|N |k].

Finally using the uniform continuity of h on [ 0; 1 ] and the last result of con-
vergence we obtain Remark 4.1.

To complete the proof of Theorem 4.1, we use the two following lemmas
proven in the Appendix A.1.

Lemma 4.2. For i = 0, 1, . . . , n− 2,

∆nXµ(i) = ∆nX0(i) + Fn,µ(i),

where Fn,µ(i) is defined by (4.4)

|Fn,µ(i)| ≤ C
1

n2−H
.

This lemma implies Lemma 4.3. Remark 4.1 with Lemma 4.3 also imply
Theorem 4.1.
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Lemma 4.3. Almost surely for all continuous function h on [ 0; 1 ] and for all
real k ≥ 1,

An(h) =
1

n− 1

n−2∑

i=0

h( i
n )
{
|∆nXµ(i)|k − |∆nX0(i)|k

}
= o(1/

√
n).

4.1.2. Convergence in law for the weighted sum of a generalized variation of
the increments of the fDdc

The following notation is used.
For n ∈ N

∗, 0 ≤ t ≤ 1, for any function g described in the notations and

for a continuous function h on [ 0; 1 ], we define S
(n)
g,h(t) as the weighted sum

of a generalized variation of the increments of the fDdc. More precisely, for Xµ

solution of model (2.1) for µ ≡ 0, with Y solution of (2.2), (2.5) or (2.6), we
define

S
(n)
g,h(t) =

1√
n

⌊nt⌋−2∑

i=0

h
(
i
n

)
g
(

∆nX0(i)
σn(i)

)
, (4.6)

with S
(n)
g,h(t) = 0 if ⌊nt⌋ ≤ 1 and where ⌊x⌋ denotes the integer part of the

positive real number x.
In the aim of giving the rate of convergence in Theorem 4.1, which is

√
n

as proved in Corollary 4.1, we demonstrate Lemma 4.4 in the Appendix A.1.
Indeed since σn(i) defined by (4.5) is such that σn(i) ≃ σ( i

n ) (see Lemma 7.2,
page 963), using Lemma 4.3 we establish Lemma 4.4.

Lemma 4.4. For all function h belonging to C1 on [ 0; 1 ] and for all real k ≥ 1,

Bn(h) =
√
n

[
1

n− 1

n−2∑

i=0

h( i
n )

|∆nXµ(i)|k

E[|N |k]
−
∫ 1

0

h(u)σk(u) du

]

=

√
n

n− 1

n−2∑

i=0

h( i
n )σ

k( i
n )

(
1

E[|N |k]

∣∣∣∣
∆nX0(i)

σn(i)

∣∣∣∣
k

− 1

)
+ oa.s.(1)

=
n

n− 1
S
(n)

gk,hσk(1) + oa.s.(1),

where gk is defined by (4.7).

Remark 4.3. The latter result still holds for all real k > 0 when µ ≡ 0.

At this step, to obtain the convergence rate in Theorem 4.1, it is sufficient to

prove convergence in law for S
(n)

gk,hσk(1) and more generally for S
(n)
g,h(1), for any

function g described in the notations and for h a continuous function on [ 0; 1 ].

Theorem 4.2.

S
(n)
g,h(1)

Law−−−−→
n→∞

N

(
0;σ2

g

∫ 1

0

h2(u) du

)
,

where σ2
g is defined by (3.3).
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Remark 4.4. If g has a finite Hermite expansion, then for n large enough

E[S
(n)
g,h(1)]

4 ≤ C.

More generally, for all a ∈ [ 0; 1 ], we get E[S
(n)
g,h(a)]

4 ≤ C, for n large enough.

Remark 4.5. Note that last convergence is obtained in Lemma 5.10 of Berzin,
Latour and León (2014) for a fBm bH and h ≡ 1.

As a corollary of Theorem 4.2, by Lemma 4.4, we get the convergence rate
in Theorem 4.1.

Corollary 4.1. If the function h belongs to C1 on [ 0; 1 ], then for all real k ≥ 1

√
n

[
1

n− 1

n−2∑

i=0

h( i
n )

|∆nXµ(i)|k

E[|N |k]
−
∫ 1

0

h(u)σk(u) du

]

Law−−−−→
n→∞

N

(
0;σ2

gk

∫ 1

0

h2(u)σ2k(u) du

)
,

gk(x) =
|x|k

E[|N |k]
− 1 =

∞∑

p=1

g2p,kH2p(x), (4.7)

with

g2p,k =
1

(2p)!

p−1∏

i=0

(k − 2i) . (4.8)

Remark 4.6. This result still holds when µ ≡ 0 for all real k > 0.

4.2. For the two gfOUp

We assume that in models (2.8) and (2.10) the function σ belongs to C2 on
[ 0; 1 ]. Furthermore in model (2.10), we suppose that the function µ is Lipschitz
on R.

4.2.1. Almost sure convergence of the increments of Xλ

We define ∆nXλ as (4.1), Section 4.1.1.

Theorem 4.3. Almost surely for all continuous function h on [ 0; 1 ] and for
all real k ≥ 1,

1

n− 1

n−2∑

i=0

h( i
n )

|∆nXλ(i)|k

E[|N |k]
−→

n→+∞

∫ 1

0

h(u)σk(u) du.

Let us give a sketch of the proof of Theorem 4.3. In this aim, we use an
approximation via the process Y or bH based on the two following lemmas.
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Lemma 4.5. For i = 0, 1, . . . , n− 2,

∆nXλ(i) = σ( i
n )∆nY

⋆(i) + εn(i),

with, for any δ > 0,

|εn(i)| ≤ C(ω)
(
1
n

)(1−δ)
,

where Y ⋆ stands for Y (resp. bH) if Xλ is solution of (2.8) (resp. (2.10)) and
∆nY

⋆(i) is defined by (4.1), Section 4.1.1.

Lemma 4.5 leads us to Lemma 4.6.

Lemma 4.6. Almost surely for all continuous function h on [ 0; 1 ] and for all
real k ≥ 1,

Cn(h) =
1

n− 1

n−2∑

i=0

h( i
n )
{
|∆nXλ(i)|k − σk( i

n ) |∆nY
⋆(i)|k

}
= o

(
1√
n

)
.

Theorem 4.3 then follows from Remark 4.1 applied in model (2.1) toX0 = Y ⋆,
replacing the function h by σkh.

4.2.2. Rate of convergence for the increments ∆nXλ

Lemma 4.6 and Remark 4.6 applied in model (2.1) to X0 = Y ⋆, replacing
function h by hσk lead to the following Theorem.

Theorem 4.4. If the function h belongs to C1 on [ 0; 1 ], then for all real k ≥ 1

√
n

[
1

n− 1

n−2∑

i=0

h( i
n )

|∆nXλ(i)|k

E[|N |k]
−
∫ 1

0

h(u)σk(u) du

]

Law−−−−→
n→∞

N

(
0;σ2

gk

∫ 1

0

h2(u)σ2k(u) du

)
,

where the function gk is defined by (4.7).

4.3. For the fDrc

We assume that in model (2.12) the function µ is locally Lipschitz on R and
that the function σ belongs to C1 on R.

4.3.1. Almost sure convergence of the increments of Xr

We define ∆nXr as in (4.1), Section 4.1.1.

Theorem 4.5. Almost surely for all continuous function h on R and for all
real k ≥ 1,

1

n− 1

n−2∑

i=0

h(Y ( i
n ))

|∆nXr(i)|k

E[|N |k]
−→

n→+∞

∫ 1

0

h(Y (u))σk(Y (u)) du.
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Let us give a sketch of the proof of Theorem 4.5. In this aim, as for Lemma 4.5
and 4.6, we use an approximation via the process Y based on the two following
lemmas.

Lemma 4.7. For i = 0, 1, . . . , n− 2,

∆nXr(i) = σ(Y ( i
n ))∆nY (i) + εn(i),

with, for any δ > 0,

|εn(i)| ≤ C(ω)
(
1
n

)(H−δ)
,

where ∆nY (i) is defined by (4.1), Section 4.1.1.

Lemma 4.7 leads us to Lemma 4.8.

Lemma 4.8. Almost surely for all continuous function h on R and for all real
k ≥ 1,

Dn(h) =
1

n− 1

n−2∑

i=0

h(Y ( i
n ))
{
|∆nXr(i)|k − σk(Y ( i

n )) |∆nY (i)|k
}
= o

(
1√
n

)
.

Theorem 4.5 then follows from Remark 4.1 applied in model (2.1) to X0 = Y ,
replacing function h by (h ◦ Y · σk ◦ Y ).

4.3.2. Rate of convergence for the increments ∆nXr

We will make the additional hypothesis that σ belongs to C2 on R, bounded
away from zero and that for all x ∈ R, |σ′′(x)| ≤ P (|x|), where P is a polynomial.

The following notation is used.
We will denote by σ2

n,1 the variance of ∆nY (i) (that does not depend on i),
that is

σ2
n,1 = Var[∆nY (i)] = E[∆2

nY (i)]. (4.9)

σ2
n,1 is nothing but σ2

n(i) defined by (4.5) in case where X0 = Y .

Mixing techniques of this paper and of Berzin, Latour and León (2014), we
can establish the rate of convergence in Theorem 4.5 through the following
theorem.

Theorem 4.6. If the function h belongs to C2 on R, and |h′′(x)| ≤ P (|x|),
where P is a polynomial, then for all real k ≥ 1

En(h) =
√
n

[
1

n− 1

n−2∑

i=0

h(Y ( i
n ))

|∆nXr(i)|k

E[|N |k]
−
∫ 1

0

h(Y (u))σk(Y (u)) du

]

Stable−−−−→
n→∞

σgk

∫ 1

0

h(Y (u))σk(Y (u)) dW⊥Y (u)

where W⊥Y is a Brownian motion independent of Y .

We give here an outline of the proof of Theorem 4.6.
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First let us remark that almost surely for all function h belonging to C1 one
has ∫ 1

0

h(Y (u)) du− 1

n− 1

n−1∑

i=0

h(Y ( i
n )) = o

(
1√
n

)
.

Thus using Lemma 4.8, last equality replacing function h by hσk and using the
fact that σn,1 is such that σn,1 ≃ 1 (see Lemma 7.2, page 963), Theorem 4.6
will ensue from the following theorem.

Theorem 4.7. If the function h belongs to C2 on R, and |h′′(x)| ≤ P (|x|),
where P is a polynomial, then for all real k > 0

1√
n

n−2∑

i=0

h(Y ( i
n ))gk

(
∆nY (i)
σn,1

)
Stable−−−−→
n→∞

σgk

∫ 1

0

h(Y (u)) dW⊥Y (u).

Here W⊥Y is still a Brownian motion independent of Y .

Remark 4.7. Let g be a general function with four moments with respect to
the standard Gaussian measure, even, or odd, with a Hermite rank greater than
or equal to one and such that Ag 6= ∅ (for the definition of Ag, see Section 3).
It can be proved that, under the same hypotheses on H and h that

1√
n

n−2∑

i=0

h(Y ( i
n )) g

(
∆nY (i)
σn,1

)
Stable−−−−→
n→∞

σg

∫ 1

0

h(Y (u)) dW⊥Y (u).

Furthermore if h belongs to C4 on R and
∣∣h(4)(x)

∣∣ ≤ P (|x|), this result is still
valid under the weaker hypothesis that H > 1

4 and under the supplementary
condition in the case where g is odd that g has a Hermite rank greater than or
equal to three.

Remark 4.8. This theorem and Remark 4.7 have been shown in Theorem 3.34
of Berzin, Latour and León (2014) for the fractional Brownian motion bH instead
of Y .

5. Punctual estimation results for σ

We consider the punctual estimation of σ in the context of the four models (2.1),
(2.8), (2.10) and (2.12) described in Section 2. More precisely, we fix t1, t2, . . . ,
tm, m ∈ N

∗. For j = 1, . . . ,m, we suppose that, 0 < tj < 1, are all distinct
points. Our aim is to estimate σ(tj), for j = 1, . . . ,m, in models (2.1), (2.8) and
(2.10) and to estimate σ(Y (tj)) in model (2.12).

5.1. For the fDdc

We assume that in model (2.1) the function µ is Lipschitz on [ 0; 1 ] and that
the function σ belongs to C2 on [ 0; 1 ], and is strictly positive on this interval.
We make the additional hypothesis that in model (2.1), the function G is such

that
∫ +∞
−∞ λ4G(λ) dλ < +∞ (see (2.3)).
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5.1.1. Bias and variance

The idea consists in using Theorem 4.1 when the function h tends to the Dirac
function at a fixed point t, 0 < t < 1.

The following notation is used. For m ∈ N
∗, let t1, t2, . . . , tm, m fixed points

in ] 0; 1 [ . For j = 1, . . . ,m, n ∈ N
∗, n ≥ n0, i = 0, 1, . . . , n− 1 and 0 < h ≤ h0,

let
a(i)n (tj) = tj + h

(
1− 2i

n

)
. (5.1)

Also, for Xµ solution of model (2.1), with Y solution of (2.2), (2.5) or (2.6), let

∆(i)
n Xµ(t) = a(n)δ(i)n Xµ(t), (5.2)

where a(n) is defined by (4.3), δ
(i)
n is given by

δ(i)n Xµ(t) =
[
Xµ(a

(i)
n (t) + 1

n )− 2Xµ(a
(i)
n (t)) +Xµ(a

(i)
n (t)− 1

n )
]
, (5.3)

where h = h(n) → 0 as n → +∞ is the smoothing parameter and the depen-
dence of h on n is implicit throughout the paper. We suppose that the sequence
nh → +∞ as n → +∞.

The process ∆
(i)
n Xµ(t) is Gaussian with mean F

(i)
n,µ(t) and variance (σ

(i)
n (t))2

where

F (i)
n,µ(t) = a(n)

(∫ a(i)
n (t)+ 1

n

a
(i)
n (t)

µ(u) du−
∫ a(i)

n (t)

a
(i)
n (t)− 1

n

µ(u) du

)
(5.4)

and

(σ(i)
n (t))2 = Var[∆(i)

n Xµ(t)] = E[∆(i)
n X0(t)]

2. (5.5)

As in Berzin-Joseph, León and Ortega (2001), for real k > 0, for fixed t = tj ,
j = 1, . . . ,m, we consider α̂n,µ(t) the non-parametric kernel density estimate of
the parameter

α(t) = σk(t), (5.6)

given by

α̂n,µ(t) =
2

n

n−1∑

i=0

K(−1 + 2i
n )

∣∣∣∆(i)
n Xµ(t)

∣∣∣
k

E[|N |k]
, (5.7)

where we recall that K is a C2 density function with a compact support in

[−1; 1 ] such that
∫ 1

−1
uK(u) du = 0.

When function µ ≡ 0, we note α̂n,µ(t) = α̂n,0(t).

Remark 5.1. In this section we work with ∆
(i)
n Xµ(t) (see 5.2), instead of

a(n)
[
Xµ(a

(i)
n (t) + 2

n )− 2Xµ(a
(i)
n (t) + 1

n ) +Xµ(a
(i)
n (t))

]
, (5.8)

as it could be done in the spirit of Section 4. Note that working with (5.8)
remains possible. Explanation of this change is postponed after Lemma 8.1
proof in the Appendix A.2.
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Theorem 5.1 establishes the consistency of α̂n,µ(t) as an estimator of α(t).

Theorem 5.1. For all real k ≥ 1, α̂n,µ(t) is an L2 consistent estimator of α(t).

The idea of the proof exploits the following equality

α̂n,0(t)− α(t) =
2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n X0(t)

σ
(i)
n (t)

)
(σ(i)

n (t))k

+

(
2

n

n−1∑

i=0

K(−1 + 2i
n )(σ

(i)
n (t))k

)
− α(t), (5.9)

where σ
(i)
n (t) and function gk are respectively defined by equalities (5.5) and

(4.7).
Since gk is a centered function of L2(φ(x) dx), by Mehler’s formula (see (3.2))

the expectation of the first term is zero and then

E [α̂n,0(t)− α(t)]
2
= E

[
2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n X0(t)

σ
(i)
n (t)

)
(σ(i)

n (t))k

]2

+ (E[α̂n,0(t)− α(t)])
2
.

Lemma 5.1. For all real k > 0,

1

h2
E[α̂n,0(t)− α(t)] −→

n→+∞
α′′(t)χ2,

where χ2 is defined by (3.4).

Then, we prove that for all real k ≥ 1, E[α̂n,µ(t)−α(t)] = E[α̂n,0(t)−α(t)]+
o(h2). So Lemma 5.1 remains true for α̂n,µ(t) and for all real k ≥ 1.

The following notation is used.
Let us define, for 0 < t < 1 and Xµ solution of model (2.1) for µ ≡ 0 and for

any function g described in the notations

S(g)
n (t) = 2

√
h

n

n−1∑

i=0

K(−1 + 2i
n )g
(

∆(i)
n X0(t)

σ
(i)
n (t)

)
.

To establish the equilibrium between variance and bias, we need the conver-
gence rate of the variance to zero, which is nh.

In this aim, we will prove, on the one hand, that since σ
(i)
n (t) ≃ σ(t) (see

Lemma 8.1, page 980), we have that for all real k > 0,
√
nh(α̂n,0(t)−E[α̂n,0(t)])

is equivalent in L2 to S
(gk)
n (t) · α(t).

On the other hand, we prove the following lemma.

Lemma 5.2. For a general function g described in the notations

E[S(g)
n (t)]2 −→

n→+∞
σ̃2
gκ

2,

where σ̃2
g and κ2 are respectively defined by (3.3) and (3.5).
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We obtain then the following corollary.

Corollary 5.1. For all real k > 0,

E[
√
nh(α̂n,0(t)− E[α̂n,0(t)])]

2 −→
n→+∞

σ̃2
gk
κ2α2(t).

Then we prove that for all real k ≥ 1,
√
nh(α̂n,µ(t)−E[α̂n,µ(t)]) is equivalent

in L2 to
√
nh(α̂n,0(t) − E[α̂n,0(t)]). So that Corollary 5.1 still holds for α̂n,µ(t)

and for all real k ≥ 1.
That yields Theorem 5.1.

5.1.2. Central Limit Theorem

Lemma 5.2 allows to enunciate a theorem similar to Theorem 4.2.

Theorem 5.2. For any function g as described in Section 3,
(
S(g)
n (t1), S

(g)
n (t2), . . . , S

(g)
n (tm)

)
Law−−−−→
n→∞

N (0m; σ̃2
gκ

2
Im),

where Im is the identity (m ×m)-matrix and 0m is the null column vector of
length m.

From this theorem we then get the following corollary.

Corollary 5.2. For all real k ≥ 1,

(√
nh (α̂n,µ(t1)− E[α̂n,µ(t1)]) , . . . ,

√
nh (α̂n,µ(tm)− E[α̂n,µ(tm)])

)

Law−−−−→
n→∞

N (0m; σ̃2
gkκ

2
Dm(α(t))),

where Dm(α(t)) is the diagonal matrix of rank m with generic element α2(ti),
i = 1, . . . ,m.

Remark 5.2. For function µ ≡ 0, this corollary is still true for all real k > 0.

Now we propose σ̂n,µ(t) as estimator of σ(t), defined as, for k > 0,

σ̂n,µ(t) = (α̂n,µ(t))
1
k . (5.10)

Since we generalized Lemma 5.1 previously stated for µ ≡ 0 for a general
function µ, Corollary 5.2 give a Central Limit Theorem for σ̂n,µ.

Theorem 5.3. For all real k ≥ 1

1) If nh5 −→
n→+∞

0,

(√
nh (σ̂n,µ(t1)− σ(t1)) , . . . ,

√
nh (σ̂n,µ(tm)− σ(tm))

)

Law−−−−→
n→∞

N

(
0m; σ̃2

gk

κ2

k2
Dm(σ(t))

)
.
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2) If nh5 −→
n→+∞

C > 0,

(√
nh (σ̂n,µ(t1)− σ(t1)) , . . . ,

√
nh (σ̂n,µ(tm)− σ(tm))

)

Law−−−−→
n→∞

N

(
am(t); σ̃2

gk

κ2

k2
Dm(σ(t))

)
.

where am(t) is the column vector of order m with generic element

√
Cα′′(ti)

χ2

k
σ1−k(ti), i = 1, . . . ,m.

3) If nh5 −→
n→+∞

+∞,

1

h2
(σ̂n,µ(t)− σ(t))

P−→
n→+∞

α′′(t)
χ2

k
σ1−k(t).

Remark 5.3. If µ ≡ 0, this Theorem 5.3 remains true for all real k > 0.

Remark 5.4. If we consider the case where nh5 → 0, the best estimator of
σ(t) in the sense of minimal variance is obtained for k = 2. Furthermore if k is
natural and even, the sequence on k formed by the asymptotic variance is an
increasing one.

5.2. For the two gfOUp

We assume that in model (2.8) and (2.10) function σ belongs to C2 on [ 0; 1 ] and
is strictly positive on this interval. Furthermore for model (2.10), µ is assumed
Lipschitz on R.

For k > 0 and for fixed 0 < t < 1, we define

α̂n,λ(t) =
2

n

n−1∑

i=0

K(−1 + 2i
n )

∣∣∣∆(i)
n Xλ(t)

∣∣∣
k

E[|N |k]
, (5.11)

the non-parametric kernel density estimate of the parameter α(t) = σk(t), where

∆
(i)
n Xλ(t) is defined as in (5.2), Section 5.1.1.
An estimator of σ(t) is obtained in the same way as in (5.10), that is defined

as,
σ̂n,λ(t) = (α̂n,λ(t))

1/k, (5.12)

for k > 0. We have a Central Limit Theorem for σ̂n,λ(t). With the same notations
as in Theorem 5.3, one obtains the following theorem.

Theorem 5.4. For all real k ≥ 1

1) If nh5 −→
n→+∞

C ≥ 0,

(√
nh (σ̂n,λ(t1)− σ(t1)) , . . . ,

√
nh (σ̂n,λ(tm)− σ(tm))

)

Law−−−−→
n→∞

N

(
am(t); σ̃2

gk

κ2

k2
Dm(σ(t))

)
.
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2) If nh5 −→
n→+∞

+∞,

1

h2
(σ̂n,λ(t)− σ(t))

P−→
n→+∞

α′′(t)
χ2

k
σ1−k(t).

Let us give a sketch of the proof of Theorem 5.4. In this aim we use an
approximation via the process Y or bH similar to the one given in Lemma 4.5.

Lemma 5.3. For i = 0, 1, . . . , n− 1,

∆(i)
n Xλ(t) = σ(a(i)n (t))∆(i)

n Y ⋆(t) + ε(i)n (t),

with, for any δ > 0, ∣∣∣ε(i)n (t)
∣∣∣ ≤ C(ω)

(
1
n

)1−δ
,

where Y ⋆ stands for Y (resp. bH) if Xλ is solution of (2.8) (resp. (2.10)), and

∆
(i)
n Y ⋆(t) is defined by (5.2), Section 5.1.1.

Lemma 5.3 leads us to Lemma 5.4.

Lemma 5.4. For all real k ≥ 1,

α̂n,λ(t)− α(t) ≡ 2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n Y ⋆(t)
σ⋆
n,1

)
σk(a(i)n (t))

+

(
2

n

n−1∑

i=0

K(−1 + 2i
n )σ

k(a(i)n (t))

)
− α(t), (5.13)

where σ⋆
n,1 is σn,1 (resp. 1) if Y ⋆ is Y (resp. bH), where we recall that σn,1 is

defined by (4.9). The function gk is defined by (4.7).

Finally, we remark that this last equality is similar to the one given in (5.9),
that is α̂n,λ(t) − α(t) ≡ α̂n,0(t) − α(t), where we recall that α̂n,0(t) given by
(5.7) is the non-parametric kernel density estimate of the parameter α(t) in the
fractional pseudo-diffusion models (2.1) with deterministic coefficients and drift

µ ≡ 0. In the last equality (5.13), ∆
(i)
n Y ⋆(t) plays the role of ∆

(i)
n X0(t) in (5.9)

and σ(a
(i)
n (t)) that of σ

(i)
n (t).

Corollary 5.2 for µ ≡ 0 and Lemma 5.1 lead to Theorem 5.4.

Remark 5.5. However, this approximation technic does not lead to a result
similar to the one of Lemma 5.1 nor to a result similar to that of Corollary 5.2
for α̂n,λ(t).

5.3. For the fDrc

We assume that in model (2.12) function µ is locally Lipschitz on R and that
σ belongs to C2 on R, is bounded away from zero and that for all x ∈ R,
|σ′′(x)| ≤ P (|x|), where P is a polynomial.
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For k > 0 and for fixed 0 < t < 1, α̂n,r(t) is an estimator of σk(Y (t)), say

α̂n,r(t) =
2

n

n−1∑

i=0

K(−1 + 2i
n )

|∆(i)
n Xr(t)|k

E[|N |k]
, (5.14)

where ∆
(i)
n Xr(t) is defined as in (5.2), Section 5.1.1.

Mixing techniques of this paper and of Berzin, Latour and León (2014) we
prove the following theorem, where the convergence is in the sense of finite
dimensional distributions.

Theorem 5.5. For all real k ≥ 1

1. If nh(2H+1) −→
n→+∞

0, then

(√
nh(α̂n,r(t1)− σk(Y (t1))), . . . ,

√
nh(α̂n,r(tm)− σk(Y (tm)))

)

Law−−−−→
n→∞

(
σ̃gkσ

k(Y (t1))U(t1), . . . , σ̃gkσ
k(Y (tm))U(tm)

)
,

where (U(t1), . . . , U(tm)) is a centered Gaussian vector, independent of
the vector (Y (t1), . . . , Y (tm)) such that

E[U(t)U(s)] = 1{t=s}κ
2.

2. If nh(2H+1) −→
n→+∞

+∞, then

(
1

hH
(α̂n,r(t1)− σk(Y (t1))), . . . ,

1

hH
(α̂n,r(tm)− σk(Y (tm)))

)

Law−−−−→
n→∞

(
σ′(Y (t1)) k σ

k−1(Y (t1))V (t1), . . . ,

σ′(Y (tm)) k σk−1(Y (tm))V (tm)
)
,

where (V (t1), . . . , V (tm)) is a centered Gaussian vector, independent of
the vector (Y (t1), . . . , Y (tm)) such that

E [V (t)V (s)]

= 1{t=s} lim
n→∞

(
n2H

a2(n)

)
1

v22H(4− 4H)
E

[∫ +1

−1

K(u)bH(u) du

]2
.

3. If nh(2H+1) −→
n→+∞

C > 0, then

(√
nh(α̂n,r(t1)− σk(Y (t1))), . . . ,

√
nh(α̂n,r(tm)− σk(Y (tm)))

)

Law−−−−→
n→∞

(
σ̃gkσ

k(Y (t1))U(t1) +
√
Cσ′(Y (t1)) k σ

k−1(Y (t1))V (t1), . . . ,

σ̃gkσ
k(Y (tm))U(tm) +

√
Cσ′(Y (tm)) k σk−1(Y (tm))V (tm)

)
,

where (U(t1), . . . , U(tm)), (V (t1), . . . , V (tm)) and (Y (t1), . . . , Y (tm)) are
independent.
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Let us give a sketch of the proof. First we prove a lemma similar to Lemma
5.3 for which a proof is given in Appendix A.2, that is

Lemma 5.5. For i = 0, 1, . . . , n− 1,

∆(i)
n Xr(t) = σ(Y (a(i)n (t)))∆(i)

n Y (t) + ε(i)n (t),

with, for any δ > 0, ∣∣∣ε(i)n (t)
∣∣∣ ≤ C(ω)

(
1
n

)H−δ
,

where ∆
(i)
n Y (t) is defined by (5.2), Section 5.1.1.

Lemma 5.5 leads us to Lemma 5.6 for which a proof appears in Appendix A.2.

Lemma 5.6. For all real k ≥ 1,

α̂n,r(t)− σk(Y (t)) ≡ 2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n Y (t)
σn,1

)
σk(Y (t))

+
2

n

n−1∑

i=0

K(−1 + 2i
n )
(
Y (a(i)n (t))− Y (t)

)
(σk)′(Y (t)), (5.15)

where σn,1 and gk are respectively defined by equalities (4.9) and (4.7).

Let g be a general function with (2+δ)-moments with respect to the standard
Gaussian measure, even, or odd, with a Hermite rank greater than or equal to
one and such that Ag 6= ∅ (for the definition of Ag, see Section 3). Let f belong
to C2 on R, such that for all x ∈ R, |f ′′(x)| ≤ P (|x|), where P is a polynomial.

With these hypotheses we consider T
(f,g)
n (t) the random variable defined by

T (f,g)
n (t) = 2

√
h

n

n−1∑

i=0

K(−1 + 2i
n )g(

∆(i)
n Y (t)
σn,1

)f(Y (t)).

Also for p a continuous function on R, let us define the random variable Xn,p(t)
by

Xn,p(t) =
2

n

n−1∑

i=0

K(−1 + 2i
n )

(
Y (a

(i)
n (t))− Y (t)

hH

)
p(Y (t))

Theorem 5.5 will ensue from the following theorem, where the convergence is in
the sense of the finite dimensional distributions.

Theorem 5.6.

(
T (f,g)
n (t), Xn,p(t)

)
Law−−−−→
n→∞

(σ̃g f(Y (t))U(t), p(Y (t))V (t)) ,

where U , V and Y are as in Theorem 5.5.



948 C. Berzin et al.

6. Simulation study on the estimation of σ

We need to simulate trajectories of processes satisfying

Xµ(t) = Xµ(0) + Y (t)σ(t) − Y (0)σ(0)−
∫ t

0

σ′(u)Y (u) du+

∫ t

0

µ(u) du, (6.1)

where t ∈ [ 0; 1 ] and Y (t) satisfies (2.2), (2.5) or (2.6). It is a stationary Gaus-
sian process or a process with stationary increments. Simulation is performed us-
ing the approach proposed in Berzin, Latour and León (2014). Briefly described,
the method uses a partition of the interval [ 0; 1 ]: 0 = t0 < t1 < · · · < tn = 1
with n = 4096 and tk = k/4096. The values of the process or of the increments
are generated at these times tk, k = 1, . . . , 4096. If we simulate the increments,
we just have to sum up these increments to get a trajectory of Y .

Integrals of the following form

I(t) =

∫ t

0

f(u)Y (u) du (6.2)

can be evaluated by the trapezoidal rule. More precisely, we approximate the
integral (6.2) by:

I

(
k

4096

)
=

1

4096

k∑

j=1

1

2

[
f

(
k − 1

4096

)
Y

(
k − 1

4096

)
+ f

(
k

4096

)
Y

(
k

4096

)]
,

for k = 1, . . . , 4096.
In (6.1), Y (t) can be a fBm, but other processes can also be used. So, we

consider the fBm, the sfec process and a third one that is close to the fBm,
named “perturbed fBm”, see (6.4).

Three different function types are considered for σ(t): linear, quadratic and
sinusoidal. Details for the linear case are explicitly exposed, the other two cases
being similar are presented in a shorter way.

For the fBm, we have:

∆(1)
n bH(i) =

nH

v2H

(
bH( i

n )− bH( i−1
n )
)
, i = 1, 2, . . . , n.

This sequence is a centered stationary Gaussian vector. The covariance function
is denoted by γH(i − j), for i, j = 1, 2, . . . , n, and for x ∈ R, is given by

γH(x) =
1

2

[
|x+ 1|2H − 2 |x|2H + |x− 1|2H

]
.

The sfec process is interesting too. In the following we will consider this
process for which the covariance function is

Cov [Y (s), Y (t)] = e−|t−s|2H = r(t − s). (6.3)

Consider the centered Gaussian process defined by

Y (t) =

∫ ∞

−∞
(eitλ − 1)

√
f(λ) dW (λ) (6.4)

with f(λ) = 1√
2π

|λ|−2H−1 +G(λ) where G is an even positive integrable func-

tion, such that
∫∞
−∞ λ4G(λ) dλ < ∞. The fBm can be written that way with

G ≡ 0. We also simulate a process of this type with a quite simple function G,
a N (0; 1) density. We will refer to this process as a “perturbed” fBm, or pfBm.
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All the programs were developed in Pascal and run under Mac Os X. Be-
cause important computing resources are required in simulation studies, we use
the linear congruential generator given in (Langlands, Pouliot and Saint-Aubin,
1994, p. 36) for the uniform deviates in conjunction with a very fast normal de-
viate generator described as Algorithm M in (Knuth, 1981, p. 122). This method
is very efficient. Details about the implementation of these functions are given
in Berzin, Latour and León (2014).

Table 1 gives the values of the different parameters used in the simulation
experiment. This set up is repeated for the three types of processes we just
mentioned.

Table 1

Values of the parameters in the simulation experiment

Hurst parameter {0.25; 0.55, 0.75, 0.90}

Linear case Xµ(t) = δ t+ 1

2
ζ t2 + (α+ βt)Y (t) − αY (0) − β

∫ t

0

Y (u) du+Xµ(0)

(α; β; δ; ζ) = (1/10, 2, 1, 1/2)

Quadratic case Xµ(t) = δt+
1

2
ζt2 + Y (t)(α + βt+ γt2)− αY (0) −

∫ t

0

(β + 2γu)Y (u) du+Xµ(0)

(α, β, γ, δ, ζ) = (1/10, 1, 2, 1, 1/2)

Sinusoidal case Xµ(t) = δt+
1

2
ζt2 + Y (t)[sin(c1t− c2) + c3]− (c3 − sin(c2))Y (0)

−c1
∫ t

0
cos(c1u− c2)Y (u) du+Xµ(0)

(c1, c2, c3, δ, ζ, ) = (1, 1/2, 3π, π/2, 11/10)

For 2000 trajectories in each of these situations, we compute the estimator
σ(t) at points tj ∈ {k/16 : k = 2, . . . , 14} and n = 256 in (4.1) for the three
types of processes referred to by Y (t).

In the three following subsections, the presentation of the model is done using
the fBm but the simulation were also performed replacing the fBm by other
processes. Graphics are presented with different models from page 952 to page
960 to illustrate that results were similar with different choices of processes.

6.1. The linear case

In (6.1), let Y (t) = bH(t) and suppose that σ(t) = α + βt, a linear function of
time t for which we have σ′(t) = β. Also suppose that µ(t) = δ+ζt. Working with
the increments, we can forget the constant Xµ(0). The model can be written as

Xµ(t) = δ t+ 1
2 ζ t

2 + (α+ βt) bH(t)− β

∫ t

0

bH(u) du. (6.5)

Figures 1 and 2, pages 952 and 953, show a trajectory with the first differences
of such a process with numerical values of the parameters being: (α, β, δ, ζ) =
(1/10, 2, 1, 1/2); H = 0.75 and 0.25. Changing the values of the parameters can
lead to quite different trajectory behaviors.

We would like to illustrate the estimation procedure and assess the quality
of the normal approximation given by Theorem 5.3. We use h = 1/

√
n so,

nh5 −−−−→
n→∞

0.
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Note that for t ∈ {t1, . . . , t13} = {k/16 : k = 2, . . . , 14}, σ(t) > 0. We proceed
to the non-parametric kernel density estimation of

α(t) = σ2(t)

say,

α̂n,µ(t) =
2

22ℓ

22ℓ−1∑

i=0

K

(
−1 +

2i

22ℓ

)
(∆(i)

n Xµ(t))
2

In our programs we let ℓ = 4, so n = 256.
The kernel K is

K(t) = c1 × e−t2/2

with c1 = 0.584 368 567 256 817 to ensure that
∫ 1

−1 c1e
−t2/2 dt = 1.

Let us return back to Figures 1 and 2. The original path is quite typical of
a non-stationary process. The mean is not constant nor the variation is. The
second difference of the path produces a process with a constant mean but a
linearly increasing standard deviation. These remarks can be done for all the
values of H we used.

Some simulation results are presented in the six graphics of Figure 3, page
954. The model used is (6.5) with H = 0.25 (and (α;β; δ; ζ) = (1/10, 2, 1, 1/2)).
The first two graphics are histograms of σ̂(t), for t = 3

16 and 14
16 . Distributions

are a little skewed, but the normal distribution curves are quite close to the
histogram.

The third and fourth graphics of Figure 3 are a boxplot diagram and a scatter-
gram of the means of σ̂(tj), j = 1, . . . , 13. They clearly show that the standard
deviation σ̂(t) is linear in t. A weighted least square regression has been per-
formed to fit a straight line to the estimated values σ̂(t) as a function of t. The
regression (solid) line is almost confounded with the theoretical (dotted) one.

We also wanted to consider single trajectories and see how good was the
fit. Arbitrarily we took the 1st and the 101th trajectories. In both cases, the
scattergrams of (tj , σ̂(tj)), j = 1, . . . , 13, suggest a linear relationship. If we
proceed to the estimation of the parameters α and β of the equation σ(t) =
α+ βt, we find values that are quite close to the theoretical ones.

No matter which type of processes we use, the fBm, the sfec process or the
pfBm, we always obtain results as good as these ones.

6.2. The quadratic case

We also simulate trajectories from the following model:

Xµ(t) = Xµ(0) + bH(t)σ(t) −
∫ t

0

σ′(u)bH(u) du+

∫ t

0

µ(u) du (6.6)

where {bH(t), t ∈ R} is a fBm with Hurst parameter H in ] 0; 1 [ , µ and σ
belong to C1 on [ 0; 1 ] with σ(t) is a quadratic function.

More precisely, in (6.6), suppose that σ(t) = α+βt+γt2, a quadratic function
of time t for which σ′(t) = β + 2γt. For this case too, we suppose that µ(t) =
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δ + ζt. Working with the increments, we can forget the constant Xµ(0). The
model can be written as

Xµ(t) = δt+
1

2
ζt2 + bH(t)(α+ βt+ γt2)−

∫ t

0

(β + 2γu)bH(u) du. (6.7)

For the simulations, we assign the following numerical values to the parame-
ters:

(α, β, γ, δ, ζ) = (1/10, 1, 2, 1, 1/2).

As we can see on the graphics of Figures 4 to 6, pages 955 to 957, we can state
the same comments we gave for the linear case on page 950.

6.3. The sinusoidal case

Let us suppose that in model (6.6) we let σ(t) = sin(3πt− π
2 ) +

11
10 , a sinusoidal

function of time t for which σ′(t) = 3π sin(3πt).
The graph of this function is

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

σ(t) = sin(3tπ − π 2) + 11 10

t

σ
(t
)

We also suppose that µ(t) is linear, that is: µ(t) = δ+ ζt. Let c1 = 3π, c2 = π/2
and c3 = 11/10. We have σ(t) = sin(c1t− c2) + c3 and σ′(t) = c1 sin(c1t).

The model can be written as

Xµ(t) = δt+
1

2
ζt2 + bH(t)[sin(c1t− c2) + c3]− c1

∫ t

0

sin(c1u)bH(u) du. (6.8)

Now let us give some numerical values to the other parameters

(δ, ζ) = (1; 1/2).

It is quite interesting to see the effect of a very small standard deviation at the
very start of the observation time and around 0.7 on the graphics showed from
pages 958 to 959. This effect is quite obvious on the original paths as well as on
the first and second differences of the path.

Looking at all the graphics on page 960, we can state the same comments we
gave for the previous ones.

The reader should notice that the graphics on estimation results were pre-
sented using different values ofH and different models. Computations have been
done replacing the fBm by a sfec process or a pfBm. The performance of the
estimation procedure is the same. The results are very good in all cases.
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Fig 1. A trajectory and its first and second differences generated by model (6.5) with
(α, β, δ, ζ) = (1/10, 2, 1, 1/2) and H = 0.75.
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Fig 2. A trajectory and its first and second differences generated by model (6.5) with
(α, β, δ, ζ) = (1/10, 2, 1, 1/2) and H = 0.25.
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Fig 3. Linear trend in σ(t) with H = 0.25. Based on a fBm.
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Fig 4. A trajectory and its first and second differences generated by model (6.6) with
(α, β, γ, δ, ζ) = (1/10, 1, 2, 1, 1/2) and H = 0.25.
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Fig 5. A trajectory and its first and second differences generated by model (6.6) with
(α, β, γ, δ, ζ) = (1/10, 1, 2, 1, 1/2) and H = 0.90.
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Fig 6. Quadratic trend in σ(t) with H = 0.55. Based on a sfec process.
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Fig 7. A trajectory and its first and second differences generated by model (6.8) with (δ, ζ) =
(1; 1/2) and H = 0.75.
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Fig 8. A trajectory and its first and second differences generated by model (6.8) with (δ, ζ) =
(1; 1/2) and H = 0.25.
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Fig 9. Sinusoidal trend in σ(t) with H = 0.75. Based on a pfBm.
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7. Proofs concerning the functional estimation of σ

In the following, we give the proofs of all the results concerning functional
estimation of the function σ appearing in models (2.1), (2.8), (2.10) and (2.12).
In many cases, mathematical expressions are quite long and complex. We have
to break them into sub-expressions delimited by brackets to which we assign
labels. We locally refer to these labels later in the text. See (7.3) for example.

For reason of simplicity all the results are simultaneously proved for process
Xµ (resp. Xλ, resp. Xr) solution of the model (2.1) (resp. (2.8) or (2.10), resp.
(2.12)) where the underlying process Y verifies equations (2.2), (2.5) or (2.6).

7.1. For the fDdc

7.1.1. Almost sure convergence of ∆nXµ

Proof of Theorem 4.1. Following the main lines of (Berzin, Latour and León,
2014, Theorem 3.33) gives the proof. It requires Lemma 4.1 whose demonstration
follows this one.

In this case, for all interval [a, b] ⊆ [ 0; 1 ], almost surely (∆nX0)
∗ weakly

converges to σ(U)⊗N , where U is an uniform random variable on [a; b ] inde-
pendent of N . This fact with Lemma 4.1 imply the following convergence: for
any interval [a, b] ⊆ [ 0; 1 ], almost surely for all real k > 0 we have,

∫ b

a

∣∣(∆nX0)
∗∣∣k (u) du −→

n→+∞

(∫ b

a

σk(u) du

)
E[|N |k].

This last convergence implies by a density argument, that is, by taking inter-
vals of [ 0; 1 ] with rational endpoints and by approximating continuous func-
tions by stepwise functions, that almost surely, for all continuous function h on
[ 0; 1 ] and for all real k > 0,

∫ 1

0

h(u) |(∆nX0)
∗|k (u) du −→

n→+∞

(∫ 1

0

h(u)σk(u) du

)
E[|N |k]. (7.1)

Now, let us write the following equality

∫ 1

0

h(u)
∣∣(∆nX0)

∗∣∣k (u) du =

n−2∑

i=0

|∆nX0(i)|k
∫ i+1

n−1

i
n−1

h(u) du. (7.2)

Thus we have

∫ 1

0

h(u)
∣∣(∆nX0)

∗∣∣k (u) du =
1

n− 1

n−2∑

i=0

h( i
n ) |∆nX0(i)|k

+
1

n− 1

n−2∑

i=0

(
h( i

n−1 )− h( i
n )
)
|∆nX0(i)|k
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+
1

n− 1

n−2∑

i=0

(
(n− 1)

∫ i+1
n−1

i
n−1

(h(u)− h( i
n−1 )) du

)
|∆nX0(i)|k .

Using equalities (7.2) and (7.1) for h ≡ 1 and since h is uniformly continuous on
[ 0; 1 ], the last two terms almost surely tend to zero. This yields Remark 4.1.
Thus Theorem 4.1 follows from Lemma 4.3.

Proof of Lemma 4.1. Let us suppose that 0 < a < b < 1. The cases where
0 = a < b < 1 or where 0 < a < b = 1 could be treated in a same way.

For n large enough, a ≥ 2
n , b ≤ 1− 3

n and b− a ≥ 3
n , so that

∫ b

a

((∆nX0)
∗
)k(u) du =

n−2∑

i=0

(∆nX0(i))
k

(∫ i+1
n−1

i
n−1

1[a,b](u) du

)

=






⌊na⌋∑

i=⌊na⌋−1

+

⌊nb⌋∑

i=⌊nb⌋−1


 (∆nX0(i))

k

(∫ i+1
n−1

i
n−1

1[a,b](u) du

)

(1)

+




 1

n− 1

⌊nb⌋−2∑

i=0

(∆nX0(i))
k − 1

n− 1

⌊na⌋−2∑

i=0

(∆nX0(i))
k





(2)

−


 1

n− 1

⌊na⌋∑

i=⌊na⌋−1

(∆nX0(i))
k



(3)

(7.3)

As indicated by the notation, in the following computations, we will use (1),
(2) and (3) to refer to the three bracketed terms of (7.3). We need Lemma 7.1
whose proof is given in the Appendix A.1.

Lemma 7.1. The trajectories of X0 are (H − δ)-Hölder continuous on [ 0; 1 ],
that is, for any δ > 0, 0 ≤ u, v ≤ 1,

|X0(v)−X0(u)| ≤ C(ω) |v − u|H−δ
.

Thus for all i ∈ {0, . . . , n− 2} and for all real k > 0,

|∆nX0(i)|k ≤ C(ω)nδk, (7.4)

for any δ > 0.
Then for n large enough, sup{|(1)| , |(3)|} ≤ C(ω)nδk−1. If we choose δ small

enough, that is δk < 1, we proved that (1) and (3) converge to zero as n → ∞.
Thus, to achieve to proof in this case we have to show that term (2) tends to

(
∫ b

a
σk(u) du)E[Nk].
Now if we look at the case where a = 0 and b = 1, we want to show that

∫ 1

0

((∆nX0)
∗
)k(u) du =

1

n− 1

n−2∑

i=0

(∆nX0(i))
k −→

n→+∞

(∫ 1

0

σk(u) du

)
E[Nk].
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Thus to prove Lemma 4.1 it is enough to prove the following convergence: for
all 0 < a ≤ 1 and for all k ∈ N

∗,

1

n− 1

⌊na⌋−2∑

i=0

(∆nX0(i))
k a.s.−→
n→+∞

(∫ a

0

σk(u) du

)
E[Nk]. (7.5)

Now, for all 0 < a ≤ 1 and for any function ℓ belonging to C0 on [ 0; a ]
(resp. C1), we have the following equality

∫ a

0

ℓ(u) du =
1

n− 1

⌊na⌋−2∑

i=0

ℓ( i
n ) + o(1) (resp. o

(
1√
n

)
). (7.6)

Thus, since σk is continuous on [0, a], to prove the convergence in (7.5) it is
enough to prove the following one

1

n

⌊na⌋−2∑

i=0

g(k)

(
∆nX0(i)
σn(i)

)
σk( i

n )+
1

n

⌊na⌋−2∑

i=0

(
σk
n(i)− σk( i

n )
) (∆nX0(i))

k

σk
n(i)

−→
n→+∞

0,

where the function g(k) is defined by g(k)(x) = xk − E[Nk] and σn(i) by (4.5).
At this step of the proof, we need the following lemma proved in the Ap-

pendix A.1.

Lemma 7.2. For i = 0, 1, . . . , n− 2,

∣∣σ2
n(i)− σ2( i

n )
∣∣ ≤ C

n
.

Thus, since σ is strictly positive on [ 0; 1 ], using Lemma 7.2, we have for real
k > 0,

σk
n(i)− σk( i

n ) =
k

2
(σ2

n(i)− σ2( i
n )) (σ

2( i
n ) + θ(σ2

n(i)− σ2( i
n )))

k
2−1

= O( 1
n ), (7.7)

where 0 < θ < 1.
Thus, using (7.4) and choosing δ small enough, that is δ < 1

k , (7.7) and the
strictly positivity of σ on [ 0; 1 ], we note that Lemma 4.1 proof is achieved if
we show that, for all 0 < a ≤ 1 and for all k ∈ N

∗, we have

An =
1

n

⌊na⌋−2∑

i=0

g(k)

(
∆nX0(i)

σn(i)

)
σk( i

n ) =
1√
n
S
(n)

g(k),σk(a)
a.s.−→

n→+∞
0,

where we recall that S
(n)

g(k),σk has been defined via (4.6).

The function g(k) has a finite Hermite expansion and the function σk is con-
tinuous on [ 0; 1 ]. Applying Remark 4.4 on page 937 to the functions g = g(k)
and f = σk, we obtain that E[A4

n] = O( 1
n2 ).

The Borel-Cantelli Lemma yields Lemma 4.1.
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7.1.2. Convergence in law of S
(n)
g,h(1)

Proof of Theorem 4.2 and Remark 4.4. First let us compute the asymptotic vari-

ance of S
(n)
g,h(1).

By using Mehler’s formula (3.2), we get

E[S
(n)
g,h(1)]

2 =



+∞∑

ℓ=1

g2ℓ ℓ!
1

n

n−2∑

i=0

n−2∑

j=0

ρℓH(i − j)h( i
n )h(

j
n )



(1)

+



+∞∑

ℓ=1

g2ℓ ℓ!
1

n

n−2∑

i,j=0
i6=j

[
δℓn(i, j)− ρℓH(i− j)

]
h( i

n )h(
j
n )



(2)

(7.8)

= (1) + (2),

where for i, j = 0, . . . , n− 2, we have defined δn(i, j) as

δn(i, j) = E

[
∆nX0(i)

σn(i)

∆nX0(j)

σn(j)

]
(7.9)

= ρH(i − j) + γn(i, j),

ρH and σn(i) are respectively defined by equalities (3.1) and (4.5). As suggested
by the notation, in the following, we refer to the two terms in brackets in (7.8)
by (1) and (2).

Our aim is to prove that

E[S
(n)
g,h(1)]

2 −→
n→+∞

σ2
g

(∫ 1

0

h2(u) du

)
, (7.10)

where we recall that σ2
g =

+∞∑
p=1

g2pp!
( +∞∑
r=−∞

ρpH(r)
)
.

In fact term (1) gives the required limit. To prove this fact, first let us prove
that term (2) converges to zero when n tends to infinity.

Since δn(i, j) is a correlation, this term is bounded by 1. Thus, for ℓ ≥ 1 and
i 6= j, we have the following inequality

∣∣δℓn(i, j)− ρℓH(i− j)
∣∣ ≤ |γn(i, j)|

ℓ−1∑

k=0

∣∣ρkH(i − j)
∣∣
∣∣∣δ(ℓ−k−1)

n (i, j)
∣∣∣

≤ |γn(i, j)|
ℓ−1∑

k=0

∣∣ρkH(i − j)
∣∣ = |γn(i, j)|

(
1−

∣∣ρℓH(i− j)
∣∣

1− |ρH(i− j)|

)
≤ C |γn(i, j)| ,

since for i 6= j, we have 1− |ρH(i− j)| ≥ C > 0.
At this step of the proof we need the following lemma proved in the Ap-

pendix A.1.
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Lemma 7.3. There exists M0 ∈ N
∗ such that for all real M ≥ M0 and for

n ≥ M , we have for all i, j ∈ {0, 1, . . . , n− 2},

|γn(i, j)| ≤
C

n

{
CM1{|i−j|≤M−1} +M2H−2

}
.

Thus, since h is bounded on [ 0; 1 ], for all real M , M ≥ M0 and for n ≥ M ,
we have the following inequality

|(2)| ≤ C

(
+∞∑

ℓ=1

g2ℓ ℓ!

)
1

n2

n−2∑

i,j=0
i6=j

(
CM1{|i−j|≤M−1} +M2H−2

)
.

As ‖g‖22,φ < +∞, for all M ≥ M0 we get, lim supn→+∞ |(2)| ≤ CM2H−2, and
since H < 1, we finally get that (2), the second term of (7.8), converges to 0 as
n tends to infinity.

To achieve the computation of the asymptotic variance, we have to compute
the limit of term (1) and to show that this limit is (7.10). In this aim, we write

(1) =
1

n

n−2∑

i=0

n−2∑

j=0

h( i
n )h(

j
n )β(i − j),

where we define for x ∈ R,

β(x) =

+∞∑

ℓ=1

g2ℓ ℓ!ρ
ℓ
H(x). (7.11)

Let i− j = k in the sum of term (1). We get

(1) =

[(
1

n

n−2∑

i=0

h2( i
n )

)(
+∞∑

k=−∞
β(k)

)]

(A)

−
[(

1

n

n−2∑

i=0

+∞∑

k=i+1

h2( i
n )β(k)

)]

(B)

−
[(

1

n

n−2∑

i=0

i−n+1∑

k=−∞
h2( i

n )β(k)

)]

(C)

(7.12)

+

[
1

n

n−2∑

i=0

i∑

k=i−n+2

[
h( i

n )h(
i−k
n )− h2( i

n )
]
β(k)

]

(D)

= (A) + (B) + (C) + (D).

The four terms in brackets in (7.12) are denoted respectively by (A), (B), (C)
and (D) in the following. Let us remark that ρH(x) is equivalent to

−1/(4− 22H) |x|(2H−4)
H(2H − 1)(2H − 2)(2H − 3)
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for large values of |x|. So, ρH(x) can be bounded in the following way. For |x|
large enough, we have

|ρH(x)| ≤ C |x|2H−4
, (7.13)

thus, since ‖g‖22,φ < +∞,

+∞∑

k=−∞
|β(k)| < +∞. (7.14)

Later, we will use the fact that
∫ +∞
−∞ |β(x)| dx is finite.

Since h is continuous on [ 0; 1 ], we can apply (7.6) to function ℓ = h2 with
a = 1 and term (A) gives the required limit (7.10).

To conclude these computations, we show that terms (B), (C) and (D) tend
to 0 as n tends to infinity.

Let us look first at term (B). Since h is bounded on [ 0; 1 ], for all M ∈ N
∗

and n ≥ M + 2, we have

|(B)| ≤ C

n

(
M−1∑

i=0

+∞∑

k=i+1

|β(k)|+
n−2∑

i=M

+∞∑

k=i+1

|β(k)|
)

≤ C

(
M

n

+∞∑

k=1

|β(k)|+
+∞∑

k=M+1

|β(k)|
)
.

Using inequality (7.14), we get, for all M ∈ N
∗,

lim sup
n→+∞

|(B)| ≤ C

+∞∑

k=M+1

|β(k)| ,

and then, by inequality (7.14), limn→+∞ (B) = 0.
A similar proof can be done for term (C). Now, consider the term (D).
On the one hand, by inequality (7.14), for all ε > 0, there exists Mε ∈ N

such that
∑

|k|≥Mε

|β(k)| ≤ ε. On the other hand, since h is uniformly continuous

on [ 0; 1 ], for all ε > 0, there exists ηε > 0, such that for all reals x and y in
[ 0; 1 ] with |x− y| ≤ ηε, we have |h(x)− h(y)| ≤ ε. Using that h is bounded
on [ 0; 1 ] and inequality (7.14), we finally obtain that for all ε > 0, there exists

nε =
⌊
Mε

ηε

⌋
+ 1, such that for all n ≥ nε, |(D)| ≤ Cε.

Thus limn→+∞ (D) = 0, that yields convergence (7.10).
Now we would like to prove that

S
(n)
g,h(1)

Law−−−−→
n→∞

N

(
0;σ2

g

∫ 1

0

h2(u) du

)
.

For a fixed integer L ≥ 1, we consider S
(n)
gL,h(1) where gL(x) =

L∑
ℓ=1

gℓHℓ(x).



Variance estimator for fractional diffusions 967

We shall show that

S
(n)
gL,h(1)

Law−−−−→
n→∞

N

(
0;σ2

gL

∫ 1

0

h2(u) du

)
.

In this aim, using the chaos representation of Y (see (2.2), (2.5) or (2.6)), for
j = 0, 1, . . . , n− 2, we can write

∆nX0(j)

σn(j)
=

∫ +∞

−∞
f (n)(λ, j) dW (λ),

where we define the function f (n) by

σn(j)f
(n)(λ, j)

= a(n)iλ
√
f(λ)

([∫ j+2
n

j+1
n

−
∫ j+1

n

j
n

]
σ(u) exp(iλu) du

)
. (7.15)

Now, since
∫
R

∣∣f (n)(λ, j)
∣∣2 dλ = 1, using Itô’s formula, see (Major, 1981, p. 30),

for fixed ℓ ≥ 1,

Hℓ

(
∆nX0(j)
σn(j)

)
=

∫ +∞

−∞
· · ·
∫ +∞

−∞
f (n)(λ1, j) · · · f (n)(λℓ, j) dW (λ1) · · · dW (λℓ).

To get the asymptotic behavior of SgL,h(1), we use notations introduced in Slud
(1994). For each ℓ ≥ 1, let λℓ denote the Lebesgue measure on R

ℓ, B(Rℓ), the
Borel σ-algebra and consider the complex Hilbert space

L2
sym(R

ℓ, λℓ) = {fℓ ∈ L2(Rℓ,B(Rℓ), λℓ), fℓ(x) = fℓ(−x),

fℓ(x1, . . . , xℓ) = fℓ(xπ(1), . . . , xπ(ℓ)), ∀π ∈ Sℓ},

where Sℓ denotes the symmetric group of permutations of {1, . . . , ℓ}.
For fℓ ∈ L2

sym(R
ℓ, λℓ), we define

Iℓ(fℓ) =
1

ℓ!

∫ +∞

−∞
· · ·
∫ +∞

−∞
fℓ(λ1, . . . , λℓ) dW (λ1) · · · dW (λℓ), (7.16)

and for p = 1, . . . , ℓ, we write fℓ ⊗p fℓ for the p-th contraction of fℓ defined as

fℓ ⊗p fℓ(λ1, . . . , λ2ℓ−2p) =

∫

Rp

fℓ(λ1, . . . , λℓ−p, x1, . . . , xp)

fℓ(λℓ−p+1, . . . , λ2ℓ−2p,−x1, . . . ,−xp) dλ
p(x1, . . . , xp). (7.17)

With these notations, we get

S
(n)
gL,h(1) =

L∑

ℓ=1

Iℓ(h
(n)
ℓ ), (7.18)
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where h
(n)
ℓ is

h
(n)
ℓ (λ1, . . . , λℓ) = gℓℓ!

1√
n

n−2∑

j=0

h(
j

n
)f (n)(λ1, j) · · · f (n)(λℓ, j),

and f (n) defined by (7.15).

To obtain convergence of S
(n)
gL,h(1), we use Theorem 1 of Peccati and Tudor

(2005). Convergence in (7.10) gives the required conditions appearing at the
beginning of this latter theorem. So we just verify condition (i) in proving the
following lemma.

Lemma 7.4. For fixed ℓ and p, such that ℓ ≥ 2 and p = 1, . . . , ℓ− 1,

lim
n→+∞

∫

R2(ℓ−p)

∣∣∣h(n)
ℓ ⊗p h

(n)
ℓ (λ1, . . . , λℓ−p, µ1, . . . , µℓ−p)

∣∣∣
2

dλ1 · · · dλℓ−p dµ1 · · · , dµℓ−p = 0.

Proof of Lemma 7.4. Recalling that we defined the correlation δn(i, j) by (7.9),
we have

∫

R2(ℓ−p)

∣∣∣h(n)
ℓ ⊗p h

(n)
ℓ (λ1, . . . , λℓ−p, µ1, . . . , µℓ−p)

∣∣∣
2

dλ1 · · · dλℓ−p dµ1 · · · dµℓ−p

= (ℓ!)4g4ℓ
1

n2

n−2∑

j1=0

n−2∑

j2=0

n−2∑

j3=0

n−2∑

j4=0

h( j1n )h( j2n )h( j3n )h( j4n )×

δpn(j1, j2)δ
p
n(j3, j4) δ

ℓ−p
n (j1, j3)δ

ℓ−p
n (j2, j4).

Now, since δn(i, j) is a correlation, the function h is bounded on [ 0; 1 ], p ≥ 1
and ℓ− p ≥ 1, we just have to prove that lim

n→+∞
An = 0, where we define

An =
1

n2

n−2∑

j1=0

n−2∑

j2=0

n−2∑

j3=0

n−2∑

j4=0

|δn(j1, j2)| |δn(j3, j4)| |δn(j1, j3)| |δn(j2, j4)| .

We split the intervals of indices into two parts, BM and Bc
M , in the following

way. For a fixed real M > 0, let

BM = {(j1, j2, j3, j4) ∈ N
4, |j1 − j2| > M

or |j1 − j3| > M or |j2 − j4| > M}.

Then we can write An as the sum of two terms corresponding to BM and Bc
M

respectively.

For the first term, as in the computation of the asymptotic variance of S
(n)
g,h(1),

we can show that 1
n

n−2∑
i=0

n−2∑
j=0

|δn(i, j)| ≤ C and that, |δn(i, j)| ≤ 1.
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Furthermore, considering the bound given by (7.13) and Lemma 7.3 page
965, we obtain and use the following bound |δn(i, j)| ≤ CM (2H−2), for M large
enough and |i− j| > M .

For the second term, we bound each of the four functions |δn(·)| by 1, so that
for all M large enough we get

lim
n

An ≤ C

(
M2H−2 +M3lim

n
( 1
n )
)
≤ CM2H−2,

and since 0 < H < 1 then limn→+∞ An = 0 and Lemma 7.4 follows. Hence, we
proved that

S
(n)
gL,h(1)

Law−−−−→
n→∞

N

(
0;σ2

gL

(∫ 1

0

h2(u) du

))
.

Furthermore,
∞∑

p=L+1

g2pp! −−−−→
L→∞

0, so we get

lim
L→+∞

sup
n≥1

E[S
(n)
gL,h(1)− S

(n)
g,h(1)]

2 = 0.

Now, since

N
(
0;σ2

gL

(∫ 1

0

h2(u) du

))
Law−−−−→
L→∞

N
(
0;σ2

g

(∫ 1

0

h2(u) du

))
,

applying Lemma 1.1 of Dynkin (1988), Theorem 4.2 is proved.
Remark 4.4 follows from the following argumentation. First we establish the

following inequalities

E

[
L∑

ℓ=1

Iℓ(h
(n)
ℓ )

]4
≤ L3

L∑

ℓ=1

E[Iℓ(h
(n)
ℓ )]4 ≤ C.

The last one follows from (V) of Theorem 1 of Peccati and Tudor (2005) and

from the fact that for each ℓ ∈ {1, . . . , L}, we have E[Iℓ(h(n)
ℓ )]2 ≤ C, for n large

enough. The result is then a consequence of (7.18).

Proof of Corollary 4.1. We apply Lemma 4.4 and Theorem 4.2. The computa-
tion of the coefficients g2p,k of function gk, given in (4.8), are explicitly made in
Berzin and León (2007) and Cœurjolly (2001). Remark 4.6 follows from Remark
4.3 and Theorem 4.2.

7.2. For the two gfOUp

7.2.1. Almost sure convergence of ∆nXλ

Proof of Theorem 4.3. As explained in Section 4.2.1, we have just to prove Lem-
mas 4.5 and 4.6.
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Proof of Lemma 4.5. For i = 0, 1, . . . , n − 2, the random variable δnXλ(i) is
defined as in (4.2), Section 4.1.1. Let us suppose that Xλ is solution of (2.8)
(resp. (2.10)). Thus using (2.9) (resp. (2.11)), we have

δnXλ(i) = σ( i
n )δnY

⋆(i)

+
[
−2Y ⋆( i+1

n )
(
σ( i+1

n )− σ( i
n )
)
+ Y ⋆( i+2

n )
(
σ( i+2

n )− σ( i
n )
)]

(1)

+

[(∫ i+1
n

i
n

−
∫ i+2

n

i+1
n

)
σ′(u)Y ⋆(u) du

]

(2)

+

[(∫ i+2
n

i+1
n

−
∫ i+1

n

i
n

)
(
µ̃(Xλ(u))− µ̃(Xλ(

i+1
n ))

)
du

]

(3)

(7.19)

= σ( i
n )δnY

⋆(i) + (1) + (2) + (3),

where Y ⋆ is Y (resp. bH), the process δnY
⋆ being defined by (4.2), Section

4.1.1. Function µ̃(x) being −λx (resp. µ(x)). The three terms in brackets in
(7.19) are denoted respectively by (1), (2) and (3) in the following. First, we
consider term (2).

Since function σ belongs to C2 on [ 0; 1 ], we write σ′(u) = σ′( i+1
n ) + (u −

i+1
n )σ′′( i+1

n + θu(u− i+1
n )), with 0 < θu < 1. We get

(2) = σ′( i+1
n )

(∫ i+1
n

i
n

−
∫ i+2

n

i+1
n

)
(
Y ⋆(u)− Y ⋆( i+1

n )
)
du

+

(∫ i+1
n

i
n

−
∫ i+2

n

i+1
n

)
(u− i+1

n )Y ⋆(u)σ′′( i+1
n + θu(u − i+1

n )) du.

Using the modulus of continuity of Y ⋆ (see Lemma 7.1, p. 962 applied to
X0 =Y ⋆), and the fact that σ′ and σ′′ are bounded on [ 0; 1 ], we obtain that

|(2)| ≤ C(ω)
[(

1
n

)H+1−δ
+
(
1
n

)2] ≤ C(ω)
(
1
n

)H+1−δ
.

Then we bound term (1).

For i ∈ {0, . . . , n − 2}, since σ belongs to C2 on [ 0; 1 ], we write σ( i+1
n ) −

σ( i
n ) =

1
nσ

′( i
n ) +

1
n2 σ

′′( i
n + θ1

n ) and σ( i+2
n )− σ( i

n ) =
2
nσ

′( i
n ) +

4
n2σ

′′( i
n + 2θ2

n ),
with 0 < θ1, θ2 < 1. Thus

(1) =
2

n
σ′( i

n )
(
Y ⋆( i+2

n )− Y ⋆( i+1
n )
)
+ 4

n2 Y
⋆( i+2

n )σ′′( i
n + 2θ2

n )

− 2
n2 Y

⋆( i+1
n )σ′′( i

n + θ1
n ).
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Using once again Lemma 7.1 page 962 applied to X0 = Y ⋆ and the fact that σ′

and σ′′ are bounded on [ 0; 1 ], we obtain that for i ∈ {0, . . . , n− 2},

|(1)| ≤ C(ω)
[(

1
n

)H+1−δ
+
(
1
n

)2] ≤ C(ω)
(
1
n

)H+1−δ
.

For term (3), first, let us remark that the trajectories of Xλ are (H − δ)-Hölder
continuous on [ 0; 1 ]. For Xλ solution of (2.8) one can prove this fact using that
the function σ belongs to C1 on [ 0; 1 ] and that Y almost-surely has (H − δ)-
Hölder continuous trajectories on [ 0; 1 ] (see Lemma 7.1 applied to X0 = Y ).
If Xλ is solution of (2.10), we refer to Nualart and Răşcanu (2002).

Since µ̃ is Lipschitz on R, we get

|(3)| ≤ C(ω)
(
1
n

)H+1−δ
.

Thus using (A.1), we finally proved that, for any δ > 0,

∣∣∆nXλ(i)− σ( i
n )∆nY

⋆(i)
∣∣ ≤ C(ω)

(
1
n

)1−δ
.

Proof of Lemma 4.6. As in the proof of Lemma 4.3, for k ≥ 1 we consider
inequality (A.2) applied to x = ∆nXλ(i) and y = σ( i

n )∆nY
⋆(i).

Furthermore, we use that for i ∈ {1, . . . , n − 2}, |∆nY
⋆(i)| ≤ C(ω)nδ (see

inequality (7.4) applied to X0 = Y ⋆ with k = 1). Finally using that functions h
and σ are bounded on [ 0; 1 ] and Lemma 4.5, since k ≥ 1, we get

|Cn(h)| ≤ Ck(ω)

(
1

n

)1−δk

.

Choosing δ small enough, that is δ < 1
2k , we obtain Lemma 4.6.

7.2.2. Rate of convergence for the increments ∆nXλ

Proof of Theorem 4.4. As explained in Section 4.2.2, Lemma 4.6 and Remark
4.6 applied in model (2.1) to X0 = Y ⋆, replacing function h by hσk lead to the
theorem.

7.3. For the fDrc

7.3.1. Almost sure convergence of ∆nXr

Proof of Theorem 4.5. As mentioned in Section 4.3.1, we just have to prove
Lemmas 4.7 and 4.8.
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Proof of Lemma 4.7. For i = 0, 1, . . . , n − 2, the random variable δnXr(i) is
defined as in (4.2), Section 4.1.1. Thus using (2.13), we have

δnXr(i) = σ(Y ( i
n ))δnY (i)

+

[(∫ Y ( i+2
n

)

Y ( i+1
n

)

−
∫ Y ( i+1

n
)

Y ( i
n
)

)
(
σ(u)− σ(Y ( i

n ))
)
du

]

(1)

+

[(∫ i+2
n

i+1
n

−
∫ i+1

n

i
n

)
(
µ(Y (u))− µ(Y ( i+1

n ))
)
du

]

(2)

(7.20)

= σ(Y ( i
n ))δnY (i) + (1) + (2),

where the process δnY is defined by (4.2), Section 4.1.1. The two terms in
brackets in (7.20) are denoted respectively by (1) and (2) in the following. First,
we consider term (2). Using that µ is locally Lipschitz on R and the modulus of
continuity of Y (see Lemma 7.1, p. 962 applied to X0 = Y ), we get

|(2)| ≤ C(ω)
(
1
n

)1+H−δ ≤ C(ω)
(
1
n

)2H−2δ
.

For term (1), using a first order Taylor expansion of the function σ, which
belongs to C1 on R and using same arguments as before, we get that

|(1)| ≤ C(ω)
(
1
n

)2H−2δ
.

Using (A.1) finally yields this lemma.

Proof of Lemma 4.8. As in Lemma 4.3, for k ≥ 1 we consider inequality (A.2)
applied to x = ∆nXr(i) and y = σ(Y ( i

n ))∆nY (i).
Furthermore we use that for i ∈ {1, . . . , n − 2}, |∆nY (i)| ≤ C(ω)nδ (see

inequality (7.4) applied to function X0 = Y with k = 1). Finally, we use that
the functions h and σ are continuous on R and that Y has continuous trajectories
on [0; 1]. Applying Lemma 4.7, and since k ≥ 1 we get

|Dn(h)| ≤ Ck(ω)

(
1

n

)H−δk

.

Choosing δ small enough, that is 0 < δ <
H− 1

2

k , that remains possible since
H > 1

2 , we obtain Lemma 4.8.

The proof of Theorem 4.5 is now completed.

7.3.2. Rate of convergence for the increments ∆nXr

Proof of Theorem 4.6. We decompose En(h) as

En(h) =
n

n− 1

(
1√
n

n−2∑

i=0

h(Y ( i
n ))σ

k(Y ( i
n ))gk

(
∆nY (i)

σn,1

))
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+

[ √
n

E[|N |k]
Dn(h)

]

(A)

+

[
√
n

(
1

n− 1

n−2∑

i=0

h(Y ( i
n ))σ

k(Y ( i
n ))

−
∫ 1

0

h(Y (u))σk(Y (u)) du

)]

(B)

(7.21)

+

[ √
n

(n− 1)

n−2∑

i=0

h(Y ( i
n ))σ

k(Y ( i
n ))

1

E[|N |k]

∣∣∣∣
∆nY (i)

σn,1

∣∣∣∣
k (

σk
n,1 − 1)

)
]

(C)

=
n

n− 1

(
1√
n

n−2∑

i=0

h(Y ( i
n ))σ

k(Y ( i
n ))gk

(
∆nY (i)

σn,1

))
+ (A) + (B) + (C),

where function gk is defined by (4.7) and Dn(h) is defined by Lemma 4.8 page
939. Obviously, (A), (B) and (C) are the last three terms of (7.21).

Using Lemma 4.8, one gets that (A) = oa.s.(1).

Since h and σ belong to C1 on R, then for all real k ≥ 1, hσk also belongs
to C1 on R. Using that the trajectories of Y are (H − δ)-Hölder continuous on
[ 0; 1 ] (see Lemma 7.1, p. 962, applied to function X0 = Y ) and a first order
Taylor expansion of hσk, one gets

(B) = Oa.s.((
1
n )

H− 1
2−δ) = oa.s.(1),

since H > 1
2 .

Now, using inequality (7.4) applied to X0 = Y , (7.7) for σk
n,1, we get since h

and σ are continuous on R, that for all real k > 0,

(C) = Oa.s.((
1
n )

1
2−δk) = oa.s.(1),

by choosing δ small enough, that is δ < 1
2k .

So Theorem 4.6 ensues from Theorem 4.7, since the convergence in probability
to zero ensures the stable convergence to zero see (Podolskij and Vetter, 2010,
Proposition 1).

Proof of Theorem 4.7. We prove Remark 4.7, page 940, in the case where h be-
longs to C4 on R, |h(4)(x)| ≤ P (|x|),H > 1

4 and for any function g ∈ L4(φ(x) dx)
with a Hermite rank ≥ 1 and where we suppose that Ag is not an empty set
(see Section 3 for definition). Furthermore, we will suppose that g is even, or
odd, with a Hermite rank greater than or equal to three. A proof similar to the
last one could easily be given to obtain the other cases described in the Remark
4.7. It is sufficient to adapt forthcoming Lemma 7.5 to the new hypotheses that
is proved in the Appendix A.1.
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In the same manner as in Berzin, Latour and León (2014) the proof will
proceed in several steps. Let us define for 0 < t < 1,

S(n)
g (t) =

1√
n

⌊nt⌋−2∑

i=0

g
(

∆nY (i)
σn,1

)
,

and

Tn(h) =
1√
n

n−2∑

i=0

h(Y ( i
n ))g

(
∆nY (i)
σn,1

)
.

On the one hand, we prove in forthcoming Lemma 7.6 that (Y, S
(n)
g ) converges

to (Y, σgW⊥Y ). We will show this lemma after the proof of this theorem.

On the other hand, we will consider a discrete version of Tn(h), defining

T (m)
n (h) =

m−1∑

ℓ=0

h(Y ( ℓ
m ))

1√
n

⌊n(ℓ+1)
m

⌋−2∑

i=⌊nℓ
m

⌋−1

g
(

∆nY (i)
σn,1

)
.

The convergence of (Y, S
(n)
g ) implies that as n goes to infinity

T (m)
n (h)

Stable−−−−→
n→∞

T (m)(h) = σg

m−1∑

ℓ=0

h(Y ( ℓ
m ))

(
W⊥Y (

ℓ+1
m )−W⊥Y (

ℓ
m )
)
,

see (Podolskij and Vetter, 2010, Proposition 1).
Furthermore, it is easy to show that T (m)(h) is a Cauchy sequence in L2(Ω).

It follows, using the asymptotic independence between Y and W⊥Y that

T (m)(h)
L2(Ω)−−−−→
m→∞

σg

∫ 1

0

h(Y (u)) dW⊥Y (u).

To conclude in proving the convergence of Tn(h), it is sufficient to demonstrate
Lemma 7.5. A proof is given in the Appendix A.1.

Lemma 7.5. Let h belong to C4 on R, |h(4)(x)| ≤ P (|x|), H > 1
4 and function

g ∈ L2+δ(φ(x) dx), δ > 0, let g(x) =
+∞∑
p=1

gp Hp(x). Furthermore, we suppose

that g is even, or odd, with a Hermite rank greater than or equal to three, then

lim
m→+∞

lim
n→+∞

E[Tn(h)− T (m)
n (h)]2 = 0.

We shall prove the following lemma. As in Berzin, Latour and León (2014)
we only make the hypothesis that g ∈ L4(φ(x) dx), with a Hermite rank ≥ 1
and we suppose that Ag is not the empty set (see Section 3 for definition).
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Lemma 7.6. For 0 < H < 1,

1)

S(n)
g

Law−−−−→
n→∞

σgW⊥Y .

2) Furthermore,

(Y, S(n)
g )

Law−−−−→
n→∞

(Y, σgW⊥Y ) ,

where W⊥Y is a standard Brownian motion independent of Y .

Remark 7.1. In fact we will show that in the two assertions the convergence
is stable and takes place in the sense of processes convergence.

Proof of Lemma 7.6.

1) For m ∈ N
∗ and 0 = t0 < t1 < t2 < · · · < tm ≤ 1, let t = (t1, . . . , tm) and

Sg(nt) =

m∑

i=1

αi

(
S(n)
g (ti)− S(n)

g (ti−1)
)
,

where

αi =
di√

m∑
i=1

d2i (ti − ti−1)

,

while d1, . . . , dm ∈ R. We want to prove that

Sg(nt)
Law−−−−→
n→∞

N (0;σ2
g).

We consider SgL(nt) where gL(x) =
∑L

ℓ=1 gℓHℓ(x), where L ≥ 1 is a fixed
integer. We will prove that

SgM (nt)
Law−−−−→
n→∞

N (0;σ2
gL).

As in the proof of Theorem 4.2, the chaos representation of the process Y
(see (2.2), (2.5) or (2.6)) allows us to write SgL(nt) in the multiple Wiener
chaos:

SgL(nt) =

L∑

ℓ=1

Iℓ(h
(n,t)
ℓ ),

where h
(n,t)
ℓ is

h
(n,t)
ℓ (λ1, . . . , λℓ) = gℓ ℓ!

m∑

i=1

αi
1√
n

⌊nti⌋−2∑

j=⌊nti−1⌋−1

f (n)(λ1, j) · · · f (n)(λℓ, j),
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and where Iℓ is given by (7.16) and f (n) by (7.15) where we replace the
functions σ by 1 and σn(j) by σn,1. First, let us compute the variance of
SgL(nt).

E[SgL(nt)]
2 =

L∑

ℓ=1

1

ℓ!

∫

Rℓ

∣∣∣h(n,t)
ℓ (λ1, . . . , λℓ)

∣∣∣
2

dλ1 · · · dλℓ

=

L∑

ℓ=1

ℓ! g2ℓ

m∑

i1=1

m∑

i2=1

αi1 αi2


 1

n

⌊nti1 ⌋−2∑

j1=⌊nti1−1⌋−1

⌊nti2⌋−2∑

j2=⌊nti2−1⌋−1

δℓn,1(j1 − j2)


 ,

where δn,1(i − j) stands for δn(i, j) defined in (7.9) for X0 = Y , that is

δn,1(i− j) = E

[
∆nY (i)

σn,1

∆nY (j)

σn,1

]
(7.22)

= ρH(i− j) + γn,1(i− j),

ρH and σn,1 are respectively defined by (3.1) and (4.9). As in the proof of
Theorem 4.2, using Lemma 7.3 for γn,1(i − j), one can prove that

E[SgL(nt)]
2

≡
L∑

ℓ=1

ℓ! g2ℓ

m∑

i1=1

m∑

i2=1

αi1 αi2


 1

n

⌊nti1 ⌋−2∑

j1=⌊nti1−1⌋−1

⌊nti2⌋−2∑

j2=⌊nti2−1⌋−1

ρℓH(j1 − j2)


 ,

and as in the proof given by Berzin, Latour and León (2014) for the fBm,
we use that for ℓ ≥ 1,

1

n

⌊nti⌋−2∑

s1=⌊nti−1⌋−1

⌊ntj⌋−2∑

s2=⌊ntj−1⌋−1

ρℓH(s1 − s2)

−→
n→+∞




(ti − ti−1)

+∞∑
r=−∞

ρℓH(r), if i = j;

0, otherwise.

(7.23)

One finally gets that

lim
n→+∞

E[SgL(nt)]
2 =

(
m∑

i=1

α2
i (ti − ti−1)

)(
L∑

ℓ=1

ℓ! g2ℓ

+∞∑

r=−∞
ρℓH(r)

)
= σ2

gL .

To conclude the proof of 1), Theorem 1 of Peccati and Tudor (2005) is
used again and as in the proof of Theorem 4.2, it is enough to prove that
for fixed ℓ and p, ℓ ≥ 2 and p = 1, . . . , (ℓ − 1), limn→+∞ Bn = 0, where
Bn is

Bn =

∫

R2(ℓ−p)

∣∣∣h(n,t)
ℓ ⊗p h

(n,t)
ℓ (λ1, . . . , λℓ−p, µ1, . . . , µℓ−p)

∣∣∣
2

dλ1 · · · dλℓ−p dµ1 · · · dµℓ−p,

remembering that we defined the p-th contractions ⊗p in (7.17).
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Now we compute Bn and we get

Bn = (ℓ!)4g4ℓ

m∑

i1=1

m∑

i2=1

m∑

i3=1

m∑

i4=1

αi1αi2αi3αi4×

1

n2

⌊nti1⌋−2∑

j1=⌊nti1−1⌋−1

⌊nti2 ⌋−2∑

j2=⌊nti2−1⌋−1

⌊nti3⌋−2∑

j3=⌊nti3−1⌋−1

⌊nti4 ⌋−2∑

j4=⌊nti4−1⌋−1

δℓ−p
n,1 (j1 − j2) δ

ℓ−p
n,1 (j3 − j4) δ

p
n,1(j1 − j3) δ

p
n,1(j2 − j4).

Using the same arguments as in the proof of Theorem 4.2, it is easy to see
that for M large enough, one has

lim
n→∞

Bn ≤ CM2H−2,

and then lim
n→+∞

Bn = 0.

Hence, we proved that

SgL(nt)
Law−−−−→
n→∞

N (0;σ2
gL),

where t = (t1, . . . , tm) and SgL(nt) =
m∑
i=1

αi(S
(n)
gL (ti)− S

(n)
gL (ti−1)).

Furthermore, using that lim
L→+∞

+∞∑
p=L+1

g2pp! = 0, we can prove that

lim
L→+∞

sup
n≥1

E[Sg(nt)− SgL(nt)]
2 = 0,

and since
N (0;σ2

gL)
Law−−−−→
L→∞

N (0;σ2
g),

by applying Lemma 1.1 of Dynkin (1988), we proved that

Sg(nt)
Law−−−−→
n→∞

N (0;σ2
g).

We then obtain assertion 1) about the finite dimensional convergence of

S
(n)
g . Now we will prove the tightness of this process. We need the following

lemma proved in Berzin, Latour and León (2014).

Lemma 7.7. Let G a function in L4(φ(x) dx) with a Hermite rank m ≥ 1
and let {Xi}∞i=1 a stationary Gaussian sequence with mean 0, variance 1
and covariance function r. We suppose that, there exists ε, 0 < ε < 1

3 and
j ∈ N, such that for all i ≥ j, one has |r(i)| ≤ ε < 1

3 . Then for I ≥ 1,

E

[
1√
I

I∑

i=1

G(Xi)

]4
≤ C

I+j∑

i=0

|rm(i)| .
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Remark 7.2. The proof of this lemma uses (Taqqu, 1977, Proposition
4.2 (i)).

Now for any t > s, we have

E
[
S(n)
g (t)− S(n

g (s)
]4

=
1

n2
E




⌊nt⌋−2∑

i=⌊ns⌋−1

g
(

∆nY (i)
σn,1

)


4

=
1

n2
E



⌊nt⌋−⌊ns⌋∑

i=1

g
(

∆nY (i)
σn,1

)


4

,

since the process Y has stationary increments.
We apply Lemma 7.7 to g ∈ L4(φ(x) dx), m = 1, I = ⌊nt⌋ − ⌊ns⌋ and

to the process {∆nY (i)
σn,1

}∞i=1 with covariance r = δn,1 given by (7.22). By

using Lemma 7.3 and inequality (7.13), page 966, we remark that this
covariance satisfies the hypotheses of the previous lemma and also that∑I+j

i=0 |δn,1(i)| ≤ C.
We get

E
[
S(n)
g (t)− S(n)

g (s)
]4

≤ C

(⌊nt⌋ − ⌊ns⌋
n

)2

.

Now, let fixed t1 < t < t2.
If t2 − t1 ≥ 1

n , the Cauchy-Schwarz inequality implies that

E
[
(S(n)

g (t2)− S(n)
g (t))2(S(n)

g (t)− S(n)
g (t1))

2
]

≤ C

(⌊nt2⌋ − ⌊nt⌋
n

)(⌊nt⌋ − ⌊nt1⌋
n

)

≤ C

(⌊nt2⌋ − ⌊nt1⌋
n

)2

≤ C (t2 − t1)
2.

Now, if t2 − t1 < 1
n , two cases occur. If t1 and t2 are in the same inter-

val, that is t1, t2 ∈ ( kn ,
k+1
n ), then t1 and t are in the same interval, and

S
(n)
g (t)−S

(n)
g (t1) = 0. Otherwise, t1 and t2 are in contiguous intervals and

in this case, then t1 and t are in the same interval, or t and t2 are in the

same interval. Then in both cases, we have (S
(n)
g (t)−S

(n)
g (t1))(S

(n)
g (t2)−

S
(n)
g (t)) = 0.

The tightness of process S
(n)
g follows by (Billingsley, 1968, Theorem 15.6).

Thus the convergence in assertion 1) takes place in the sense of processes
convergence.

2) We can suppose that g(x) =
∑+∞

ℓ=2 gℓHℓ(x). Indeed, since
∑+∞

r=−∞ ρH(r) =

0, it follows that 1√
n

∑[n·]−2
i=0

∆nY (i)
σn,1

tends to zero in L2 as n tends to

infinity (see convergence given in part 1) for m = 1 and g = H1).



Variance estimator for fractional diffusions 979

Let c0, . . . , cm, be real constants. As before, it is enough to establish the
limit distribution of

m∑

j=0

cj Y (tj) + SgL(nt).

As in the proof of part 1), Theorem 1 of Peccati and Tudor (2005) al-
lows us to conclude the convergence of finite dimensional distributions of

(Y (t), S
(n)
g (t)). Indeed it is enough to remark that

∑m
j=0 cj Y (tj) belongs

to the first Wiener chaos and then is a Gaussian random variable with
finite variance and that SgL(nt) belongs to the superior order one. Thus
assertion 2) of Lemma 7.6 follows.

Furthermore the tightness of the sequence of processes (Y, S
(n)
g ) follows

from that of the sequence of process S
(n)
g proved in part 1) and implies

convergence of (Y, S
(n)
g ) as processes and then ensure the stable conver-

gence of (Y, S
(n)
g ) and of that of S

(n)
g , see (Podolskij and Vetter, 2010,

Proposition 1).

8. Proofs concerning the punctual estimation of σ

8.1. For the fDdc

8.1.1. Bias and variance

Proof of Theorem 5.1. We have to prove Lemma 5.1 and Corollary 5.1 for any
function µ and for all real k ≥ 1. First we prove these results for µ ≡ 0 and
for all real k > 0. Then an approximation result is given for Lemma 5.1 and
Corollary 5.1.

Proof of Lemma 5.1. By (5.9), we have

1

h2
E[α̂n,0(t)− α(t)] =

[
2

nh2

n−1∑

i=0

K(−1 + 2i
n )
(
(σ(i)

n (t))k − α(t)
)]

(1)

+

[
1

h2

(
2

n

n−1∑

i=0

K(−1 + 2i
n )− 1

)
α(t)

]

(2)

(8.1)

= (1) + (2),

where we recall that α̂n,0(t) (resp. α(t)) is defined by (5.7) for µ ≡ 0 (resp.

by (5.6)) and σ
(i)
n (t) is defined by (5.5). The two terms of (8.1) are denoted

respectively by (1) and (2) in the following.
We prove that the first term in the above sum, (1), gives the required limit.

Thus let us prove that term (2) tends to zero with n. In this aim, we need the
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following equality. For all function ℓ belonging to C1 on [−1; 1 ] (resp. C2 and
such that ℓ(1) = ℓ(−1)), we have

∫ 1

−1

ℓ(u) du =
2

n

n−1∑

i=0

ℓ(−1 + 2i
n ) +O( 1

n ) (resp. O
(

1
n2

)
). (8.2)

We apply this equality to the function ℓ = K, and since K is a C2 density
function with a compact support in [−1; 1 ] and because σ is bounded on [ 0; 1 ],
we obtain that (2) = O( 1

nh )
2 = o(1), since nh → +∞.

Our aim is now to prove that (1) → α′′(t)χ2, where χ2 is defined by (3.4).
At this step of the proof we need the following lemma proved in Appendix A.2.

Lemma 8.1. For i = 0, 1, . . . , n− 1,

(σ(i)
n (t))2 − σ2(t) = h (1− 2i

n )θ
′(t) + 1

2 h
2(1− 2i

n )
2 θ′′(t) + o(h2),

where θ(t) = σ2(t).

Now we use the following equality similar to (7.7). Since σ(t) > 0, for real
k > 0, we have

(σ(i)
n (t))k − σk(t) =

k

2

(
(σ(i)

n (t))2 − σ2(t)
)
σk−2(t)

+
k

8
(k − 2)

(
(σ(i)

n (t))2 − σ2(t)
)2 (

σ2(t) + θ
(
(σ(i)

n (t))2 − σ2(t)
))k/2−2

,

with 0 < θ < 1.
On the one hand, by applying (8.2) to the function ℓ = K and since K

belongs to C1 on [−1; 1 ], we have 2
n

∑n−1
i=0 K(−1 + 2i

n ) < +∞. On the other
hand, we use Lemma 8.1 and since the function σ belongs to C2 on [ 0; 1 ] and
σ(t) > 0, we get

(1) = kσk−2(t) θ′(t)
1

nh

n−1∑

i=0

K(−1 + 2i
n )(1 − 2i

n )

+
k

2
θ′′(t)σk−2(t)

1

n

n−1∑

i=0

K(−1 + 2i
n )(1 − 2i

n )
2

+
k

4
(k − 2)(θ′)2(t)

1

n

n−1∑

i=0

K(−1 + 2i
n )(1 − 2i

n )
2

×
(
σ2(t) + θ

(
(σ(i)

n (t))2 − σ2(t)
))k/2−2

+ o(1).

Now we apply (8.2) to ℓ(u) = uK(u). Since K belongs to C1 on [−1; 1 ] and

satisfies
∫ +1

−1
uK(u) du = 0, we have 1

nh

∑n−1
i=0 K(−1 + 2i

n )(1 − 2i
n ) = O( 1

nh ) =
o(1), since nh → +∞. Thus, once again using (8.2) applied to the function
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ℓ(u) = u2K(u) belonging to C1 on [ 1; 1 ], Lemma 8.1 and the fact that σ(t) > 0,
we finally get

(1) −→
n→+∞

χ2

(
k

2
θ′′(t)σk−2(t) +

k

4
(k − 2)(θ′)2(t)σk−4(t)

)
= χ2

(
σk(t)

)′′
.

That yields Lemma 5.1.
We complete the proof of Lemma 5.1 by considering a general function µ and

a real number k, k ≥ 1.
In this aim, we write,

E[α̂n,µ(t)− α(t)] = E[α̂n,0(t)− α(t)]

+


(σ

(i)
n (t))k

E[|N |k]
2

n

n−1∑

i=0

K(−1 + 2i
n )


E



∣∣∣∣∣
∆

(i)
n Xµ(t)

σ
(i)
n (t)

∣∣∣∣∣

k

− E



∣∣∣∣∣
∆

(i)
n X0(t)

σ
(i)
n (t)

∣∣∣∣∣

k






(1)

.

We have to show that (1) = o(h2).
On the one hand it is easy to show that if U (resp. V ) is a Gaussian random

variable with mean m (resp. with mean 0) and variance 1, then for all real k ≥ 1,
we have ∣∣∣E[|U |k]− E[|V |k]

∣∣∣ ≤ Ckm
2, when m ≤ m0.

On the other hand, we apply this inequality to U =
∆(i)

n Xµ(t)

σ
(i)
n (t)

, V =
∆(i)

n X0(t)

σ
(i)
n (t)

and to m =
F (i)

n,µ(t)

σ
(i)
n (t)

, where F
(i)
n,µ(t) is defined by (5.4).

By Lemma 8.1 and since σ(t) > 0, we have, for i = 0, 1, . . . , n− 1,

σ(i)
n (t) ≥ C > 0. (8.3)

Since σ belongs to C2 on [ 0; 1 ], this lemma also implies that

σ(i)
n (t) ≤ C. (8.4)

Furthermore, a proof similar to that of Lemma 4.2 stated page 935 gives

∣∣∣F (i)
n,µ(t)

∣∣∣ ≤ C

(
1

n

)2−H

(8.5)

for i = 0, 1, . . . , n− 1. Thus, for all real k ≥ 1, since K is bounded on [−1; 1 ],
we get

|(1)| ≤ Ck

(
1

n

)2(2−H)

. (8.6)

Since nh → +∞ and H < 1, one finally gets that (1) = o(h2).

Proof of Corollary 5.1. In this aim, we prove Lemma 5.2.

Proof of Lemma 5.2. We want to compute the asymptotic variance of S
(g)
n (t).

The proof goes along the lines of the computation of S
(n)
g,h(1) asymptotic variance

made in Theorem 4.2.
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By using Mehler’s formula (3.2), we have

E[S(g)
n (t)]2 =


4h

n

n−1∑

i=0

n−1∑

j=0

K(−1 + 2i
n )K(−1 + 2j

n )β(2h(i− j))



(1)

+

[
+∞∑

ℓ=1

g2ℓ ℓ!
4h

n

n−1∑

i,j=0
i6=j

([
(δ(i,j)n (t, t))ℓ − ρℓH(2h(i− j))

]

× K(−1 + 2i
n )K(−1 + 2j

n )
)
]

(2)

= (1) + (2),

where we define for t, s ∈ ] 0; 1 [ , δ
(i,j)
n (t, s) as

δ(i,j)n (t, s) = E

[
∆

(i)
n X0(t)

σ
(i)
n (t)

∆
(j)
n X0(s)

σ
(j)
n (s)

]
(8.7)

= ρH(n(t− s) + 2h(j − i)) + γ(i,j)
n (t, s),

where the functions ρH and σ
(i)
n (t) are respectively defined by (3.1) and (5.5),

while the function β is defined by (7.11).
As in the proof of Theorem 4.2, term (1) gives the required limit. Thus making

the change of variable i− j = k in the sum corresponding to term (1), we obtain

(1) =

[(
2
n

n−1∑

i=0

K2(−1 + 2i
n )

)(
2h

n−1∑

k=1−n

β(2hk)

)]

(A)

+

[
− 4h

n

n−2∑

i=0

n−1∑

k=i+1

K2(−1 + 2i
n )β(2hk)

]

(B)

−
[

4h
n

n−1∑

i=1

i−n∑

k=1−n

K2(−1 + 2i
n )β(2hk)

]

(C)

+

[
4h
n

n−1∑

i=0

i∑

k=i−n+1

(
K(−1 + 2i

n )K(−1 + 2(i−k)
n )−K2(−1 + 2i

n )
)
β(2hk)

]

(D)

= (A) + (B) + (C) + (D)

At this step of the proof we need the following lemma.

Lemma 8.2. For all M ∈ N,

h
n−1∑

i=⌊M
h
⌋

β(ih) −→
n→+∞

∫ +∞

M

β(x) dx.
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Remark 8.1. This result remains valid if we replace β by |β|.
Thus we apply this lemma for M = 0 and for the function β. Furthermore,

we apply (8.2) to the function ℓ = K2 and since the function K belongs to C1

on [−1; 1 ] and β is even, we obtain that

(A) −→
n→+∞

κ2σ̃2
g ,

where κ2 and σ̃2
g are respectively defined by (3.5) and (3.3).

Now to complete the work required for term (1), we show that terms (B),
(C) and (D) tend to zero as n tends to infinity.

First, let us consider term (B). Since the function K is bounded on [−1; 1 ],
for all M ∈ N

∗ and n such that 2nh ≥ (M + 1), we have

|(B)| ≤ C
h

n




⌊ M
2h ⌋−1∑

i=0

n−1∑

k=i+1

|β(2hk)|+
n−2∑

i=⌊ M
2h ⌋

n−1∑

k=i+1

|β(2hk)|




≤ C


 1

n

⌊
M

2h

⌋(
2h

n−1∑

k=0

|β(2hk)|
)

+


2h

n−1∑

k=⌊ M
2h ⌋

|β(2hk)|




 .

Applying successively Remark 8.1 for M = 0 and then for any M ∈ N
∗ since

nh → +∞, we get that for all M ∈ N
∗,

lim sup
n→+∞

|(B)| ≤ C

∫ +∞

M

|β(x)| dx.

For |x| large enough, we have |ρH(x)| ≤ C |x|(2H−4) , thus, since ‖g‖22,φ < +∞,

∫ +∞

−∞
|β(x)| dx < +∞. (8.8)

By inequality (8.8), lim
n→+∞

(B) = 0.

A similar proof could be done for term (C). Now we consider term (D). Using
the fact that the function K is bounded on [−1; 1 ] and that the function β is
even, we get that, for all M ∈ N

∗ and n such that 2nh ≥ (M + 1),

|(D)| ≤ C




2h

n

n−1∑

i=0

i∑

k=i−n+1
|k|≤⌊M

2h⌋

∣∣∣K(−1 + 2i
n )−K(−1 + 2(i−k)

n )
∣∣∣ |β(2hk)|

+2h
n−1∑

k=⌊M
2h ⌋

|β(2hk)|


 .

Since K is uniformly continuous on [−1; 1 ], for all ε > 0, there exists ηε > 0
such that, for all reals x, y ∈ [−1; 1 ], such that |x− y| ≤ ηε, then |K(x)−K(y)|
≤ ε. Thus, let M ∈ N

∗ and ε > 0, since β is an even function there exists
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αε = sup{ 2M
ηε

, (M + 1)}, such that for 2nh ≥ αε, we have

|(D)| ≤ C


ε
(
2h

n−1∑

k=0

|β(2hk)|
)

+


2h

n−1∑

k=⌊M
2h ⌋

|β(2hk)|




 .

By Remark 8.1 applied successively with M = 0 and then for any M ∈ N
∗, one

finally obtains that for all M ∈ N
∗ and ε > 0,

lim sup
n→+∞

|(D)| ≤ C

(
ε+

∫ +∞

M

|β(x)| dx
)
,

and then by (8.8), lim
n→+∞

(D) = 0.

To complete the proof of Lemma 5.2, let us establish that term (2) tends to
zero as n tends to ∞. We fix M > 0. Then by using the fact that, if i, j are such
|i− j| ≥ 1

2Mh , we get that 1− |ρH(2h(i− j))| ≥ CM > 0. Thus, as in Theorem
4.2, we obtain the following bound

∣∣∣(δ(i,j)n (t, t))ℓ − ρℓH(2h(i− j))
∣∣∣ ≤ CM

∣∣∣γ(i,j)
n (t, t)

∣∣∣ 1{|i−j|≥ 1
2Mh

} +C 1{|i−j|< 1
2Mh

}.

Thus, since ‖g‖22,φ < +∞ and K is bounded on [−1; 1 ], we have

|(2)| ≤ C


 1

M
+CM

4h

n

n−1∑

i=0

n−1∑

j=0

K(−1 + 2i
n )K(−1 + 2j

n )
∣∣∣γ(i,j)

n (t, t)
∣∣∣


 .

At this step of the proof we need the following lemma proved in Appendix A.2.

Lemma 8.3. For all i, j ∈ {0, 1, . . . , n− 1}, t, s ∈ ]0, 1[ , we have

∣∣∣γ(i,j)
n (t, s)

∣∣∣ ≤ C

n
.

Now, using the bound given for γ
(i,j)
n (t, t) in the previous lemma and the fact

that K is bounded on [−1; 1 ] we get, for all M > 0,

lim sup
n→+∞

|(2)| ≤ C

M

and then, lim
n→+∞

(2) = 0. That yields Lemma 5.2.

A slight modification of the proof of Lemma 5.2 could be done. Since σ
(i)
n (t) ≃

σ(t) (see Lemma 8.1), we obtain that
√
nh(α̂n,0(t)−E[α̂n,0(t)]) is equivalent in

L2 to S
(gk)
n (t)α(t), where gk and α(t) are respectively defined by equalities (4.7)

and (5.6). That yields Corollary 5.1.
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Now, in the aim of winding up the proof of Theorem 5.1, we have to complete
proof of Corollary 5.1 by considering any function µ and real k, k ≥ 1.

We write the following equality.
√
nh(α̂n,µ(t)− E[α̂n,µ(t)]) =

√
nh (α̂n,0(t)− E[α̂n,0(t)]) + (1) + (2),

where

(1) =
√
nhE[α̂n,0(t)− α̂n,µ(t)] and,

(2) =
√
nh (α̂n,µ(t)− α̂n,0(t)).

We have to show that terms (1) and (2) tend to zero in L2, when k ≥ 1.
We already saw in the proof of Lemma 5.1 (see inequality (8.6)), that for all

real k ≥ 1, |E[α̂n,0(t)− α̂n,µ(t)]| ≤ Ck(
1
n )

2(2−H), so that, since H < 1,

(1) = O
(√

h
(
n−( 7

2−2H)
))

= o(1).

Now, for term (2), applying Cauchy-Schwarz inequality we get,

E[α̂n,µ(t)− α̂n,0(t)]
2 ≤

1

E2[|N |k]
4

n2

(
n−1∑

i=0

K(−1 + 2i
n )E

1
2

[∣∣∣∆(i)
n Xµ(t)

∣∣∣
k

−
∣∣∣∆(i)

n X0(t)
∣∣∣
k
]2)2

.

Then we apply inequality (A.2) to x = ∆
(i)
n Xµ(t) and y = ∆

(i)
n X0(t), so that

E

[∣∣∣∆(i)
n Xµ(t)

∣∣∣
k

−
∣∣∣∆(i)

n X0(t)
∣∣∣
k
]2

≤

Ck(F
(i)
n,µ(t))

2

(
(F (i)

n,µ(t))
2(k−1) + E

[∣∣∣∆(i)
n X0(t)

∣∣∣
2(k−1)

])
.

Finally, the function K being bounded, using inequalities (8.4) and (8.5), we
get

E[(2)]2 ≤ Cknh(
1
n )

2(2−H)
(
( 1n )

2(k−1)(2−H) + 1
)

≤ Ckh(
1
n )

(3−2H) = o(1),

since H < 1. That yields Theorem 5.1.

8.1.2. Central Limit Theorem

Proofs of Theorem 5.2 and of Corollary 5.2. Let d1, . . . , dm ∈ R and

S(g)
n (t) =

m∑

i=1

diS
(g)
n (ti).
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We want to prove that

S(g)
n (t)

Law−−−−→
n→∞

N

(
0; σ̃2

g κ
2

m∑

i=1

d2i

)
,

where κ2 and σ̃2
g are respectively defined by (3.5) and (3.3).

As in proof of Theorem 4.2 it is enough to demonstrate that

S(gL)
n (t)

Law−−−−→
n→∞

N

(
0; σ̃2

gL κ2
m∑

i=1

d2i

)
,

where gL(x) =
∑L

ℓ=1 gℓHℓ(x), where we fixed L ∈ N
∗.

Still as in the proof of Theorem 4.2, the Chaos representation for process Y
allows us to write the increments of X0 as

∆
(j)
n X0(t)

σ
(j)
n (t)

=

∫ +∞

−∞
f (n)(λ, j, t) dW (λ),

where we defined function f (n) by

σ(j)
n (t)f (n)(λ, j, t)

= a(n)iλ
√
f(λ)

([∫ a(j)
n (t)+ 1

n

a
(j)
n (t)

−
∫ a(j)

n (t)

a
(j)
n (t)− 1

n

]
σ(u) exp(iλu) du

)
.

In that way, we can write S
(gL)
n (t) in the multiple Wiener chaos as

S(gL)
n (t) =

L∑

ℓ=1

Iℓ(h
(n,t)
ℓ ),

where the function h
(n,t)
ℓ is

h
(n,t)
ℓ (λ1, . . . , λℓ)

= gℓℓ!2

√
h

n

m∑

i=1

di

n−1∑

j=0

K(−1 + 2j
n )f (n)(λ1, j, ti) · · · f (n)(λℓ, j, ti),

and where Iℓ is given by (7.16).

First, let us compute the variance of S
(gL)
n (t).

E[S(gL)
n (t)]2 =

L∑

ℓ=1

1

ℓ!

∫

Rℓ

∣∣∣h(n,t)
ℓ (λ1, . . . , λℓ)

∣∣∣
2

dλ1 · · · dλℓ

=

L∑

ℓ=1

ℓ!g2ℓ

m∑

i1=1

m∑

i2=1

di1di2


4h

n

n−1∑

j1=0

n−1∑

j2=0

K(−1 + 2j1
n )

× K(−1 + 2j2
n )(δ(j1,j2)n (ti1 , ti2))

ℓ


 ,
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where δ
(i,j)
n (t, s) is defined by (8.7).

Now for ℓ ≥ 1 and fixed t, s ∈ ] 0; 1 [ ,

4h

n

n−1∑

j1=0

n−1∑

j2=0

K(−1 + 2j1
n )K(−1 + 2j2

n )(δ(j1,j2)n (t, s))ℓ (8.9)

−−−−→
n→∞




κ2

+∞∫
−∞

ρℓH(x) dx, if t = s;

0, otherwise.

(8.10)

A proof of this last convergence is obtained, in case where t = s, by considering
Lemma 5.2. In case where t 6= s, the proof is simpler than that of Lemma 5.2.
Indeed by using inequality (7.13), we obtain the bound

|ρH(n(t− s) + 2h(j − i))| ≤ C( 1n )
4−2H ≤ C

n
.

Thus, remembering that γ
(i,j)
n (t, s) is defined by (8.7), using Lemma 8.3 page

984, we get the bound, for t 6= s,

∣∣∣δ(i,j)n (t, s)
∣∣∣ ≤ C

n
, (8.11)

where δ
(i,j)
n (t, s) is defined by (8.7).

So, |(8.9)| ≤ Ch. Thus we proved

lim
n→+∞

E[S(gL)
n (t)]2 = σ̃2

gL κ2
m∑

i=1

d2i .

To conclude the convergence of S
(gL)
n (t) we use again Theorem 1 of Peccati and

Tudor (2005) and as in the proof of Theorem 4.2, it is enough to prove that for
fixed ℓ and p, ℓ ≥ 2 and p = 1, . . . , ℓ− 1, limn→+∞ Bn = 0, where Bn is

Bn =

∫

R2(ℓ−p)

∣∣∣h(n,t)
ℓ ⊗p h

(n,t)
ℓ (λ1, . . . , λℓ−p, µ1, . . . , µℓ−p)

∣∣∣
2

dλ1 · · · dλℓ−p dµ1 · · · dµℓ−p,

where p-th contractions ⊗p are defined by (7.17).
Now we compute Bn and we get

Bn = 16 (ℓ!)4g4ℓ

m∑

i1=1

m∑

i2=1

m∑

i3=1

m∑

i4=1

di1di2di3di4

(
h2

n2

) n−1∑

j1=0

n−1∑

j2=0

n−1∑

j3=0

n−1∑

j4=0

K(−1 + 2j1
n )K(−1 + 2j2

n )K(−1 + 2j3
n )K(−1 + 2j4

n )
(
δ(j1,j2)n (ti1 , ti2)

)p
×

(
δ(j3,j4)n (ti3 , ti4)

)p (
δ(j1,j3)n (ti1 , ti3)

)ℓ−p (
δ(j2,j4)n (ti2 , ti4)

)ℓ−p

.
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As in the proof of Lemma 7.4, it is enough to prove that limn→+∞ An = 0,
where we define for i1, . . . , i4 fixed in {1, . . . ,m},

An =
h2

n2

n−1∑

j1=0

n−1∑

j2=0

n−1∑

j3=0

n−1∑

j4=0

K(−1+ 2j1
n )K(−1+ 2j2

n )K(−1+ 2j3
n )K(−1+ 2j4

n )×
∣∣∣δ(j1,j2)n (ti1 , ti2)

∣∣∣
∣∣∣δ(j3,j4)n (ti3 , ti4)

∣∣∣
∣∣∣δ(j1,j3)n (ti1 , ti3)

∣∣∣
∣∣∣δ(j2,j4)n (ti2 , ti4)

∣∣∣ .

We split the index intervals into two parts, CM and Cc
M , where for a fixed real

number M > 0,

CM = {(j1, j2, j3, j4) ∈ N
4, h |j1 − j2| > M or h |j1 − j3| > M

or h |j2 − j4| > M}.

In that way, we can write An as the sum of two terms corresponding to CM and
Cc

M respectively.

For the first term, we use the fact that, working as for the computation

of the asymptotic variance of S
(gL)
n (t), see (8.10), we can show that for all

t1, t2 ∈ ] 0; 1 [ ,

h
n

n−1∑

i=0

n−1∑

j=0

K(−1 + 2i
n )K(−1 + 2j

n )
∣∣∣δ(i,j)n (t1, t2)

∣∣∣ ≤ C

and that, |δ(i,j)n (t1, t2)| ≤ 1.

Furthermore, considering Lemma 8.3, inequalities (8.11) and (7.13), we obtain
and use the following bound:

for all t, s ∈ ] 0; 1 [ ,
∣∣∣δ(i,j)n (t, s)

∣∣∣ ≤ C(|ρH(2h(i− j))|+ 1
n ) ≤ CM2H−4

for M large enough, n ≥ nM and h |i− j| > M .

For the second term, we bound each of the four functions δ
(i,j)
n by 1 so that

for M large enough, we get

lim
n→∞

An ≤ C

(
M (2H−4) +M3 lim

n→∞
( 1
nh)
)
≤ CM2H−4,

since nh → +∞.

To conclude the proof of Theorem 5.2, we use the fact that 0 < H < 1 and
then limn→+∞ An = 0.

As mentioned after Corollary 5.1 and Lemma 5.1, Corollary 5.2 follows from

the fact that
√
nh(α̂n,µ(t)−E[α̂n,µ(t)]) is equivalent in L2 to S

(gk)
n (t)α(t), where

gk and α(t) are respectively defined by (4.7) and (5.6).

Remark 5.2 follows from the fact that, as mentioned after Lemma 5.1, for all

real k > 0,
√
nh(α̂n,0(t)− E[α̂n,0(t)]) is equivalent in L2 to S

(gk)
n (t)α(t).
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Proof of Theorem 5.3. Lemma 5.1 extended to a function µ not necessarily iden-
tically null and Corollary 5.2 give the following results. For all real k ≥ 1,

1) If nh5 −→
n→+∞

0,

(√
nh(α̂n,µ(t1)− α(t1)), . . . ,

√
nh(α̂n,µ(tm)− α(tm))

)

Law−−−−→
n→∞

N
(
0m; σ̃2

gk
κ2

Dm(α(t)
)
,

where Dm(α(t)) is the diagonal matrix of rank m with generic element
α2(ti), i = 1, . . . ,m and 0m is the null column vector of order m.

2) If nh5 −→
n→+∞

C,

(√
nh (α̂n,µ(t1)− α(t1)), . . . ,

√
nh(α̂n,µ(tm)− α(tm))

)

Law−−−−→
n→∞

N
(
bm(t); σ̃2

gk
κ2

Dm(α(t))
)
,

where bm(t) is the column vector of order m with generic element
√
Cα′′(ti)χ

2, i = 1, . . . ,m.

3) If nh5 −→
n→+∞

+∞,

1

h2
(α̂n,µ(t)− α(t))

P−→
n→+∞

α′′(t)χ2.

where gk, σ̃
2
gk
, κ2, α(t) and χ2 are respectively defined by (4.7), (3.3),

(3.5), (5.6) and (3.4).

Using that σ is strictly positive on [ 0; 1 ], we get Theorem 5.3.
Remark 5.3 follows from Lemma 5.1 and Remark 5.2.

Proof of Remark 5.4. Remember that coefficients g2p,k of function gk are given
by (4.8). Thus for real k > 0,

σ̃2
gk

k2
=

1

k2

+∞∑

p=1

1

(2p)!

p−1∏

i=0

(k − 2i)2
∫ +∞

−∞
ρ2pH (x) dx

=
1

2

∫ +∞

−∞
ρ2H(x) dx+

1

k2

+∞∑

p=2

1

(2p)!

p−1∏

i=0

(k − 2i)2
∫ +∞

−∞
ρ2pH (x) dx

≥ 1

2

∫ +∞

−∞
ρ2H(x) dx =

σ̃2
g2

22
.

Let k = 2ℓ, ℓ ∈ N, ℓ ≥ 1, then

σ̃2
g2ℓ

(2ℓ)2
=

ℓ∑

p=1

1
(2p)! (2ℓ)

2(p−1)

p−1∏

i=0

(
ℓ−i
ℓ

)2 ∫ +∞

−∞
ρ2pH (x) dx
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≤
ℓ+1∑

p=1

1
(2p)! (2(ℓ+ 1))2(p−1)

p−1∏

i=0

(
ℓ+1−i
ℓ+1

)2 ∫ +∞

−∞
ρ2pH (x) dx

=
σ̃2
g2(ℓ+1)

(2(ℓ+ 1))2

8.2. For the two gfOUp

Proof of Theorem 5.4. As we explained in Section 5.2, we have to prove two
lemmas, Lemma 5.3 and Lemma 5.4.

Proof of Lemma 5.3. For i = 0, 1, . . . , n − 1, we set ai = a
(i)
n (t) (see (5.1) for

the definition of a
(i)
n (t)). We define the random variable δ

(i)
n Xλ(t) as in (5.3),

Section 5.1.1. Let us suppose that Xλ is a solution of (2.8) (resp. (2.10)). Thus
using (2.9) (resp. (2.11)) and similarly as we did in the proof of Lemma 4.5,
with this notation we have

δ(i)n Xλ(t) = σ(ai)δ
(i)
n Y ⋆(t)

+ Y ⋆(ai +
1
n )
(
σ(ai +

1
n )− σ(ai)

)
+ Y ⋆(ai − 1

n )
(
σ(ai − 1

n )− σ(ai)
)

+



∫ ai

ai− 1
n

−
∫ ai+

1
n

ai


σ′(u)Y ⋆(u) du

+



∫ ai+

1
n

ai

−
∫ ai

ai− 1
n


 (µ̃(Xλ(u))− µ̃(Xλ(ai))) du

where Y ⋆ is Y (resp. bH) and the process δ
(i)
n Y ⋆ is defined by (5.3), Section

5.1.1. Here µ̃(x) = −λx (resp. µ(x)).
With arguments very similar to the ones given in Lemma 4.5, using (A.1),

we finally proved that, for any δ > 0,

∣∣∣∆(i)
n Xλ(t)− σ(a(i)n (t))∆(i)

n Y ⋆(t)
∣∣∣ ≤ C(ω)

(
1
n

)1−δ
,

that yields the lemma.

Proof of Lemma 5.4. Let us suppose that Xλ is a solution of (2.8) (resp. (2.10)).
Remember that Y ⋆ stands for Y (resp. bH) and that σ⋆

n,1 is σn,1 (resp. 1) where
σn,1 is defined by (4.9).

For all real k ≥ 1, we can decompose α̂n,λ(t)− α(t) as

α̂n,λ(t)− α(t) =

[
2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n Y ⋆(t)
σ⋆
n,1

)
σk(a(i)n (t)) (σ⋆

n,1)
k

]

(1)
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+

[(
2

n

n−1∑

i=0

K(−1 + 2i
n )σ

k(a(i)n (t)) (σ⋆
n,1)

k

)
− α(t)

]

(2)

+

[
2

n

n−1∑

i=0

K(−1 + 2i
n )

1

E[|N |k]

(
|∆(i)

n Xλ(t)|k − σk(a(i)n (t)) |∆(i)
n Y ⋆(t)|k

)]

(3)

,

(8.12)

where the function gk is defined by (4.7). The three terms in brackets in (8.12)
are denoted respectively by (1), (2) and (3) in the following.

Note that Var[∆
(i)
n Y ⋆(t)] = Var[∆nY

⋆(i)] = (σ⋆
n,1)

2, where ∆nY
⋆(i) has been

defined by (4.1), Section 4.1.1.
As in the proof of Lemma 4.3, for k ≥ 1 we consider inequality (A.2) applied

to x = ∆
(i)
n Xλ(t) and y = σ(a

(i)
n (t))∆

(i)
n Y ⋆(t). Using Lemma 7.1 with X0 = Y ⋆,

we can prove that for i ∈ {1, . . . , n− 1},
∣∣∣∆(i)

n Y ⋆(t)
∣∣∣ ≤ C(ω)nδ. (8.13)

Furthermore using that the function K is bounded on [−1; 1 ] and Lemma 5.3,
since k ≥ 1, we get

|(3)| ≤ Ck(ω)

(
1

n

)1−δk

.

Choosing δ small enough, that is δ < 1
2k , we then obtain that (3) = oa.s.(

1√
nh

).

Using (7.7) for σ⋆
n,1 and inequality (8.13), one can prove that

(1) + (2) =
2

n

n−1∑

i=0

K(−1 +
2i

n
)gk

(
∆(i)

n Y ⋆(t)
σ⋆
n,1

)
σk(a(i)n (t))+

(
2

n

n−1∑

i=0

K(−1 + 2i
n )σ

k(a(i)n (t))

)
− α(t) + oa.s.

(
1√
nh

)

Thus lemma follows.

Now to finish the proof of the theorem, let us remark that a proof similar
to that of Lemma 5.1 and to that of Corollary 5.2 for µ ≡ 0, where we replace

(σ
(i)
n (t))k by σk(a

(i)
n (t)) lead to the following

1

h2

(
2

n

n−1∑

i=0

K(−1 + 2i
n )σ

k(a(i)n (t)) − α(t)

)
−→

n→+∞
α′′(t)χ2,

where χ2 is defined by (3.4) and

√
nh

(
2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n Y ⋆(t)
σ⋆
n,1

)
σk(a(i)n (t))

)
≡ σk(t)S

(gk)
n,⋆ (t), (8.14)
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where for any function g described in the notations, we defined

S
(g)
n,⋆(t) = 2

√
h

n

n−1∑

i=0

K(−1 + 2i
n )g

(
∆(i)

n Y ⋆(t)
σ⋆
n,1

)
.

Theorem 5.2 with g = gk ∈ L2(φ(x) dx) and the fact that function σ is strictly
positive on interval [0; 1] give Theorem 5.4.

8.3. For the fDrc

Proof of Theorem 5.5. As explained in Section 5.3, we just have to prove The-
orem 5.6.

Proof of Theorem 5.6. We defined T
(f,g)
n (t) as

T (f,g)
n (t) = 2

√
h

n

n−1∑

i=0

K(−1 + 2i
n )g

(
∆(i)

n Y (t)
σn,1

)
f(Y (t)),

where g is a general function with (2+δ)-moments with respect to the standard
Gaussian measure, even, or odd, with a Hermite rank greater than or equal
to one and such that Ag 6= ∅ (for the definition of Ag, see Section 3). Also, f
belongs to C2 on R, such that for all x ∈ R, |f ′′(x)| ≤ P (|x|), where P is a
polynomial.

Also we defined the random variable Xn,p(t) by

Xn,p(t) =
2

n

n−1∑

i=0

K(−1 + 2i
n )

(
Y (a

(i)
n (t))− Y (t)

hH

)
p(Y (t)),

for p a continuous function on R.
Let define

S
(g)
n,1(t) = 2

√
h

n

n−1∑

i=0

K(−1 + 2i
n )g

(
∆(i)

n Y (t)
σn,1

)
,

and note that Var[∆
(i)
n Y (t)] = Var[∆nY (i)] = (σn,1)

2.
We want to prove that

(
T (f,g)
n (t), Xn,p(t)

)
Law−−−−→
n→∞

(σ̃g f(Y (t))U(t), p(Y (t))V (t)) ,

where U , V and Y are as in Theorem 5.5.
For this, we just have to prove that

(
S
(g)
n,1(t), Xn(t), Y (t)

)
Law−−−−→
n→∞

(σ̃g U(t), V (t), Y (t)) ,

where we define Xn(t) by Xn,p(t) for p ≡ 1.
As in the proof of Lemma 7.6, we can suppose that g(x) =

∑∞
ℓ=2 gℓHℓ(x).
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Indeed, since
∫ +∞
−∞ ρH(x) dx = 0, it follows by Lemma 5.2 applied to X0 = Y

and g = H1 that 2
√

h
n

∑n−1
i=0 K(−1+ 2i

n )
∆(i)

n Y (t)
σn,1

tends to zero in L2 as n tends

to infinity.
Let b1, . . . , bm, c1, . . . , cm be real constants. First, we will establish the limit

distribution of
m∑

j=1

bj Y (tj) +

m∑

j=1

cj Xn(tj) + S
(gL)
n,1 (t),

where we define S
(gL)
n,1 (t) as in the proofs of Theorem 5.2 and of Corollary 5.2

by

S
(gL)
n,1 (t) =

m∑

i=1

diS
(gL)
n,1 (ti),

with d1, . . . , dm ∈ R and gL(x) =
∑L

ℓ=2 gℓHℓ(x) where we fixed L ∈ N
∗.

For this, we remark that the random variable
∑m

j=1 bj Y (tj) +
∑m

j=1 cj Xn(tj)

belongs to the first chaos and that the random variable S
(gL)
n,1 (t) belongs to the

superior order one and converges by Theorem 5.2 toward the Gaussian cen-
tered random variable

∑m
i=1 di σ̃gLU(ti), where (U(t1), . . . , U(tm)) is a centered

Gaussian vector, such that E[U(t)U(s)] = 1{t=s}κ
2, and where σ̃gL is defined by

(3.3). Furthermore, straightforward computations show that for all 0 < s, t < 1,
lim

n→+∞
E[Xn(t)Y (s)] = 0 and that

lim
n→+∞

E[Xn(t)Xn(s)]

= 1{t=s} lim
n→∞

(
n2H

a2(n)

)
1

v22H(4− 4H)
E

[∫ +1

−1

K(u)bH(u) du

]2

= α(t, s).

So that the centered Gaussian random variable
∑m

j=1 bj Y (tj) +
∑m

j=1 cj Xn(tj)

converges in law to the centered Gaussian random variable
∑m

j=1 bj Y (tj) +∑m
j=1 cj V (tj), where (V (t1), . . . , V (tm)) is a centered Gaussian vector, inde-

pendent of (Y (t1), . . . , Y (tm)) such that E [V (t)V (s)] = α(t, s).
By Theorem 1 of Peccati and Tudor (2005), we finally proved that the random

variable

m∑

j=1

bj Y (tj) +
m∑

j=1

cj Xn(tj) + S
(gL)
n,1 (t)

Law−−−−→
n→∞

m∑

j=1

bj Y (tj) +

m∑

j=1

cj V (tj) +

m∑

i=1

diσ̃gLU(ti),

where (U(t1), . . . , U(tm)), (V (t1), . . . , V (tm)) and (Y (t1), . . . , Y (tm)) are inde-
pendent.

As in the proof of Theorem 4.2, by using that σ̃gL → σ̃g as L → +∞ and
(Dynkin, 1988, Lemma 1.1), we finally proved Theorem 5.6.
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Thus Theorem 5.5 follows.

Appendix

A.1. Concerning the functional estimation of σ

Proof of Lemma 4.2. For i = 0, 1, . . . , n− 2, we have by (4.4),

1

a(n)
Fn,µ(i) =

(∫ i+2
n

i+1
n

−
∫ i+1

n

i
n

)
(
µ(u)− µ( i+1

n )
)
du = (1)

Since µ is Lipschitz on [ 0; 1 ], we get

(1) = O(n−2).

To conclude the proof of this lemma we just have to prove that

a(n) = O(nH). (A.1)

For Y , a solution of model (2.2), it is obvious. Now if Y is a solution of models
(2.5) or (2.6), using that r(t) = 1−L(t)t2H for 0 < t ≤ 1 and that limt→0+ L(t) =
C0 > 0, the result comes easily.

Proof of Lemma 4.3. For k ≥ 1, we consider the following inequality. For all
reals x and y,

∣∣∣|x|k − |y|k
∣∣∣ ≤ 2(k−1)k |x− y|

(
|x− y|k−1 + |y|k−1

)
. (A.2)

We apply this inequality to x = ∆nXµ(i) and to y = ∆nX0(i). We obtain

|An(h)| ≤ Ck
1

n− 1

n−2∑

i=0

∣∣h( i
n )
∣∣ |Fn,µ(i)|

(
|Fn,µ(i)|k−1

+ |∆nX0(i)|k−1
)
.

We use the modulus of continuity of X0 (see Lemma 7.1, p. 962), and Lemma
4.2. Thus, since |h| is bounded in [ 0; 1 ], we get

|An(h)| ≤ Ck(ω)
∣∣∣
(
( 1
n )

k(2−H) + ( 1n )
2−H−δ(k−1)

)∣∣∣ ≤ Ck(ω)(
1
n )

2−H−δ(k−1).

Obviously, if k = 1 then 2 − H − δ(k − 1) > 1
2 . Otherwise, choosing δ small

enough, that is δ < 1
2(k−1) , we then have 2 −H − δ(k − 1) > 1

2 . In both cases

we get Lemma 4.3.

Proof of Lemma 4.4. We decompose Bn(h) as

Bn(h) =
n

n− 1
S
(n)

gk,hσk(1) +

[ √
n

E[|N |k]
An(h)

]

(A)
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+

[
√
n

(
1

n− 1

n−2∑

i=0

h( i
n )σ

k( i
n )−

∫ 1

0

h(u)σk(u) du

)]

(B)

(A.3)

+

[ √
n

(n− 1)

n−2∑

i=0

h( i
n )

1

E[|N |k]

∣∣∣∣
∆nX0(i)

σn(i)

∣∣∣∣
k (

σk
n(i)− σk( i

n )
)
]

(C)

=
n

n− 1
S
(n)

gk,hσk(1) + (A) + (B) + (C),

where the function gk is defined by (4.7) and An(h) is defined by Lemma 4.3
page 936. Obviously, (A), (B) and (C) are the last three terms of (A.3).

Since h and σ belong to C1 on [ 0; 1 ] and σ is strictly positive on [ 0; 1 ],
then for all real k > 0, hσk belongs to C1 on [ 0; 1 ]. Thus we can apply (7.6)
to this last function with a = 1 so that (B) = o(1).

Now, using inequality (7.4) by choosing δ small enough, that is δ < 1
2k ,

equation (7.7) and the strictly positivity of σ on [ 0; 1 ], we get, since h is
bounded on [ 0; 1 ], that for all real k > 0, (C) = oa.s.(1).

Finally using Lemma 4.3, (A) = oa.s.(1).
Remark follows from the fact that (A) vanishes when µ ≡ 0.

Proof of Lemma 7.1. For u, v ≥ 0, by equation (2.7)

X0(v) −X0(u) = σ(v)(Y (v)− Y (u)) + Y (u)(σ(v) − σ(u))−
∫ v

u

σ′(t)Y (t) dt.

We prove that the trajectories of Y are (H − δ)-Hölder continuous on [ 0; 1 ], in
other words, for any δ > 0, 0 ≤ u, v ≤ 1,

|Y (v)− Y (u)| ≤ C(ω) |v − u|H−δ
. (A.4)

Suppose that for the moment this inequality is proved. In this case, using that
σ belongs to C1 on [ 0; 1 ], we obtain, for any δ > 0, 0 ≤ u, v ≤ 1,

|X0(v) −X0(u)| ≤ C(ω) {|v − u|H−δ
+ |v − u|} ≤ C(ω) |v − u|H−δ

.

Now, let us prove (A.4).
If Y is solution of equation (2.2) (resp. (2.5) or (2.6)), then for s and t ∈ [ 0; 1 ]

E[Y (t)− Y (s)]2 = E[Y ⋆⋆(t)− Y ⋆⋆(s)]2

+

[
4

∫ +∞

−∞
sin2(λ(t−s)

2 )G(λ) dλ

]

(1)

= E[Y ⋆⋆(t)− Y ⋆⋆(s)]2 + (1),

where Y ⋆⋆ is a solution of equation (2.2) (resp. (2.5) or (2.6)), with G ≡ 0.
On the one hand, if Y is a solution of (2.2), note that Y ⋆⋆ = bH and the

fBm with parameter 0 < H < 1 has (H − δ)-Hölder continuous trajectories on
[ 0; 1 ].
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On the other hand, if Y is a solution of (2.5) or (2.6), then E[Y ⋆⋆(t) −
Y ⋆⋆(s)]2 = 2(1−r(t−s)). As continuous function on ] 0; 1 ], since limt→0+ L(t) =
C0, L is bounded on ] 0; 1 ]. Thus 1− r(x) ≤ C x2H , for x ∈ [ 0; 1 ].

Finally, using that sin2(x) ≤ Cx2, for all x ∈ R, that
∫ +∞
−∞ λ2G(λ) dλ < +∞

and 0 < H < 1, we get that (1) ≤ C |t− s|2H , in such a way that E[Y (t) −
Y (s)]2 ≤ C |t− s|2H .

Applying the Kolmogorov result (see Billingsley (1999)), we yield inequality
(A.4), which completes proof of lemma.

Proof of Lemma 7.2. For reason of simplicity let us suppose thatH > 1
2 . Similar

calculations could be done in case where H ≤ 1
2 . For x ∈ R, let K̃(x) be

K̃(x) =

∫ +∞

−∞
λ2G(λ) exp(iλx) dλ. (A.5)

For Y , a solution of models (2.2), (2.5) or (2.6) and i = 0, 1, . . . , n − 2, we
have

1

a2(n)

(
σ2
n(i)− σ2( i

n )
)
=

[(∫ i+2
n

i+1
n

∫ i+2
n

i+1
n

+

∫ i+1
n

i
n

∫ i+1
n

i
n

−2

∫ i+1
n

i
n

∫ i+2
n

i+1
n

)

(
σ(u)σ(v) − σ2( i

n )
) (

R(|u− v|) + K̃(u− v)
)
dv du

]

(1)

+

[
2σ2( i

n )

(∫ 1
n

0

∫ 1
n

0

−
∫ 0

− 1
n

∫ 1
n

0

)
K̃(u− v) dv du

]

(2)

,

where R is defined for t ∈]0, 1], by

R(t) =

{
H(2H − 1)v22Ht2H−2, if Y is a solution of (2.2)

−r′′(t), if Y is a solution of (2.5) or (2.6)

(A.6)

where we recall that v22H is defined by (2.4).
Since σ belongs to C1 on [ 0; 1 ], we write σ(u) = σ( i

n ) + (u − i
n )σ

′( i
n +

θu(u − i
n )), with 0 < θu < 1. We do the same for v.

As already seen in the proof of Lemma 7.1, L is bounded on ]0, 1]. Further-
more, L has two continuous derivatives except at the origin where, tL′(t) = O(1)
and t2L′′(t) = O(1), as t → 0+. So that for t ∈ ] 0; 1 ], we have

|R(t)| ≤ Ct2H−2. (A.7)

Using that σ and σ′ are bounded on [ 0; 1 ], that K̃ is bounded on R since∫ +∞
−∞ λ2G(λ) dλ < +∞ and the fact that 0 < H < 1, we get
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(1) =

(∫ i+2
n

i+1
n

∫ i+2
n

i+1
n

+

∫ i+1
n

i
n

∫ i+1
n

i
n

−2

∫ i+1
n

i
n

∫ i+2
n

i+1
n

)
σ′( i

n + θu(u− i
n ))×

(R(|u− v|) + K̃(u − v))
{
(u− i

n )σ
′( i

n + θu(u− i
n ))[

σ( i
n ) + σ′( i

n + θv(v − i
n ))(v − i

n )
]
+

σ′( i
n + θv(v − i

n ))(v − i
n )σ(

i
n )
}
dv du = O

(
1

n2H+1

)
.

Since
∫ +∞
−∞ |λ|3 G(λ) dλ < +∞, the function K̃, defined by equation (A.5),

belongs to C1 on R. So, to tackle term (2), we use the first order Taylor approx-

imation of K̃, that is, K̃(u − v) = K̃(0) + (u − v)K̃ ′(θu,v(u − v)), for u, v ∈ R,
with 0 < θu,v < 1. In this way

(2) = 2σ2( i
n )

(∫ 1
n

0

∫ 1
n

0

−
∫ 0

− 1
n

∫ 1
n

0

)
(u − v)K̃ ′(θu,v(u − v)) dv du.

Since K̃ ′ is bounded on R and σ in bounded on [ 0; 1 ], we get that (2) =
O(n−3) = O(n−(2H+1)), since 0 < H < 1.

Equality (A.1) gives lemma.

Proof of Lemma 7.3. For reason of simplicity, let us suppose thatH > 1
2 . A sim-

ilar proof could be done in case where H ≤ 1
2 .

Recall that functions R, K̃ and ρH are respectively defined by equalities
(A.6), (A.5) and (3.1). We remember that if Y is a solution of equation (2.2)
(resp. (2.5), resp. (2.6)), then the notation Y ⋆⋆ stands for the solution process
of equation (2.2) (resp. (2.5), resp. (2.6)), with G ≡ 0. With these notations, we
have

γn(i, j) =

[
a2(n)

(∫ i+2
n

i+1
n

∫ j+2
n

j+1
n

−
∫ i+2

n

i+1
n

∫ j+1
n

j
n

−
∫ i+1

n

i
n

∫ j+2
n

j+1
n

+

∫ i+1
n

i
n

∫ j+1
n

j
n

)

(
σ(u)σ(v) − σ( i

n )σ(
j
n )
) (

R(|u− v|) + K̃(u− v)
) dv

σn(i)

du

σn(j)

]

(1)

+

[
a2(n)

σ( i
n )σ(

j
n )

σn(i)σn(j)

(∫ i+2
n

i+1
n

∫ j+2
n

j+1
n

−
∫ i+2

n

i+1
n

∫ j+1
n

j
n

−
∫ i+1

n

i
n

∫ j+2
n

j+1
n

+

∫ i+1
n

i
n

∫ j+1
n

j
n

)

K̃(u − v) dv du

]

(2)

+

[(∫ i+2
n

i+1
n

∫ j+2
n

j+1
n

−
∫ i+2

n

i+1
n

∫ j+1
n

j
n

−
∫ i+1

n

i
n

∫ j+2
n

j+1
n

+

∫ i+1
n

i
n

∫ j+1
n

j
n

)

a2(n)

(
σ( i

n )σ(
j
n )

σn(i)σn(j)
− 1

)
R(|u− v|) dv du

]

(3)
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[(

a2(n)

n2H
× lim

n→∞

(
a2(n)

n2H

)−1

− 1

)
× lim

n→∞

(
a2(n)

n2H

)
n2H

(∫ i+2
n

i+1
n

∫ j+2
n

j+1
n

−
∫ i+2

n

i+1
n

∫ j+1
n

j
n

−
∫ i+1

n

i
n

∫ j+2
n

j+1
n

+

∫ i+1
n

i
n

∫ j+1
n

j
n

)
R(|u− v|) dv du

]

(4)

+

[
n2H lim

n

(
a2(n)

n2H

)
E[δnY

⋆⋆(i)δnY
⋆⋆(j)]− ρH(i− j)

]

(5)

where the process δnY
⋆⋆ is defined by (4.2), Section 4.1.1.

If i = j, we get γn(i, j) = 0 and the proof of the lemma is trivial. Thus we
suppose i 6= j. We fix an integer M ≥ 4. We look at the term (1).

As in the proof of Lemma 7.2, we write σ(u) = σ( i
n )+(u− i

n )σ
′( i

n+θu(u− i
n )),

and we do the same for v.
Then we use the fact that since σ is strictly positive on [ 0; 1 ], by (7.7) for

k = 1, we have, for i = 0, . . . , n− 2 and n large enough,

σn(i) ≥ C > 0. (A.8)

The functions σ and σ′ are bounded on [ 0; 1 ]. More, the function K̃ is bounded

on R since
∫ +∞
−∞ λ2G(λ) dλ < +∞. So, using (A.7) and (A.1), we see that there

exists M0 ∈ N
∗, such that for all M ≥ M0, for all n ≥ M ,

|(1)| ≤ C

n1−2H

(∫ i+2
n

i+1
n

∫ j+2
n

j+1
n

+

∫ i+2
n

i+1
n

∫ j+1
n

j
n

+

∫ i+1
n

i
n

∫ j+2
n

j+1
n

+

∫ i+1
n

i
n

∫ j+1
n

j
n

)

(
|v − u|2H−2

+ 1
)
dv du

≤ C

n

{
CM1{|i−j|≤(M−1)} + |i− j|(2H−2)

1{|i−j|≥M} +
1

n2−2H

}

≤ C

n

{
CM1{|i−j|≤(M−1)} +M2H−2

}
.

For term (2), we use the fact that since
∫ +∞
−∞ |λ|3 G(λ) dλ < +∞, the function

K̃ belongs to C1 on R. As in the proof of Lemma 7.2, we use the first order
Taylor expansion of K̃, that is, for u, v ∈ R, K̃(u − v) = K̃( i

n − j
n ) + (u −

i
n − (v − j

n ))K̃
′(( i

n − j
n ) + θi,j,u,v(u− i

n − (v− j
n ))), with 0 < θi,j,u,v < 1. Thus

(2) = a2(n)
σ( i

n )σ(
j
n )

σn(i)σn(j)

(∫ i+2
n

i+1
n

∫ j+2
n

j+1
n

−
∫ i+2

n

i+1
n

∫ j+1
n

j
n

−
∫ i+1

n

i
n

∫ j+2
n

j+1
n

+

∫ i+1
n

i
n

∫ j+1
n

j
n

)

(u− i
n − (v − j

n ))K̃
′(( i

n − j
n ) + θi,j,u,v(u − i

n − (v − j
n ))) dv du.

By (A.1) and (A.8) and the fact that functions K̃ ′ and σ are respectively
bounded on R and on [ 0; 1 ], we get that for n ≥ M ,

|(2)| ≤ C

(
1

n3−2H

)
≤ C

1

n
M2H−2,

since H < 1.
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Let us look at the term (3). Using (7.7) for k = 1 and inequality (A.8), it is

easy to see that for n large enough, | σ(
i
n
)σ( j

n
)

σn(i)σn(j)
− 1| ≤ C

n . Thus, using (A.7) and

(A.1), as for term (1), we obtain that there exists M0 ∈ N
∗, such that for all

M ≥ M0, for all n ≥ M ,

|(3)| ≤ C

n

{
CM1{|i−j|≤(M−1)} +M (2H−2)

}
.

Finally we look at terms (4) and (5). Note that if Y is a solution of (2.2), these
two terms vanish. So, we now look at Y , a solution of (2.5) or (2.6).

For term (4), using that r(t) = 1−L(t)t2H for 0 < t ≤ 1 and that limt→0+ L(t) =
C0, we obtain

lim
n→∞

(
n2H

a2(n)

)
= 2 (4− 4H)C0. (A.9)

Furthermore, knowing that L(t)− C0 = O(t2H) as t → 0+, we get

∣∣∣∣
a2(n)

n2H
2 (4− 4H)C0 − 1

∣∣∣∣ ≤ C

(
1

n

)2H

. (A.10)

Now, as for term (1), we use (A.7) and obtain

|(4)| ≤ C

n2H

{
CM1{|i−j|≤(M−1)} +M (2H−2)

}

≤ C

n

{
CM1{|i−j|≤(M−1)} +M (2H−2)

}
,

since H > 1
2 .

To complete the proof of this lemma, we look at term (5). If |i− j| = 1 or
|i− j| = 2, using the equality L(t) − C0 = O(t2H) as t → 0+ and (A.9), it
is easy to prove that |(5)| ≤ C

n2H ≤ C

n , since H > 1
2 . So let us suppose that

|i− j| ≥ 3. Since Y is a solution of equations (2.5) or (2.6), using (A.9) we
have

(5) = n2H

2 (4−4H)C0

(
−6F ( i−j

n ) + 4F ( i−j−1
n ) + 4F ( i−j+1

n )−F ( i−j−2
n )− F ( i−j+2

n )
)
,

where the function F is defined by

F (x) = (L(x)− C0) |x|2H , for x ∈ R
∗. (A.11)

On the one hand, let us suppose that 3 ≤ |i− j| ≤ (M − 1). As already seen in
Lemma 7.1, L is bounded on ] 0; 1 ] and L(t) − C0 = O(t2H) as t → 0+, so for
t ∈]0, 1], we have |L(t)− C0| ≤ Ct2H . Thus we get

|(5)| ≤ CM ( 1
n2H ) ≤ CM ( 1

n ),

since H > 1
2 .
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On the other hand, if |i− j| ≥ M , we use a third order Taylor expansion of
F about x = (i− j)/n. We get that there exists 0 < θk < 1, for k = 1, 2, 3, 4
such that

(5) = n2H−3

3 (4−4H)C0

(
−F ′′′( i−j

n − θ1
n ) + F ′′′( i−j

n + θ2
n )+

2F ′′′( i−j
n − 2 θ3

n )− 2F ′′′( i−j
n + 2 θ4

n )
)
.

Since by hypothesis for t ∈]0, 1], we have |F ′′′(t)| ≤ Ct(4H−3), thus there exists
M0 ∈ N

∗, such that for all M ≥ M0 and n ≥ M ,

|(5)| ≤ C

[
1

n2H
.

1

M (3−4H)
1H< 3

4
+

1

n3−2H
1H≥ 3

4

]
≤ C( 1n )(

1
M )(2−2H),

since H > 1
2 .

That yields Lemma 7.3.

Proof of Lemma 7.5. First we compute E[Tn(h)]
2. In this aim, we decompose

this expectation into two terms S1 and S2 where

S1 =
1

n

n−2∑

i,j=0
i6=j

E
[
h(Y ( i

n ))h(Y ( j
n )) g

(
∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]

S2 =
1

n

n−2∑

i=0

E
[
h2(Y ( i

n )) g
2
(

∆nY (i)
σn,1

)]
,

where we recall that σn,1 is defined by (4.9).
Let us consider S1. We fix i, j ∈ {0, 1, . . . , n− 2}, i 6= j and we consider the

change of variables

Y ( i
n ) = Z1,n(i, j) +A1,n(i, j)

∆nY (i)

σn,1
+A2,n(i, j)

∆nY (j)

σn,1
,

Y ( j
n ) = Z2,n(i, j) +B1,n(i, j)

∆nY (i)

σn,1
+B2,n(i, j)

∆nY (j)

σn,1
,

with (Z1,n(i, j), Z2,n(i, j)) a zero mean Gaussian vector independent of (∆nY (i),
∆nY (j)) and

A1,n(i, j) =
E[Y ( i

n )
∆nY (i)
σn,1

]− δn,1(i − j) E[Y ( i
n )

∆nY (j)
σn,1

]

1− δ2n,1(i− j)
,

A2,n(i, j) =
E[Y ( i

n )
∆nY (j)
σn,1

]− δn,1(i− j) E[Y ( i
n )

∆nY (i)
σn,1

]

1− δ2n,1(i− j)
,

where δn,1(i− j) is defined in (7.22).
Two similar formulas hold for B1,n(i, j) and B2,n(i, j).
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For |i− j| ≥ 1, one has 1−ρ2H(i− j) ≥ C > 0, so that by Lemma 7.3 applied
to X0 = Y , one can show that for |i− j| ≥ 1, 1 − δ2n,1(i − j) ≥ C > 0. Thus a
straightforward computation shows that for i 6= j

max
k=1,2

|Ak,n(i, j), Bk,n(i, j)| ≤ C n−H . (A.12)

Writing the Taylor expansion of h one has,

h(Y ( i
n )) =

3∑

k=0

1

k!
h(k)(Z1,n(i, j))

[
A1,n(i, j)

∆nY (i)

σn,1
+A2,n(i, j)

∆nY (j)

σn,1

]k

+
1

4!
h(4)(θ1,n(i, j))

[
A1,n(i, j)

∆nY (i)

σn,1
+A2,n(i, j)

∆nY (j)

σn,1

]4
,

with θ1,n(i, j) between Y ( i
n ) and Z1,n(i, j).

A similar formula holds for f(Y ( j
n )).

We can decompose S1 as the sum of twenty-five terms. We use the notations
Jj1,j2 for the corresponding sums, where j1, j2 = 0, . . . , 4 are the subscripts
involving h(j1) and h(j2). We only consider Jj1,j2 with j1 ≤ j2. Then we obtain
the following:

(A) One term of the form

J0,0 =
1

n

n−2∑

i,j=0
i6=j

E [h(Z1,n(i, j))h(Z2,n(i, j))] E
[
g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]
.

We recall that we defined function β in (7.11) by

β(k) = E[g(∆nbH(0))g(∆nbH(k))] =
+∞∑

p=1

g2p p! ρ
p
H(k).

Using the fact that |h′′(x)| ≤ P (|x|) and inequality (A.12), we can prove that
for i 6= i,

∣∣E[h(Z1,n(i, j))h(Z2,n(i, j))]− E[h2(Y ( i
n ))]

∣∣ ≤ C

∣∣∣∣
i− j

n

∣∣∣∣
H

.

Also by using that g ∈ L2(φ(x) dx) and Mehler’s formula, one can prove that
∣∣∣E
[
g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]∣∣∣ ≤ C |δn,1(i− j)| .

Finally, using Lemma 7.3 applied to X0 = Y , and the fact that since H < 1,
+∞∑

k=−∞
|k|H |ρH(k)| < +∞ (see inequality (7.13)), one obtains

J0,0 ≡ 1

n

n−2∑

i,j=0
i6=j

E[h2(Y ( i
n ))] E

[
g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]
.
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Now, as in the proof of Theorem 4.2, one can prove since i 6= j, that

∣∣∣E
[
g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]
− β(i − j)

∣∣∣ ≤ C |γn,1(i− j)| ,

where we recall that γn,1 is defined by (7.22). By using Lemma 7.3 applied to
X0 = Y , we finally get that

J0,0 ≡ 1

n

n−2∑

i,j=0
i6=j

E[h2(Y ( i
n ))]β(i − j).

Then we follow the proof given in Berzin, Latour and León (2014) to obtain
that

lim
n→+∞

J0,0 =




+∞∑

k=−∞
k 6=0

β(k)



(∫ 1

0

E[h2(Y (u))] du

)
. (A.13)

(B) One term of the form J0,1 ≡ 0 by a symmetry argument: if L(U, V ) =
N(0,Σ) then E[U g(U) g(V )] = 0 for g even or odd.

(C) Two terms of the form

J0,2 =
1

2n

n−2∑

i,j=0
i6=j

E[h(Z1,n(i, j))h
′′(Z2,n(i, j))]×

E

[
g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)(
B1,n(i, j)

∆nY (i)

σn,1
+B2,n(i, j)

∆nY (j)

σn,1

)2
]
.

Since |δn,1(i− j)| ≤ 1, g is even, or odd with Hermite rank greater than or equal
to three, then

∣∣∣∣∣E
[
g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)(
B1,n(i, j)

∆nY (i)

σn,1
+B2,n(i, j)

∆nY (j)

σn,1

)2
]∣∣∣∣∣

≤ C

(
max
k=1,2

B2
k,n(i, j)

)
|δn,1(i− j)| .

Using (A.12), Lemma 7.3 applied to X0 = Y and since 1
n

n∑
i=0

n∑
j=0

|ρH(i− j)| ≤

2
+∞∑
i=0

|ρH(i)| < +∞, we get J0,2 = O(n−2H) = o(1).

(D) Two terms of the form J0,3 ≡ 0 by a symmetry argument: if L(U, V ) =
N(0,Σ) then E[(aU + bV )3 g(U) g(V )] = 0 for any two constants a and b and
for function g even or odd.
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(E) Three terms of the form

J0,4 =
1

4!n

n−2∑

i,j=0
i6=j

E

[
h(Z1,n(i, j))h

(4)(θ2,n(i, j))g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)

×
{
B1,n(i, j)

∆nY (i)

σn,1
+B2,n(i, j)

∆nY (j)

σn,1

}4
]
.

Therefore

|J0,4| ≤ C
1

n

n−2∑

i,j=0
i6=j

(
max
k=1,2

B4
k,n(i, j)

)
.

Finally using (A.12) once again, one obtains

J0,4 = O(n−(4H−1)) = o(1),

since H > 1
4 .

Using the same type of arguments as for (C), (D), (E) we can prove that the
other terms are all o(1). Thus using (A.13) we proved that

lim
n→+∞

S1 =

(
+∞∑

k=−∞
k 6=0

β(k)

) (∫ 1

0

E[h2(Y (u))] du

)
.

Let us now consider S2. Similar computations, holding i fixed and doing a

regression of Y ( i
n ) on

∆nY (i)
σn,1

, give that

lim
n→+∞

S2 = β(0)

(∫ 1

0

E[h2(Y (u))] du

)
.

Thus we proved that

lim
n→+∞

E [Tn(h)]
2 = σ2

g

(∫ 1

0

E[h2(Y (u))] du

)
. (A.14)

Now let us compute E[T
(m)
n (h)]2. We decompose the last expression into two

terms: S1 + S2, where

S1 =

m−1∑

ℓ1,ℓ2=0
ℓ1 6=ℓ2

1

n

⌊n(ℓ1+1)
m

⌋−2∑

i=⌊nℓ1
m

⌋−1

⌊n(ℓ2+1)
m

⌋−2∑

j=⌊nℓ2
m

⌋−1

E

[
h(Y ( ℓ1m ))h(Y ( ℓ2m ))

× g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]
,
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and

S2 =
m−1∑

ℓ=0

1

n

⌊n(ℓ+1)
m

⌋−2∑

i=⌊nℓ
m

⌋−1

⌊n(ℓ+1)
m

⌋−2∑

j=⌊n
ℓ
m⌋−1

E
[
h2(Y ( ℓ

m ))g
(

∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]
.

First we look at the first term. For fixed ℓ1 6= ℓ2 and i, j (in this case i is necessar-

ily different from j), we use the regression of (Y ( ℓ1m ), Y ( ℓ2m )) on (∆nY (i)
σn,1

, ∆nY (j)
σn,1

).

In the same way, we can prove that

lim
n→+∞

S1 =

m−1∑

ℓ1,ℓ2=0
ℓ1 6=ℓ2

E
[
h(Y ( ℓ1m ))h(Y ( ℓ2m ))

]
×

lim
n→+∞

1

n

⌊n(ℓ1+1)
m

⌋−2∑

i=⌊nℓ1
m

⌋−1

⌊n(ℓ2+1)
m

⌋−2∑

j=⌊nℓ2
m

⌋−1

β(i − j) = 0

where last equality follows from convergence seen in (7.23).
Then for the second term S2, for fixed ℓ, i, j, using a regression of Y ( ℓ

m ) on

(∆nY (i)
σn,1

, ∆nY (i)
σn,1

) if i 6= j and on ∆nY (i)
σn,1

otherwise, as before similar straightfor-

ward calculations show that

lim
n→+∞

E[T (m)
n (h)]2 = lim

n→+∞
S2 = σ2

g

(
1

m

m−1∑

ℓ=0

E
[
h2(Y ( ℓ

m ))
]
)
,

and then

lim
m→+∞

lim
n→+∞

E[T (m)
n (h)]2 = σ2

g

(∫ 1

0

E[h2(Y (u))] du

)
. (A.15)

To conclude the proof of the lemma, we have to compute E[Tn(h)T
(m)
n (h)].

E[Tn(h)T
(m)
n (h)] =

m−1∑

ℓ=0

1

n

n−2∑

i=0

⌊n(ℓ+1)
m

⌋−2∑

j=⌊nℓ
m

⌋−1

E
[
h(Y ( ℓ

m ))h(Y ( i
n )) g

(
∆nY (i)
σn,1

)
g
(

∆nY (j)
σn,1

)]
.

For fixed ℓ, i, j, using a regression of (Y ( i
n ), Y ( ℓ

m )) on (∆nY (i)
σn,1

, ∆nY (j)
σn,1

) if i 6= j

and on ∆nY (i)
σn,1

otherwise, as before similar straightforward calculations show

that

lim
n→+∞

E[Tn(h)T
(m)
n (h)] = σ2

g

(
m−1∑

ℓ=0

∫ ℓ+1
m

ℓ
m

E[h(Y (u))h(Y ( ℓ
m ))] du

)
,
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so that

lim
m→+∞

lim
n→+∞

E[Tn(h)T
(m)
n (h)] = σ2

g

(∫ 1

0

E[h2(Y (u))] du

)
. (A.16)

(A.14), (A.15) and (A.16) yield the lemma.

A.2. Concerning the punctual estimation of σ

Proof of Lemma 8.1. For simplicity reasons, let us suppose that H > 1
2 . Similar

calculations could be done for H ≤ 1
2 .

We fix i ∈ {0, 1, . . . , n− 1} and we set ai = a
(i)
n (t) (see (5.1) for the definition

of a
(i)
n (t)). With this notation, we have

1

a2(n)

(
(σ(i)

n (t))2 − σ2(t)
)

=

[(∫ ai+
1
n

ai

∫ ai+
1
n

ai

+

∫ ai

ai− 1
n

∫ ai

ai− 1
n

−2

∫ ai

ai− 1
n

∫ ai+
1
n

ai

)

(
σ(u)σ(v) − σ2(t)

) (
R(|u− v|) + K̃(u − v)

)
dv du

]

(1)

+

[
2σ2(t)

(∫ ai+
1
n

ai

∫ ai+
1
n

ai

−
∫ ai

ai− 1
n

∫ ai+
1
n

ai

)
K̃(u − v) dv du

]

(2)

= (1) + (2),

where the functions R and K̃ are respectively defined by (A.6) and (A.5).
For term (1), we make the change of variables u = x + ai and v = y + ai in

the corresponding integral. We get

(1) =

(∫ 1
n

0

∫ 1
n

0

+

∫ 0

− 1
n

∫ 0

− 1
n

−2

∫ 0

− 1
n

∫ 1
n

0

)
(
σ(x + ai)σ(y + ai)− σ2(t)

)

×
(
R(|x− y|) + K̃(x− y)

)
dy dx.

Since σ belongs to C2 on [ 0; 1 ], σ′′ is uniformly continuous on this interval.
Thus, since nh → +∞, we can write

σ(x + ai) = σ(t) + (h(1− 2i
n ) + x)σ′(t) + 1

2h
2(1− 2i

n )
2σ′′(t) + o(h2).

We do the same for y.
Furthermore, since

∫ +∞
−∞ λ4G(λ) dλ < +∞, the function K̃ belongs to C2

on R. Also, and since the function G is even, we have K̃ ′(0) = 0. Thus, for

x, y ∈ [ 0; 1 ], we work with the second order Taylor expansion of K̃ about 0,

that is, K̃(x − y) = K̃(0) + 1
2 (x − y)2K̃ ′′(θx,y(x− y)), where 0 < θx,y < 1.
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Thus, since nh → +∞, 0 < H < 1, σ belongs to C2 on [ 0; 1 ] and K̃ ′′ is
bounded on R, by (A.1) we have,

a2(n)× (1) = 2σ(t)σ′(t)h(1 − 2i
n ) +

1

2
h2(1 − 2i

n )
2
(
2σ(t)σ′′(t) + 2(σ′)2(t)

)

+ a2(n)σ(t)σ′(t)

(∫ 1
n

0

∫ 1
n

0

+

∫ 0

− 1
n

∫ 0

− 1
n

−2

∫ 0

− 1
n

∫ 1
n

0

)
R(|x− y|) (x+ y) dy dx

+ o(h2).

Now, recall that θ(t) = σ2(t). Since last integral is equal to zero because the
function R is even, by (A.1) we finally get the result if we prove that term (2)
is o(h2/n2H).

As before, for term (2), with a second order Taylor expansion of K̃ about 0,

and since K̃ ′′ is bounded on R, we finally get that (2) = O(1/n4) = o(h2/n2H),
since 0 < H < 1 and nh → +∞.

Discussion about Remark 5.1 page 941. Note that we choose to work

with ∆
(i)
n Xµ(t) (see 5.2), and the last integral in this case is equal to zero. If we

work with (5.8) as in Section 3.1, we obtain, in case where H > 1
2 , the following

integral (the case where H ≤ 1
2 is similar),

a2(n)σ(t)σ′(t)

(∫ 2
n

1
n

∫ 2
n

1
n

+

∫ 1
n

0

∫ 1
n

0

−2

∫ 1
n

0

∫ 2
n

1
n

)
R(|x− y|) (x+ y) dy dx

=
2

n
σ(t)σ′(t),

and this term does not vanish.
A way to explain this fact consists in noting that when we work with ∆

(i)
n X0(t),

the second order increments of X0 can be written as the second derivative of a
convolution of X0 with a particular density, say

X0(s+
1
n )− 2X0(s) +X0(s− 1

n ) = n−2X ′′
0,n(s),

where X0,n(s) = nϕ(·n) ∗X0(s) and ϕ(x) = 1[−1,0] ∗ 1[ 0; 1 ](x), that is

ϕ(x) =





1 + x, if x ∈ [−1, 0],
1− x, if x ∈ [ 0; 1 ],
0 otherwise.

We remark that ϕ is even so, the term that we are looking at,

−a2(n)

n3
σ(t)σ′(t)

∫ +∞

−∞

∫ +∞

−∞
ϕ′(x)ϕ′(y)R(

|x− y|
n

) (x+ y) dy dx,

vanishes.
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Now if we work with (5.8), the density ϕ is

ϕ(x) = 1[−1,0] ∗ 1[−1,0](x) =





2 + x, if x ∈ [−2,−1],
−x, if x ∈ [−1, 0],
0 otherwise,

and ϕ is not even.

Proof of Lemma 8.3. The proof is made according to the same approach used
in Lemma 7.3, and we suppose that H > 1

2 .

For i, j ∈ {0, 1, . . . , n − 1} we set, ai = a
(i)
n (t) and aj = a

(j)
n (s), and we

suppose that ai 6= aj . If not, γ
(i,j)
n (t, s) = 0 and lemma is obvious.

Recall that functions R, K̃ and ρH are respectively defined by equalities
(A.6), (A.5) and (3.1) and Y ⋆⋆ is the process solution of equations (2.2), (2.5)
or (2.6) with G ≡ 0.

With this notation, we have

γ(i,j)
n (t, s)

=

[
a2(n)

(∫ ai+
1
n

ai

∫ aj+
1
n

aj

−
∫ ai+

1
n

ai

∫ aj

aj− 1
n

−
∫ ai

ai− 1
n

∫ aj+
1
n

aj

+

∫ ai

ai− 1
n

∫ aj

aj− 1
n

)

(σ(u)σ(v) − σ(ai)σ(aj))
(
R(|u− v|) + K̃(u − v)

) dv

σ
(i)
n (t)

du

σ
(j)
n (s)

]

(1)

+

[
a2(n)

σ(ai)σ(aj)

σ
(i)
n (t)σ

(j)
n (s)

(∫ ai+
1
n

ai

∫ aj+
1
n

aj

−
∫ ai+

1
n

ai

∫ aj

aj− 1
n

−
∫ ai

ai− 1
n

∫ aj+
1
n

aj

+

∫ ai

ai− 1
n

∫ aj

aj− 1
n

)
K̃(u− v) dv du

]

(2)

+

[(∫ ai+
1
n

ai

∫ aj+
1
n

aj

−
∫ ai+

1
n

ai

∫ aj

aj− 1
n

−
∫ ai

ai− 1
n

∫ aj+
1
n

aj

+

∫ ai

ai− 1
n

∫ aj

aj− 1
n

)

a2(n)

(
σ(ai)σ(aj)

σ
(i)
n (t)σ

(j)
n (s)

− 1

)
R(|u− v|) dv du

]

(3)

+

[(
a2(n)

n2H
× lim

n→∞

(
a2(n)

n2H

)−1

− 1

)
× lim

n→∞

(
a2(n)

n2H

)
n2H

(∫ ai+
1
n

ai

∫ aj+
1
n

aj

−
∫ ai+

1
n

ai

∫ aj

aj− 1
n

−
∫ ai

ai− 1
n

∫ aj+
1
n

aj

+

∫ ai

ai− 1
n

∫ aj

aj− 1
n

)

R(|u− v|) dv du
]

(4)

+

[
n2H lim

n

(
a2(n)

n2H

)
E[δ(i)n Y ⋆⋆(t)δ(j)n Y ⋆⋆(s)]− ρH(n(t− s) + 2h(j − i))

]

(5)



1008 C. Berzin et al.

= (1) + (2) + (3) + (4) + (5),

where the process δ
(i)
n Y ⋆⋆ is defined by (5.3), Section 5.1.1.

Let us look at term (1). The first order Taylor expansion of σ about ai is
σ(u) = σ(ai) + (u− ai)σ

′(ai + θu(u− ai)), 0 < θu < 1.

Using (8.3), the fact that σ belongs to C1 on [ 0; 1 ] and that K̃ is bounded,
(A.1) and (A.7), it is easy to see that

|(1)| ≤
(∫ ai+

1
n

ai

∫ aj+
1
n

aj

+

∫ ai+
1
n

ai

∫ aj

aj− 1
n

+

∫ ai

ai− 1
n

∫ aj+
1
n

aj

+

∫ ai

ai− 1
n

∫ aj

aj− 1
n

)

C

(
1

n(1−2H)

)
×
(
|u− v|(2H−2)

+ 1
)
dv du ≤ C

(
1
n

)
,

since 0 < H < 1.
For term (2), the first order Taylor expansion of the function K̃ about (ai−aj)

gives for u, v ∈ R,

K̃(u−v) = K̃(ai−aj)+(u−ai− (v−aj))K̃
′(ai−aj+θi,j,u,v(u−ai− (v−aj))),

with 0 < θi,j,u,v < 1.

Since K̃ ′ is bounded on R, the function σ belongs to C1 on [ 0; 1 ], by in-
equality (8.3) and (A.1), we get (2) = O( 1

n(3−2H) ) = O( 1
n ), since 0 < H < 1.

Let us look at term (3). Proceeding as in Lemma 7.2 and Lemma 8.1, since σ
belongs to C1 on [ 0; 1 ], we can show on the one hand that for i = 0, 1, . . . , n−1,

we have |(σ(i)
n (t))2 − σ2(ai)| ≤ C( 1n ).

On the other hand, by using inequalities (8.3) and (8.4), this implies that

∣∣∣∣∣
σ(ai)σ(aj)

σ
(i)
n (t)σ

(j)
n (s)

− 1

∣∣∣∣∣ ≤ C
(
1
n

)
.

Thus by using (A.1) and inequality (A.7), we get that (3) = O(n−1).
To end the proof of this lemma we look at term (4) and (5) that vanish if Y is

a solution of equation (2.2). So, let us suppose that Y is a solution of equations
(2.5) or (2.6).

By using inequalities (A.9), (A.10) and (A.7), we get that (4) = O(n−2H) =
O(n−1), since H > 1

2 .
Finally, we look at term (5). As in Lemma 7.3, if |ai − aj | = 1

n or |ai − aj| =
2
n , we can prove that (5) = O(n−2H) = O(n−1), since H > 1

2 .
So let us suppose that |ai − aj | 6= 1

n and that |ai − aj | 6= 2
n , then

(5) =
n2H

2 (4− 4H)C0

(
−6F (ai − aj) + 4F (ai − aj − 1

n ) + 4F (ai − aj +
1
n )

−F (ai − aj − 2
n )− F (ai − aj +

2
n )
)
,

where function F has been defined by (A.11).
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On the one hand, if |ai − aj | ≤ 3
n , we get that |(5)| ≤ C( 1n )

2H ≤ C( 1n ), since
H > 1

2 .
On the other hand, if |ai − aj | > 3

n , then using a third order Taylor expansion
of F about (ai − aj) we obtain

|(5)| ≤ C

[
1

n2H 1H< 3
4
+ 1

n3−2H 1H≥ 3
4

]
≤ C( 1n ),

since H > 1
2 . That yields Lemma 8.3.

Proof of Lemma 5.5. We fix i ∈ {0, 1, . . . , n − 1} and we set ai = a
(i)
n (t) (see

(5.1) for the definition of a
(i)
n (t)). The random variable δ

(i)
n Xr(t) is defined as

in (5.3), Section 5.1.1. With these notations, we have as in Lemma 4.7,

δ(i)n Xr(t) = σ(Y (ai)) δ
(i)
n Y (t)

+

[(∫ Y (ai+
1
n
)

Y (ai)

−
∫ Y (ai)

Y (ai− 1
n
)

)
(σ(u)− σ(Y (ai))) du

]

(1)

+

[(∫ ai+
1
n

ai

−
∫ ai

ai− 1
n

)
(µ(Y (u))− µ(Y (ai))) du

]

(2)

(A.17)

= σ(Y (ai))δ
(i)
n Y (t) + (1) + (2),

where the process δ
(i)
n Y is defined by (5.3), Section 5.1.1. The two terms in

brackets in (A.17) are denoted respectively by (1) and (2) in the following. As
in the proof of Lemma 4.7, using that σ belongs to C1 on R, that µ is locally
Lipschitz on R and the modulus of continuity of Y (see Lemma 7.1 p. 962,
applied to X0 = Y ), we get

|(1)| ≤ C(ω)
(
1
n

)2H−2δ
,

and

|(2)| ≤ C(ω)
(
1
n

)1+H−δ ≤ C(ω)
(
1
n

)2H−2δ
.

Using (A.1) we finally yield this lemma.

Proof of Lemma 5.6. For i ∈ {0, 1, . . . , n − 1} we set ai = a
(i)
n (t) (see (5.1) for

the definition of a
(i)
n (t)). With this notation and as for the proof of Lemma 5.4

for all real k ≥ 1, we can decompose α̂n,r(t)− σk(Y (t)) as

α̂n,r(t)− σk(Y (t)) =
2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n Y (t)
σn,1

)
σk(Y (t))

+
2

n

n−1∑

i=0

K(−1 + 2i
n )(σ

k)′(Y (t))(Y (a(i)n (t))− Y (t))
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+

[
2

n

n−1∑

i=0

K(−1 + 2i
n )

1

E[|N |k]

(∣∣∣∆(i)
n Xr(t)

∣∣∣
k

− σk(Y (a(i)n (t)))
∣∣∣∆(i)

n Y (t)
∣∣∣
k
)]

(1)

+

[
2

n

n−1∑

i=0

K(−1 + 2i
n )

1

E[|N |k]

∣∣∣∆
(i)
n Y (t)
σn,1

∣∣∣
k

σk(Y (a(i)n (t)))
(
σk
n,1 − 1

)
]

(2)

+

[(
2

n

n−1∑

i=0

K(−1 + 2i
n )− 1

)
σk(Y (t))

]

(3)

+

[
2

n

n−1∑

i=0

K(−1 + 2i
n )
(
σk(Y (a(i)n (t))) − σk(Y (t))

−(σk)′(Y (t))(Y (a(i)n (t)) − Y (t))
)]

(4)

+

[
2

n

n−1∑

i=0

K(−1 + 2i
n )gk

(
∆(i)

n Y (t)
σn,1

)(
σk(Y (a(i)n (t)))− σk(Y (t))

)]

(5)

, (A.18)

where σn,1 and gk are respectively defined by equalities (4.9) and (4.7).
The five terms in brackets in (A.18) are denoted respectively by (1) to (5) in

the following. As in Lemma 4.3, for k ≥ 1 we consider inequality (A.2) applied

to x = ∆
(i)
n Xr(t) and to y = σ(Y (a

(i)
n (t)))∆

(i)
n Y (t). Using inequality (8.13) for

Y ⋆ = Y , that functions K is bounded on [−1; 1 ] and Lemma 5.5, since k ≥ 1,
we get

|(1)| ≤ Ck(ω)

(
1

n

)H−δk

.

In the same manner and using (7.7) for σk
n,1, we get

|(2)| ≤ Ck(ω)

(
1

n

)1−δk

≤ Ck(ω)

(
1

n

)H−δk

.

For term (3) we use (8.2) for ℓ = K ∈ C1 on [−1; 1 ] and then we obtain

|(3)| ≤ Ck(ω)

(
1

n

)
≤ Ck(ω)

(
1

n

)H−δk

.

Choosing δ small enough, that is 0 < δ < (H − 1
2 )/k, that remains possible

since H > 1
2 , we then obtain that (1) + (2) + (3) = oa.s.(1/

√
nh).

For term (4), a second order Taylor expansion of σk about the point Y (t)
gives

(4) =
2

n

n−1∑

i=0

K(−1+ 2i
n )

1
2

(
Y (a(i)n (t))− Y (t)

)2
(σk)′′(Y (t)+θ(Y (a(i)n (t))−Y (t))),

where 0 < θ < 1.
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Using the modulus of continuity of Y (see Lemma 7.1 p. 962, applied to
X0 = Y ), we get

|(4)| ≤ Ck(ω)h
2H−2δ,

and then (4) = oa.s.(h
H), for δ > 0 small enough.

For the fifth term, we will prove that (5) = oP (1/
√
nh) through the following

lemma.

Lemma A.1.

E

[
2

√
h

n

n−1∑

i=0

K(−1 + 2i
n )g

(
∆(i)

n Y (t)
σn,1

)(
f(Y (a(i)n (t)))− f(Y (t))

)]2
= o(1),

for f belonging to C2 on R, such that for all x ∈ R, |f ′′(x)| ≤ P (|x|), where P is
a polynomial and for a general function g with (2 + δ)-moments with respect to
the standard Gaussian measure, even, or odd, with a Hermite rank greater than
or equal to one and such that Ag 6= ∅ (for the definition of Ag, see Section 3).

Proof of Lemma A.1. This expectation contains four terms. We will compute
only one term, the others could be treated in a similar way. This term is

(1) =
4h

n

n−1∑

i=0

n−1∑

j=0

K(−1 + 2i
n )K(−1 + 2j

n )×

E
[
g
(

∆(i)
n Y (t)
σn,1

)
g
(

∆(j)
n Y (t)
σn,1

)
f(Y (a(i)n (t)))f(Y (a(j)n (t)))

]

As in the proof of Lemma 7.5, we decompose this term into two terms S1 and
S2, where

S1 =
4h

n

n−1∑

i,j=0
2h|i−j|≥δ0

K(−1 + 2i
n )K(−1 + 2j

n )×

E
[
g
(

∆(i)
n Y (t)
σn,1

)
g
(

∆(j)
n Y (t)
σn,1

)
f(Y (a(i)n (t)))f(Y (a(j)n (t)))

]

while

S2 =
4h

n

n−2∑

i,j=0
2h|i−j|<δ0

K(−1 + 2i
n )K(−1 + 2j

n )×

E
[
g
(

∆(i)
n Y (t)
σn,1

)
g
(

∆(j)
n Y (t)
σn,1

)
f(Y (a(i)n (t)))f(Y (a(j)n (t)))

]
,

where δ0 > 0 is a fixed number.
Using that g has (2 + δ)-moments with respect to the standard Gaussian

measure and that |f ′′(x)| ≤ P (|x|), we get that

|S2| ≤ Cδ0.

Let us consider S1.
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As in the proof of Lemma 7.5, we make the following regression. We fix
i, j ∈ {0, 1, . . . , n − 1} such that 2h |i− j| ≥ δ0 and we consider the change of
variables

Y (a(i)n (t)) = Z1,n(i, j) +A1,n(i, j)
∆

(i)
n Y (t)

σn,1
+A2,n(i, j)

∆
(j)
n Y (t)

σn,1
,

Y (a(j)n (t)) = Z2,n(i, j) +B1,n(i, j)
∆

(i)
n Y (t)

σn,1
+B2,n(i, j)

∆
(j)
n Y (t)

σn,1
,

with (Z1,n(i, j), Z2,n(i, j)) a zero mean Gaussian vector independent of

(∆
(i)
n Y (t),∆

(j)
n Y (t)) and

A1,n(i, j) =
E[Y (a

(i)
n (t))

∆(i)
n Y (t)
σn,1

]− δ
(i−j)
n,1 E[Y (a

(i)
n (t))

∆(j)
n Y (t)
σn,1

]

1− (δ
(i−j)
n,1 )2

,

A2,n(i, j) =
E[Y (a

(i)
n (t))

∆(j)
n Y (t)
σn,1

]− δ
(i−j)
n,1 E[Y (a

(i)
n (t))

∆(i)
n Y (t)
σn,1

]

1− (δ
(i−j)
n,1 )2

,

where δ
(i−j)
n,1 stands for δ

(i,j)
n (t, t) defined in (8.7) for X0 = Y , that is

δ
(i−j)
n,1 = E

[
∆

(i)
n Y (t)

σn,1

∆
(j)
n Y (t)

σn,1

]

= ρH(2h(j − i)) + γ
(i−j)
n,1 ,

where the function ρH is defined by (3.1).
Two similar formulas hold for B1,n(i, j) and B2,n(i, j).
For 2h |i− j| ≥ δ0, using Lemma 8.3 applied to X0 = Y , one can show that

(1 − (δ
(i−j)
n,1 )2) ≥ Cδ0 > 0. Thus a straightforward computation shows that for

2h |i− j| ≥ δ0

max
k=1,2

|Ak,n(i, j), Bk,n(i, j)| ≤ Cδ0 n
−H . (A.19)

Writing the Taylor expansion of f one has,

f(Y (a(i)n (t))) = f(Z1,n(i, j))

+

[
A1,n(i, j)

∆
(i)
n Y (t)

σn,1
+A2,n(i, j)

∆
(j)
n Y (t)

σn,1

]
f ′(Z1,n(i, j))

+
1

2!
f ′′(θ1,n(i, j))

[
A1,n(i, j)

∆
(i)
n Y (t)

σn,1
+A2,n(i, j)

∆
(j)
n Y (t)

σn,1

]2
,

with θ1,n(i, j) between Y (a
(i)
n (t)) and Z1,n(i, j).

A similar formula holds for f(Y (a
(j)
n (t))).
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We can decompose S1 as the sum of nine terms. We use the notations Jj1,j2 for
the corresponding sums, where j1, j2 = 0, 1, 2 are the subscripts involving h(j1)

and h(j2). We only consider Jj1,j2 with j1 ≤ j2. Then we obtain the following:

(A) One term of the form

J0,0 =
4h

n

n−1∑

i,j=0
2h|i−j|≥δ0

K(−1 + 2i
n )K(−1 + 2j

n )×

E [f(Z1,n(i, j))f(Z2,n(i, j))] E
[
g
(

∆(i)
n Y (t)
σn,1

)
g
(

∆(j)
n Y (t)
σn,1

)]
.

Recall that we defined function β in (7.11) by

β(k) = E[g(∆nbH(0))g(∆nbH(k))] =

+∞∑

p=1

g2p p! ρ
p
H(k).

With these notations, using the fact that |f ′′(x)| ≤ P (|x|) and inequality (A.19),
we can prove that for 2h |i− j| ≥ δ0,

∣∣E[f(Z1,n(i, j))f(Z2,n(i, j))]− E[f2(Y (t)]
∣∣ ≤ Cδ0 h

H .

Furthermore as in the proof of Lemma 5.2, one can prove that

∣∣∣E
[
g
(

∆(i)
n Y (t)
σn,1

)
g
(

∆(j)
n Y (t)
σn,1

)]
− β(2h(i − j))

∣∣∣ ≤ Cδ0

∣∣∣γ(i−j)
n,1

∣∣∣ ≤ Cδ0(
1
n ),

last inequality follows from Lemma 8.3 applied to X0 = Y .

Finally using a proof similar to the one of Lemma 5.2 we can prove that

lim
n→+∞

4h

n

n−1∑

i=0

n−1∑

j=0

K(−1 + 2i
n )K(−1 + 2j

n ) |β(2h(i− j))|

= κ2

∫ ∞

−∞
|β(x)| dx < +∞,

by inequality (7.13) and where κ2 is defined by (3.5). Thus

J0,0 =


4h

n

n−1∑

i=0

n−1∑

j=0

K(−1 + 2i
n )K(−1 + 2j

n )β(2h(i− j))


E[f2(Y (t)] + J⋆

0,0,

where limn→+∞
∣∣J⋆

0,0

∣∣ ≤ Cδ0.

(B) One term of the form J0,1 ≡ 0 by a symmetry argument: if L(U,
V ) = N(0,Σ) then E[U g(U) g(V )] = 0 for g even or odd.
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(C) Two terms of the form

J0,2 =
4h

n

n−1∑

i,j=0
2h|i−j|≥δ0

K(−1 + 2i
n )K(−1 + 2j

n )E


f(Z1,n(i, j))f

′′(θ2,n(i, j)) ×

g
(

∆(i)
n Y (t)
σn,1

)
g
(

∆(j)
n Y (t)
σn,1

)(
B1,n(i, j)

∆
(i)
n Y (t)

σn,1
+B2,n(i, j)

∆
(j)
n Y (t)

σn,1

)2

 .

By inequality (A.19), one has

|J0,2| ≤ Cδ0

nh

n2H
≤ Cδ0

h

n(2H−1)
,

and since H > 1
2 , lim

n→+∞
J0,2 = 0.

Similarly one can prove that the other terms tend to zero.
Finally we proved that

(1) =


4h

n

n−1∑

i=0

n−1∑

j=0

K(−1 + 2i
n )K(−1 + 2j

n )β(2h(i − j))


E[f2(Y (t)] + J⋆⋆

0,0,

where limn→+∞
∣∣J⋆⋆

0,0

∣∣ ≤ Cδ0.
Since δ0 > 0 is fixed as small as we want, as in the proof of Lemma 5.2 we

get

lim
n→+∞

(1) = κ2

(∫ ∞

−∞
β(x) dx

)
E[f2(Y (t)].

In a similar way we could prove that the three other terms appearing in the
expectation expressed in Lemma A.1 have the same last limit.

Thus lemma A.1 follows.

This leads to Lemma 5.6.
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