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1. Introduction

Hidden Markov models (HMMs) have been widely used in diverse fields such as
speech recognition, genomics or econometrics since their introduction in Baum
and Petrie [2]. The books MacDonald and Zucchini [16], MacDonald and Zuc-
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chini [17], and Cappé, Moulines and Rydén [3] provide several examples of ap-
plications of HMMs and give a recent (for the latter) state of the art in the
statistical analysis of HMMs. Finite state space HMMs are stochastic processes
(Xt, Yt)t∈N such that (Xt)t∈N is a Markov chain taking values in a finite set,
and conditionally to (Xt)t∈N, the random variables Yt, t ∈ N, are independent,
the distribution of Yt depending only on Xt. The conditional distributions of
Yt given Xt, for all possible values of Xt, are called emission distributions. The
name “hidden Markov model” comes from the fact that the observations are the
Yt’s only, one cannot access to the states (Xt)t of the Markov chain. Finite state
space HMMs can be used to model heterogeneous variables coming from differ-
ent populations, the states of the (hidden) Markov chain defining the population
the observed variable comes from. HMMs are very popular dynamical models
especially because of their computational tractability since there exist efficient
algorithms to compute the likelihood and to recover the posterior distribution
of the hidden states given the observations.

Frequentist asymptotic properties of estimators of HMMs parameters have
been studied since the 1990s. Consistency and asymptotic normality of the max-
imum likelihood estimator have been established in the parametric case, see
Douc and Matias [6], Douc, Moulines and Rydén [7], and references in Cappé,
Moulines and Rydén [3], see also Douc et al. [8] for the most general consistency
result up to now. As to Bayesian asymptotic results, there are only very few and
recent results, see de Gunst and Shcherbakova [5] when the number of hidden
states is known, Gassiat and Rousseau [14] when the number of hidden states
is unknown. All these results concern parametric HMMs.

Non parametric HMMs in the sense that the form of the emission distribution
is not specified have only very recently been considered, since identifiability re-
mained an open problem until Gassiat and Rousseau [13] and Gassiat, Cleynen
and Robin [12], who prove a general identifiability result. Because parametric
modeling of emission distributions may lead to poor results in practice, in par-
ticular for clustering purposes, recent interest in using non parametric HMMs
appeared in applications, see Yau et al. [21], Gassiat, Cleynen and Robin [12] and
references therein. Theoretical results for estimation procedures in non paramet-
ric HMMs have also been obtained only very recently: Dumont and Le Corff [10]
concerns regression models with hidden (Markovian) regressors and unknown
regression functions in Gaussian noise, and Gassiat and Rousseau [13] is about
translated emission distributions.

In this paper, we obtain posterior consistency results for Bayesian procedures
in finite state space non parametric HMMs. To our knowledge, this is the first
result on posterior consistency in such models. In Section 2.2, we prove posterior
consistency in terms of the weak topology and the L1-norm on marginal densi-
ties of consecutive observations. Our main result is obtained under assumptions
on the emission densities and on the prior which are very similar to the ones
in the i.i.d. case, see Theorem 2.1. This result relies on a new control of the
Kullback-Leibler divergence for HMMs, see Lemma 2.2. Yet estimating the dis-
tribution of consecutive observations is not the main objective of a practitioner.
Classifying the observations according to their corresponding hidden states or
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estimating the parameters of the model often are the questions of interest, see
for instance Yau et al. [21], Whiting, Lambert and Metcalfe [20] and Couvreur
and Couvreur [4]. In Section 2.3 we build upon the recent identifiability result
to deduce from Theorem 2.1 posterior consistency for each component of the
parameters. We obtain in general posterior consistency for the transition matrix
of the Markov chain and for the emission probability distribution in the weak
topology, see Theorem 2.3. Stronger results are established in particular cases,
see Corollary 3.2 and Theorem 3.4. Finally, some examples of priors that fulfill
the assumptions of Theorems 2.1 and 2.3 are studied in Section 3.

Particularly in Section 3.3 the discrete case is thoroughly studied with a
Dirichlet process prior. Sufficient and almost necessary assumptions to apply
Theorem 2.1 are given in Proposition 3.5. Moreover in this framework, posterior
consistency of the marginal smoothing distributions, used in segmentation or
classification, is derived in Theorem 3.4.

All proofs are given in Appendices A and B.

2. Settings and main theorem

2.1. Notations

We now precise the model and give some notations. Recall that finite state space
HMMs are stochastic processes (Xt, Yt)t∈N such that (Xt)t∈N is a Markov chain
taking values in a finite set, and conditionally on (Xt)t∈N, the random variables
Yt, t ∈ N, are independent. The distribution of Yt depending only on Xt is called
the emission distribution. The number k of hidden states is known, so that the
state space of the Markov chain is set to {1, . . . , k}. Throughout the paper, for
any integer n, an n-uple (x1, . . . , xn) is denoted x1:n.

Let ∆k = {(x1, . . . , xk) : xi > 0, i = 1, . . . , k;
∑k

i=1 xi = 1} denote the
(k − 1)-dimensional simplex. Let Q denote the k × k transition matrix of the
Markov chain, so that identifying Q as the k-uple of transition distributions
(the lines of the matrix), we write Q ∈ ∆k

k. We denote µ ∈ ∆k the initial
probability measure, that is the distribution of X1. For q > 0, we also define

∆k(q) = {Q ∈ ∆k
k : min

i,j6k
Qi,j > q},

so that ∆k(0) = ∆k
k. We now recall some properties of Markov chains with

transition matrix in ∆k(q). Note that q needs to be less than 1
k for ∆k(q) to be

non empty. Then for allQ in ∆k(q), maxi,j Qi,j 6 1−(k−1)q. Also, if Q ∈ ∆k(q),
then for any i ∈ {1, . . . , k} and A ⊂ {1, . . . , k},∑j∈AQi,j > kqu(A), with u the

uniform probability on {1, . . . , k}. Besides if Q ∈ ∆k(q) with q > 0, the chain
is irreducible, positive recurrent and admits a unique stationary probability
measure denoted µQ for which q 6 µQ(i) 6 1− (k − 1)q, 1 6 i 6 k.

We assume that the observation space is R
d endowed with its Borel sigma

field. Let F be the set of probability density functions with respect to a reference
measure λ on R

d. Fk is the set of possible emission densities, that is for f =
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Fig 1. The model.

(f1, . . . , fk) ∈ Fk, the distribution of Yt conditionally to Xt = i will be fiλ,
i = 1, . . . , k. See Figure 1 for a visualization of the model.

Let
Θ = {θ = (Q, f) : Q ∈ ∆k

k, f ∈ Fk}
and

Θ(q) = {θ = (Q, f) : Q ∈ ∆k(q), f ∈ Fk}.
Then P

θ (resp. Pθ,µ) denotes the probability distribution of (Xt, Yt)t∈N under

θ and initial probability measure µθ := µQ (respectively µ). Let pθl (pθ,µl resp.)
denote the probability density of Y1, . . . , Yl with respect to λ⊗l under P

θ

(resp. Pθ,µ). and P θ
l (P θ,µ

l resp.) the marginal distribution of Y1, . . . , Yl under P
θ

(resp. Pθ,µ). So for any θ ∈ Θ, initial probability measure µ, and measurable set
A of {1, . . . , k}l × (Rd)l:

P
θ,µ((X1:l, Y1:l) ∈ A)

=

∫ k
∑

x1,...,xl=1

1(x1,...,xl,y1,...,yl)∈A µx1Qx1,x2 . . . Qxl−1,xl

fx1(y1) . . . fxl
(yl)λ(dy1) . . . λ(dyl),

pθ,µl (y1, . . . , yl) =

k
∑

x1,...,xl=1

µx1Qx1,x2 . . . Qxl−1,xl
fx1(y1) . . . fxl

(yl),

and P θ,µ
l = pθ,µl λ⊗l.

We denote by δµ ⊗ π the prior on ∆k × Θ, where µ ∈ ∆k is an initial
probability measure. We assume that π is a product of probability measures
on Θ, π = πQ ⊗ πf such that πQ is a probability distribution on ∆k

k and πf is
a probability distribution on Fk.

We assume throughout the paper that the observations are distributed from
P
θ∗

so that their distribution is a stationary HMM. We are interested in posterior
consistency, that is to prove that with P

θ∗

-probability one, for all neighborhood
U of θ∗:

lim
n→+∞

π(U |Y1:n) = 1.

The choice of a topology on the parameters arises here. For any distance or
pseudometric D, we denote N(δ, A,D) the δ-covering number of the set A with
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respect to D, that is the minimum number N of elements a1, . . . , aN such that
for all a ∈ A, there exists n 6 N such that D(a, an) 6 δ.

For k × k matrices M , we use

‖M‖ = max
16i,j6k

|Mi,j |.

For probability distributions P1 and P2, let p1 and p2 be their respective densities
with respect to some dominated measure ν. We use the L1-norm:

‖p1 − p2‖L1(ν) =

∫

|p1 − p2|dν

and the Kullback-Leibler divergence:

KL(P1, P2) =

{
∫

p1 log(
p1

p2
)dν if P1 << P2,

+∞ otherwise.

We also denote KL(p1, p2) for KL(p1ν, p2ν). On Fk we use the distance d(·, ·)
defined for all g = (g1, . . . , gk), g̃ = (g̃1, . . . , g̃k) by

d(g, g̃) = max
16j6k

‖gj − g̃j‖L1(λ).

On Θ(q), we use the following pseudometric for l > 3, l ∈ N,

Dl(θ, θ
′) =

∫

|pθl (y1, . . . , yl)−pθ
′

l (y1, . . . , yl)|λ(dy1) . . . λ(dyl) = ‖pθl−pθ
′

l ‖L1(λ⊗l).

Then a Dl-neighborhood of θ is a set which contains a set {θ′ : Dl(θ, θ
′) < ε}

for some ε > 0. We also use the weak topology on marginal distributions (P θ
l )θ.

We recall that in any neighborhood of P θ
l in the weak topology on probability

measures there is a subset which is a union of sets of the form
{

P :

∣

∣

∣

∣

∫

hjdP −
∫

hjp
θ
l dλ

⊗l

∣

∣

∣

∣

< εj, j = 1, . . . , N

}

,

where for all 1 6 j 6 N , εj > 0 and hj is in the set Cb((Rd)l) of all bounded
continuous functions from (Rd)l to R. We prove posterior consistency in this
general nonparametric context using this weak topology on marginal distribu-
tions (P θ

l )θ and the Dl-pseudometric in Section 2.2. We study the posterior
consistency for the transition matrix and the emission distributions separately
in Section 2.3.

Finally the sign . is used for inequalities up to a multiplicative constant
possibly depending on fixed parameters.

2.2. Main theorem

In this section, we state our general theorem on posterior consistency for non-
parametric hidden Markov models in the weak topology on marginal distribu-
tions (P θ

l )θ and the Dl-topology. Fix l > 3. We consider the following assump-
tions:
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(A0) For all 1 6 i 6 k,
∫

f∗
i (y)|log(f∗

i (y))|λ(dy) < +∞,
(A1) for all ε > 0 small enough there exists a set Θε ⊂ Θ(q) such that π(Θε) > 0

and for all θ = (Q, f) ∈ Θε,

(A1a) ‖Q−Q∗‖ < ε,

(A1b) max16i6k

∫

f∗
i (y)max16j6k log(

f∗
j (y)

fj(y)
)λ(dy) < ε,

(A1c) for all y ∈ R
d such that

∑k
i=1 f

∗
i (y) > 0,

∑k
j=1 fj(y) > 0,

(A1d) supy:
∑

k
i=1 f∗

i (y)>0max16j6k fj(y) < +∞,

(A2) for all n > 0, for all δ > 0, there exists a set Fn ⊂ Fk and a real number
r1 > 0 such that πf

(

(Fn)
c
)

. e−nr1 and such that

∑

n>0

N

(

δ

36l
,Fn, d(·, ·)

)

exp

(

−
nδ2k2q2

32l

)

< +∞.

Theorem 2.1. Let q > 0. Assume that the support of πQ is included in ∆k(q)
and that for all 1 6 i 6 k, µi > q.

a) If Assumptions (A0) and (A1) holds then, for all weak neighborhood U
of P θ∗

l ,

P
θ∗
(

lim
n→∞

π(U |Y1:n) = 1
)

= 1.

b) Moreover if Assumptions (A0), (A1) and (A2) hold then, for all ε > 0,

P
θ∗
(

lim
n→∞

π( {θ : Dl(θ, θ
∗) < ε} |Y1:n) = 1

)

= 1.

Remark 2.1. We assume everywhere in the paper that the support of πQ is
included in ∆k(q). It means the results of this paper can only be applied to

priors πQ on transition matrices which vanish close to the border of ∆k
k. This

assumption is satisfied by a product of truncated Dirichlet distribution, i.e. if
the lines Qi,· of Q are independently distributed from a law proportional to:

Qα1−1
i,1 . . .Qαk−1

i,k 1{q6Qi,j61, ∀16j6k}dQi,1 . . . dQi,k

where α1, . . . , αk > 0.
The restriction on ∆k(q) comes from the test built in Gassiat and Rousseau

[14]. On this set, HMMs are geometrically ergodic. It is a common assump-
tion in the literature see Douc and Matias [6], Douc, Moulines and Rydén [7],
or Douc et al. [8] for instance. Besides Gassiat and Rousseau [14] explain the
difficulty which appears when the Markov chain does not mix well. They are
also able to obtain a less restrictive assumption on the support of the prior on
transition matrices. In return they assume a more restrictive assumption on the
log-likelihood, compare Equations (11) and (13) with their Assumption C1.

In the case of density estimation with i.i.d. observations, it is usual to control
the Kullback-Leibler support of the prior to show weak posterior consistency
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and to control, in addition, a metric entropy to obtain strong consistency, see
Chapter 4 of Ghosh and Ramamoorthi [15]. Assumptions (A1) and (A2) are
similar in spirit. Assumptions (A0) and (A1) replace the assumption on the
true density function being in the Kullback-Leibler support of the prior in the
i.i.d. case. (A1a) ensures that the transition matrices of Θε are in a ball of radius
ε around the true transition matrix. Under (A1b) the emission densities are in an
ε Kullback-Leibler ball around the true one. (A0), (A1b), (A1c) and (A1d) are
assumptions under which the log-likelihood converges P

θ∗

-a.s. and in L1(P
θ∗

).
(A2) is very similar to the assumptions of the metric entropy of Theorem 4.4.4
in Ghosh and Ramamoorthi [15].

In Appendix A, the proof of Theorem 2.1 relies on the method of Barron
[1]. It consists of controlling Kullback-Leibler neighborhoods and building tests.
The construction of tests is quite straightforward thanks to Rio’s inequality [18]
which generalizes Hoeffding’s inequality. To prove a), we use the usual strategy
presented in Section 4.4.1 in Ghosh and Ramamoorthi [15] together with Rio’s
inequality [18] and Gassiat and Rousseau [14]. To prove b), we use the tests of
Gassiat and Rousseau [14]. To control the Kullback-Leibler neighborhoods, we
use the following lemma whose proof is given in Appendix A.

Lemma 2.2. Let θ∗ be in Θ(q). If (A1) holds then, for all 0 < ε < 1, there
exists N ∈ N such that for all n > N and for all θ ∈ Θε:

1

n
KL(Pθ∗

n ,P
θ,µ
n ) 6

3

q
ε.

2.3. Consistency of each component of the parameter

In this Section we look at the consequences of Theorem 2.1 on posterior con-
sistency for the transition matrix and the emission distributions separately. Es-
timating consistently the components of the parameter is of great importance.
First one may want to know the proportion of each population or the probability
of moving from one population to another, i.e. the transition matrix. Secondly,
these components are important to recover the smoothing distribution, i.e. the
distribution of a hidden state given the observations, and then to cluster the
observations, see Cappé, Moulines and Rydén [3] and Theorem 3.4.

In practice, estimating the marginal density of l consecutive observations
is not the first purpose. Yet estimating the parameters and the hidden states
is often the goal. For instance, Whiting, Lambert and Metcalfe [20] give an
algorithm to estimate the stationary probability measure of the Markov chain
derived from the transition matrix. While Yau et al. [21] and Couvreur and
Couvreur [4] are interested in estimating the hidden states.

The consistency for each component of the parameter, i.e. the transition
matrix and the emission distributions, does not directly result from consistency
of the marginal distribution of the observations, see Dumont and Le Corff [10].
Identifiability seems to be necessary to obtain this implication yet it is not
sufficient. We obtain posterior consistency for the components of the parameter



724 E. Vernet

thanks to the result of identifiability of Gassiat, Cleynen and Robin [12] and as
usually by proving the continuity of the functional

{

((pθl )θ, L1) → (Θ, the topology T described in the following)
pθl 7→ θ

.

We use a product topology on the set of parameters. In particular we study
consistency in the topology associated with the sup norm on transition matrices
‖·‖ and the weak topology on probability measures for the emission distribu-
tions up to label switching. To deal with label switching, we need the following
definitions. Let Sk denote the symmetric group on {1, . . . , k}. Let σ be a per-
mutation in Sk, for all matrices Q ∈ ∆k

k, we denote σQ the following matrix:
for all 1 6 i, j 6 k,

(σQ)i,j = Qσ(i),σ(j).

If (Xt, Yt)t∈N is distributed from P (Q,f) and X̃t = σ−1(Xt), for σ ∈ Sk, then
(X̃t, Yt)t∈N is distributed from P (σQ,(fσ(1),...,fσ(k))), i.e the labels of the Markov
chain have been switched but (Yt)t∈N has the same distribution. Then, in gen-
erality, from the distribution of the observations one can at most recover the
parameter up to label switching. Gassiat, Cleynen and Robin [12] proved that
it is possible by knowing the joint distribution of at least three consecutive
observations.

In Theorem 2.3, whose proof is given in Appendix A, we prove that under the
assumption of identifiability, posterior consistency in the Dl topology implies
that the posterior concentrates around (Q∗, f∗) up to label switching, i.e. around
{σQ∗, (f∗

σ(1), . . . , f
∗
σ(k))}σ∈Sk

. In other words we obtain posterior consistency
considering neighborhoods of the form

{

∃σ ∈ Sk; σQ ∈ UQ∗ , fσ(i) ∈ Uf∗
i
, i = 1 . . . k

}

where UQ∗ is a neighborhood of Q∗ and for all 1 6 i 6 k, Uf∗
i

is a weak
neighborhood of f∗

i λ. That is to say we consider the product topology T of
the sup norm topology on transition matrices and of the weak topology on the
emission distributions up to label switching.

Theorem 2.3. Let θ∗ = (Q∗, f∗) ∈ Θ such that f∗
1λ, . . . , f

∗
kλ are linearly inde-

pendent and Q∗ has full rank.
If the posterior is consistent for the Dl pseudo-metric with l > 3, i.e. if for

all ε > 0,

P
θ∗
(

lim
n→∞

π( {θ : Dl(θ, θ
∗) < ε} |Y1:n) = 1

)

= 1.

then the posterior is consistent for the topology T , i.e. for all weak neighborhood
Uf∗

i
of f∗

i λ, for all 1 6 i 6 k and for all neighborhood UQ∗ of Q∗,

P
θ∗

(

lim
n→+∞

π

(

{

∃σ ∈ Sk; σQ ∈ UQ∗ , fσ(i)λ ∈ Uf∗
i
, 1 6 i 6 k

}

∣

∣

∣

∣

Y1:n

)

= 1

)

= 1.

(1)
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Remark 2.2. In particular, Equation (1) implies that for all ε > 0

P
θ∗

(

lim
n→+∞

π

(

⋃

σ∈Sk

{Q : ‖Q− σQ∗‖ < ε}
∣

∣

∣

∣

Y1:n

)

= 1

)

= 1.

It means that under the assumptions of Theorem 2.3, the posterior concentrates
around {σQ∗, σ ∈ Sk}. Equation (1) also implies that for all N ∈ N, for all
hi ∈ Cb(Rd) and for all εi > 0,

P
θ∗

(

lim
n→+∞

π

(

⋃

σ∈Sk

{

f :
∣

∣

∫

hifjdλ−
∫

hif
∗
σ(j)dλ

∣

∣ < εi,

for all 1 6 i, j 6 k
}

∣

∣

∣

∣

Y1:n

)

= 1

)

= 1.

This last result allows to consistently recover smooth functionals of the emission
distributions (f∗

j )j such as
∫

K
f∗
j dλ where K is compact. We obtain stronger

results in Sections 3.2 and 3.3.

The uncertainty due to label switching can be removed if there is only one
possible permutation σ associated to a parameter θ as in Proposition 2.4, proved
in Appendix A. This Proposition 2.4 may be useful if one knows some character-
istics of the hidden states which order them. The function H , in Proposition 2.4,
enables to order the hidden states and then to get rid of label switching.

Proposition 2.4. Let θ∗ ∈ Θ such that f∗
1λ, . . . , f

∗
kλ are linearly independent

and Q∗ has full rank. Let H :
(

Θ, T1
)

→ R
k be a continuous function, where T1

is the product topology of the sup norm topology on transition matrices and of
the weak topology on the emission distributions. Assume that for all permutation
σ ∈ Sk and for all θ = (Q, f) ∈ Θ,

Hi((σQ, fσ(1), . . . , fσ(k))) = Hσ(i)(θ), (2)

H1(θ
∗) < · · · < Hk(θ

∗), (3)

π
(

{

θ : H1(θ) < · · · < Hk(θ)
}

)

= 1. (4)

If the posterior is consistent for the topology T , i.e. for all weak neighborhood
Uf∗

i
of f∗

i λ, for all 1 6 i 6 k and for all neighborhood UQ∗ of Q∗,

P
θ∗

(

lim
n→+∞

π

(

{

∃σ ∈ Sk; σQ ∈ UQ∗ , fσ(i)λ ∈ Uf∗
i
, 1 6 i 6 k

}

∣

∣

∣

∣

Y1:n

)

= 1

)

= 1

(1)
then for all weak neighborhood Uf∗

i
of f∗

i λ, for all 1 6 i 6 k and for all neigh-
borhood UQ∗ of Q∗,

P
θ∗

(

lim
n→+∞

π

(

{

Q ∈ UQ∗ , fiλ ∈ Uf∗
i
, 1 6 i 6 k

}

∣

∣

∣

∣

Y1:n

)

= 1

)

= 1.
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Here we give some examples of possible functions H :

Hi(θ) = Qi,i or Hi(θ) =

∫

φfidλ, (5)

where φ is bounded and continuous. Even if in practice, one would often like to
use Hi(θ) =

∫

yfi(y)λ(dy), Proposition 2.4 does not allow it. Indeed, in this case
H is not continuous. Yet taking a continuous truncated version of the identity
for φ in Equation (5) may help.

3. Examples of priors on f

In this section we apply Theorems 2.1 and 2.3 for different types of priors and
emission models. In Section 3.1 we deal with emission distributions which are in-
dependent mixtures of Gaussian distributions. Translated emission distributions
are studied in Section 3.2. Finally we consider the discrete case with Dirichlet
process priors in Section 3.3.

Assumptions (A1b) and (A2) are purposely designed to resemble the types of
assumptions found in density estimation for i.i.d. observations. This allows us to
use existing results on consistency in the case of i.i.d. observations. This is done
in Sections 3.1 and 3.2 with a prior based on a usual prior on densities, which is
a mixture of Gaussian distributions such as in Tokdar [19]. Two ways of using a
prior on densities are considered. In Section 3.1, the emission distributions are
independently distributed under a usual prior on densities. In Section 3.2, the
emission distributions are designed from a unique density, distributed from a
usual prior, which is translated. Contrariwise in the discrete case we develop a
new method to deal with the Dirichlet process prior in Section 3.3.

3.1. Independent mixtures of Gaussian distributions

We consider the well known location-scale mixture of Gaussian distributions as
prior model for each fi, namely each density under the prior is written as

g(y) =

∫

R×(0,+∞)

φσ(y − z)dP (z, σ) =: φ ∗ P, (6)

where φσ is the Gaussian density with mean zero and variance σ2, and P is a
probability measure on R × (0,+∞). In this part, λ is the Lebesgue measure
on R. Let πP be a probability measure on the set of probability measures on
R × (0,+∞). Denote πg the distribution of g expressed as (6) when P ∼ πP .
Then we consider the prior distribution on f = (f1, . . . , fk) defined by πf = π⊗k

g .
We need the following assumptions to apply Theorem 2.1 and 2.3:

(B1)

πP

(

P :

∫

1

σ
dP (z, σ) <∞

)

= 1,
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(B2) for all 1 6 j 6 k, f∗
j is positive, continuous on R and bounded byM <∞,

(B3) for all 1 6 i 6 k, 1 6 j 6 k,
∫

R

f∗
i (y) log

(

f∗
j (y)

ψj(y)

)

λ(dy) <∞

where ψj(y) = inft∈[y−1,y+1] f
∗
j (t),

(B4) for all 1 6 i 6 k, there exists η > 0 such that
∫

R

|y|2(1+η)f∗
i (y)λ(dy) <∞,

(B5) for all β > 0, κ > 0, there exist a real number β0 > 0, two increasing and
positive sequences an and un tending to +∞, and a sequence ln decreasing
to 0 such that

πP

(

P : P ((−an, an]× (ln, un]) < 1− κ

)

6 exp(−nβ0),

with
an
ln

6 nβ, log

(

un
ln

)

6 nβ.

Proposition 3.1. Let q > 0. Assume that the support of πQ is included in

∆k(q) and that for all 1 6 i 6 k, µi > q. Assume that Q∗ is in the support of
πQ and that the weak support of πP contains all probability measures that are
compactly supported.

Then

• (B1), (B2), (B3), (B4) imply (A1)
• and (B5) implies (A2).

In particular in the case where πP is the Dirichlet processDP (αG0) with base
measure αG0, where G0 is a probability measure on R × (0,+∞) and α > 0,
Assumption (B1) holds as soon as

∫

R×(0,+∞)

1

σ
G0(dz, dσ) < +∞. (7)

Indeed,
∫ ∫

1

σ
P (dz, dσ)πP (dP ) =

∫ ∫ ∫

[σ,+∞)

1

t2
λ(dt)P (dz, dσ)πP (dP )

=

∫

1

σ
G0(dz, dσ).

Moreover using Remark 3.1 of Tokdar [19], Assumption (B5) easily holds as
soon as for all β > 0, there exist a real number β0 > 0, two increasing and
positive sequences an and un tending to +∞ and a sequence ln decreasing to 0
such that

G0 ((−an, an]× (ln, un])
c
) 6 exp(−nβ0),

an
ln

6 nβ, log

(

un
ln

)

6 nβ.
(8)
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3.2. Translated emission distributions

In this section we consider the special case of translated emission distributions,
that is to say for all 1 6 j 6 k,

fj(·) = g(· −mj),

where g is a density function on R with respect to λ and for all 1 6 j 6 k,
mj is in R. In this part, λ is still the Lebesgue measure on R and d = 1. This
model has been in particular considered by Yau et al. [21] for the analysis of
genomic copy number variation. First a corollary of Theorem 2.3 is given. Then
the particular case of location-scale mixture of Gaussian distributions on g is
studied.

Let

Ξ = {ξ = (Q,m, g), Q ∈ ∆k
k,m ∈ R

k,m1 = 0 < m2 < · · · < mk, g ∈ F}

and
Ξ(q) = {ξ = (Q,m, g) ∈ Ξ, Q ∈ ∆k(q)}.

To ξ = (Q,m, g) ∈ Ξ, we associate θ = (Q, (g(·−m1), . . . , g(·−mk))) ∈ Θ. We
then denote Pξ for Pθ. We assume that πf is a product of probability measures,

πf = πm ⊗ πg,

where πg is a probability measure on F and πm is a probability measure on R
k.

Note that under Ξ, the model is completely identifiable, see Theorem 2.1 of
Gassiat and Rousseau [13]. The uncertainty due to label switching is resolved
here. In Corollary 3.2, additionally to posterior consistency for the transition
matrices, we obtain posterior consistency for the parameters of translation mj

and for the weak convergence on the translated probability measure gλ. Under
a stronger assumption, we get posterior consistency for the L1-topology on the
translated density distribution.

Fix l > 3. The following assumption replaces (A2) in the context of translated
emission distributions:

(C2) for all n > 0, for all δ > 0, there exists a set Fn ⊂ R
k × F and a real

number r1 > 0 such that πf
(

(Fn)
c
)

. e−nr1 and

∑

n>0

N

(

δ

36l
,Fn, d(·, ·)

)

exp

(

−
nδ2k2q2

32l

)

< +∞.

Corollary 3.2. Let ξ∗ = (Q∗,m∗, g∗) be in Ξ(q) such that m∗
1 = 0 < m∗

2 <
· · · < m∗

k and Q∗ has full rank.
If the posterior is consistent for the Dl pseudometric with l > 3, i.e. if for

all ε > 0,

P
ξ∗
(

lim
n→∞

π( {ξ : Dl(ξ, ξ
∗) < ε} |Y1:n) = 1

)

= 1.
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Then, for all ε > 0,

P
ξ∗
(

lim
n→+∞

π({Q : ‖Q−Q∗‖ < ε}
∣

∣ Y1:n) = 1
)

= 1,

P
ξ∗
(

lim
n→+∞

π(
{

m : ∀1 6 j 6 k, |mj −m∗
j | < ε

} ∣

∣ Y1:n) = 1
)

= 1,

and for all N ∈ N, for all hi ∈ Cb(Rd), for all εi > 0, 1 6 i 6 N,

P
ξ∗

(

lim
n→+∞

π

({

g :

∣

∣

∣

∣

∫

higdλ−
∫

hig
∗dλ

∣

∣

∣

∣

< εi

} ∣

∣

∣

∣

Y1:n

)

= 1

)

= 1.

If moreover max16j6k µ
∗
j > 1/2 and g∗ is uniformly continuous; then, for all

ε > 0,

P
ξ∗
(

lim
n→+∞

π
({

g : ‖g − g∗‖L1(λ) < ε
}

|Y1:n
)

= 1
)

= 1.

The proof of Corollary 3.2, in Appendix B, relies on the identifiability result
of Gassiat and Rousseau [13] and Theorem 2.3.

In the same way as in Section 3.1, we propose to apply Theorem 2.1 and
Corollary 3.2 to a prior based on location-scale mixtures of Gaussian distri-
butions. In this part, we study a particular prior on the translated emission
density g which is the location-scale mixture of Gaussian distributions. Then g
is a sample drawn from πg if

g(y) =

∫

R×(0,+∞)

φσ(y − z)dP (z, σ)

where P is a sample drawn from πP and πP is a probability measure on proba-
bility measures on R× (0,+∞). The following assumption help in proving (C2):

(D6) for all β > 0, κ > 0, there exist a real number β0 > 0, three increas-
ing sequences of positive numbers mn, an and un tending to +∞, and a
sequence ln decreasing to 0 such that

πP

(

P : P ((−an, an]× (ln, un]) < 1− κ

)

6 exp(−nβ0),

πm

(

([−mn,mn]
k)c
)

6 exp(−nβ0),

an
ln

6 nβ, log

(

un
ln

)

6 nβ, log

(

mn

ln

)

6 nβ.

Proposition 3.3. Let q > 0 and ξ∗ in Ξ(q). Assume that the support of πQ is

included in ∆k(q) and that for all 1 6 i 6 k, µi > q. Assume that Q∗ is in the
support of πQ, that m

∗ is in the support of πm and that the weak support of πP
contains all probability measures that are compactly supported.

If (B1) is verified and (B2), (B3) and (B4) are verified with fj(·) =
g(· −mj), 1 6 j 6 k then (A1) holds.

Moreover (D6) implies (C2).
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The proof of Proposition 3.3 is very similar to that of Proposition 3.1 and is
given in Appendix B.

Corollary 3.2 and Proposition 3.3 are less general than Theorem 2.3 and
Proposition 3.1 respectively. In Corollary 3.2 and Proposition 3.3, it is assumed
that the true emission distributions are translated versions of a unique den-
sity g∗. In practice, we expect priors on translated emission distributions not to
be as robust as priors for which the emission distributions are i.i.d. such as pri-
ors of Section 3.1. Particularly if the true emission distributions have different
tails, priors on translated emission distributions may lead to poor estimations.

3.3. Independent discrete emission distributions

Discrete emission distributions, i.e. when the support of λ is included in N, have
been successfully used, for instance in genomics in Gassiat, Cleynen and Robin
[12].

Note that for discrete emission distributions, weak and l1 topologies are the
same so that weak posterior consistency implies l1 posterior consistency. Thus
Assumption (A2) becomes unnecessary in Theorems 2.1 and 2.3. Moreover pos-
terior consistency for the emission distributions in the weak topology in Theorem
2.3 implies posterior consistency for the emission distributions in l1.

In the discrete case, we prove in Theorem 3.4 that posterior consistency for
the marginal distribution of finitely many observations, for the transition matrix
and for the emission distributions in l1 together with the restriction of the prior
πQ on ∆k(q) imply posterior consistency for the marginal smoothing:

Theorem 3.4. Let q > 0. Assume that the support of πQ is included in ∆k(q)
and that for all 1 6 i 6 k, µi > q. If f∗

1λ, . . . , f
∗
kλ are linearly independent,

Q∗ has full rank, and (A0) and (A1) hold; then, for all finite integer m,

lim
n→+∞

π

(

{

θ : ∃σ ∈ Sk, max
16aj6k, 16j6m

|P θ(Xi = σ(ai), ∀ 1 6 i 6 m |Y1:n)

− P θ∗

(Xi = ai, ∀ 1 6 i 6 m | Y1:n)| < ε
}∣

∣

∣
Y1:n

)

= 1 in P θ∗

-probability.

The proof of Theorem 3.4 is given in Appendix A.
In the following we apply Theorems 2.1, 2.3 and 3.4 to a specific prior on the

set of probability measures on N in the case of a HMM with discrete emission
distributions. We consider a Dirichlet process DP (αG0) with α a positive num-
ber and G0 some probability measure on N. We then consider a prior probability
measure on Θ defined by

π = πQ ⊗DP (αG0)
⊗k.

In Proposition 3.5, we give sufficient and almost necessary conditions to ob-
tain (A1). Proposition 3.5 is proved in Appendix A.

Proposition 3.5. Let q > 0. Assume that the support of the prior πQ is included

in ∆k(q), that Q∗ is in the support of πQ and that for all 1 6 i 6 k, µi > q.
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If

(E1) for all 1 6 i 6 k,
∑

l∈N

f∗
i (l)

G0(l)
< +∞

then (A1) holds.
Moreover if

(T) for all 1 6 i 6 k,
∑

l∈N

f∗
i (l)(− log f∗

i (l)) < +∞

then (A1b) implies (E1).

Remark 3.1. Therefore (E1) is not only sufficient to prove (A1b) but up to the
weak assumption (T) it is also necessary. Assumption (E1) relies on the mutual
control of the tails of the base measureG0 and the true emission distributions f∗

j .
Proposition 3.5 suggests choosing a heavy tailed probability measure G0 with
G0(l) > 0, for all l ∈ N.

Remark 3.2. We deduce from Proposition 3.5 that
{

g∗ : N → (0, 1) such that
∑

l∈N

g∗(l) = 1,

∑

l∈N

g∗(l)(− log(g∗(l)) < +∞ and
∑

l∈N

g∗(l)

G0(l)
< +∞

} (9)

is a subset of the Kullback-Leibler support of the Dirichlet process DP (αG0).
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Appendix A: Proofs of key results

Proof of Lemma 2.2

For all θ, θ∗ ∈ ∆k(q) the Kullback-Leibler divergence between pθ
∗

n and pθn is by
definition equal to

1

n
Epθ∗

n

(

log

(

∑k
i1,...,in=1 µ

∗
i1
Q∗

i1,i2
. . . Q∗

in−1,in
f∗
i1
(Y1) . . . f

∗
in
(Yn)

∑k
j1,...,jn=1 µj1Qj1,j2 . . . Qjn−1,jnfj1(Y1) . . . fjn(Yn)

))

.

Multiplying and dividing each term of the sum in the numerator by

µi1Qi1,i2 . . .Qin−1,infi1(Y1) . . . fin(Yn),
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we obtain

1

n
E
pθ

∗
n













log













k
∑

i1,··,in =1

µ∗
i1

Q∗
i1,i2

··Q∗
in−1,in

f∗
i1

(Y1)··f
∗
in

(Yn)

µi1
Qi1,i2

··Qin−1,infi1
(Y1)··fin (Yn)

µi1
Qi1,i2

· ·Qin−1,in
fi1

(Y1)· ·fin
(Yn)

k
∑

j1,...,jn=1
µj1Qj1,j2 . . . Qjn−1,jnfj1(Y1) . . . fjn (Yn)

























6
1

n
E
pθ

∗
n

(

log

(

max
16i1 ,...,in6k

µ∗

i1
Q∗

i1,i2
. . . Q∗

in−1,in
f∗

i1
(Y1) . . . f∗

in
(Yn)

µi1Qi1,i2 . . . Qin−1,infi1(Y1) . . . fin (Yn)

))

by bounding the quotient in each term of the sum of the numerator by its
maximum. Since the maximum of a product of positive factors is bounded by
the product of the maxima,

1

n
KL(pθ

∗

n , p
θ,µ
n )

6
1

n
Epθ∗

n

(

log

(

max
16i06k

µ∗
i0

µi0

(

max
16i,j6k

Q∗
i,j

Qi,j

)n−1

max
16i16k

f∗
i1
(Y1)

fi1(Y1)
. . . max

16in6k

f∗
in
(Yn)

fin(Yn)

))

6
1

nq
max

16i06k

∣

∣µi0 − µ∗
i0

∣

∣+
n− 1

nq
max

16i,j6k

∣

∣Qi,j −Q∗
i,j

∣

∣

+ max
16j6k

∫

f∗
j (y) max

16i6k
log

f∗
i (y)

fi(y)
λ(dy).

The last inequality comes from the following inequalities

Epθ∗
n

(

log

(

max
16is6k

f∗
is(Ys)

fis(Ys)

))

=

k
∑

j1,...,jn=1

µ∗
j1Q

∗
j1,j2 . . . Q

∗
jn−1,jn

∫

f∗
js(y) log max

16is6k

(

f∗
is
(y)

fis(y)

)

λ(dy)
∏

16t6=s6n

∫

f∗
jt(y)λ(dy)

6 max
16j16k

∫

f∗
j1(y) max

16i16k
log

f∗
i1
(y)

fi1(y)
λ(dy),

log

(

max
16i06k

µ∗
i0

µi0

)

6
1

q
max

16i06k

∣

∣µi0 − µ∗
i0

∣

∣ ,

and

log

(

max
16i,j6k

Q∗
i,j

Qi,j

)

6
1

q
max

16i,j6k

∣

∣Qi,j −Q∗
i,j

∣

∣

because min16i,j6k(µi, µ
∗
i , Qi,j , Q

∗
i,j) > q.

Then for all ε > 0, for n large enough, for all θ ∈ Θε,

1

n
KL(pθ

∗

n , p
θ,µ
n ) 6

3

q
ε.
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Proof of Theorem 2.1

This proof relies on Theorem 5 of Barron [1]. We do not assume (A2) in the
first part of the proof. First we prove that for all a > 0,

P
θ∗

(

∫

Θ
pθn(Y1, . . . , Yn)π(dθ)

pθ∗

n (Y1, . . . , Yn)
6 exp(−an) i.o.

)

= 0 (10)

that is to say
pθ

∗

n (y1, . . . , yn)λ(dy1) . . . λ(dyn)

and
∫

Θ

pθn(y1, . . . , yn)λ(dy1) . . . λ(dyn)π(dθ)

merge with probability one.
Let ε > 0. Note that Assumption (A1a) implies that Q∗ ∈ ∆k(q). Then by

Lemma 2.2, there exists a real ε̃ > 0 such that for n large enough, for all θ ∈ Θε̃,

1

n
KL(pθ

∗

n , p
θ,µ
n ) < ε. (11)

Assumptions (A0), (A1b) and (A1d) imply that

k
∑

i=1

∫

f∗
i (y)

∣

∣

∣

∣

∣

∣

log





k
∑

j=1

fj(y)





∣

∣

∣

∣

∣

∣

λ(dy) < +∞. (12)

Indeed

∫

f∗
i (y)

∣

∣

∣

∣

∣

∣

log





k
∑

j=1

fj(y)





∣

∣

∣

∣

∣

∣

λ(dy)

6

∫

{y: fi(y)<1}
f∗
i (y)(− log(fi(y)))λ(dy) +

∫

{y: fi(y)>1}
f∗
i (y) log(k max

16j6k
fj(y))λ(dy)

and
∫

{y: fi(y)>1}
f∗
i (y) log(k max

16j6k
fj(y))λ(dy)

is finite under (A1d) and
∫

{y: fi(y)<1}
f∗
i (y)(− log(fi(y)))λ(dy)

is finite under (A0), (A1b) and (A1d) since

∫

f∗
i (y) max

16j6k
log

(

f∗
j (y)

fj(y)

)

λ(dy) >

∫

f∗
i (y) log(f

∗
i (y))λ(dy)

+

∫

{y: fi(y)<1}
f∗
i (y)(− log(fi(y)))λ(dy) +

∫

{y: fi(y)>1}
f∗
i (y)(− log(fi(y)))λ(dy).
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Moreover by Proposition 1 of Douc, Moulines and Rydén [7], if θ ∈ Θ(q) and if
(A1c), (A1d) and (12) hold,

1

n
log

(

pθ
∗

n (Y1:n)

pθ,µn (Y1:n)

)

converges Pθ∗

-almost surely and in L1(Pθ∗

). Let L̄(θ) denote this limit:

lim
n→∞

1

n
log

(

pθ
∗

n (Y1:n)

pθ,µn (Y1:n)

)

=: L̄(θ), Pθ∗

-a.s. and in L1(Pθ∗

).

Then using Equation (11), for all θ ∈ Θε̃,

L̄(θ) 6 ε. (13)

So that for all ε > 0, there exists ε̃ such that

π
(

θ : L̄(θ) < ε
)

> π(Θε̃) > 0.

By Lemma 10 of Barron [1], for all a > 0, (10) is verified.

We now have to build the tests described in Theorem 5 in Barron [1], to
obtain posterior consistency first for the weak topology and secondly for the
Dl-pseudometric. In the case of the weak topology, we follow the ideas of Sec-
tion 4.4.1 in Ghosh and Ramamoorthi [15]. Using page 142 of Ghosh and Ra-
mamoorthi [15], it is sufficient to consider

U =

{

P :

∫

hdP −
∫

hpθ
∗

l dλ
⊗l < ε,

}

,

for all ε > 0 and 0 6 h 6 1 in the set Cb((Rd)l). Choosing α and γ as in page
128 of Ghosh and Ramamoorthi [15], if

Sn =







y1, . . . , yn :
l

n

n/l−1
∑

j=0

h(yjl+1, . . . , yjl+l) >
α+ γ

2







,

then

P θ∗

(Sn) = P θ∗







n/l−1
∑

j=0

(

h(yjl+1, . . . , yjl+l)−
∫

hpθ
∗

l dλ
⊗l

)

>
n

l

γ − α

2







6 exp

(

−
n(γ − α)2(mini,j Q

∗
i,j)

2

2l(2− kmini,j Q∗
i,j)

2

)

(14)

and for all θ ∈ Θ(q) such that
∫

hdP θ −
∫

hpθ
∗

l dλ
⊗l > ε,

P θ((Sn)c) 6 P θ







n/l−1
∑

j=0

(

−h(yjl+1, . . . , yjl+l) +

∫

hpθl dλ
⊗l

)

>
n

l

γ − α

2
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6 exp

(

−n(γ − α)2(mini,j Qi,j)
2

2l(2− kmini,j Qi,j)2

)

6 exp

(

−
n(γ − α)2q2

2l

)

, (15)

using the upper bound from the proof of Theorem 4 of Gassiat and Rousseau
[14] based on Corollary 1 of Rio [18].

Using Theorem 5 of Barron [1] and combining Equations (14) and (15),

P θ∗

(

π

(

{

θ :

∫

hdP θ −
∫

hpθ
∗

l dλ
⊗l < ε

}c
∣

∣

∣

∣

Y1:n

)

> e−nr, i.o.

)

= 0

which implies that for all weak neighborhood U of P θ∗

l ,

P θ∗

(π(U c|Y1:n) > exp(−nr) i.o. ) = 0,

so that

P
θ∗
(

lim
n→∞

π(U |Y1:n) = 1
)

= 1.

We now assume (A2) and obtain consistency for the Dl-pseudometric. Let
ε > 0 and let

U =

{

θ : Dl(θ, θ
∗) <

2ε

kq

}

⊃
{

θ : Dl(θ, θ
∗) < ε

2− kmin16i,j6k Qi,j

kmin16i,j6k Qi,j

}

,

be a Dl-neighborhood of θ∗. Let

Bc
n = ∆k(q)×Fn,

so that

π(Bn) = πf (Fn
c) . exp(−nr1). (16)

In the proof of Theorem 4 of Gassiat and Rousseau [14], it is proved that for
all n large enough, there exists a test ψn such that

E
θ∗

(ψn) 6 N
( ε

12
,∆k(q)×Fn, Dl

)

exp

(

−nε
2

8l

k2(mini,j Q
∗
i,j)

2

(2 − kmini,j Q∗
i,j)

2

)

6 N
( ε

12
,∆k(q)×Fn, Dl

)

exp

(

−
nε2k2q2

32l

) (17)

sup
θ∈Uc∩Bc

n

P
θ,µ(1− ψn) 6 exp

(

−nε
2

32l

)

. (18)

Note that for all θ, θ̃ in Θ(q),

Dl(θ, θ̃) 6
∑

16i6k

|µθ
i − µθ̃

i |+ k(l − 1)‖Q− Q̃‖+ l max
16j6k

‖fj − f̃j‖L1(λ).
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The function Q→ µQ is continuous on the compact ∆k(q) and thus is uniformly

continuous: there exists α > 0 such that for all θ, θ̃ in Θ(q) such that ‖Q−Q̃‖ < α

then
∑

16i6k|µθ
i − µθ̃

i | < ε
36 . This implies that

N
( ε

12
,∆k(q)×Fn, Dl

)

6 N

(

min

(

ε

36k(l− 1)
, α

)

,∆k(q), ‖·‖
)

N
( ε

36l
,Fn, d(·, ·)

)

6

(

max

(

36k(l− 1)

ε
,
1

α

))k(k−1)

N
( ε

36l
,Fn, d(·, ·)

)

.

(19)

Then combining Equations (16), (17), (18), (19) and using Theorem 5 of Barron
[1], there exists r > 0 such that

P
θ∗

(

π (U c|Y1:n) > exp(−nr) i.o.
)

= 0. (20)

And Equation (20) implies that for all ε > 0,

P
θ∗
(

lim
n→∞

π( {θ : Dl(θ, θ
∗) < ε} | Y1:n) = 1

)

= 1.

Proof of Theorem 2.3

It is sufficient to show that for all weak neighborhood Uf∗ of f∗λ and neighbor-
hood UQ∗ of Q∗, there exists a D3-neighborhood Uθ∗ of θ∗ such that

Uθ∗ ⊂
{

∃σ ∈ Sk; σQ ∈ UQ∗ , fσ(i) ∈ Uf∗
i
, i = 1 . . . k

}

. (21)

Following Gassiat, Cleynen and Robin [12], it is equivalent to show that for all
sequences θn in Θ(q) such that D3(θ

n, θ∗) → 0, there exists a subsequence, that

we denote again θn, of θn and θ̄ ∈ Θ such that ‖Qn− Q̄‖ → 0, fn
i λ tends to f̄iλ

in the weak topology on probability measures for all i 6 k and p
(Q∗,f∗)
3 = p

(Q̄,f̄)
3 .

Let θn in Θ(q) such that D3(θ
n, θ∗) → 0. As ∆k(q) is a compact set, there

exists a subsequence of Qn that we denote again Qn which tends to Q̄ ∈ ∆k(q).
Writing µn the (sub)sequence of the stationary distribution associated to Qn,
then µn → µ̄ where µ̄ is the stationary distribution associated to Q̄. Moreover,
using the reverse triangle inequality,

D3(θ
n, θ∗) = ‖pθn3 − pθ

∗

3 ‖L1(λ⊗3)

=

∫

∣

∣

∣

∑

16i1,i2,i36k

µn
i1Q

n
i1,i2Q

n
i2,i3f

n
i1(y1)f

n
i2(y2)f

n
i3(y3)−

µ∗
i1Q

∗
i1,i2Q

∗
i2,i3f

∗
i1(y1)f

∗
i2(y2)f

∗
i3(y3)

∣

∣

∣ λ(dy1)λ(dy2)λ(dy3)

> −
∑

16i1,i2,i36k

∣

∣µn
i1Q

n
i1,i2Q

n
i2,i3 − µ̄i1Q̄i1,i2Q̄i2,i3

∣

∣+
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∫

∣

∣

∣

∑

16i1,i2,i36k

µ̄i1Q̄i1,i2Q̄i2,i3f
n
i1(y1)f

n
i2(y2)f

n
i3(y3)−

µ∗
i1Q

∗
i1,i2Q

∗
i2,i3f

∗
i1(y1)f

∗
i2(y2)f

∗
i3(y3)

∣

∣

∣ λ(dy1)λ(dy2)λ(dy3),

since
∑

16i1,i2,i36k

∣

∣

∣µn
i1
Qn

i1,i2
Qn

i2,i3
− µ̄i1Q̄i1,i2Q̄i2,i3

∣

∣

∣ tends to zero,

lim
n

∫

∣

∣

∣

∑

16i1,i2,i36k

µ̄i1Q̄i1,i2Q̄i2,i3f
n
i1(y1)f

n
i2(y2)f

n
i3(y3)−

µ∗
i1Q

∗
i1,i2Q

∗
i2,i3f

∗
i1(y1)f

∗
i2(y2)f

∗
i3(y3)

∣

∣

∣ λ(dy1)λ(dy2)λ(dy3) = 0.

(22)

Let Fn
1 , . . . , F

n
k be the probability distribution with respective densities fn

1 ,
. . . , fn

k with respect to λ. Since

∑

i1,i2,i3

µ̄i1Q̄i1,i2Q̄i2,i3F
n
i1 ⊗ Fn

i2 ⊗ Fn
i3

converges in total variation, it is tight and for all 1 6 i 6 k, (Fn
i )n is tight. By

Prohorov’s theorem, for all 1 6 i 6 k there exists a subsequence denoted Fn
i of

Fn
i which weakly converges to F̄i. This in turns implies that

∑

i1,i2,i3

µ̄i1Q̄i1,i2Q̄i2,i3F
n
i1 ⊗ Fn

i2 ⊗ Fn
i3

weakly converges to

∑

i1,i2,i3

µ̄i1Q̄i1,i2Q̄i2,i3F̄i1 ⊗ F̄i2 ⊗ F̄i3 ,

which combined with (22), leads to

∑

i1,i2,i3

µ̄i1Q̄i1,i2Q̄i2,i3 F̄i1 ⊗ F̄i2 ⊗ F̄i3

=
∑

i1,i2,i3

µ∗
i1Q

∗
i1,i2Q

∗
i2,i3f

∗
i1λ⊗ f∗

i2λ⊗ f∗
i3λ.

By Gassiat, Cleynen and Robin [12], Q̄ = Q∗, so µ̄ = µ∗ and F̄i = f∗
i λ up to

a label switching, that is there exists a permutation σ ∈ Sk such that σQ̄ = Q∗

and F̄σ(i) = f∗
i λ so that Equation (21) holds.

In other words we have proved the continuity of the functional

{

({pθl , θ ∈ ΘI}, L1) → (ΘI/Rσ, T )
pθl 7→ θ

where ΘI = {θ ∈ Θ : Q has full rank , f1dλ . . . fkdλ are linearly independent}
and Rσ is the equivalence relation on Θ such that θRσ θ̃ if there exists σ ∈ Sk
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such that for all 1 6 i, j 6 k, Qi,j = Q̃σ(i),σ(j) and fi = f̃σ(i); using that

({
pθl , θ ∈ ΘI

}
, L1

)

−−−−→
({

pθl , θ ∈ ΘI

}
, weak

topology

)

−−−−→

compact
︷ ︸︸ ︷
(

ΘI/Rσ , T
)

pθl
continuous
7−−−−→ pθl 7−−−−→ θ

.

continuous, bijective

Proof of Proposition 2.4

To prove Proposition 2.4, using Equation (4), it is sufficient to prove that for
all ε > 0, there exists η > 0 such that

{

θ ∈ Θ : H1(θ) < · · · <Hk(θ), ∃σ ∈ Sk, ‖σQ−Q∗‖ < η, max
16i6k

dw(fσ(i), f
∗
i ) < η

}

⊂
{

θ : H1(θ) < · · · < Hk(θ), ‖Q−Q∗‖ < ε, max
16i6k

dw(fi, f
∗
i ) < ε

}

(23)

where dw metricizes the weak topology on F . Using Equation (3),

δ := min
16i6k−1

|Hi+1(θ
∗)−Hi(θ

∗)| > 0 (24)

and by continuity of H for all ε > 0, there exists η1 > 0 such that for all

θ ∈
{

θ ∈ Θ : H1(θ) < · · ·Hk(θ), ∃σ ∈ Sk, ‖σQ−Q∗‖ < η1, dw(fσ(i), f
∗
i ) < η1

}

,

for all 1 6 i 6 k, |Hi(θ) − Hi(θ
∗)| < δ/2. For such θ, using Equation (2), we

obtain for all σ ∈ Sk,

|Hi((σQ, fσ(1), . . . , fσ(k)))−Hσ(i)(θ
∗)| < δ/2

so that using Equations (3), (24) and thatH1(θ) < · · · < Hk(θ), the permutation
σ is equal to the identity permutation. Thus Equation (23) holds with η =
min(η1, ε).

Proof of Theorem 3.4

To prove Theorem 3.4 we need the following lemma:

Lemma A.1. Let ε > 0, for all 0 < ε1 < 1, N > 0, 1 6 j < N and c > 0 such
that

0 <
ε1k

N

c(c− ε1)
<
ε

3
and

2(1− q)N+1−j

q + (1− q)N+1−j
<
ε

3
.

If
pθ

∗

N (Y1:N ) > c (25)
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then for all n > N ,
{

θ ∈ Θ(q) : ‖pθ∗

N − pθN‖l1 < ε1, ∃σ ∈ Sk, max
16i6k

|µθ
σ(i) −µ∗

i | < ε1,

‖σQ−Q∗‖ < ε1, max
16i6k

‖fσ(i) − f∗
i ‖l1 < ε1

}

⊂
{

θ ∈ Θ(q) : ∃σ ∈ Sk, max
16l6k

∣

∣P θ∗

(Xj = l | Y1:n)−P θ(Xj = σ(l) | Y1:n)
∣

∣ < ε

}

.

Proof of Lemma A.1. Let θ ∈ Θ(q) such that

‖pθ∗

N − pθN‖l1 < ε1 (26)

and there exists σ ∈ Sk such that

max
16i6k

|µθ
σ(i) − µ∗

i | < ε1, ‖σQ−Q∗‖ < ε1, max
16i6k

‖fσ(i) − f∗
i ‖l1 < ε1. (26)

To bound |P θ∗

(Xj = l | Y1:n) − P θ(Xj = l | Y1:n)|, we now prove that it is
sufficient to bound |P θ∗

(Xj = l | Y1:N ) − P θ(Xj = σ(l) | Y1:N )| with N < n a
well chosen fixed integer thanks to the exponential forgetting of the HMM. Let
1 6 a 6 k,

|P θ∗

(Xj = l | Y1:n)− P θ(Xj = σ(l) | Y1:n)|
6 Al

θ∗ + |P θ∗

(Xj = l | Y1:N )− P θ(Xj = σ(l) | Y1:N )|+A
σ(l)
θ ,

(27)

where for θ̃ ∈ {θ, θ∗} and for all 1 6 l 6 k,

Al

θ̃
=

∣
∣
∣
∣
∣
∣
∣
∣

P θ̃(Y1:N , Xj = l)
∑

16b6k

P θ̃(YN+1:n |XN+1 = b)P θ̃(XN+1 = b|Xj = l, Yj:N)

∑

16m6k

P θ̃(Y1:N , Xj =m)
∑

16b6k

P θ̃(YN+1:n|XN+1 = b)P θ̃(XN+1 = b|Xj =m,Yj:N)

−

P θ̃(Y1:N , Xj = l)
∑

16b6k

P θ̃(YN+1:n |XN+1 = b)P θ̃(XN+1 = b|Xj = a, Yj:N)

∑

16m6k

P θ̃(Y1:N , Xj =m)
∑

16b6k

P θ̃(YN+1:n|XN+1 = b)P θ̃(XN+1 = b|Xj = a, Yj:N )

∣
∣
∣
∣
∣
∣
∣
∣

.

Using Corollary 1 of Douc, Moulines and Rydén [7], i.e. the exponential
forgetting of the HMM, we obtain for all (b, ω,m) ∈ {1, . . . , k}3,

∣

∣

∣P θ̃(XN+1 = b|Xj = m,Yj:N )− P θ̃(XN+1 = b|Xj = ω, Yj:N )
∣

∣

∣

6 (1− q)N+1−j 6 (1− q)N+1−j P
θ̃(XN+1 = b|Xj = ω, Yj:N )

q

so that for θ̃ ∈ {θ, θ∗} and for all 1 6 l 6 k

Al
θ̃
6

2(1− q)N+1−j

q + (1− q)N+1−j
. (28)
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Moreover, using (25) and (26), for all 1 6 i, j 6 k, Y1:N ∈ N
N ,

µθ
σ(i) > µ∗

i − ε1, Qσ(i),σ(j) > Q∗
i,j − ε1, fσ(ai)(Yi) > f∗

ai
(Yi)− ε1 and

pθN(Y1:N ) 6 pθ
∗

N (Y1:N )(1 + ε1/c),

we obtain

P θ∗

(Xj = l | Y1:N )− P θ(Xj = σ(l) | Y1:N )

=

∑

a1:j−1,aj+1:N

µ∗
a1
Q∗

a1,a2
· ·Q∗

aj−1,l
Q∗

l,aj+1
· ·Q∗

aN−1,aN
f∗
a1
(Y1) · ·f∗

l (Yj) · ·f∗
aN

(YN )

pθ
∗

N (Y1:N )

−

∑

a1:j−1,aj+1:N

µθ
σ(a1)

Qσ(a1),σ(a2) . . .Qσ(aN−1),σ(aN )fσ(a1)(Y1) . . . fσ(aN )(YN )

pθN (Y1:N )

where aj = l as in the following,

6

(1 + ε1/c)
∑

a1:j−1,aj+1:N

µ∗
a1
. . . f∗

aN
(YN )− ∑

a1:j−1,aj+1:N

µθ
σ(a1)

. . . fσ(aN )(YN )

(1 + ε1/c)pθ
∗

N (Y1:N )

6

(1 + ε1/c)
∑

a1:j−1,aj+1:N

µ∗
a1
. . . f∗

aN
(YN )− ∑

a1:j−1,aj+1:N

(µ∗
a1

− ε1) . . . (f
∗
aN

(YN )− ε1)

c+ ε1
.

Expanding the product in the second sum, the numerator becomes a sum where
each term is bounded by (ε1/c)p

θ∗

N (Y1:N ). Indeed the first term is equal to
∑

a1:j−1,aj+1:N

µ∗
a1
. . . f∗

aN
(YN ) = pθ

∗

N (Y1:N )

which gives (ε1/c)p
θ∗

N (Y1:N ) when subtracted to the first sum. The other terms
are a product of a positive power of ε1 and µ∗

i , Q
∗
i,j or f∗

ai
(Yi) which are all

bounded by 1. Thus they are bounded by ε1 6 (ε1/c)p
θ∗

N (Y1:N ). Moreover there
are kN terms so that

P θ∗

(Xj = l | Y1:N )− P θ(Xj = σ(l) | Y1:N ) 6
ε1k

N

c(c+ ε1)
.

Similarly

P θ(Xj = σ(l) | Y1:N )− P θ∗

(Xj = l | Y1:N ) 6
ε1k

N

c(c− ε1)

so that

∣

∣P θ∗

(Xj = l | Y1:N )− P θ(Xj = σ(l) | Y1:N )
∣

∣ 6
ε1k

N

c(c− ε1)
. (29)

Combining Equations (27), (28) and (29), we obtain

|P θ∗

(Xj = l | Y1:n)− P θ(Xj = σ(l) | Y1:n)|

6 2
2(1− q)N+1−j

q + (1− q)N+1−j
+

ε1k
N

c(c− ε1)
< ε.
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We prove Theorem 3.4 for m = 1, one may easily generalizes the proof. Let
β > 0, j > 0 and ε > 0, we fix N and c > 0 such that

2(1− q)N+1−j

q + (1 − q)N+1−j
<
ε

3
and P θ∗(

pθ
∗

N (Y1:N ) > c
)

>
√

1− β (30)

then we choose ε1 such that

0 <
ε12

2NkN

c(c− ε1)
<
ε

3
. (31)

Posterior consistency for the marginal distribution in l1 and for all compo-
nents of the parameter i.e. Theorems 2.1 and 2.3 imply that there existsM such
that P θ∗

-a.s., for all n >M ,

π
(

{θ : DN(θ, θ∗) < ε1}
∣

∣ Y1:n
)

>

√
1− β + 1

2
(32)

and

π

(

{θ : ∃σ ∈ Sk, max
16i6k

|µσ(i) − µ∗
i | < ε1, ‖σQ−Q∗‖ < ε1,

max
16i6k

‖fσ(i) − f∗
i ‖l1} < ε1

∣

∣

∣

∣

Y1:n

)

>

√
1− β + 1

2
.

(33)

Using Lemma A.1 and combining (30), (31), (32) and (33), we obtain for all
n > max(N,M),

E
θ∗

(

π

(

{

θ : ∃σ ∈ Sk, max
16l6k

∣

∣

∣
P θ∗

(Xj = l|Y1:n)− P θ(Xj = σ(l)|Y1:n)
∣

∣

∣
< ε
}

|Y1:n
))

> E
θ∗

(

1pθ∗

N (Y1:N )>c

π

(

{

θ : ∃σ, max
16l6k

∣

∣

∣P θ∗

(Xj = l|Y1:n)− P θ(Xj = σ(l)|Y1:n)
∣

∣

∣< ε
}∣

∣

∣Y1:n

)

)

> 1− β.

Then

E
θ∗

(

π

(

{

θ : ∃σ ∈ Sk, max
16l6k

∣

∣

∣P θ∗

(Xj = l|Y1:n)− P θ(Xj = σ(l)|Y1:n)
∣

∣

∣< ε
}

|Y1:n
))

tends to 1, which concludes the proof of Theorem 3.4.

Proof of Proposition 3.5

As under DP (αG0)
⊗k, fi(l) is distributed from Beta(αG0(l), α

∑

m 6=lG0(m)),

∫

Fk

+∞
∑

l=1

f∗
i (l) max

16j6k
(− log(fj(l))) (DP (αG0))

⊗k(df)
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6

+∞
∑

l=1

f∗
i (l)

∑

16j6k

∫

Fk

(− log(fj(l))) (DP (αG0))
⊗k(df)

6

+∞
∑

l=1

f∗
i (l) Γ(α)

Γ(αG0(l))Γ
(

α
∑

m 6=l

G0(m)
)

∫ 1

0

− log(x)xαG0(l)−1(1− x)
α

∑

m 6=l

G0(m)−1

λ(dx).

(34)

On [1/2, 1], − log(x)xαG0(l)−1 6 2 log(2), so that there exists a constant C1

which does not depend on l such that

∫ 1

1/2

− log(x)xαG0(l)−1(1 − x)α
∑

m 6=l G0(m)−1λ(dx) 6 C1. (35)

On [0, 1/2], (1−x)α
∑

m 6=l G0(m))−1 6 2, so that there exists a constant C2 which
does not depend on l such that

∫ 1/2

0

− log(x)xαG0(l)−1(1− x)α
∑

m 6=l G0(m)−1λ(dx) 6
C2

(αG0(l))
2 . (36)

Moreover for all 0 < δ < 1,

1

δ
6 Γ(δ) =

Γ(δ + 1)

δ
6

2

δ
. (37)

By combining Equations (34), (35), (36) and (37), for all 1 6 i 6 k,

∫

Fk

+∞
∑

l=1

f∗
i (l) max

16j6k
(− log(fj(l))) (DP (αG0))

⊗k(df)

.

+∞
∑

l=1

f∗
i (l)

αG0(l)

so that using Assumption (E1),

(

DP (αG0)
)⊗k
(

f1, . . . , fk : ∀1 6 i 6 k,

+∞
∑

l=1

f∗
i (l) max

16j6k
(− log(fj(l))) < +∞

)

= 1.

Note that for all ε > 0,
{

f1, . . . , fk : ∀1 6 i 6 k,

+∞
∑

l=1

f∗
i (l) max

16j6k
(− log(fj(l))) < +∞

}

⊂
⋃

N∈N

{

f1, . . . , fk : ∀1 6 i 6 k,

+∞
∑

l=N

f∗
i (l) max

16j6k
(− log(fj(l))) < ε

}

,
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thus arguing by contradiction, for all ε > 0, there exists Lε such that

(

DP (αG0)
)⊗k
(

f1, . . . , fk : ∀1 6 i 6 k,

∑

l>Lε

f∗
i (l) max

16j6k
(− log(fj(l))) < ε

)

> 0.

Using the tail free property of the Dirichlet process, for all 1 6 j 6 k,
∑

l>Lε

f∗
i (l) max

16j6k
(− log(fj(l))) < ε

and
(

fj(1)
∑

l6Lε
fj(l)

, . . . ,
fj(Lε)

∑

l6Lε
fj(l)

)

(38)

are independent given
∑

l>Lε
fj(l) and (38) given

∑

l>Lε
fj(l) has a Dirichlet

distribution with parameter (αG0(1), . . . , αG0(Lε)). Then for all ε > 0, there
exists Lε such that for all δ ∈ (0, 1),

(

DP (αG0)
)⊗k
(

f1, . . . , fk : ∀1 6 i 6 k,
∑

l>Lε

f∗
i (l) max

16j6k
(− log(fj(l))) <

ε

2
,

∀l 6 Lε, |fj(l)− f∗
j (l)| 6 cδ

)

> 0

(39)

where c = min16i6k minl6Lε,f∗
i (l)>0 f

∗
i (l).

For all f1, . . . , fk such that for all 1 6 i, j 6 k,
∑

l>Lε

f∗
i (l) max

16j6k
(− log(fj(l))) <

ε

2

and for all l 6 Lε, |fj(l)− f∗
j (l)| 6 cδ,

∑

l∈N

f∗
i (l) max

16j6k
log

(

f∗
j (l)

fj(l)

)

=
∑

l6Lε

f∗
i (l) max

16j6k
log

(

f∗
j (l)

fj(l)

)

+
∑

l>Lε

f∗
i (l) max

16j6k
log(f∗

j (l))

+
∑

l>Lε

f∗
i (l) max

16j6k
(− log(fj(l)))

6
δ

1− δ
+ 0 +

ε

2
6 ε

(40)

for δ small enough. For such a δ denote

Θε = {Q : ‖Q−Q∗‖ 6 ε} × {f1, . . . , fk :
∑

l>Lε

f∗
i (l) max

16j6k
(− log(fj(l))) <

ε

2
,

∀l 6 Lε, |fj(l)− f∗
j (l)| 6 cδ, ∀1 6 i, j 6 k}



744 E. Vernet

Using Equation (40), (A1b) holds. Furthermore (A1d) is obviously checked.

Under Assumption (E1), G0(l) > 0 when
∑k

i=1 f
∗
i (l) > 0 so that (A1c) holds.

Using the assumption that Q∗ is in the support of πQ, (A1a) is checked. Then
using Equation (39), (A1) holds and the first part of Proposition 3.5 follows.

We now prove the second part of Proposition 3.5. We first give a representa-
tion of a discrete Dirichlet process with independent Gamma distributed random
variables.

Lemma A.2 (Ferguson [11]). Let (Zl)l∈N be independent random variables such
that for all l ∈ N,

Zl ∼ Γ(αG0(l), 1),

then
∑L

l=1 Zl converges almost surely and its limit has a gamma distribution
Γ(α, 1).

Moreover denote

f :

{

N → [0, 1]

i → f(i) = Zi/(
∑+∞

l=1 Zl)
,

then f is distributed from a Dirichlet process DP (αG0).

We assume (A1b) i.e. for all ε > 0,

DP (αG0)
⊗k

({

f ∈ Fk, ∀i ∈ {1, . . . , k}
∑

l∈N

f∗
i (l) max

16j6k
log

f∗
j (l)

fj(l)
< ε

})

> 0.

Let ε > 0, define Fε as the set of f = (f1, . . . , fk) ∈ Fk such that for all
1 6 i 6 k, for all f ∈ Fε,

∑

l∈N

f∗
i (l) log

(

f∗
i (l)

fi(l)

)

< ε.

Then DP (αG0)
⊗k(Fε) > 0.

Since
∑

l f
∗
i (l)(− log f∗

i (l)) converges, then
∑

l f
∗
i (l)(− log fi(l)) converges.

Using Lemma A.2, we can write fi with independent gamma distributed random
variables (Zl)l∈N:

fi(l) =
Zl

∑

j∈N
Zj
,

where Zl ∼ Γ(αG0(l), 1). Then
∑

l∈N
f∗
i (l)(− log(Zl)) converges since

∑

j∈N
Zj

is finite almost surely. Since DP (αG0)
⊗k(Fε) > 0, for all 1 6 i 6 k with positive

probability,
∑

l∈N

f∗
i (l)(− log(Zl))

converges. Using the Kolmogorov 0-1 law and the Three-Series Theorem (see
Section 9.7.3 in Dudley [9]),

∑

l∈N
f∗
i (l)(− log(Zl)) converges almost surely and

∑

l∈N

P(|f∗
i (l)(− log(Zl))| > 1) < +∞, (41)
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∑

l∈N

E
(

f∗
i (l)(− log(Zl))1|f∗

i (l)(− log(Zl))|61

)

< +∞, (42)

∑

l∈N

var
(

f∗
i (l)(− log(Zl))1|f∗

i (l)(− log(Zl))|61

)

< +∞. (43)

Equation (41) implies that

+∞ >
∑

l∈N

P(|f∗
i (l)(− log(Zl))| > 1)

>
∑

l∈N

1

Γ(αG0(l))

∫ exp(−1/f∗
i (l))

0

xαG0(l)−1e−xdx

>
∑

l∈N

1

αG0(l)Γ(αG0(l))
exp

(

− exp

( −1

f∗
i (l)

)

− αG0(l)

f∗
i (l)

)

&
∑

l∈N

exp

(

−αG0(l)

f∗
i (l)

)

using Equation (37). Then

lim
l→∞

f∗
i (l)

G0(l)
= 0. (44)

Moreover Equation (42) implies that

+∞ >
∑

l

E
(

f∗
i (l)(− log(Zl))1|f∗

i (l)(− log(Zl))|61

)

>
∑

l

(∫ 1

exp(−1/f∗
i (l))

1

Γ(αG0(l))
f∗
i (l)(− log(x))xαG0(l)−1e−xdx

+

∫ exp(1/f∗
i (l))

1

1

Γ(αG0(l))
f∗
i (l)(− log(x))xαG0(l)−1e−xdx

)

>
∑

l

(

e−1f∗
i (l)

Γ(αG0(l))

∫ 1

exp(−1/f∗
i (l))

(− log(x))xαG0(l)−1dx

− 1

Γ(αG0(l))

∫ exp(1/f∗
i (l))

1

e−xdx

)

& −α+
∑

l

e−1f∗
i (l)

α2G2
0(l)Γ(αG0(l))

(

1− exp

(

−αG0(l)

f∗
i (l)

)

− αG0(l)

f∗
i (l)

exp

(

−αG0(l)

f∗
i (l)

))

& −α+
∑

l

f∗
i (l)

G0(l)

using Equation (37) and that

lim
l→∞

exp

(

−αG0(l)

f∗
i (l)

)

+
αG0(l)

f∗
i (l)

exp

(

−αG0(l)

f∗
i (l)

)

= 0
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using Equation (44). Then

∑

l∈N

f∗
i (l)

G0(l)
< +∞.

Appendix B: Other proofs

Proof of Proposition 3.1

The proof uses many ideas of Tokdar [19].
We now prove that Assumptions (B1), (B2), (B3) and (B4) imply (A1).

A reproduction of the proof of Theorem 3.2. and Lemma 3.1 of Tokdar [19]
shows that Assumptions (B2), (B3) and (B4) imply that for all ε > 0, for
all 1 6 j 6 k there exists a weak neighborhood Vj of a compactly supported

probability measure P̃j such that for all fj = φ ∗ Pj , Pj ∈ Vj ,

∫

R

f∗
i (y) max

16j6k
log

(

f∗
j (y)

fj(y)

)

λ(dy) < ε. (45)

Let 0 < σ < σ̄ and ζ > 0 be such that for all 1 6 j 6 k

P̃j([−ζ, ζ] × [σ, σ̄]) = 1.

Let δ = σ/2. For all 1 6 j 6 k define

Uj =

{

P :

∣

∣

∣

∣

∣

∫

R×(0,+∞)

hdP −
∫

R×(0,+∞)

hdP̃j

∣

∣

∣

∣

∣

< ε

}

,

where h : R × (0,+∞) → [0, 1] is a piecewise affine continuous function such
that h(z, σ) = 1 for all z ∈ [−ζ, ζ] and σ ∈ [σ, σ̄] and h(z, σ) = 0 for all
z ∈ [−ζ − δ, ζ + δ]c and σ ∈ [σ − δ, σ̄ + δ]c. For all ε > 0, define

Θε = {Q : ‖Q−Q∗‖ < ε} × (V1 ∩ U1)× · · · × (Vk ∩ Uk).

Then for all (Q,φ∗P1, . . . , φ∗Pk) ∈ Θε, (A1b) is true according to Equation (45).
In addition, for all y ∈ R,

fj(y) >

∫

[−ζ−δ,ζ+δ]×[σ−δ,σ̄+δ]

φσ(y − z)Pj(dz, dσ)

>
1

σ̄ + δ
φσ−δ

(

max(|y − ζ − δ|, |y + ζ + δ|)
)

(1− ε)

which implies (A1c). Moreover using assumption (B1), ΠP -a.s. there exists
C > 0 such that for all 1 6 j 6 k,

fj(y) 6

∫

1

σ
Pj(dz, dσ) 6 C

so that (A1d) holds. As Θε is a product of neighborhoods of elements in the
support of their respective prior, π(Θε) > 0, so (A1) is checked.
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Now we prove that Assumption (B5) implies Assumption (A2). Let δ > 0.
For all a, l, u, κ > 0, such that l < u denote Fκ

a,l,u = {φ∗P : P ((−a, a]×(l, u]) >
1 − κ}. Using Section 4 of Tokdar [19], there exist b0, b1, b2 only depending on
κ such that

log(N(3κ, (Fκ
a,l,u)

k, d)) 6 k log(N(3κ,Fκ
a,l,u, ‖·‖L1(λ)))

6 kb0

(

b1
a

l
+ b2 log

(u

l

)

+ 1
)

.
(46)

Choosing κ = δ
3∗36l and β <

δ2kq2

32lb0(b1+b2)
, Assumption (B5) implies that As-

sumption (A2) holds.

Proof of Corollary 3.2

To prove the first part of Corollary 3.2, we use Theorem 2.3 because m∗
1 < · · · <

m∗
k implies the linear independence of g∗(· −m∗

1)λ, . . . , g
∗(· −m∗

k)λ. Then it is
sufficient to prove that for all ε > 0, there exists η > 0 such that
{

θ : ∃σ ∈ Sk, max
16i6k

dw
(

g(· −mσ(i)), g
∗(· −m∗

i )
)

< η, ‖σQ−Q∗‖ < η

}

⊂
{

θ : dw(g, g
∗) < ε, max

16j6k
|mj −m∗

j | < ε, ‖Q−Q∗‖ < ε

}

,

(47)

where dw metricizes the weak topology on F . Let ξn be a sequence of Θ(q) such
that for all n there exists σn ∈ Sk such that for all 1 6 i 6 k,

dw
(

gn(· −mn
σn(i)

), g∗(· −m∗
i )
)

→ 0 and ‖σnQn −Q∗‖ → 0.

As there exists a finite number of permutation in Sk, there exists a subsequence,
that we denote again ξn, of ξn such that there exists a permutation σ not
depending on n such that for all n and for all 1 6 i 6 k,

dw
(

gn(· −mn
σ(i)), g

∗(· −m∗
i )
)

→ 0 and ‖σQn −Q∗‖ → 0.

Particularly gn(·)λ weakly tends to g∗(· −m∗
σ−1(1))λ. As weak convergence im-

plies pointwise convergence of the characteristic functions and for all t ∈ R,
∫

eitygn(y −mn
σ(j))λ(dy) = eitm

n
σ(j)

∫

eitygn(y)λ(dy)

then
lim
n→∞

eitm
n
σ(j) = e

it(m∗
j−m∗

σ−1(1)
)

for all t such that
∫

eityg∗(y)λ(dy) 6= 0. As any characteristic function is uni-
formly continuous and equal to 1 at 0, there exists α > 0 such that

∫

eityg∗(y−
m∗

σ−1(1))dλ(y) 6= 0 for all |t| < α. Thus for all 1 6 j 6 k,

lim
n→∞

mn
σ(j) = m∗

j −m∗
σ−1(1).
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Since
0 = m∗

1 < m∗
2 < · · · < m∗

k and 0 = mn
1 < mn

2 < · · · < mn
k

then the permutation σ is equal to the identity permutation. Then Equation (47)
holds and this implies the first part of Corollary 3.2. In fact we have proved the
continuity of

{

({pξl , ξ ∈ Ξ(q), rank(Q) = k}, L1) → (∆k(0), ‖‖)× (R, ||)k × (F , dw)
pξl 7→ ξ

.

(48)
If moreover max16j6k µ

∗
j >

1
2 and g∗ is uniformly continuous, if

lim
n→∞

D3(ξ
n, ξ∗) = 0

then
lim
n→∞

D1(ξ
n, ξ∗) = 0

and by continuity of the functional defined in (48),

lim
n→∞

max
16j6k

|µn
j − µ∗

j | = 0

and
lim
n→∞

max
16j6k

|mn
j −m∗

j | = 0

so that
lim
n→∞

max
16j6k

‖g∗(· −mn
j )− g∗(· −m∗

j )‖L1(λ) = 0

since g∗ is uniformly continuous. Using the following inequality proved in the
proof of Corollary 1 in Gassiat and Rousseau [13]

‖D1(ξ
n, ξ∗)‖L1 >

(

2 max
16j6k

µ∗
j − 1

)

‖gn − g∗‖L1(λ)

− max
16j6k

|µn
j − µ∗

i | − max
16j6k

‖g∗(· −mn
j )− g∗(· −m∗

j )‖L1(λ)

we obtain that limn→∞‖gn − g∗‖L1(λ) = 0 which implies the last part of Corol-
lary 3.2.

Proof of Proposition 3.3

As in the proof of Proposition 3.1, many ideas come from Tokdar [19]. We
first prove (A1) assuming that (B1), (B2), (B3) and (B4) are verified with
fj(·) = g(· −mj), 1 6 j 6 k. With the same ideas of the proof of Theorem 3.2

in Tokdar [19], for all ε > 0 there exists a probability measure P̃ on R×(0,+∞)
such that there exists 0 < σ < σ̄ and a > 0 satisfying

P̃ ((−a, a]× (σ, σ̄]) = 1
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and
∫

g∗(y −m∗
i ) max

16j6k
log

g∗(y −m∗
j )

φ ∗ P̃ (y −m∗
j )
λ(dy) 6

ε

3
,

using Assumptions (B2), (B3) and (B4).

Let G = [−a, a]× [σ, σ̄]. Using the proof of Lemma 3.1 in Tokdar [19] for all
C > max16j6k|m∗

j | + a + σ̄, for all mj ∈ [m∗
j − a,m∗

j + a], and for all P such
that P (G) > σ

σ̄ ,

∫

|y|>C

g∗(y −m∗
i ) max

16j6k
log

φ ∗ P̃ (y −m∗
j )

φ ∗ P (y −mj)
λ(dy)

6

∫

|y|>C

g∗(y −mi) max
16j6k

1

2

( |y|+ |m∗
j |+ 2a

σ

)2

λ(dy) <∞.

(49)

Using assumption (B4) and Equation (49), we fix C such that

∫

|y|>C

g∗(y −m∗
i ) max

16j6k
log

φ ∗ P̃ (y −m∗
j )

φ ∗ P (y −mj)
λ(dy) 6

ε

3
.

Let Gδ = [−a− δ, a+ δ]× [σ − δ, σ̄ + δ], with δ chosen in (0,min(σ2 ,
a
2 )]. Let

h : R × (0,+∞) → [0, 1] be a piecewise affine continuous function such that
h(z, σ) = 1 on G and h(z, σ) = 0 on Gc

δ. Let

c = inf
σ − δ 6 σ 6 σ̄ + δ,

|y| 6 C,
|θ| 6 a + maxj |m∗

j | + δ

φσ (y − θ) .

By Arzelà-Ascoli theorem there exists y1, . . . , yI such that for all y ∈ [−C,C]
and 1 6 j 6 k, there exists 1 6 i 6 I such that

sup
(z,σ)∈Gδ

∣

∣φσ
(

y −m∗
j − z

)

− φσ
(

yi −m∗
j − z

)∣

∣ < cδ.

Let

Vδ =

{

P :
∣

∣

∣

∫

h(z, σ)φσ(yi −m∗
j − z)dP (z, σ)−

∫

h(z, σ)φσ(yi −m∗
j − z)dP̃ (z, σ)

∣

∣

∣ < cδ

}

.

For all P ∈ Vδ, for all mj ∈ [m∗
j − cσδ

√
2√

π
,m∗

j +
cσδ

√
2√

π
] and for all 1 6 j 6 k,

we get
∣

∣

∣

∣

∣

∫

h(z, σ)φσ(y −m∗
j − z)dP (z, σ)

∫

h(z, σ)φσ(y −mj − z)dP̃ (z, σ)
− 1

∣

∣

∣

∣

∣

6 4δ
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thus

∫

|y|6C

g∗(y −m∗
i ) max

16j6k
log

φ ∗ P̃ (y −m∗
j )

φ ∗ P (y −m∗
j )
λ(dy)

6

∫

|y|6C

g∗(y −m∗
i ) max

16j6k
log

∫

h(z, σ)φσ(y −m∗
j − z)dP̃ (z, σ)

∫

h(z, σ)φσ(y −m∗
j − z)dP (z, σ)

λ(dy)

6
4δ

1− 4δ
.

Then for δ small enough, for all g = φ ∗ P such that P ∈ Vδ ∩ {P : P (G) >
σ
σ̄} = Ṽδ, for all mj ∈ [m∗

j − cσδ
√
2√

π
,m∗

j +
cσδ

√
2√

π
] =M δ

j and for all 1 6 i 6 k,

max
16i6k

∫

g∗(y −m∗
i ) max

16j6k
log

(

g∗(y −m∗
j )

g(y −mj)

)

dy < ε, (50)

moreover,

g(y −mi) >

∫

G

φσ(y −mi − z)P (dz, dσ)

>
σ

σ̄
φσ(max(|y −mi − a|, |y −mi + a|))P (G)

>
σ

σ̄
φσ(max(|y −mi − a|, |y −mi + a|))σ

σ̄
> 0.

(51)

Assumption (B1) ensures that (A1d) holds. Finally for all ε > 0, there exists
δ > 0 such that (A1) holds with Θε = {Q : ‖Q − Q∗‖ < min(ε, q/2)} ×M δ

1 ×
· · · ×M δ

k × Ṽδ using Equations (50) and (51).

We now prove (C2) thanks to Assumption (D6). Let

Fa,l,u,m = [−m,m]k ×Fa,l,u,

where Fa,l,u = F2
a,l,u is defined in the proof of Proposition 3.1. Note that for all

(m,φ ∗ P ), (m̃, φ ∗ P̃ ) ∈ Fa,l,u,m, for all 1 6 i 6 k,

‖φ ∗ P (· −mi)− φ ∗ P̃ (· − m̃i)‖L1(λ)

6 ‖φ ∗ P (· −mi)− φ ∗ P (· − m̃i)‖L1(λ) + ‖φ ∗ P (·)− φ ∗ P̃ (·)‖L1(λ).

The second term is dealt with in the proof of Proposition 3.1. As to the first
part,

‖φ ∗ P (· −mi)− φ ∗ P (· − m̃i)‖L1(λ) 6
1

l

√

2

π
|mi − m̃i|

then for all κ > 0, a, l, u,m > 0 such that l < u,

N(3κ,Fa,l,u,m, d) 6

(

2m

lκ
+ 1

)k

N(2κ,Fa,l,u, ‖·‖L1(λ)).
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For all κ > 0, let
Fκ

a,l,u,m = [−m,m]k ×Fκ
a,l,u.

Following the ideas of Lemmas 4.1 and 4.2 in Tokdar [19], there exist c0, c1, c2, c3
only depending on κ such that

log
(

N(κ,Fκ
a,l,u,m), d

)

6 c0

(

c1k log
m

l
+ c2

a

l
+ c3 log

u

l
+ 1
)

,

so that (D6) implies (C2) with suitable choices of κ and β.
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