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Abstract: Traditional methods for the analysis of failure time data are
often employed in the analysis of waiting times of transient states from mul-
tistate models. However, such methods can exhibit bias when waiting times
among model states are dependent, even when censoring is random. Fur-
thermore, right-censoring can occur prior to entry into the transient state
of interest, preventing the observation of transitions from the state and
providing another potential source of bias. We introduce a nonparametric
linear hazards model for waiting times from multistate models, analogous to
Aalen’s linear hazards model for failure time data, where proper estimation
can be carried out via reweighting, a method flexible enough to incorporate
general forms of induced and other dependent censoring. We illustrate the
approximate unbiasedness of the proposed regression coefficient estimators
through a simulation study, while also demonstrating the bias arising from
traditional Aalen’s linear hazards model estimators obtained from corre-
lated waiting time data. Theoretical results for the parameter estimators
are provided. The reweighted estimators are used in the analysis of two data
sets, to identify predictors of ambulatory recovery in a data set of spinal
cord injury patients receiving activity-based rehabilitation and to identify
prognostic indicators for patients receiving bone marrow transplant.
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1. Introduction

The motivating example for this article is a data set of 273 patients with incom-
plete spinal cord injury (SCI) participating in a national activity-based rehabil-
itation program [1, 2]. Participating patients undergo a comprehensive assess-
ment at enrollment, receive sessions of standardized therapy (called locomotor
training), and are periodically evaluated for functional progress until program
discharge. Walking speed is among the measures of function collected on these
patients, and there are several clinical benchmarks – 0.44 m/s represents the
minimum walking speed associated with the ability to walk in the community,
0.7 m/s separates those who require assistive walking devices from those who do
not, and 1.2 m/s approximately defines the speed required to cross a street at
a stoplight [3]. The achievement of these benchmarks provides an example of a
multistate model, specifically, a five state model with states (1) patient unable
to walk, (2) patient able to walk no faster than 0.44 m/s, (3) patient able to
walk no faster than 0.7 m/s, (4) patient able to walk no faster than 1.2 m/s,
(5) patient able to walk faster than 1.2 m/s (Figure 1).

Community ambulation is a frequently-cited goal of rehabilitation therapy
for SCI patients with limited ambulatory capacity. Therefore, clinicians in the
rehabilitation program have been interested in identifying prognostic indica-
tors of the amount of time it takes ambulatory patients to achieve this goal.

State 1. 

 Non−

 ambulatory

State 2. 

 0 − 0.44 m/s

State 3. 

 0.44 − 0.7 m/s

State 4. 

 0.7 − 1.2 m/s

State 5. 

 > 1.2 m/s

Fig 1. Multistate model of SCI data example, with states defined by thresholds for walking
speed attained by SCI patients. Only transitions observed in the data are included in the
depiction of the model. Note that patients could enter the system at any state other than the
absorbing state (> 1.2 m/s). In Section 4.1, we consider waiting times in the second state
(0–0.44 m/s).
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In particular, it is of interest whether the intensity of therapy – which varies
from patient to patient – has an impact on the time it takes a non-community
ambulator to become a community ambulator. In the context of our multistate
model, this goal is represented as a transition out of state 2 to any later state.
The amount of time spent in state 2 prior to exit is the waiting time in state 2,
also referred to as the sojourn time. A simple approach to modeling waiting
times in transient model states as a function of one or more covariates may
involve the use of a regression model for survival data, such as the popular Cox
relative risk model or accelerated failure time model. This approach may in part
be motivated by the conceptual similarity between survival times and waiting
times. Both measure the time to an event – failure or death for survival times
and state exit for waiting times. This approach can be flawed, particularly when
observation of the multistate system is right censored. We describe these flaws
in the context of the SCI example.

Rehabilitation patients with severe functional deficits – those who are non-
ambulatory or non-community ambulators at enrollment – very rarely regain the
ability to walk at street-crossing speed. Thus, most of these patients are right-
censored prior to reaching the absorbing state of the multistate system (able to
walk faster than 1.2 m/s). In particular, patients that enter the rehabilitation
program unable to walk may not regain the ability to walk before discharge from
the rehabilitation program. In the context of the multistate model describing
the SCI data, such patients are censored while in state 1 of the model. As such,
these patients have contributed observation time prior to the commencement of
the event process of interest (the exit process from state 2), and it is impossible
for the observer to know whether they would have entered state 2 and how much
time they may have spent there. Survival data methods applied to multistate
waiting times necessarily ignore these patients, which can potentially bias any
inferences made, particularly in more complex multistate networks with several
paths. Another drawback to the use of survival data methods for multistate
waiting times is the need to assume the independence of waiting times among
states, the semi-Markov property, in addition to the independence of censor-
ing times traditionally required of survival data methods. Even in the presence
of random censoring, dependence among waiting times can induce patterns of
dependent censoring; a heuristic demonstration of this can be found in [4]. In
practice, the semi-Markov property can be implausible for many multistate mod-
els, obviating the need for alternative methods. We return to the spinal cord
injury data set in Section 4 and show how to resolve these issues following our
approach.

The nonparametric linear hazard model introduced by Aalen [5, 6, 7] pro-
vides a flexible regression model for the analysis of failure time data. Like the
Cox relative risk and AFT models, Aalen’s linear model permits fixed and time-
varying covariates both internal and external in scope. The flexibility of Aalen’s
linear model comes from the model coefficients being defined as functions of time
rather than static quantities as in the Cox and AFT models. To our knowledge,
Aalen’s linear model has yet to be extended to waiting time hazards from mul-
tistate models.
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In this paper, we develop a novel linear hazards model for multistate wait-
ing times and related estimation procedure. Some regression models for sojourn
times have been developed for the special case of a progressive multistate system
(time ordered serial events) where the sojourn times are the gap times between
events [8, 9]. In contrast, our approach is applicable to a very general multi-
state system under induced and other forms of dependent censoring. Further,
the reweighting procedure we utilize provides a proper adjustment to the bias
that can be introduced from right censoring prior to entry into the state un-
der analysis. In Section 2, we introduce notation for multistate models, develop
an estimator for the integrated coefficient functions, and suggest a martingale
representation for the estimator, useful for the development of asymptotic prop-
erties. Section 3 details the results of a simulation study evaluating the present
estimators against the estimators from Aalen’s linear model for failure time data
applied to waiting times in a simple multistate system with correlated waiting
times. We illustrate the utility of our methodology by analyzing two data sets,
the multistate SCI data described above and a follow-up study of individuals
receiving bone marrow transplantation [10].

2. Methods

2.1. Preliminaries and the linear Hazards model for waiting times

We consider an acyclic network of J states through which n individuals progress.
For individual i (1 ≤ i ≤ n), the uncensored data consist of the entry and exit
times for each state, T ∗

ij and U∗
ij , respectively, for states j ∈ {1, . . . , J}. Let

T ∗
ij = ∞ if state j is never entered and U∗

ij = ∞ if state j is never entered or
never exited, for example, if state j is absorbing. The right censoring time for
individual i is denoted by Ci, and we note that censoring applies to the full
multistate system, (i.e.) after censoring no further transitions between states
are observed. The right-censored entry and exit times for finite T ∗

ij and U∗
ij

are Tij = min(T ∗
ij , Ci) and Uij = min(U∗

ij , Ci). Let γij = I[Ci ≥ T ∗
ij ] and

δij = I[Ci ≥ U∗
ij ] be the indicators of individual i having been observed to

enter and exit state j, respectively. The time of last transition is defined as
T ∗
i = maxj{T ∗

ij | T ∗
ij < ∞} in the uncensored data and Ti = min{T ∗

i , Ci} in the
censored data, and let δi = I[Ti ≤ C∗

i ] be the indicator of the last transition
being observed. Let Xij = I[T ∗

ij < ∞] be the indicator of eventual state j entry.
Lastly, in addition to the entry and exit times and entry and exit indicators, we
observe a vector of possibly time-varying covariates Zi(t) for each individual.

In what follows, we will have need to refer to both calendar time, the time
from which observation of the multistate system began, and waiting time, the
time from entry into a given model state. Additionally, we will need to define
processes and filtrations evolving in calendar time as well as those evolving in
waiting time. In order to distinguish the two, we will denote calendar time as t
and waiting time as w. Processes and filtrations evolving in calendar time will
be represented as functions of t and those evolving in waiting time as functions
of w.
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The full event history for the multistate system consists of transitions ob-
served up to time t along with any information contributed by censoring. Let
Ht,i = σ{T ∗

ijI[T
∗
ij ≤ t]; j = 1, . . . , J} represent the event history for individual i,

defined as the σ-algebra generated by transitions observed up to time t. Define
the event history for all individuals to be Ht = ∨iHt,i. Let Z̄i(t) represent the
covariate history for individual i up to time t, and let Z̄(t) = ∨iZ̄i(t).

Processes evolving in state j waiting time will be adapted to a filtration gen-
erated by observation of the multistate system after state j entry. This will
consist of exits from state j as well as covariate histories after state j entry. We
will require notation for these waiting time process and filtrations. For individ-
uals that enter state j, the waiting time in state j can be written as w = t−T ∗

ij.
For individual i, the history associated with the state j waiting time process is

H(j)
w,i = σ((U∗

ij − T ∗
ij)I[U

∗
ij − T ∗

ij ≤ w], Xij). The state j waiting time history for

all individuals is H(j)
w = ∨iH(j)

w,i. Define the value of the vector of covariates at
waiting time w as

Z
(j)
i (w) =

{
Zi(w + T ∗

ij) if Xij = 1
0 if Xij = 0.

The value of Z
(j)
i at waiting time w is simply the value of Zi at the calendar time

t corresponding to waiting time w, which is w+T ∗
ij for individuals having entered

state j. Let Z̄
(j)
i (w) represent the covariate history for individual i during state

j occupation, and let Z̄(j)(w) = ∨iZ̄
(j)
i (w) be the state j covariate history for

all individuals. These histories of transitions and covariate values, both for the
full multistate system and state j waiting times, will be employed later to define
filtrations for martingales associated with our proposed estimator.

We define a linear model for the waiting time hazard in transient state j,
U∗
ij − T ∗

ij denoting the state j waiting time in the uncensored data and Uij −
Tij in the censored data, which we assume to be continuous. Let λj(w|·) =
limdw→0 P [U∗

ij − T ∗
ij ∈ [w,w + dw) | U∗

ij − T ∗
ij ≥ w,Xij = 1, ·]/dw be the

hazard rate function for exits from state j of the multistate model, and let
Λj(w|·) =

∫ w

0 λj(v|·)dv be the cumulative hazard function. Our linear hazards
model for waiting times defines λj(w) as a linear function of the covariates

Z
(j)
i (w):

λj

(
w | Z̄(j)

i (w), Xij = 1
)
= β0j(w) +

p∑

m=1

βmj(w)Z
(j)
im (w), (1)

where the βmj(w) are the coefficient functions. We note that values of the time-
varying covariates Zim impact the state j hazard only at times during which

an individual is in state j, as implied by the notation Z
(j)
im (w). Values taken by

time-varying covariates prior to state j entry have no effect on the state j exit
hazard.

The set of covariates in (1) can include so-called internal covariates, functions
of the observed transitions through the multi-state system, and we note one im-
portant consequence of this. Since the waiting time linear model (1) is marginal
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with respect to the waiting time in state j but conditional on the covariates
Zim(w), a linear model that includes the time of entry into state j (Tij) or func-
tions thereof as one of the covariates can be analyzed with the standard Aalen
model. In the introduction, we noted that dependencies among waiting times
in successive states can induce dependent censoring in the analysis of waiting
times, potentially biasing traditional estimators for survival data like the co-
variate estimators for Aalen’s linear model. However, if the state j entry time is
included as a covariate in waiting time model (1), then the dependencies among
waiting times are effectively “conditioned out” of the model. In other words,
the inclusion of the state j waiting time as a model covariate effectively fixes
it, thereby removing any waiting time dependencies that may induce dependent
censoring and bias survival data methods. In this special case, the traditional
coefficient estimators for Aalen’s linear model can be employed. In general, the
traditional estimators will fail while our proposed estimators remain valid, as
will be shown in our simulation study in Section 3.

We estimate the integrated coefficient vector Bj(w) = (B0j(w), . . . , Bpj(w))
for model (1), where Bmj(w) =

∫ w

0
βmj(v)dv. The integrated coefficients Bj(w)

represent a cumulative sum of the regression coefficients over time and are
a cumulative measure of the impact of a covariate on the hazard of state j
exit. We begin with uncensored data, for which Aalen’s estimator for failure
time data [5, 6, 7] can be directly applied. To define the uncensored data
estimator, let N∗

ij(w) = I[U∗
ij − T ∗

ij ≤ w,Xij = 1] indicate whether indi-
vidual i has exited state j by time w after state j entry (given that state j
has been entered), and define the vector N∗

j (w) = (N∗
1j(w), . . . , N

∗
nj(w)). Let

Y ∗
ij(w) = I[U∗

ij − T ∗
ij ≥ w,Xij = 1] be the indicator that individual i has yet to

leave state j just prior to time w after state j entry, given that state j has been
entered. Define the n× (p+1) “at-risk” covariate matrix Y∗

j (w) to have ith row

Y ∗
ij(w) · (1, Z

(j)
i1 (w), . . . , Z

(j)
ip (w)). If individual i has yet to leave state j by time

w after state j entry, then the ith row of Y∗
j (w) contains the covariate vector

for individual i at time w after state j entry. Otherwise, the ith row of Y∗
j (w) is

a vector of zeros. Aalen’s estimator of Bj(w), derived as the solution to a mar-
tingale estimating equation (cf. [11], Chapter VII for a detailed derivation) is

B∗
j (w) =

∫ w

0

J∗
j (v)Y

∗−
j (v)dN∗

j (v), (2)

where Y∗−
j (v) is a generalized inverse of Y∗

j (v) and J∗
j (v) = I[rank(Y∗

j (v)) =
p+ 1]. From the martingale estimating equation follows a martingale represen-
tation for estimator (2), (B∗

j −Bj)(w) =
∫ w

0 J∗
j (v)Y

∗−
j (v)dM∗

j (v), where M
∗
j(v)

is the vector with components M∗
ij(v) = N∗

ij(v)−
∫ w

0 λj(v)Y
∗
ij(v)dv. For uncen-

sored data, standard results [11] for Aalen’s linear model give that M∗
j (w) is a

martingale with respect to the filtration F (j)
w = σ{Z̄(j)(w),H(j)

w }, the σ-algebra
generated by state j exits and the state j covariate process. The predictable
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variation process associated with this martingale is

〈
B∗

j −Bj

〉
(w) =

∫ t

0

J∗
j (v)Y

∗−
j (v)diag {λj(v)dv}Y∗−

j (v)T. (3)

Asymptotic results and practical applications for this estimator require the
choice of a specific generalized inverse for Y∗

j (w). A popular choice is based

on a least squares principle by letting Y∗−
j (w) = (Y∗

j (w)
TY∗

j (w))
−1Y∗

j (w)
T,

although other choices are possible. Weak convergence to a Gaussian martingale
with variance equal to the expectation of (3) follows under regularity conditions
on the matrix Y∗

j (w) guaranteeing applicability of the martingale central limit
theorem (cf. [11], Thm. VIII.4.1).

2.2. Inverse probability of censoring weighted estimator for

integrated regression coefficient functions

The estimator (2) can be adapted to censored data by replacing the individ-
ual level counting processes N∗

ij(w) and Y ∗
ij(w) with censored data equivalents

Nij(w) = I[Uij − Tij ≤ w, δij = 1] and Yij(w) = I[Uij − Tij ≥ w, γij = 1],
producing the estimator

B̃j(w) =

∫ w

0

Jj(v)Y
−
j (v)dNj(v), (4)

where Jj(v) = I[rank(Yj(v)) = p + 1]. As noted in Section 1, a semi-Markov
assumption and an independent censoring assumption [11] are required for this
estimator to be valid. To relax this requirement, our proposed estimator operates
by weighting the basic counting processes composing uncensored data estimators
like (2) with the inverse probability of censoring. Thus, in order to develop
weighted estimators for the integrated regression coefficient functions, we first
require a model for the censoring hazard.

Let λc(t|·) denote the censoring hazard. Following previous work on weighted
estimation for failure time and multistate data [12, 13, 14], we assume that
knowledge of future transition times does not impact the hazard of censoring, a
condition formally stated as

λc
(
t | Z̄i(t),H∞,i

)
= λc

(
t | Z̄i(t),Ht−,i

)
. (5)

For notational convenience we write λc
i (t) for λc(t | Z̄i(t),Ht−,i). Let Λc

i(t) =∫ t

0 λ
c
i (s)ds be the cumulative hazard of censoring and define the associated prod-

uct integral Ki(t) =
∏

s≤t[1−dΛc
i(s)], which provides the probability of censor-

ing for individual at time t.
Returning to the analysis of waiting times, define the weighted counting pro-

cesses N ij(w) = I[Uij −Tij ≤ w, δij = 1]/Ki(Uij−) and Y ij(w) = I[Uij −Tij ≥
w, γij = 1]/Ki(Tij + w−) and let the vector Nj(w) and the matrix Yj(w)
be defined by replacing N∗

ij(w) and Y ∗
ij(w) with N ij(w) and Y ij(w) through-

out. Inference based on these reweighted counting processes is asymptotically
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equivalent to that based on the uncensored data counting processes based on
the previously proven [15] expectation equalities E[N ij(w)] = E[N∗

ij(w)] and

E[Y ij(w)] = E[Y ∗
ij(w)]. The weighted processes N ij(w) and Y ij(w) in essence

estimate the uncensored data processes, which are unobservable when right cen-
soring is present.

The processes N ij(w) and Y ij(w) are not of practical use, being based on
the generally unknown functions Ki(t). We obtain an estimate of Ki(t) by again
employing Aalen’s linear hazard model, and define the model for the censoring
hazard as λc

i (t) = βc
0(t) +

∑q
m=1 β

c
m(t)Zim(t). In contrast to the state j waiting

times linear hazards model (1), the covariates Zim(t) are used directly since the
censoring process evolves in calendar time. Further, we note that the covariates
used to model the censoring hazard are subsets of the full covariate history
Zi(t), but may be distinct from the covariates used to model the waiting time
hazard in (1). To define the estimator of the vector of integrated regression

coefficients Bc(t) = (Bc
0(t), . . . , B

c
q(t)) where B

c
m(t) =

∫ t

0 β
c
m(s)ds, we introduce

the required counting processes for censoring. Let N c
i (t) = I[Ci ≤ t, Ci ≤ T ∗

i ]
be the indicator of individual i having been censored by time t and let Y c

i (t) =
I[Ti ≥ t] be the indicator of individual being at risk of censoring just before
time t. Define the vector Nc(t) = (N c

1(t), . . . , N
c
n(t)) and the matrix Yc(t) with

ith row Y c
i (t) · (1, Zi1(t), . . . , Ziq(t)). The estimator of Bc(t) is defined in similar

fashion as the estimator B∗
j (t) for uncensored data:

B̂c(t) =

∫ t

0

Jc(s)Yc−(s)dNc(s), (6)

where Jc(s) = I[rank(Yc(s)) = q + 1]. We again select the generalized inverse

Yc−(s) = (Yc(s)TYc(s))−1Yc(s)T for practical application of (6). Let Λ̂c
i (t) =∫ t

0
ZT
i (s)dB̂

c(s) and K̂i(t) =
∏

s≤t(1 − dΛ̂c
i(s)).

Using the estimated hazard of censoring, we can now define a weighted es-
timator for the integrated regression coefficients for the waiting time model.
Define the data-based weighted counting processes N̂ij(w) = I[Uij − Tij ≤
w, δij = 1]/K̂i(Uij−) and Ŷij(w) = I[Uij − Tij ≥ w, γij = 1]/K̂i(Tij + w−),

the vector N̂j(w) = (N̂1j(w), . . . N̂nj(w)), and the matrix Ŷj(w) with ith row

Ŷij(w) · (1, Z(j)
i1 (w), . . . , Z

(j)
ip (w)). The weighted estimator of Bj(t) is given by

replacing the uncensored data counting processes with the weighted equivalents:

B̂j(t) =

∫ t

0

Ĵj(s)Ŷ
−
j (s)dN̂j(s), (7)

where Ĵj(s) = I[rank(Ŷj(s)) = p + 1], and we again use the least squares

generalized inverse Ŷ−
j (t) = (ŶT

j (t)Ŷj(t))
−1ŶT

j (t). In Appendix A, we derive
a martingale representation for the coefficient estimator (7). This representa-

tion results from the decomposition of (B̂j − Bj)(t) into two asymptotically
independent martingales, defined with respect to different filtrations; the first
a stochastic integral of a predictable process with respect to the martingale as-
sociated with state j exits (a state j waiting time martingale), and the second
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a stochastic integral of a predictable process with respect to the martingale for
censoring events (a calendar time martingale). This decomposition has previ-
ously been used to establish martingale representations for weighted estimators
for survival data [15], waiting time distributions [14], and log rank tests for
waiting times [4].

Given the martingale representation and suitable regularity conditions, weak
convergence to a Gaussian limit can be expected via the martingale central limit
theorem. However, the martingale representation and its associated predictable
variation process and variance-covariance matrix are complex, making the tech-
nical conditions for the martingale central limit theorem difficult to characterize
and complicating variance computations made on real data. We thus recommend
use of the bootstrap to generate variance estimates, which is in part validated
by the martingale representation for (7).

3. Simulation study

We conducted a simulation study on a simple multistate model to evaluate the
validity of our estimator B̂j(t) and examine the performance of the unweighted

estimator B̃j(t) defined in Section 2.2. We considered a multistate model with a
single root node (state 0), from which individuals could progress to a transient
state (state 1) or absorbing state (state 2). Individuals progressing to state 1
from state 0 could then transition to a second absorbing state (state 3). We
selected this structure as it represents the simplest acyclic network exhibiting
a transient state (state 1) as well as an alternative absorbing state (state 2)
precluding entry into the transient state. Data were simulated for four models
of the waiting time hazard in the transient state (state 1), where parameters
governing the bivariate distribution of waiting times in the root and transient
states (states 0 and 1) were varied:

1. One-Factor Model. The logarithm of waiting times in states 0 and 1 were
simulated from the bivariate normal distribution with means k/4 for group
k, k = 1, . . . , 4, marginal variances of 1, and covariance equal to ρ, where
ρ was set equal to −0.5, 0, and 0.5 for negatively correlated, uncorrelated,
and positively correlated waiting times. The state of entry from state 0 was
simulated via a Bernoulli random variable with p = 0.75. If this random
variable took value 1, the individual entered transient state 1 from state 0;
otherwise the individual entered absorbing state 2. The per group sample
size was 500. Censoring times were generated from the Weibull distribution
with scale parameter 5 and shape parameter 2 ∗ (5− k)/k for group k, so
that censoring depended on the covariate in question and varied by sample.
The linear hazard model for state 1 waiting times under this design is

λi1(w) = β11(w)Zi1 + β21(w)Zi2 + β31(w)Zi3 + β41(w)Zi4,

where the Zik are indicator functions for group k membership and βk1 the
coefficient functions for group k corresponding to the lognormal hazard
associated with group k.
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2. One-Factor Model with Time-Dependent Covariates. A random “switch-
ing” time was added to the first model, a time at which individuals could
switch groups, 1 ↔ 4 and 2 ↔ 3, and subsequently experience a new
hazard of state 1 exit. Switching times were generated from the uniform
distribution on (0, 5) and represented the calendar time of a group switch,
(i.e.) an individual could switch groups before or after state 1 entry, or
not at all. The linear hazard model for this design is

λi1(w) = β11(w)Zi1(w) + β21(w)Zi2(w) + β31(w)Zi3(w) + β41(w)Zi4(w)

Note that the covariates Zik(w) are now time-varying to account for the
group switch. The definition and interpretation of all model terms are the
same as in the first model, with the covariates Zik(w) now reflecting group
membership at waiting time w.

3. Simple Regression. State 0 and 1 waiting times were generated for n = 2000
individuals as correlated exponential variates with rate parameters 0.25
and 0.25 + 0.05Z, where Z was a continuous covariate generated from
the uniform distribution on (−4, 4). The correlation between state 0 and
1 waiting times was −0.5, 0, and 0.5. Censoring times were generated
from the Weibull distribution with shape parameter 2 and scale parameter
2Z. The state of entry from the root node was simulated via a Bernoulli
random variable, identical to simulation model 1. The linear hazard model
for state 1 waiting times is

λi1(w) = β01(w) + β11(w)Zi1.

For each simulation model, the linear model for the censoring hazard included
the “correct” covariate, indicators denoting group status for simulation models
1 and 2 and the continuous covariate Z in simulation model 3. Additionally,
a vector of time-varying indicators denoting state occupation at calendar time
t for each model state was included in the censoring hazard model, defined as
(Si0(t) Si1(t) Si2(t))

T where Sij(t) takes value 1 if individual i is in state j
and value 0 otherwise. To evaluate the effect of misspecification of the censoring
hazard model on B̂1(w), we calculated B̂1(w) for simulation model 3 using two
alternative censoring hazard estimators – (1) a no-covariate model for which
the weights K̂i(t) were simply the Kaplan-Meier estimator for the censoring
hazard and (2) a model including the vector of state occupation indicators but
excluding the continuous covariate Z.

The estimator B̂1(w) and its variance were calculated for each of 10,000
Monte Carlo replications. The estimated coverage of the asymptotic confidence
interval at several confidence levels was calculated for each coefficient as the pro-
portion of the 10,000 replications in which the true value of the coefficient resided
in the confidence interval at waiting time w = 2.5 (arbitrarily selected). Iden-

tical calculations were made for the unweighted estimator B̃1(w). Simulation
code was written and executed in the open source R software environment [16].

The empirical coverage of the asymptotic confidence interval for the weighted
estimator corresponded well with the nominal coverage rate for confidence levels
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Fig 2. P-P plot of confidence interval coverage of the weighted and unweighted integrated co-
efficient estimators from simulation model 2 for negatively (solid line) and positively (dashed
line) correlated state 0 and 1 waiting times (calculated at time w = 2.5). Lines for the weighted
estimator are in the top of each panel, exhibiting approximately correct coverage. Lines for
the unweighted estimator are in the bottom of each panel, exhibiting undercoverage. Values
in parentheses represent the proportion the sample that were observed to transition out of
state 1, (i.e.) were uncensored and did not transition to state 2 from state 0.

ranging from 0.80 to 0.99 in simulation model 2 (Figure 2). Notably, empirical
coverage rates were on target for each level of correlation between state 0 and 1
waiting times. Heavier censoring resulted in some disparity from nominal confi-
dence levels, as coverage rates for groups 3 and 4 were farther from the nominal
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Table 1

Results of simulation model 3. For each waiting time correlation (Corr.), the empirical
biases and standard errors (in parentheses) for the unweighted estimator (B̃1) and the

weighted estimator (B̂1) are provided for waiting time w = 2.5. Weights were generated
using two misspecified models (K-M and State Occ.) and a correctly specified model

(Correct)

Parameter Corr. B̃1(2.5) B̂1(2.5)
K-M State Occ. Correct

Intercept (B01) −0.5 −0.47 (0.14) −0.04 (0.27) −0.02 (0.25) −0.01 (0.26)
0.0 0.00 (0.19) −0.01 (0.21) 0.00 (0.25) 0.00 (0.26)
0.5 0.74 (0.29) 0.11 (0.26) 0.06 (0.27) 0.02 (0.24)

Slope (B11) −0.5 0.08 (0.05) 0.05 (0.11) 0.02 (0.13) 0.00 (0.12)
0.0 0.00 (0.07) 0.01 (0.15) 0.00 (0.12) 0.00 (0.13)
0.5 −0.13 (0.10) −0.11 (0.13) −0.04 (0.11) −0.01 (0.11)

levels. The unweighted estimator B̃1(w) was substantially biased when state
0 and 1 waiting times were negatively and positively correlated. In simulation
model 2, the unweighted estimator underestimated the true integrated coefficient
values at w = 2.5 by 15% to 22% when waiting times were negatively correlated,
and overestimated by 22% to 24% when positively correlated. Due to this bias,
the empirical coverage of the asymptotic confidence intervals for the unweighted
estimator did not exceed 68% for any group at any of the nominal confidence
levels tested. When waiting times were uncorrelated, B̃1(w) was unbiased and
the empirical coverage of the asymptotic confidence interval corresponded well
with nominal rates. Further, the estimated variance of the unweighted estimator
was substantially lower than that of the weighted estimator. Similar phenom-
ena were observed under simulation models 1 and 3, the results of which can be
found in the supplemental materials associated with this manuscript [17].

Table 1 reports the effect of model misspecification on the bias of the weighted
estimators. The weighted estimator performed worst in terms of bias under the
no-covariate censoring hazard model, although the amount of bias was substan-
tially smaller than that exhibited by the unweighted estimator, particularly for
the intercept term. When time-varying state occupation indicators were added
to the censoring hazard model, the weighted estimator continued to exhibit bias
but to a much lesser magnitude than the no-covariate censoring hazard model.
The model with correct censoring hazard specification exhibited almost no bias.

4. Analysis of real data

We provide analyses of two multistate data sets to demonstrate the practical
application of our linear hazards model for waiting times: the novel spinal cord
injury (SCI) data set [2] noted in the Introduction and a data set tracking out-
comes for individuals that received bone marrow transplant (BMT) [10]. The
SCI multistate network was simple in structure – a five-state tracking model
– but lacked a true root node, as patients could enter the system in any non-
absorbing state. Further, it was possible for patients to skip a state in a tran-
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sition, since functional outcomes were measured only at pre-defined intervals
(approximately every 20 treatment sessions) and the states are defined accord-
ing to discretization of a continuous outcome. For example, a patient may walk
at 0.43 m/s at a given session and reside in state 2 and then walk at 0.71 m/s at
the next session – a transition to state 4. The BMT network was more complex,
but all patients entered the system at a root node at calendar time t = 0.

4.1. Spinal cord injury data

We examined waiting times in state 2, the time until the next speed bench-
mark for patients able to walk no faster than 0.44 m/s. We modeled the haz-
ard of exit from state 2 as a function of 8 covariates: (1) patient age at en-
rollment, (2) sex, (3) time from spinal cord injury to enrollment, (4) lower
motor score from the International Standards for Neurological Classification
of Spinal Cord Injury (ISNCSCI) exam, (5) American Spinal Injury Associ-
ation Impairment Scale (categorized as C or D), (6) neurological level of in-
jury (cervical or thoracic), (7) state of entry into the multistate system (state
1 or 2), and (8) treatment intensity, measured as the cumulative number of
training session received divided by the number of days enrolled in the pro-
gram. These covariates were selected based on known or suspected influence on
functional recovery; patients advanced in age, female patients, farther removed
from their SCI at enrollment, with more severe injuries (AIS C), with injuries
higher up the spinal cord (cervical), with reduced lower motor function (lower
motor score), and that entered the program non-ambulatory (in state 1) were
known or suspected to recover more slowly, if at all. The covariate of primary
interest was treatment intensity, defined as the ratio of treatment session re-
ceived to days elapsed between functional evaluations. The investigators were
particularly interested in determining whether higher intensity therapy resulted
in a more rapid progression beyond non-community ambulation, (i.e.) a more
rapid exit from state 2. The linear hazard model for state 2 waiting times was
λi2(w) = β02(w)+β12(w)Zi1+β22(w)Zi2+β32(w)Zi3+β42(w)Zi4+β52(w)Zi5+
β62(w)Zi6 + β72(w)Zi7 + β82(w)Zi8(w), where the first subscript in each β·2(w)
corresponds to the above list of covariates.

In the SCI data, 122 patients entered state 2, of which 68 were censored in
state 2, 41 entered state 3, and 13 entered state 4 directly. Seventy-six of the
122 patients entered the multistate system in state 2 and the remaining 46 came
from state 1, (i.e.) walked for the first time after enrollment in the NRN. A full
description of observed transitions for this model can be found in the supple-
mental materials associated with this manuscript [17]. Inverse probability of
censoring weights were calculated from a linear hazard model for censoring that
included the above eight covariates as well as patient race, Berg Balance Scale
score at time t (a measure of postural balance assessed at every patient evalua-
tion), fastest walking speed from enrollment to time t, and patient classification
of functional status (1, 2, or 3) by the Neuromuscular Recovery Scale [18].

Four of the covariates – time since spinal cord injury, lower motor score, state
of model entry, and treatment intensity – were associated with the hazard of
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Fig 3. Integrated coefficient functions from linear model fit to spinal cord injury data, rep-

resenting regression effect of time since spinal cord injury (B̂32), lower motor score (B̂42),

state 2 as point of entry (relative to state 1, B̂72), and treatment intensity (B̂82). Solid
lines plot the weighted estimators, dashed lines the asymptotic 95% CI, and dotted lines
the unweighted estimator. Points plotted on the weighted estimates mark censored observa-
tions.

exit from state 2 (Figure 3). We briefly note that no patient was evaluated for
progress before 20 days of enrollment had passed, thus the integrated coefficient
function estimates were zero for at least the first twenty days. Bootstrapped
pointwise 95% confidence intervals for each of these covariates excluded zero
for some interval of state 2 waiting time, although zero was contained in all of
the confidence intervals for waiting times exceeding 150 days, times for which
the at-risk set was small. We also noted that the weighted estimator for the
treatment intensity covariate (B̂82) differed substantially from the unweighted
estimator (B̃82).
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The observed associations were clinically reasonable. Patients farther re-
moved from their injury at enrollment tend to recover ambulatory function less
rapidly, and the negative coefficient B̂32 indicates that the hazard of progressing
to the next speed benchmark was lower for patients farther removed from injury.
Lower motor scores loosely describe motor function in the lower extremities –
the higher the motor score, the more control a patient has over lower motor
function. The positive coefficient B̂42 indicated that patients with higher mo-
tor scores progressed more rapidly to the next speed benchmark. Patients that
entered the treatment program already able to ambulate (entered into state 2)
tended to advance to the next speed benchmark more quickly than those who
were unable to ambulate at enrollment, as B̂72 was positive. Higher intensity
treatment was associated with more rapid progression to the next speed bench-
mark (B̂82). The effect of treatment intensity appeared to be among the most
important factors determining the rate of exit from state 2, as the integrated
coefficient function rapidly attained a significant value prior to day 50 of wait-
ing time in state 2. The impact of high intensity treatment stabilized thereafter,
indicating that high intensity treatment after a long wait in state 2 provides
little benefit to patients with regard to achieving the next speed benchmark.
Plots of the integrated coefficient estimators for all covariates can be found in
the supplemental materials associated with this manuscript [17].

4.2. Bone marrow transplant data

The bone marrow transplant (BMT) data set consists of 137 patients who re-
ceived an experimental preparatory medication prior to transplant. After the
transplant procedure, patients were followed and the time to several clinically
important events recorded – platelet recovery, acute graft-versus-host-disease
(aGVHD), chronic GVHD (cGVHD), relapse of leukemia, and death. The mul-
tistate model representing these events and their occurrence has the following
states: (1) bone marrow transplant, the root state, (2) aGVHD as first event,
(3) platelet recovery as first event, (4) platelet recovery secondary to aGVHD,
(5) aGVHD secondary to platelet recovery, (6) cGVHD, (7) relapse or death,
the absorbing state (Figure 4).

The network structure depicted in Figure 4 is not unique [19], and was chosen
in this analysis in part to provide an acyclic network. Further, we have treated
relapse as an absorbing state (with death) when in fact events subsequent to
relapse (platelet recovery, aGVHD, cGVHD) did occur. The original investi-
gators measured eleven prognostic indicators: patient and donor age, sex, and
cytelomegalovirus (CMV) status, waiting time to transplant, French-American-
British (FAB) classification of morphological status, treating hospital, adminis-
tration of prophylactic treatment, and type of leukemia – acute lymphoblastic
leukemia (ALL), and low- and high-risk acute myelogenous leukemia (AML).
These data are available online [20] and have been described in greater detail
elsewhere [10, 19]. While these data have received considerable attention as a
multistate data set, to our knowledge an analysis of waiting times has yet to be
conducted and our findings below are novel.
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Fig 4. Multistate network for bone marrow transplant data. In the analysis of these data, we
consider waiting times in the transient cGVHD state (state 6).

Wemodeled time to death or relapse after the acquisition of cGVHD (the wait-
ing time in state 6) as a function of patient age, patient disease group, and time
to onset of cGVHD after transplantation. These covariates were selected to rep-
resent a continuous external covariate, and categorical external covariate, and
an internal covariate, respectively. Fifty-nine of the 137 patients experienced
cGVHD, of which 27 relapsed or died and 32 were censored. Fifty-five of these
59 experienced platelet recovery as a first event prior to cGVHD or experienced
platelet recovery followed by aGVHD, (i.e.) proceeded through states 3 and/or
5 of the model. Twenty-two patients were censored and 56 died or relapsed
without acquiring cGVHD. A full description of observed transitions through
the multistate network for these data is available in the supplemental materials
associated with this manuscript [17]. The linear model for the state 6 hazard
was λi6(w) = β06(w) + β16(w)Zi1 + β26(w)Zi2 + β36(w)Zi3 + β46(w)Zi4, where
Zi1 = Ti6 − Ti1 represented the time to onset of cGVHD after transplantation,
Zi2 patient age at transplantation, Zi3 the indicator for low risk AML, and Zi4

the indicator for high risk AML (ALL was the reference group). In fitting this
model, we calculated the inverse probability of censoring weights via a linear
model for the censoring hazard containing the aforementioned eleven external
covariates as well as six internal covariates denoting state occupation at calen-
dar time t. The model specification exhausted all external covariates included
in the data set.

The most significant predictor of death/relapse hazard after cGVHD onset

was the time to onset of cGVHD (Zi1, Figure 5). The negative estimate B̂16

indicated that patients who more rapidly developed cGVHD also more rapidly
relapsed or died after cGVHD onset. Tests based on asymptotic normality and
bootstrapped standard errors showed that the estimated integrated coefficient
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Fig 5. Integrated coefficient functions from linear model fit to BMT data, representing regres-

sion effect of time to cGVHD onset (B̂16), patient age (B̂26), low risk AML (B̂36), and high

risk AML relative to ALL (B̂46). Model intercept not shown. Solid lines plot the weighted
estimators, dashed lines the asymptotic 95% CI, and dotted lines the unweighted estimator.
Points plotted on the weighted estimate mark censored observations.

B̂16 was significantly different from zero 200 days after entry in state 6, and
remained so until the end of observation at day 2102 (z = 3.59, p = .0003,
Figure 5). The disease groups were not significantly different from each other as

indicated by the bootstrapped 95% confidence intervals for B̂36 and B̂46, and
patient age did not play a significant role in the hazard of death/relapse following

cGVHD (B̂26, p = .53). We additionally noted that the weighted estimators B̂
did not differ substantially from the unweighted estimators B̃. This may have
been a side effect of the inclusion of an internal covariate that was a function of
the state 6 entry time – time to entry into state 6 (Zi1) – a phenomenon noted
in Section 2.
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5. Discussion

The Cox relative risk and accelerated failure time models enjoy considerable
popularity as regression models for survival data. Fully parametric models also
receive frequent use, particularly for data adhering to the distributional assump-
tions made by parametric models. Aalen’s linear model is less frequently used
in applications, and it is possible that technical issues with the model are the
reason for this. Two common issues with the model are the possibility of rank
deficiency of the covariate matrix at a given time and generating negative cu-
mulative hazard estimates. These issues appear to be a trade-off for the unique
flexibility afforded Aalen’s linear model through the definition of regression co-
efficients as functions of time rather than as static values. Ad hoc solutions
to these problems have been suggested, including using alternative generalized
inverses for the at-risk matrix Yj(w) [15], discontinuing estimation of Bj(w)
when Yj(w) become rank deficient, and bounding cumulative hazard estimates
below by zero [21], and appear to behave reasonably. It has been previously
noted [15] that when using Aalen’s linear model to generate inverse probability
of censoring weights, these issues do not adversely impact weighted estimates of
hazard and survival functions for failure time data.

As noted in the introduction, two issues plague the application of failure
time methods in the analysis of right-censored multistate waiting times – (1) a
semi-Markov property is required, even when censoring can be assumed to be
independent, and (2) the observer does not know where individuals censored
prior to entry into the transient state of interest would progress, and specifi-
cally whether or not such individuals would progress to the state of interest.
Our simulation study was designed to highlight each of these issues, and showed
the necessity of the semi-Markov property in the application of failure time
methods in marginal analyses of waiting times from multistate models. When
waiting times were correlated and many individuals were censored prior to exit
from state 0, the survival data version of Aalen’s linear model was substantially
biased, a problem corrected by weighting by the inverse probability of censor-
ing. Under simulation scenarios under which both the weighted and unweighted
methods were unbiased, (i.e.) when waiting times were uncorrelated, the un-
weighted estimator exhibited lower variance and appeared optimal. McKeague
[22] and Huffer and McKeague [23] suggested utilizing weighted least squares
in defining the generalized inverse of the at risk matrix, thereby optimizing the
variance of the integrated coefficient estimator. A comparison of variance esti-
mates between the weighted and unweighted estimators under weighted least
squares may be of interest.

The impact of mispecification of the censoring hazard has been a relatively
unexplored research topic. The results of simulation model 3 showed that the
weighted estimators can be biased when the censoring hazard model is misspeci-
fied, although the magnitude of this bias was far smaller than the bias exhibited
by the unweighted estimator when waiting times were correlated. This bias was
further reduced (although not completely eliminated) when time-varying state
occupation indicators were used to model the censoring hazard. This point is of
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particular importance, since information on state occupation is always available
in the observation of a multistate system. We recommend the inclusion of state
occupation indicators in modeling the censoring hazard. Further research into
the impact of censoring hazard model misspecification is ongoing.

A potential shortcoming of our treatment of the spinal cord injury data was
in a tacit assumption about censoring, that individuals in the rehabilitation pro-
gram were right censored if discharged before reaching the absorbing state. Since
individuals were evaluated for walking speed approximately every 20 treatment
sessions rather than continuously monitored, an interval censoring approach
may be more appropriate. We are currently working on extensions to the results
presented here for interval censored data.

In our analysis of the bone marrow transplant and spinal cord injury data,
we have used the asymptotic normality of the weighted estimator to judge the
significance of model coefficients. Aalen [5] suggested that hypothesis test of
individual and sets of model covariates be conducted by examining weighted in-
tegrated coefficients of the form

∫ t

0
Lm(s)dB̂m(s), where Lm(s) is a predictable

weight process for covariate m. The weight process provides flexibility for opti-
mizing power against certain classes of alternative hypotheses. These weighted
tests can easily be applied to the weighted estimators for waiting times we have
introduced, with appropriate definition of the weight process Lm(s) for waiting
times. The marginal analysis of clustered survival data with informative cluster
size has received recent attention [24, 25]. The results presented here can con-
ceivably be extended to apply to clustered waiting time data with informative
cluster size through the simultaneous reweighting by the inverse probability of
censoring and inverse cluster size [25], a potential next step in the marginal
analysis of multistate waiting times.
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Appendix A: Martingale representation of the reweighted
coefficient estimator B̂j(w)

We first restate our notational convention for time. Calendar time will be de-
noted by t with variable of integration s. Processes evolving in calendar time,
like the censoring process, will be functions of t (or s in stochastic integrals).
Waiting time will be denoted by w with variable of integration v, and waiting
time processes will be functions of w (or v in stochastic integrals).
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Let the counting process martingale for the censoring event for individual
i be M c

i (t) = N c
i (t) −

∫ t

0
I[Ti ≥ s]dΛc

i(s), where N c
i (t) = I[Ti ≤ t, δi = 0],

δi = I[Ti ≤ Ci]. The process M
c
i (t) is a martingale with respect to the filtration

Fc
t,i = σ{I[Ti ≤ t], δi, Z̄i(t),H∞,i}, where δi, Z̄i(t), and Ht,i are as defined in

Section 2. Note that H∞,i is included in the definition Ft,i for all t ≥ 0 by
assumption (5), which asserts that knowledge of future transition times does
not impact the hazard of censoring. Let Fc

t = ∨iFc
t,i and note that the vector

Mc(t) = (M c
1(t), . . . ,M

c
n(t)) is a martingale with respect to Fc

t .

A process closely related to M c
i (t) is M̂ c

i (t) = N c
i (t) −

∫ t

0
I[Ti ≥ s]dΛ̂c

i (s),
which we note is not a martingale, as it based on the estimated censoring hazard
Λ̂c
i(s) rather than the true hazard Λc

i(s). After taking differentials, these equal-

ities can be combined to produce dM̂ c
i (t) = dM c

i (t)− I[Ti ≥ t]d(Λ̂c
i (t)−Λc

i(t)).

By Aalen’s linear model (cf. [11], Ch. VII), we note that d(Λ̂c
i (t) − Λc

i(t)) =
Yc

i (t)
TYc(t)−dMc(t), where Yc(t) is the at-risk covariate matrix used in fit-

ting Aalen’s linear model to the censoring hazard, Yc
i (t) is the ith column of

Yc(t) corresponding to individual i, and Mc(t) = (M c
1 (t), . . . ,M

c
n(t))

T. We thus

arrive at an equality relating M c
i (t) and M̂ c

i (t),

dM̂ c
i (t) = dM c

i (t)− I[Ti ≥ t]d(Λ̂c
i − Λc

i)(t)

= dM c
i (t)−Yc

i (t)
TYc(t)−dMc(t)

=
(
ET

i −Yc
i (t)

TYc(t)−
)
dMc(t)

= Pi(t)dM
c(t), (8)

where Ei is the ith standard basis vector and Pi(t) = ET
i −Yc

i (t)
TYc(t)−.

In proving variants of the equalities E[N ij(w)] = E[N∗
ij(w)] and E[Y ij(w)] =

E[Y ∗
ij(w)], Satten, Datta, and Robins [15] related the weighted counting pro-

cesses to the uncensored data counting process by showing

N̂ij(w) =

(
1−

∫ U∗

ij−

0

K̂i(s)
−1dM̂ c

i (s)

)
N∗

ij(w),

Ŷij(w) =

(
1−

∫ T∗

ij+w−

0

K̂i(s)
−1dM̂ c

i (s)

)
Y ∗
ij(w).

After substituting equality (8), these results take vectorized form

N̂j(w) = diag

{
1−

∫ U∗

ij−

0

K̂i(s)
−1Pi(s)dM

c(s)

}
N∗

j (w),

Ŷj(w) = diag

{
1−

∫ T∗

ij+w−

0

K̂i(s)
−1Pi(s)dM

c(s)

}
Y∗

j (w). (9)

For simplicity, denote the diagonal matrices in (9) as DN and DY (w), respec-

tively, so that N̂j(w) = DNN∗
j (w) and Ŷj(w) = DY (w)Y

∗
j (w). For notational

convenience in what follows, we suppress the term Ĵj(w) = I[rank(Ŷj(w)) =
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p+ 1] in the estimator B̂j(w), and assume throughout that the matrix Ŷj(w)
is of full column rank. We then have(
B̂j −Bj

)
(w) =

=

∫ w

0

Ŷ−
j (v)dN̂j(v) −Bj(w)

=

∫ w

0

Ŷ−
j (v)dN̂j(v) −

∫ w

0

Y∗−
j (v)dN∗

j (v) +

∫ w

0

Y∗−
j (v)dN∗

j (v)−Bj(w)

=

∫ w

0

Ŷ−
j (v)(I −DN )dN∗

j (v)−
∫ w

0

Y∗−
j (v)dN∗

j (v) +

∫ w

0

Y∗−
j (v)dM∗

j (v)

=

∫ w

0

(
Ŷ−

j (v) −Y∗−
j (v)

)
dN∗

j (v)−
∫ w

0

Ŷ−
j (v)DNdN∗

j (v) +

∫ w

0

Y∗−
j (v)dM∗

j (v), (10)

where M∗
j(w) = (M∗

1 (w), . . . ,M
∗
n(w))

T is the vector of counting process martin-
gales for state j exits. We note that the M∗

i (w) are martingales with respect to

the filtration F (j)
w,i = σ{Z̄(j)

i (w),H(j)
w,i}, the σ-algebra generated by observation

of the covariates after state j entry and exits from state j. Further, M∗
j (w) is

a martingale with respect to F (j)
w = ∨iF (j)

w,i. Note that the above has estab-

lished
∫ w

0 Y∗−
j (v)dN∗

j (v)−Bj(w) =
∫ w

0 Y∗−
j (v)dM∗

j (v) in the uncensored data,
a standard result for Aalen’s linear model (cf. [11]).

Let Y∗−
j (w) denote the least squares left inverse of Y∗

j (w). A generalized

inverse of Ŷj(w) is then Y∗−
j (w)diag{1/(1 −

∫ T∗

ij+w−
0 K̂i(s)

−1Pi(s)dM
c(s))},

which we write in shorthand as Y∗−
j (w)DY −(w). The first integral in (10) is

∫ w

0

(
Ŷ−

j (v) −Y∗−
j (v)

)
dN∗

j (v) =

=

∫ w

0

(
Y∗

j (v)DY −(v)−Y∗−
j (v)

)
dN∗

j (v)

=

∫ w

0

Y∗
j (v) (DY −(v)− I) dN∗

j (v)

=

∫ w

0

Y∗
j (v)diag

{ ∫ T∗

ij+v−
0

K̂−1
i (s)Pi(s)dM

c(s)

1−
∫ T∗

ij
+v−

0 K̂−1
i (s)Pi(s)dMc(s)

}
dN∗

j (v).

The second integral in (10) is
∫ w

0

Ŷ−
j (v)DNdN∗

j (v) =

=

∫ w

0

Y∗−
j (v)DY −(v)DNdN∗

j (v)

=

∫ w

0

Y∗−
j (v)diag

{ ∫ U∗

ij−
0 K̂−1

i (s)Pi(s)dM
c(s)

1−
∫ T∗

ij
+v−

0 K̂−1
i (s)Pi(s)dMc(s)

}
dN∗

j (v),
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whence the difference of the first two integrals in (10) is

∫ w

0

Y∗−
j (v)diag





∫ U∗

ij−
T∗

ij
+v K̂

−1
i (s)Pi(s)dM

c(s)

1−
∫ T∗

ij
+v−

0 K̂−1
i (s)Pi(s)dMc(s)



 dN∗

j (v), (11)

and(
B̂j −Bj

)
(w) =

=

∫ w

0

Y∗−
j (v)diag





∫ U∗

ij−
T∗

ij
+v K̂

−1
i (s)Pi(s)dM

c(s)

1−
∫ T∗

ij
+v−

0 K̂−1
i (s)Pi(s)dMc(s)



 dN∗

j (v) +

∫ w

0

Y∗−
j (v)dM∗

j (v). (12)

The second term of (12) is a martingale with respect to F (j)
w , since Y∗−

j (w)

is F (j)
w -predictable by definition. The first term of (12) has kth component

n∑

i=1

∫ w

0

Y ∗−
j,ki(v)

∫ Uij−

T∗

ij
+v

K−1
i (s)Pi(s)dM

c(s)×

(
1−

∫ T∗

ij+v−

0

K−1
i (s)Pi(s)dM

c(s)

)−1

dN∗
i (v) + op

(
1√
n

)
, (13)

where Y ∗−
j,ki(v) is the (k, i)th element of Y∗−

j (v) and the op(
1√
n
) is added with

replacement of K̂i with Ki via the consistency of Aalen’s linear model for the
censoring hazard (Λc

i (t)) and the functional delta method for product integrals
(Ki(t)). From (8), we have that

1−
∫ T∗

ij+v−

0

K−1
i (s)Pi(s)dM

c(s)

= 1−
∫ T∗

ij+v−

0

K−1
i (s)dM c

i (s) +

∫ T∗

ij+v−

0

K−1
i (s)Yc

i (s)Y
c−(s)dMc(s)

(14)

The last term of (14) is op(1) by laws of large numbers for martingales. By an
argument similar to (A.5) of Satten, Datta, and Robins (2001) [15], we have
that

1−
∫ T∗

ij+v−

0

K−1
i (s)dM c

i (s) =
I[Ci ≥ T ∗

ij + v]

Ki(T ∗
ij + v)

Combining this with (12) and (13) and interchanging the order of integration
gives

(
B̂jk −Bjk

)
(w) =

∫ ∞

0

Hn,k(s, w)dM
c(s) +

∫ w

0

Y∗−
j,k (v)dM

∗
j (v) + op

(
1√
n

)
,

(15)
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where Hn,k(s, w) = 1
n

∑n
i=1 I[T

∗
ij ≤ s < U∗

ij ]K
−1
i (s)ζi(s, w)Pi(s), Y

∗−
j,k (v) is

row k of Y∗−
j (v), and ζi(s, w) =

∫ s−T∗

ij∧w

0
Y ∗−
j,ki(v)Ki(v)dN

∗
i (v). Noting that

Hn,k(s, w) is Fc
t -predictable, we then have that (B̂jk − Bjk)(w) and hence

(B̂j − Bj)(w) are sums of two martingales – one with respect to Fc
t and one

with respect to the waiting time filtration F (j)
w – plus an asymptotically negligi-

ble term. Both martingales are asymptotically normal under suitable regularity
conditions via the martingale central limit theorem [11]. The asymptotic inde-
pendence of the two terms can be shown through a standard conditioning ar-
gument using characteristic functions. The conditioning argument exploits the
fact that the σ-algebra Fc

0 corresponding to the censoring process martingale

contains the entire multistate transition history,H∞ which in turn contains F (j)
w

for each w. Let M1 and M2 be the first and second terms of (15), respectively.
Then, under appropriate conditions,

E
[
eit

√
n(M1+M2)

]
= E

[
eit

√
nM1E

[
eit

√
nM2 | Fc

0

]]

= E
[
eit

√
nM2 et

2σ2

1
/2
]
+ o(1)

→ et
2σ2

1
/2 et

2σ2

2
/2

Through assumption (5) about the censoring hazard, Fc
0 containsH∞. SinceH∞

is the full history of transitions through the multistate system, M2 is fixed by
conditioning on Fc

0 and pulled out of the inner conditional expectation. Under
suitable regularity conditions and the martingale CLT, both M1 and M2 will
each converge to a Gaussian martingale.

Supplementary Material

Supplement to “A nonparametric analysis of waiting times from a
multistate model using a novel linear hazards model approach”
(doi: 10.1214/15-EJS1003SUPP; .pdf).
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