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trolled from a non-asymptotic perspective and the test is proved to be
minimax adaptive to the sparsity. The performances of the test are evalu-
ated on simulated data. Moreover, we illustrate how this procedure can be
used to compare genetic networks on Hess et al. breast cancer microarray
dataset.
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1. Introduction

The recent flood of high-dimensional data has motivated the development of
a vast range of sparse estimators for linear regressions, in particular a large
variety of derivatives from the Lasso. Although theoretical guarantees have been
provided in terms of prediction, estimation and selection performances (among
a lot of others [6, 36, 50]), the research effort has only recently turned to the
construction of high-dimensional confidence intervals or parametric hypothesis
testing schemes [7, 25, 31, 33, 52]. Yet, quantifying the confidence surrounding
coefficient estimates and selected covariates is essential in areas of application
where these will nourish further targeted investigations.

In this paper we consider the two-sample linear regression model with Gaus-
sian random design.

Y (1) = X(1)β(1) + ε(1) (1)

Y (2) = X(2)β(2) + ε(2). (2)

In this statistical model, the size p row vectors X(1) and X(2) follow Gaussian
distributions N (0p,Σ

(1)) and N (0p,Σ
(2)) whose covariance matrices remain un-

known. The noise components ε(1) and ε(2) are independent from the design
matrices and follow a centered Gaussian distribution with unknown standard
deviations σ(1) and σ(2). In this formal setting, our objective is to develop a test
for the equality of β(1) and β(2) which remains valid in high-dimension.

Suppose that we observe an n1-sample of (Y (1), X(1)) and an n2-sample of

(Y (2), X(2)) noted Y(1), X(1), and Y(2), X(2), with n1 and n2 remaining smaller
than p. Defining ε(1) and ε(2) analogously, we obtain the decompositions Y(1) =
X(1)β(1) + ε(1) and Y(2) = X(2)β(2) + ε(2). Given these observations, we want
to test whether models (1) and (2) are the same, that is

{
H0 : β(1) = β(2), σ(1) = σ(2), and Σ(1) = Σ(2)

H1 : β(1) 6= β(2) or σ(1) 6= σ(2).
(3)

In the null hypothesis, we include the assumption that the population covari-
ances of the covariates are equal (Σ(1) = Σ(2)), whereas under the alternative
hypothesis the population covariances are not required to be the same. This
choice of assumptions is primarily motivated by our final objective to derive
homogeneity tests for Gaussian graphical models (see below). A discussion of
the design hypotheses is deferred to Section 7.

1.1. Connection with two-sample Gaussian graphical model testing

This testing framework is mainly motivated by the validation of differences
observed between Gaussian graphical models (modelling regulation networks)
inferred from high-throughput Omics data from two samples [12, 18, 34] when
looking for new potential drug or knock-out targets [26]. Following the devel-
opment of univariate differential analysis techniques, there is now a surging
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demand for the detection of differential regulations between pairs of conditions
(treated vs. placebo, diseased vs. healthy, exposed vs. controls . . . ).

The special case when the structure of the network itself is known and only
edge weights between genes have to be estimated has already been addressed
by the literature (e.g. [41]). Only a few papers have tackled the issue of com-
paring two estimated networks, facing the difficulty of disentangling estimation
errors from true differences in the underlying networks. A first attempt at solv-
ing this problem can be found in [19]. Assuming the issue of high-dimensional
network estimation solved by use of correlations, regularized partial correlations
or partial least square estimation, the authors defined three measures of the dif-
ferences between networks either in terms of modularity changes or of average
edge weights between genes. Another work [13] derived a testing strategy from
empirical Bayes posterior distributions of edge weights. However, none of these
two papers provide theoretical guarantees on type-I error control or on detection
properties of the suggested methods, in particular in a high-dimensional context.

We suggest to build upon our two-sample high-dimensional linear regression
testing scheme to derive a global test for the equality of Gaussian graphical mod-
els inferred under pairs of conditions. We keep in mind our two main objectives:
meeting the practical challenges associated with high-dimension and character-
izing the performances of our procedure from a theoretical point of view.

Formally speaking, the global two-sample GGM testing problem is defined
as follows. Consider two Gaussian random vectors Z(1) ∼ N (0, [Ω(1)]−1) and
Z(2) ∼ N (0, [Ω(2)]−1). The conditional independence graphs are characterized
by the non-zero entries of the precision matrices Ω(1) and Ω(2) [28]. Given an
n1-sample of Z(1) and an n2-sample of Z(2), the objective is to test

HG0 : Ω(1) = Ω(2) versus HG1 : Ω(1) 6= Ω(2), (4)

where Ω(1) and Ω(2) are assumed to be sparse (most of their entries are zero).
This testing problem is global as the objective is to assess a statistically sig-
nificant difference between the two distributions. If the test is rejected, a more
ambitious objective is to infer the entries where the precision matrices differ

(i.e. Ω
(1)
i,j 6= Ω

(2)
i,j ).

Adopting a neighborhood selection approach [34] as recalled in Section 6,
high-dimensional GGM estimation can be solved by multiple high-dimensional
linear regressions. As such, two-sample GGM testing (4) can be solved via mul-
tiple two-sample hypothesis testing as (3) in the usual linear regression frame-
work. This extension of two-sample linear regression tests to GGMs is described
in Section 6.

1.2. Related work

The literature on high-dimensional two-sample tests is very light. In the con-
text of high-dimensional two-sample comparison of means, [3, 11, 32, 42] have
introduced global tests to compare the means of two high-dimensional Gaussian
vectors with unknown variance. Recently, [8, 29] developed two-sample tests for
covariance matrices of two high-dimensional vectors.
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In contrast, the one-sample analog of our problem has recently attracted a lot
of attention, offering as many theoretical bases for extension to the two-sample
problem. In fact, the high-dimensional linear regression tests for the nullity of
coefficients can be interpreted as a limit of the two-sample test in the case where
β(2) is known to be zero, and the sample size n2 is considered infinite so that
we perfectly know the distribution of the second sample.

There are basically two different objectives in high-dimensional linear test-
ing: a local and a global approach. In the local approach, one considers the p

tests for the nullity of each coefficient H0,i : β
(1)
i = 0 (i = 1, . . . , p) with the

purpose of controlling error measures such as the false discovery rate of the re-
sulting multiple testing procedures. In a way, one aims to assess the individual
statistical significance of each of the variables. This can be achieved by provid-
ing a confidence region for β(1) [7, 25, 31, 33, 52]. Another line of work derives
p-values for the nullity of each of the coefficients. Namely, [51] suggests a screen
and clean procedure based upon half-sampling. Model selection is first applied
upon a random half of the sample in order to test for the significance of each
coefficient using the usual combination of ordinary least squares and Student
t-tests on a model of reasonable size on the remaining second half. To reduce the
dependency of the results to the splitting, [35] advocate to use half-sampling B
times and then aggregate the B p-values obtained for variable j in a way which
controls either the family-wise error rate or false discovery rate.

In the global approach, the objective is to test the null hypothesisH0 : β(1) =
0. Although global approaches are clearly less informative than approaches pro-
viding individual significance tests like [7, 35, 52], they can reach better per-
formances from smaller sample sizes. Such a property is of tremendous im-
portance when dealing with high-dimensional datasets. The idea of [49], based
upon the work of [5], is to approximate the alternative H1 : β(1) 6= 0 by a

collection of tractable alternatives {HS1 : ∃j ∈ S, β
(1)
j 6= 0, S ∈ S} working

on subsets S ⊂ {1, . . . , p} of reasonable sizes. The null hypothesis is rejected
if the null hypothesis HS0 is rejected for at least one of the subsets S ∈ S.
Admittedly, the resulting procedure is computationally intensive. Nonetheless
it is non-asymptotically minimax adaptive to the unknown sparsity of β(1),
that is it achieves the optimal rate of detection without any assumption on the
population covariance Σ(1) of the covariates. Another series of work relies on
higher-criticism. This last testing framework was originally introduced in or-
thonormal designs [16], but has been proved to reach optimal detection rates in
high-dimensional linear regression as well [2, 24]. In the end, higher-criticism is
highly competitive in terms of computing time and achieves the asymptotic rate
of detection with the optimal constants. However, these nice properties require
strong assumptions on the design.

The testing strategy we describe in this paper is built upon the global ap-
proach developed by [5] and [49].

While writing this paper, we came across the parallel work of Städler and
Mukherjee, which deals similarly with both frameworks of two-sample linear
regression [43] and two-sample graphical model comparison [44]. Their approach
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shares the idea of sample-splitting and dimensionality reduction with the screen
and clean procedure in its simple-split [51] and multi-split [35] versions, in a
global testing perspective however. A detailed comparison of [43, 44] with our
contribution is deferred to simulations (Section 5) and discussion (Section 7).

1.3. Our contribution

Our suggested approach stems from the fundamental assumption that either the
true supports of β(1) and β(2) are sparse or their difference β(1)−β(2) is sparse,
so that the test can be successfully led in a subset S? ⊂ {1, . . . , p} of variables
with reasonable size, compared to the sample sizes n1 and n2. Of course, this low
dimensional subset S? is unknown. The whole objective of the testing strategy is
to achieve similar rates of detection (up to a logarithmic constant) as an oracle
test that would know in advance the optimal low-dimensional subset S?.

Concretely, we proceed in three steps:

1. We define algorithms to select a data-driven collection of subsets Ŝ iden-
tified as most informative for our testing problem, in an attempt to cir-
cumvent the optimal subset S?.

2. New parametric statistics related to the likelihood ratio statistic between

the conditional distributions Y (1)|X(1)
S and Y (2)|X(2)

S are defined for S ∈ Ŝ.
3. We define two calibration procedures which both guarantee a control on

type-I error:

• we use a Bonferroni calibration which is both computationally and
conceptually simple, allowing us to prove that this procedure is min-
imax adaptive to the sparsity of β(1) and β(2) from a non-asymptotic
point of view;

• we define a calibration procedure based upon permutations to reach a
fine tuning of multiple testing calibration in practice, for an increase
in empirical power.

The resulting testing procedure is completely data-driven and its type I error is
explicitly controlled. Furthermore, it is computationally amenable in a large p
and small n setting.

The procedure is described in Section 2 while Section 3 is devoted to technical
details, among which theoretical controls on Type I error, as well as some useful
empirical tools for interpretation. Section 4 provides a non-asymptotic control
of the power. Section 5 provides simulated experiments comparing the perfor-
mances of the suggested procedures with the approach of [43]. In Section 6,
we detail the extension of the procedure to handle the comparison of Gaussian
graphical models. The method is illustrated on Transcriptomic Breast Cancer
Data. Finally, all the proofs are postponed to Section 8.

The R codes of our algorithms are available at http://www.proba.jussieu.
fr/~villers/ as well as on the EJS website http://projecteuclid.org/

euclid.ejs as supplementary material of this paper [10].

http://www.proba.jussieu.fr/~villers/
http://www.proba.jussieu.fr/~villers/
http://projecteuclid.org/euclid.ejs
http://projecteuclid.org/euclid.ejs
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1.4. Notation

In the sequel, `p norms are denoted | · |p, except for the l2 norm which is referred
as ‖.‖ to alleviate notations. For any positive definite matrix Σ, ‖.‖Σ denotes
the Euclidean norm associated with the scalar product induced by Σ: for every
vector x, ‖x‖2Σ = xᵀΣx. Besides, for every set S, |S| denote its cardinality. For
any integer k, Ik stands for the identity matrix of size k. For any square matrix
A, ϕmax(A) and ϕmin(A) denote respectively the maximum and minimum eigen-
values of A. When the context makes it obvious, we may omit to mention A to
alleviate notations and use ϕmax and ϕmin instead. Moreover, Y refers to the
size n1 +n2 concatenation of Y(1) and Y(2) and X refers to the size (n1 +n2)×p
concatenation of X(1) and X(2). To finish with, L refers to a positive numerical
constant that may vary from line to line.

2. Description of the testing strategy

Likelihood ratio statistics used to test hypotheses likeH0 in the classical large n,
small p setting are intractable on high-dimensional datasets for the mere rea-
son that the maximum likelihood estimator is not itself defined under high-
dimensional design proportions. Our approach approximates the intractable
high-dimensional test by a multiple testing construction, similarly to the strat-
egy developed by [5] in order to derive statistical tests against non-parametric
alternatives and adapted to one sample tests for high-dimensional linear regres-
sion in [49].

For any subset S of {1, . . . , p} satisfying 2|S| ≤ n1 ∧ n2, denote X
(1)
S and

X
(2)
S the restrictions of random vectors X(1) and X(2) to covariates indexed

by S. Their covariance structure is noted Σ
(1)
S (resp. Σ

(2)
S ). Consider the linear

regression of Y (1) onto X
(1)
S defined by
{
Y (1) = X

(1)
S β

(1)
S + ε

(1)
S

Y (2) = X
(2)
S β

(2)
S + ε

(2)
S ,

where the noise variables ε
(1)
S and ε

(2)
S are independent from X

(1)
S and X

(2)
S and

follow centered Gaussian distributions with new unknown conditional standard
deviations σ

(1)
S and σ

(2)
S . We now state the test hypotheses in reduced dimension:

{
H0,S : β

(1)
S = β

(2)
S , σ

(1)
S = σ

(2)
S , and Σ

(1)
S = Σ

(2)
S ,

H1,S : β
(1)
S 6= β

(2)
S or σ

(1)
S 6= σ

(2)
S .

Of course, there is no reason in general for β
(1)
S and β

(2)
S to coincide with the

restrictions of β(1) and β(2) to S, even less in high-dimension since variables in
S can be in all likelihood correlated with covariates in Sc. Yet, as exhibited by
Lemma 2.1, there is still a strong link between the collection of low dimensional
hypotheses H0,S and the global null hypothesis H0.

Lemma 2.1. The hypothesis H0 implies H0,S for any subset S ⊂ {1, . . . p}.
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Proof. Under H0, the random vectors of size p+ 1 (Y (1), X(1)) and (Y (2), X(2))
follow the same distribution. Hence, for any subset S, Y (1) follows conditionally

on X
(1)
S the same distribution as Y (2) conditionally on X

(2)
S . In other words,

β
(1)
S = β

(2)
S .

By contraposition, it suffices to reject at least one of the H0,S hypotheses to
reject the global null hypothesis. This fundamental observation motivates our
testing procedure. As summarized in Algorithm 1, the idea is to build a well-
calibrated multiple testing procedure that considers the testing problems H0,S

against H1,S for a collection of subsets S. Obviously, it would be prohibitive
in terms of algorithmic complexity to test H0,S for every S ⊂ {1, . . . , p}, since
there would be 2p such sets. As a result, we restrain ourselves to a relatively
small collection of hypotheses {H0,S , S ∈ Ŝ}, where the collection of supports

Ŝ is potentially data-driven. If the collection Ŝ is judiciously selected, then we
can manage not to lose too much power compared to the exhaustive search.

We now turn to the description of the three major elements required by our
overall strategy (see Algorithm 1):

1. a well-targeted data-driven collection of models Ŝ as produced by Algo-
rithm 2;

2. a parametric statistic to test the hypotheses H0,S for S ∈ Ŝ, we resort ac-
tually to a combination of three parametric statistics FS,V , FS,1 and FS,2;

3. a calibration procedure guaranteeing the control on type I error as in
Algorithms 3 or 4.

2.1. Choices of test collections (step 1)

The first step of our procedure (Algorithm 1) amounts to selecting a collection Ŝ
of subsets of {1, . . . , p}, also called models. A good collection Ŝ of subsets must
satisfy a tradeoff between the inclusion of the maximum number of relevant
subsets S and a reasonable computing time for the whole testing procedure,
which is linear in the size |Ŝ| of the collection. The construction of Ŝ proceeds
in two steps: (i) One chooses a deterministic collection S of models. (ii) One
defines an algorithm (called ModelChoice in Algorithm 1) mapping the raw data

(X,Y) to some collection Ŝ satisfying Ŝ ⊂ S. Even though the introduction of
S as an argument of the mapping could appear artificial at this point, this
quantity will be used in the calibration step of the procedure. Our methodology
can be applied to any fixed or data-driven collection. Still, we focus here on
two particular collections. The first one is useful for undertaking the first steps
of the mathematical analysis. For practical applications, we advise to use the
second collection.

Deterministic collections like S≤k By deterministic, we mean that the
model choice step is trivial, in the sense that ModelChoice(X,Y,S) = S. Among
deterministic collections, the most straightforward collections consist of all size-k
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Algorithm 1 Overall Adaptive Testing Strategy

Require: Data X(1),X(2),Y(1),Y(2), collection S and desired level α
Step 1 – Choose a collection Ŝ of low-dimensional models (as e.g. ŜLasso in Algo-

rithm 2)
procedure ModelChoice(X(1),X(2),Y(1),Y(2),S)

Define the model collection Ŝ ⊂ S
end procedure

Step 2 – Compute p-values for each test in low dimension

procedure Test(X
(1)
S ,X

(2)
S ,Y(1),Y(2),Ŝ)

for each subset S in Ŝ do
Compute the p-values q̃V,S , q̃1,S , q̃2,S associated to the statistics FS,V , FS,1, FS,2

end for
end procedure

Step 3 – Calibrate decision thresholds as in Algorithms 3 (Bonferroni) or 4 (Per-
mutations)

procedure Calibration(X(1),X(2),Y(1),Y(2),Ŝ,α)

for each subset S in Ŝ and each i = V, 1, 2 do
Define a threshold αi,S .

end for
end procedure

Step 4 – Final Decision
if there is a least one model S in Ŝ such that there is at least one p-value for which
q̃i,S < αi,S then

Reject the global null hypothesis H0

end if

subsets of {1, . . . , p}, which we denote Sk. This kind of family provides collec-
tions which are independent from the data, thereby reducing the risk of over-
fitting. However, as we allow the model size k or the total number of candidate
variables p to grow, these deterministic families can rapidly reach unreason-
able sizes. Admittedly, S1 always remains feasible, but reducing the search to
models of size 1 can be costly in terms of power. As a variation on size k mod-
els, we introduce the collection of all models of size smaller than k, denoted
S≤k =

⋃k
j=1 Sj , which will prove useful in theoretical developments.

Lasso-type collection ŜLasso Among all data-driven collections, we sug-
gest the Lasso-type collection ŜLasso. Before proceeding to its definition, let
us informally discuss the subsets that a “good” collection Ŝ should contain.
Let supp(β) denote the support of a vector β. Intuitively, under the alterna-
tive hypothesis, good candidates for the subsets are either subsets of S∗∨ :=
supp(β(1)) ∪ supp(β(2)) or subsets of S∗∆ := Supp(β(1) − β(2)). The first model

S∗∨ nicely satisfies β
(1)
S∗∨

= β(1) and β
(2)
S∗∨

= β(2). The second subset has a smaller
size than S∗∨ and focuses on covariates corresponding to different parameters in
the full regression. However, the divergence between effects might only appear
conditionally on other variables with similar effects, this is why the first subset
S∗∨ is also of interest. Obviously, both subsets S∗∨ and S∗∆ are unknown. This is
why we consider a Lasso methodology that amounts to estimating both S∗∨ and

S∗∆ in the collection ŜLasso. Concrete details on the construction of ŜLasso are
postponed to Section 3.1.
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2.2. Parametric test statistic (step 2)

Given a subset S, we consider the three following statistics to testH0,S againstH1,S :

FS,V := −2 +
‖Y(1) −X(1)β̂

(1)
S ‖2/n1

‖Y(2) −X(2)β̂
(2)
S ‖2/n2

+
‖Y(2) −X(2)β̂

(2)
S ‖2/n2

‖Y(1) −X(1)β̂
(1)
S ‖2/n1

, (5)

FS,1 :=
‖X(2)

S (β̂
(1)
S − β̂

(2)
S )‖2/n2

‖Y(1) −X(1)β̂
(1)
S ‖2/n1

, FS,2 :=
‖X(1)

S (β̂
(1)
S − β̂

(2)
S )‖2/n1

‖Y(2) −X(2)β̂
(2)
S ‖2/n2

. (6)

As explained in Section 3, these three statistics derive from the Kullback-Leibler

divergence between the conditional distributions Y (1)|X(1)
S and Y (2)|X(2)

S . While
the first term FS,V evaluates the discrepancies in terms of conditional variances,
the last two terms FS,1 and FS,2 address the comparison of β(1) to β(2).

Because the distributions of statistics FS,i, for i = V, 1, 2, under the null de-
pend on the size of S, the only way to calibrate the multiple testing step over a
collection of models of various sizes is to convert the statistics to a unique com-
mon scale. The most natural is to convert observed FS,i’s into p-values. Under
H0,S , the conditional distributions of FS,i for i = V, 1, 2 to XS are parameter-
free and explicit (see Proposition 3.1 in the next section). Consequently, one
can define the exact p-values associated to FS,i, conditional on XS . However,
the computation of the p-values require a function inversion, which can be com-
putationally prohibitive. This is why we introduce explicit upper bounds q̃i,S
(Equations (14), (18)) of the exact p-values.

2.3. Combining the parametric statistics (step 3)

The objective of this subsection is to calibrate a multiple testing procedure based

on the sequence of p-values {(q̃V,S , q̃1,S , q̃2,S), S ∈ Ŝ}, so that the type-I error
remains smaller than a chosen level α. In particular, when using a data-driven
model collection, we must take good care of preventing the risk of overfitting
which results from using the same dataset both for model selection and hypoth-
esis testing.

For the sake of simplicity, we assume in the two following paragraphs that
∅ * S, which merely means that we do not include in the collection of tests the
raw comparison of Var(Y(1)) to Var(Y(2)).

Testing procedure Given a model collection Ŝ and a sequence α̂ =
(αi,S)i=V,1,2, S∈Ŝ , we define the test function:

T α̂Ŝ =

{
1 if ∃S ∈ Ŝ, ∃i ∈ {V, 1, 2} q̃i,S ≤ αi,S .
0 otherwise.

(7)

In other words, the test function rejects the global null if there exists at least
one model S ∈ Ŝ such that at least one of the three p-values is below the
corresponding threshold αi,S . In Section 3.3, we describe two methods to ade-
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quately calibrate thresholds (αi,S)S∈Ŝ . We first define a Bonferroni procedure,
whose conceptual simplicity allows us to derive non-asymptotic type II error
bounds of the corresponding tests (Section 4). However, this Bonferroni correc-
tion reveals itself to be too conservative in practice, in part paying the price
for resorting to data-driven collections and upper bounds on the true p-values.
This is why we introduce as a second option the permutation calibration proce-
dure. This second procedure controls the type I error at the nominal level and
therefore outperforms the Bonferroni calibration in practice. Nevertheless, the
mathematical analysis of the corresponding test becomes more intricate and we
are not able to provide sharp type II error bounds.

Remark. In practice, we advocate the use of the Lasso Collection ŜLasso

(Algorithm 2) combined with the permutation calibration method (Algorithm 4).
Henceforth, the corresponding procedure is denoted TP

ŜLasso
.

3. Discussion of the procedure and type I error

In this section, we provide remaining details on the three steps of the testing
procedure. First, we describe the collection ŜLasso and provide an informal justi-
fication of its definition. Second, we explain the ideas underlying the parametric
statistics FS,i, i = V, 1, 2 and we define the corresponding p-values q̃i,S . Finally,
the Bonferroni and permutation calibration methods are defined.

3.1. Collection ŜLasso

We start from S≤Dmax
, where in practice Dmax = b(n1∧n2)/2c, and we consider

the following reparametrized joint regression model.

[
Y(1)

Y(2)

]
=

[
X(1) X(1)

X(2) −X(2)

][
θ

(1)
∗

θ
(2)
∗

]
+

[
ε(1)

ε(2)

]
. (8)

In this new model, θ
(1)
∗ captures the mean effect (β(1) + β(2))/2 while θ

(2)
∗ cap-

tures the discrepancy between the sample-specific effect β(i) and the mean effect

θ
(1)
∗ , that is to say θ

(2)
∗ = (β(1) − β(2))/2. Consequently, S∗∆ := Supp(β(1) −

β(2)) = supp(θ
(2)
∗ ) and S∗∨ := supp(β(1))∪ supp(β(2)) = supp(θ

(1)
∗ )∪ supp(θ

(2)
∗ ).

To simplify notations, denote by Y the concatenation of Y(1) and Y(2), as well
as by W the reparametrized design matrix of (8). For a given λ > 0, the Lasso
estimator of θ∗ is defined by

θ̂λ :=

(
θ̂

(1)
λ

θ̂
(2)
λ

)
:= arg min

θ∈R2p
‖Y −Wθ‖+ λ‖θ‖1, (9)

V̂λ := supp(θ̂λ), V̂
(i)
λ := supp(θ̂

(i)
λ ), i = 1, 2. (10)

For a suitable choice of the tuning parameter λ and under assumptions of the
designs, it is proved [6, 36] that θ̂λ estimates well θ∗ and V̂λ is a good estimator
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of supp(θ∗). The Lasso parameter λ tunes the amount of sparsity of θ̂λ: the
larger the parameter λ, the smaller the support V̂λ. As the optimal choice of λ
is unknown, the collection ŜLasso is built using the collection of all estimators
(V̂λ)λ>0, also called the Lasso regularization path of θ∗. Below we provide an

algorithm for computing ŜLasso along with some additional justifications.

Algorithm 2 Construction of the Lasso-type Collection ŜLasso

Require: Data X(1),X(2),Y(1),Y(2), Collection S≤Dmax
Y ←

[
Y(1)

Y(2)

]
W←

[
X(1) X(1)

X(2) −X(2)

]
Compute the function f : λ 7→ V̂λ (defined in (9), (10)) using Lars-Lasso Algorithm [17]
Compute the decreasing sequences (λk)1≤k≤q of jumps in f

k ← 1, Ŝ(1)L ← ∅, Ŝ(2)L ← ∅
while |V̂ (1)

λk
∪ V̂ (2)

λk
| < Dmax do

Ŝ(1)L ← Ŝ(1)L ∪ {V̂ (1)
λk
∪ V̂ (2)

λk
}

Ŝ(2)L ← Ŝ(2)L ∪ {V̂ (2)
λk
}

k ← k + 1
end while
ŜLasso ← Ŝ

(1)
L ∪ Ŝ(2)L ∪ S1

It is known [17] that the function f : λ 7→ V̂λ is piecewise constant. Con-
sequently, there exist thresholds λ1 > λ2 > · · · such that V̂λ changes on
λk’s only. The function f and the collection (λk) are computed efficiently us-
ing the Lars-Lasso Algorithm [17]. We build two collections of models using

(V̂
(1)
λk

)k≥1 and (V̂
(2)
λk

)k≥1. Following the intuition described above, for a fixed

λk, V̂
(2)
λk

is an estimator of supp(β(1) − β(2)) while V̂
(1)
λk
∪ V̂ (2)

λk
is an estimator

of supp(β(1)) ∪ supp(β(2)). This is why we define

Ŝ(1)
L :=

kmax⋃

k=1

{
V̂

(1)
λk
∪ V̂ (2)

λk

}
, Ŝ(2)

L :=

kmax⋃

k=1

{
V̂

(2)
λk

}
, (11)

where kmax is the smallest integer q such that |V̂ (1)
λq+1

∪ V̂ (2)
λq+1
| > Dmax. In the

end, we consider the following ŜLasso data-driven family,

ŜLasso := Ŝ(1)
L ∪ Ŝ

(2)
L ∪ S1. (12)

Recall that S1 is the collection of the p models of size 1. Recently, data-driven
procedures have been proposed to tune the Lasso and find a parameter λ̂ is
such a way that θ̂λ̂ is a good estimator of θ∗ (see e.g. [4, 45]). Yet we use the

whole regularization path instead of the sole estimator θ̂λ̂ because our objec-
tive is to find subsets S such that the statistics FS,i are powerful. Consider an
example where β(2) = 0 and β(1) contains one large coefficient and many small
coefficients. If the sample size is large enough, a well-tuned Lasso estimator will
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select several variables. In contrast, the best subset S (in terms of power of FS,i)
contains only one variable. Using the whole regularization path, we hope to find
the best trade-off between sparsity (small size of S) and differences between

β
(1)
S and β

(2)
S . This last remark is formalized in Section 4.4. Finally, the size

of the collection ŜLasso is generally linear with (n1 ∧ n2) ∨ p, which makes the
computation of (q̃i,S)S∈ŜLasso,i=V,1,2

reasonable.

3.2. Parametric statistics and p-values

3.2.1. Symmetric conditional likelihood

In this subsection, we explain the intuition behind the choice of the parametric
statistics (FS,V , FS,1, FS,2) defined in Equations (5), (6). Let us denote by L(1)

(resp. L(2)) the log-likelihood of the first (resp. second) sample normalized by
n1 (resp. n2). Given a subset S ⊂ {1, . . . , p} of size smaller than n1 ∧ n2,

(β̂
(1)
S , σ̂

(1)
S ) stands for the maximum likelihood estimator of (β(1), σ(1)) among

vectors β whose supports are included in S. Similarly, we note (β̂
(2)
S , σ̂

(2)
S ) for

the maximum likelihood corresponding to the second sample.
Statistics FS,V , FS,1 and FS,2 appear as the decomposition of a two-sample

likelihood-ratio, measuring the symmetrical adequacy of sample-specific esti-
mators to the opposite sample. To do so, let us define the likelihood ratio in
sample i between an arbitrary pair (β, σ) and the corresponding sample-specific

estimator (β̂
(i)
S , σ̂

(i)
S ):

D(i)
ni (β, σ) := L(i)

ni

(
β̂

(i)
S , σ̂

(i)
S

)
− L(i)

ni (β, σ) .

With this definition, D(1)
n1 (β̂(2), σ̂(2)) measures how far (β̂(2), σ̂(2)) is from (β̂(1),

σ̂(1)) in terms of likelihood within sample 1. The following symmetrized likeli-
hood statistic can be decomposed into the sum of FS,V , FS,1 and FS,2:

2
[
D(1)
n1

(β̂(2), σ̂(2)) +D(2)
n2

(β̂(1), σ̂(1))
]

= FS,V + FS,1 + FS,2. (13)

Instead of the three statistics (FS,i)i=V,1,2, one could use the symmetric likeli-
hood (13) to build a testing procedure. However, we do not manage to obtain
an explicit and sharp upper bound of the p-values associated to statistic (13),
which makes the resulting procedure either computationally intensive if one es-
timated the p-values by a Monte-Carlo approach or less powerful if one uses a
non-sharp upper bound of the p-values. In contrast, we explain below how, by
considering separately FS,V , FS,1 and FS,2, one upper bounds sharply the exact
p-values.

3.2.2. Definition of the p-values

Denote by g(x) = −2 + x+ 1/x the non-negative function defined on R+. Since
the restriction of g to [1; +∞) is a bijection, we note g−1 the corresponding
reciprocal function.
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Proposition 3.1 (Conditional distributions of FS,V , FS,1 and FS,2 underH0,S).

1. Let Z denote a Fisher random variable with (n1− |S|, n2− |S|) degrees of
freedom. Then, under the null hypothesis,

FS,V |XS ∼
H0,S

g

[
Z
n2(n1 − |S|)
n1(n2 − |S|)

]
.

2. Let Z1 and Z2 be two centered and independent Gaussian vectors with

covariance X
(2)
S [(X

(1)T
S X

(1)
S )−1 + (X

(2)T
S X

(2)
S )−1]X

(2)T
S and In1−|S|. Then,

under the null hypothesis,

FS,1|XS ∼
H0,S

‖Z1‖2/n2

‖Z2‖2/n1
.

A symmetric result holds for FS,2.

Although the distributions identified in Proposition 3.1 are not all familiar
distributions with ready-to-use quantile tables, they all share the advantage that
they do not depend on any unknown quantity, such as design variances Σ(1) and
Σ(2), noise variances σ(1) and σ(2), or even true signals β(1) and β(2). For any
i = V, 1, 2, Qi,|S|(u|XS) stands for the conditional probability that FS,i is larger
than u under H0,S .

By Proposition 3.1, the exact p-value q̃V,S = QV,|S|(FS,V |XS) associated
to FS,V is easily computed from the distribution function of a Fisher random
variable:

q̃V,S = Fn1−|S|,n2−|S|

[
g−1 (FS,V )

n1(n2 − |S|)
n2(n1 − |S|)

]
(14)

+ Fn2−|S|,n1−|S|

[
g−1 (FS,V )

n2(n1 − |S|)
n1(n2 − |S|)

]
,

where Fm,n(u) denotes the probability that a Fisher random variable with (m,n)
degrees of freedom is larger than u.

Since the conditional distribution of FS,1 given XS only depends on |S|, n1,
n2, and XS , one could compute an estimation of the p-value Q1,|S|(u|XS) as-
sociated with an observed value u by Monte-Carlo simulations. However, this
approach is computationally prohibitive for large collections of subsets S. This
is why we use instead an explicit upper bound of Q1,|S|(u|XS) based on Laplace
method, as given in the definition below and justified in the proof of Proposi-
tion 3.3.

Definition 3.2 (Definition of Q̃1,|S| and Q̃2,|S|). Let us note a = (a1, . . . , a|S|)
the positive eigenvalues of

n1

n2(n1 − |S|)
X

(2)
S

[
(X

(1)T
S X

(1)
S )−1 + (X

(2)T
S X

(2)
S )−1

]
X

(2)T
S .

For any u ≤ |a|1, define Q̃1,|S|(u|XS) := 1. For any u > |a|1, take

Q̃1,|S|(u|XS) := exp


−1

2

|S|∑

i=1

log(1− 2λ∗ai)−
n1− |S|

2
log

(
1 +

2λ∗u

n1− |S|

)
, (15)
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where λ∗ is defined as follows. If all the components of a are equal, then λ∗ :=
u−|a|1

2u(|a|∞+
|a|1

n1−|S|
)
. If a is not a constant vector, then we define

b :=
|a|1u

|a|∞(n1 − |S|)
+ u+

‖a‖2
|a|∞

− |a|1,

∆ := b2 − 4u (u− |a|1)

(n1 − |S|)|a|∞

(
|a|1 −

‖a‖2
|a|∞

)
, (16)

λ∗ :=
1

4u
n1−|S|

(
|a|1 − ‖a‖

2

|a|∞

)
(
b−
√

∆
)
. (17)

Q̃2,|S| is defined analogously by exchanging the role of X
(1)
S and X

(2)
S .

Proposition 3.3. For any u ≥ 0, and for i = 1, 2, Qi,|S|(u|XS) ≤ Q̃i,|S|(u|XS).

Finally we define the approximate p-values q̃1,S and q̃2,S by

q̃1,S := Q̃1,|S|(FS,1|XS), q̃2,S := Q̃2,|S|(FS,2|XS). (18)

Although we use similar notations for q̃i,S with i = V, 1, 2, this must not
mask the essential difference that q̃V,S is the exact p-value of FS,V whereas q̃1,S

and q̃2,S only are upper-bounds on FS,1 and FS,2 p-values. The consequences
of this asymmetry in terms of calibration of the test is discussed in the next
subsection.

3.3. Comparison of the calibration procedures and type I error

3.3.1. Bonferroni calibration (B)

Recall that a data-driven model collection Ŝ is defined as the result of a fixed
algorithm mapping a deterministic collection S and (X,Y) to a subcollection Ŝ.

The collection of thresholds α̂B = {αi,S , S ∈ Ŝ} is chosen such that
∑

S∈S

∑

i=V,1,2

αi,S ≤ α. (19)

For the collection S≤k, or any data-driven collection derived from S≤k, a natural
choice is

αV,S :=
α

2k

(
p

|S|

)−1

, α1,S = α2,S :=
α

4k

(
p

|S|

)−1

, (20)

which puts as much weight to the comparison of the conditional variances (FS,V )
and the comparison of the coefficients (FS,1, FS,2). Similarly for the collec-

tion ŜLasso, a natural choice is (20) with k replaced by Dmax (which equals
b(n1 ∧ n2)/2c in practice).

Given any data-driven collection Ŝ, denote by TB
Ŝ

the multiple testing pro-

cedure calibrated by Bonferroni thresholds α̂B (19).

Proposition 3.4 (Size of TB
Ŝ

). The test function TB
Ŝ

satisfies PH0
[TB
Ŝ

= 1] ≤ α.
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Algorithm 3 Bonferroni Calibration for a collection Ŝ ⊂ S≤Dmax

Require: maximum model dimension Dmax, model collection Ŝ, desired level α
for each subset S in Ŝ do

αV,S ← α(2Dmax)−1
( p
|S|
)−1

α1,S ← α(4Dmax)−1
( p
|S|
)−1

, α2,S ← α1,S

end for

Remark 3.1 (Bonferroni correction on S and not on Ŝ). Note that even though

we only compute the statistics FS,i for models S ∈ Ŝ, the Bonferroni correction

(19) must be applied to the initial deterministic collection S including Ŝ. Indeed,

if we replace the condition (19) by the condition
∑
S∈Ŝ

∑3
i=1 αi,S ≤ α, then the

size of the corresponding is not constrained anymore to be smaller than α. This
is due to the fact that we use the same data set to select Ŝ ⊂ S and to perform
the multiple testing procedure. As a simple example, consider any deterministic
collection S and the data-driven collection

Ŝ =

{
arg min

S∈S
min
i=V,1,2

q̃i,S

}
,

meaning that Ŝ only contains the subset S that minimizes the p-values of the
parametric tests. Thus, computing TB

Ŝ
for this particular collection Ŝ is equiv-

alent to performing a multiple testing procedure on S.

Although procedure TB
Ŝ

is computationally and conceptually simple, the size
of the corresponding test can be much lower than α because of three difficulties:

1. Independently from our problem, Bonferroni corrections are known to be
too conservative under dependence of the test statistics.

2. As emphasized by Remark 3.1, whereas the Bonferroni correction needs to
be based on the whole collection S, only the subsets S ∈ Ŝ are considered.
Provided we could afford the computational cost of testing all subsets
within S, this loss cannot be compensated for if we use the Bonferroni
correction.

3. As underlined in the above subsection, for computational reasons we do
not consider the exact p-values of FS,1 and FS,2 but only upper bounds
q̃1,S and q̃2,S of them.

In fact, the three aforementioned issues are addressed by the permutation
approach.

3.3.2. Calibration by permutation (P)

The collection of thresholds α̂P = {αi,S , S ∈ Ŝ} is chosen such that each αi,S
remains inversely proportional to

(
p
|S|
)

in order to put all subset sizes at equal

footage. In other words, we choose a collection of thresholds of the form

αi,S = Ĉi

(
p

|S|

)−1

, (21)
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where Ĉi’s are calibrated by permutation to control the type I error of the global
test.

Given a permutation π of the set {1, . . . , n1 + n2}, one gets Yπ and Xπ by
permuting the components of Y and the rows of X. This allows us to get a new
sample (Yπ,(1), Yπ,(2), Xπ,(1), Xπ,(2)). Using this new sample, we compute a

new collection Ŝπ, parametric statistics (FπS,i)i=V,1,2 and p-values (q̃πi,S)i=V,1,2.
Denote P the uniform distribution over the permutations of size n1 + n2.

We define ĈV as the α/2-quantiles with respect to P of

min
S∈Ŝπ

[
q̃πV,S

(
p

|S|

)]
. (22)

Similarly, Ĉ1 = Ĉ2 are the α/2-quantiles with respect to P of

min
S∈Ŝπ

[(
q̃π1,S ∧ q̃π2,S

)( p

|S|

)]
. (23)

In practice, the quantiles Ĉi are estimated by sampling a large number B of
permutations. The permutation calibration procedure for the Lasso collection
ŜLasso is summarized in Algorithm 4.

Algorithm 4 Calibration by Permutation for ŜLasso

Require: Data X(1),X(2),Y(1),Y(2), maximum model dimension Dmax, number B of per-
mutations, desired level α
for b = 1,. . . , B do

Draw π a random permutation of {1, . . . , n1 + n2}
X(b),Y

(b) ← π-permutation of (X,Y)
procedure LassoModelChoice(X(1,b),X(2,b),Y(1,b),Y(2,b),S≤Dmax )

Define Ŝ(b)Lasso (as in Algorithm 2)
end procedure

procedure Test(X(1,b),X(2,b),Y(1,b),Y(2,b),Ŝ(b)Lasso)

for each subset S in Ŝ(b)Lasso do

Compute the p-values q̃
(b)
i,S for i = V, 1, 2.

end for
M

(b)
V ← min

S∈Ŝ(b)
Lasso

q̃
(b)
V,S

( p
|S|
)

M
(b)
1 ← min

S∈Ŝ(b)
Lasso

(
q̃
(b)
1,S ∧ q̃

(b)
2,S

) ( p
|S|
)

end procedure
end for
Define ĈV as the α/2-quantile of the (M

(1)
V , . . . ,M

(B)
V ) distribution

Define Ĉ1 = Ĉ2 as the α/2-quantile of the (M
(1)
1 , . . . ,M

(B)
1 ) distribution

for each subset S in ŜLasso, each i = V, 1, 2, do

αi,S ← Ĉi
( p
|S|
)−1

end for

Given any data-driven collection Ŝ, denote by TP
Ŝ

the multiple testing pro-

cedure calibrated by the permutation method (21).
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Proposition 3.5 (Size of TP
Ŝ

). The test function TP
Ŝ

satisfies

α/2 ≤ PH0

[
TPŜ = 1

]
≤ α.

Remark 3.2. Through the three constants ĈV , Ĉ1 and Ĉ2 (Eqs. (22), (23)), the
permutation approach corrects simultaneously for the losses mentioned earlier
due to the Bonferroni correction, in particular the restriction to a data-driven
class Ŝ and the approximate p-values q̃1,S and q̃2,S . Yet, the level of TP

Ŝ
is not

exactly α because we treat separately the statistics FS,V and (FS,1, FS,2) and
apply a Bonferroni correction. It would be possible to calibrate all the statistics
simultaneously in order to constrain the size of the corresponding test to be
exactly α. However, this last approach would favor the statistic FS,V too much,
because we would put on the same level the exact p-value q̃V,S and the upper
bounds q̃1,S and q̃2,S .

3.4. Interpretation tools

Empirical p-value When using a calibration by permutations, one can derive
an empirical p-value pempirical to assess the global significance of the test. In
contrast with model and statistic specific p-values q̃i,S , this p-value provides a
nominally accurate estimation of the type-I error rate associated with the global
multiple testing procedure, every model in the collection and test statistic being
considered. It can be directly compared to the desired level α to decide about
the rejection or not of the global null hypothesis.

This empirical p-value is obtained as the fraction of the permuted values of
the statistic that are less than the observed test statistic. Keeping the notation
of Algorithm 4, the empirical p-value for the variance and coefficient parts are
given respectively by:

pempiricalV =
1

B

B∑

b=1

1

[
M

(b)
V < min

S∈ŜLasso

q̃V,S

(
p

|S|

)]
,

pempirical1−2 =
1

B

B∑

b=1

1

[
M

(b)
1 < min

S∈ŜLasso

(q̃1,S ∧ q̃2,S)

(
p

|S|

)]
.

The empirical p-value for the global test is then given by the following equa-
tion.

pempirical = 2 min(pempiricalV , pempirical1−2 ). (24)

Rejected model Moreover, one can keep track of the model responsible for
the rejection, unveiling sensible information on which particular coefficients most
likely differ between samples. The rejected models for the variance and coeffi-
cient parts are given respectively by:

SRV = arg min
S∈ŜLasso

q̃V,S

(
p

|S|

)
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SR1−2 = arg min
S∈ŜLasso

(q̃1,S ∧ q̃2,S)

(
p

|S|

)

We define the rejected model SR as model SRV or SR1−2 according to the smallest

empirical p-value pempiricalV or pempirical1−2 .

4. Power and adaptation to sparsity

Let us fix some number δ ∈ (0, 1). The objective is to investigate the set of pa-
rameters (β(1), σ(1), β(2), σ(2)) that enforce the power of the test to exceed 1−δ.
We focus here on the Bonferroni calibration (B) procedure because the analysis
is easier. Numerical experiments in Section 5 will illustrate that the permutation
calibration (P) outperforms the Bonferroni calibration (B) in practice. In the
sequel, A . B (resp. A & B) means that for some positive constant L(α, δ) that
only depends on α and δ, A ≤ L(α, δ)B (resp. A ≥ L(α, δ)B).

We first define the symmetrized Kullback-Leibler divergence as a way to
measure the discrepancies between (β(1), σ(1)) and (β(2), σ(2)). Then, we con-
sider tests with deterministic collections in Sections 4.2–4.3. We prove that the
corresponding tests are minimax adaptive to the sparsity of the parameters or
to the sparsity of the difference β(1) − β(2). Sections 4.4–4.5 are devoted to the
analysis of TB

ŜLasso
. Under stronger assumptions on the population covariances

than for deterministic collections, we prove that the performances of TB
ŜLasso

are

nearly optimal.

4.1. Symmetrized Kullback-Leibler divergence

Intuitively, the test TBS should reject H0 with large probability when (β(1), σ(1))
is far from (β(2), σ(2)) in some sense. A classical way of measuring the divergence
between two distributions is the Kullback-Leibler discrepancy. In the sequel,
we note K[PY (1)|X ;PY (2)|X ] the Kullback discrepancy between the conditional

distribution of Y (1) given X(1) = X and conditional distribution of Y (2) given
X(2) = X. Then, we denote K1 the expectation of this Kullback divergence when
X ∼ N (0p,Σ

(1)). Exchanging the roles of Σ(1) and Σ(2), we also define K2:

K1 := EX(1)

{
K
[
PY (1)|X ;PY (2)|X

]}
, K2 := EX(2)

{
K
[
PY (2)|X ;PY (1)|X

]}
.

The sum K1+K2 forms a semidistance with respect to (β(1), σ(1)) and (β(2), σ(2))
as proved by the following decomposition

2 (K1 +K2) =

(
σ(1)

σ(2)

)2

+

(
σ(2)

σ(1)

)2

− 2 +
‖β(2) − β(1)‖2

Σ(2)

(σ(1))2
+
‖β(2) − β(1)‖2

Σ(1)

(σ(2))2
.

When Σ(1) 6= Σ(2), we quantify the discrepancy between these covariance ma-
trices by

ϕΣ(1),Σ(2) := ϕmax

{√
Σ(2)(Σ(1))−1

√
Σ(2) +

√
Σ(1)(Σ(2))−1

√
Σ(1)

}
.
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Observe that the quantity ϕΣ(1),Σ(2) can be considered as a constant if we assume

that the smallest and largest eigenvalues of Σ(i) are bounded away from zero
and infinity.

4.2. Power of TB
S≤k

First, we control the power of TBS for a deterministic collection S = S≤k (with
some k ≤ (n1∧n2)/2) and the Bonferroni calibration thresholds α̂i,S as in (20)).
For any β ∈ Rp, |β|0 refers to the size of its support. We consider the two
following assumptions

A.1 : log(1/(αδ)) . n1∧n2.

A.2 : |β(1)|0+|β(2)|0 . k∧
(
n1 ∧ n2

log(p)

)
, log(p) ≤ n1∧n2.

Remark 4.1. Condition A.1 requires that the type I and type II errors under
consideration are not exponentially smaller than the sample size. Condition A.2
tells us that the number of non-zero components of β(1) and β(2) has to be
smaller than (n1 ∧ n2)/ log(p). This requirement has been shown [47] to be
minimal to obtain fast rates of testing of the form (25) in the specific case
β(2) = 0, σ(1) = σ(2) and n2 =∞.

Theorem 4.1 (Power of TBS≤k). Assuming that A.1 and A.2 hold, P[TBS≤k =

1] ≥ 1− δ as long as

K1 +K2 & ϕΣ(1),Σ(2)

{
|β(1)|0 ∨ |β(2)|0 ∨ 1

}
log (p) + log

(
1
αδ

)

n1 ∧ n2
. (25)

If we further assume that Σ(1) = Σ(2) := Σ, then P[TBS≤k = 1] ≥ 1 − δ as long
as

‖β(1) − β(2)‖2Σ
Var[Y (1)] ∧Var[Y (2)]

&
|β(1) − β(2)|0 log (p) + log

(
1
αδ

)

n1 ∧ n2
. (26)

Remark 4.2. The condition Σ(1) = Σ(2) is not necessary to control the power
of TBS≤k in terms of |β(1)− β(2)|0 as in (26). However, the expression (26) would
become far more involved.

Remark 4.3. Before assessing the optimality of Theorem 4.1, let us briefly
compare the two rates of detection (25) and (26). According to (25), TBS≤k is
powerful as soon as the symmetrized Kullback distance is large compared to
{|β(1)|0∨|β(2)|0} log(p)/(n1∧n2). In contrast, (26) tells us that TBS≤k is powerful

when ‖β(1)−β(2)‖2Σ/(Var[Y (1)]∧Var[Y (2)]) is large compared to the sparsity of
the difference: |β(1) − β(2)|0 log(p)/(n1 ∧ n2).

When β(1) and β(2) have many non-zero coefficients in common, |β(1)−β(2)|0
is much smaller than |β(1)|0∨|β(2)|0. Furthermore, the left-hand side of (26) is of
the same order as K1 + K2 when Σ(1) = Σ(2), σ(1) = σ(2) and ‖β(i)‖Σ/σ(i) . 1
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for i = 1, 2, that is when the conditional variances are equal and when the
signals ‖β(i)‖Σ are at most of the same order as the noise levels σ(i). In such a
case, (26) outperforms (25) and only the sparsity of the difference β(1) − β(2)

plays a role in the detection rates. Below, we prove that (25) and (26) are both
optimal from a minimax point of view but on different sets.

Proposition 4.2 (Minimax lower bounds). Assume that p ≥ 5, Σ(1) = Σ(2) =
Ip, fix some γ > 0, and fix (α, δ) such that α + δ < 53%. There exist two
constants L(α, δ, γ) and L′(α, δ, γ) such that the following holds.

• For all 1 ≤ s ≤ p1/2−γ no level-α test has a power larger than 1 − δ
simultaneously over all s-sparse vectors (β(1), β(2)) satisfying A.2 and

K1 +K2 ≥ L(α, δ, γ)
s

n1 ∧ n2
log (p) . (27)

• For all 1 ≤ s ≤ p1/2−γ , no level-α test has a power larger than 1 − δ
simultaneously over all sparse vectors (β(1), β(2)) satisfying A.2, |β(1) −
β(2)|0 ≤ s and

‖β(1) − β(2)‖2Ip
Var[Y (1)] ∧Var[Y (2)]

≥ L′(α, δ, γ)
s

n1 ∧ n2
log (p) . (28)

The proof (in Section 8) is a straightforward application of minimax lower
bounds obtained for the one-sample testing problem [2, 49].

Remark 4.4. Equation (25) together with (27) tell us that TBS≤k simultaneously

achieves (up to a constant) the optimal rates of detection over s-sparse vectors
β(1) and β(2) for all

s . k ∧ p1/2−γ ∧ n1 ∧ n2

log(p)
,

for any γ > 0. Nevertheless, we only managed to prove the minimax lower
bound for Σ(1) = Σ(2) = Ip, implying that, even though the detection rate (25)
is not improvable uniformly over all (Σ(1),Σ(2)), some improvement is perhaps
possible for specific covariance matrices. Up to our knowledge, there exist no
such results of adaptation to the population covariance of the design even in the
one sample problem.

Remark 4.5. Equation (26) together with (28) tells us that TBS≤k simultane-

ously achieves (up to a constant) the optimal rates of detection over s-sparse

differences β(1)−β(2) satisfying ‖β
(1)‖Σ
σ(1) ∨ ‖β

(2)‖Σ
σ(2) ≤ 1 for all s . k∧p1/2−γ∧n1∧n2

log(p) .

Remark 4.6 (Informal justification of the introduction of the collection ŜLasso).
If we look at the proof of Theorem 4.1, we observe that the power (25) is achieved
by the statistics (FS∨,V , FS∨,1, FS∨,2) where S∨ is the union of the support of
β(1) and β(2). In contrast, (26) is achieved by the statistics (FS∆,V , FS∆,1, FS∆,2)
where S∆ is the support of β(1) − β(2). Intuitively, the idea underlying the

collection Ŝ(1)
L in the definition (12) of ŜLasso is to estimate S∨, while the idea

underlying the collection Ŝ(2)
L is to estimate S∆.
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4.3. Power of TB
S for any deterministic S

Theorem 4.3 below extends Theorem 4.1 from deterministic collections of the
form S≤k to any deterministic collection S, unveiling a bias/variance-like trade-
off linked to the cardinality of subsets S of collection S. To do so, we need to
consider the Kullback discrepancy between the conditional distribution of Y (1)

given X
(1)
S = XS and the conditional distribution of Y (2) given X

(2)
S = XS ,

which we denote K[PY (1)|XS ;PY (2)|XS ]. For short, we respectively note K1(S)
and K2(S)

K1(S) := E
X

(1)
S

{
K
[
PY (1)|XS ;PY (2)|XS

]}
,

K2(S) := E
X

(2)
S

{
K
[
PY (2)|XS ;PY (1)|XS

]}
.

Intuitively, K1(S) +K2(S) corresponds to some distance between the regression

of Y (1) given X
(1)
S and of Y (2) given X

(2)
S . Noting Σ

(1)
S (resp. Σ

(2)
S ) the restriction

of Σ(1) (resp. Σ(2)) to indices in S, we define

ϕS := ϕmax

{√
Σ

(2)
S (Σ

(1)
S )−1

√
Σ

(2)
S +

√
Σ

(1)
S (Σ

(2)
S )−1

√
Σ

(1)
S

}
. (29)

Theorem 4.3 (Power of TBS for any deterministic S). For any S ∈ S, we note
αS = mini=V,1,2 αi,S. The power of TBS is larger than 1 − δ as long as there
exists S ∈ S such that |S| . n1 ∧ n2 and

1 + log[1/(δαS)] . n1 ∧ n2, (30)

and

K1(S) +K2(S) & ϕS

(
1

n1
+

1

n2

)[
|S|+ log

(
1

αSδ

)]
. (31)

Remark 4.7. Let us note ∆(S) the right hand side of (31). According to
Theorem 4.3, The ∆(S) term plays the role of a variance term and therefore
increases with the cardinality of S. Furthermore, the K1 −K1(S) +K2 −K2(S)
term plays the role of a bias. Let us note S∗ the subcollection of S made of sets
S satisfying (30). According to Theorem 4.3, TBS is powerful as long as K1 +K2

is larger (up to constants) to

inf
S∈S∗

{K1 −K1(S) +K2 −K2(S)}+ ∆(S) (32)

Such a result is comparable to oracle inequalities obtained in estimation since
TBS is powerful when the K1 + K2 Kullback loss is larger than the trade-off
(32) between a bias-like term and a variance-like term without requiring the
knowledge of this trade-off in advance. We refer to [5] for a thorough comparison
between oracle inequalities in model selection and second type error terms of
this form.
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4.4. Power of TB
ŜLasso

For the sake of simplicity, we restrict our developments to the case n1 = n2 := n
in this subsection, more general results being postponed to the next subsection.
The TBS≤n/2 test is computationally expensive (non polynomial with respect

to p). The ŜLasso collection has been introduced to fix this burden. We con-
sider TB

ŜLasso
with the prescribed Bonferroni calibration thresholds α̂i,S , as in

(20) with k replaced by b(n1 ∧ n2)/2c. In the following statements, ψ
(1)

Σ(1),Σ(2) ,

ψ
(2)

Σ(1),Σ(2) ,. . . refer to positive quantities that only depend on the largest and

smallest eigenvalues of Σ(1) and Σ(2). Consider the additional assumptions

A.3 : |β(1)|0∨|β(2)|0 . ψ
(1)

Σ(1),Σ(2)

n

log(p)
.

A.4 : |β(1)|0∨|β(2)|0 . ψ
(2)

Σ(1),Σ(2)

√
n

log(p)
.

Theorem 4.4. Assuming that A.1 and A.3 hold, we have P[TB
ŜLasso

= 1] ≥
1− (δ ∨ 4/p) as long as

K1 +K2 & ψ
(3)

Σ(1),Σ(2)

{
|β(1)|0 ∨ |β(2)|0 ∨ 1

}
log (p) + log

(
1
αδ

)

n
. (33)

If Σ(1) = Σ(2) = Σ and if A.1 and A.4 hold, then P[TB
ŜLasso

= 1] ≥ 1− (δ ∨ 6/p)

as long as

‖β(1) − β(2)‖2Σ
Var[Y (1)] ∧Var[Y (2)]

& ψ
(4)
Σ,Σ

|β(1) − β(2)|0 log (p) + log
(

1
αδ

)

n
. (34)

Remark 4.8. The rates of detection (33) and the sparsity condition A.3 are
analogous to (25) and Condition A.2 in Theorem 4.1 for TBS≤(n1∧n2)/2

. The sec-

ond result (34) is also similar to (26). As a consequence, TB
ŜLasso

is minimax

adaptive to the sparsity of (β(1), β(2)) and of β(1) − β(2).

Remark 4.9. Dependencies of A.3, A.4, (33) and (34) on Σ(1) and Σ(2) are

unavoidable because the ŜLasso collection is based on the Lasso estimator which
require design assumptions to work well [9]. Nevertheless, one can improve all
these dependencies using restricted eigenvalues instead of largest eigenvalues.
This and other extensions are considered in the next subsection.

4.5. Sharper analysis of TB
ŜLasso

Given a matrix X, an integer k, and a number M , one respectively defines
the largest and smallest eigenvalues of order k, the compatibility constants
κ[M,k,X] and η[M,k,X] (see [46]) by

Φk,+(X) = sup
θ,1≤|θ|0≤k

‖Xθ‖2
‖θ‖2 , Φk,−(X) = inf

θ,1≤|θ|0≤k

‖Xθ‖2
‖θ‖2 ,
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κ[M,k,X] = min
T,θ: |T |≤k, θ∈C(M,T )

{‖Xθ‖
‖θ‖

}
,

η[M,k,X] = min
T,θ: |T |≤k, θ∈C(M,T )

{√
k
‖Xθ‖
|θ|1

}
, (35)

where C(M,T ) = {θ : |θT c |1 < M |θT |1}. Given an integer k, define

γΣ(1),Σ(2),k :=

∧
i=1,2 κ

2
[
6, k∗,

√
Σ(i)

]

∨
i=1,2 Φk∗,+(

√
Σ(i))

,

γ′Σ(1),Σ(2),k :=

∨
i=1,2 Φ2

k,+(
√

Σ(i))
∧
i=1,2 Φk,−(

√
Σ(i))

∧
i=1,2 κ

2[6, k,
√

Σ(i)]
,

which measure the closeness to orthogonality of Σ(1) and Σ(2). Theorem 4.4 is
a straightforward consequence of the following two results.

Proposition 4.5. There exist four positive constants L∗, L∗1, L∗2, and L∗3 such
that following holds. Define k∗ as the largest integer that satisfies

(k∗ + 1) log(p) ≤ L∗(n1 ∧ n2), (36)

and assume that

1 + log [1/(αδ)] < L∗1(n1 ∧ n2) and δ ≥ 4/p. (37)

The H0 hypothesis is rejected by TB
ŜLasso

with probability larger than 1−δ for any

(β(1), β(2)) satisfying

|β(1)|0 + |β(2)|0 ≤ L∗2γΣ(1),Σ(2),k∗k∗

(
n1

n2
∧ n2

n1

)
. (38)

and

K1 +K2≥L∗3γ′Σ(1),Σ(2),k∗

(|β(1)|0 ∨ |β(2)|0 ∨ 1) log(p) + log{1/(αδ)}
n1 ∧ n2

(
n1

n2
∨ n2

n1

)
.

This proposition tells us that TB
ŜLasso

behaves nearly as well as what has been

obtained in (25) for TBS≤(n1∧n2)/2
, at least when n1 and n2 are of the same order.

In the next proposition, we assume that Σ(1) = Σ(2) := Σ. Given an integer k,
define

γ̃Σ,k :=
κ[6, k,

√
Σ]Φ

1/2
k,−(
√

Σ)

Φ1,+(
√

Σ)
, γ̃

(2)
Σ,k :=

κ2
[
6, k,
√

Σ
]

Φk,+(
√

Σ)
, γ̃

(3)
Σ,k :=

Φ2
1,+(
√

Σ)

κ2[6, k,
√

Σ]
.

Proposition 4.6. Let us assume that Σ(1) = Σ(2) := Σ. There exist five positive
constants L∗, L̃∗, L∗1, L∗2, and L∗3 such that following holds. Define k∗ and k̃∗
as the largest positive integers that satisfy

(k∗ + 1) log(p) ≤ L∗(n1 ∧ n2),
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k̃∗ ≤ L̃∗γ̃Σ,k∗

[
n1 ∧ n2

|n1 − n2|
∧
√
n1 ∧ n2

log(p)

]
, (39)

with the convention x/0 =∞. Assume that

1 + log [1/(αδ)] < L∗1(n1 ∧ n2) and δ ≥ 6/p.

The H0 hypothesis is rejected by TB
ŜLasso

with probability larger than 1−δ for any

(β(1), β(2)) satisfying

|β(1)|0 + |β(2)|0 ≤ L∗2γ̃(2)

Σ,k̃∗
k̃∗. (40)

and

‖β(1) − β(2)‖2Σ
Var(Y (1)) ∧Var(Y (2))

≥ L∗3γ̃(3)
Σ,k∗

[(
|β(1) − β(2)|0 ∨ 1

)
log(p) + log{1/(αδ)}

]
.

Remark 4.10. Definition (39) of k̃∗ together with Condition (40) restrict
the number of non-zero components |β(1)|0 + |β(2)|0 to be small in front of
(n1∧n2)/|n1−n2|. This technical assumption enforces the design matrix in the
reparametrized model (8) to be almost block-diagonal and allows us to control

efficiently the Lasso estimator θ̂
(2)
λ of θ

(2)
∗ for some λ > 0 (see the proof in Sec-

tion 8 for further details). Still, this is not clear to what extent this assumption
is necessary.

5. Numerical experiments

This section evaluates the performances of the suggested test statistics along
with aforementioned test collections and calibrations on simulated linear re-
gression datasets.

5.1. Synthetic linear regression data

In order to calibrate the difficulty of the testing task, we simulate our data
according to the rare and weak parametrization adopted in [2]. We choose a large
but still reasonable number of variables p = 200, and restrict ourselves to cases
where the number of observations n = n1 = n2 in each sample remains smaller
than p. The sparsity of sample-specific coefficients β(1) and β(2) is parametrized
by the number of non zero common coefficients p1−η and the number of non zero
coefficients p1−η2 which are specific to β(2). The magnitude µr of all non zero
coefficients is set to a common value of

√
2r log p, where we let the magnitude

parameter range from r = 0 to r = 0.5:

β(1) = (µr µr . . . µr 0 . . . 0 0 . . . 0)
β(2) = (µr µr . . . µr︸ ︷︷ ︸

p1−η common coefficients

µr . . . µr︸ ︷︷ ︸
p1−η2 sample-2-specific coefficients

0 . . . 0)
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We consider three sample sizes n = 25, 50, 100, and generate two sub-samples
of equal size n1 = n2 = n according to the following sample specific linear
regression models: {

Y(1) = X(1)β(1) + ε(1),
Y(2) = X(2)β(2) + ε(2).

Design matrices X(1) and X(2) are generated by multivariate Gaussian distri-

butions, X
(j)
i ∼ N (0,Σ(j)) with varying choices of Σ(j), as detailed below. Noise

components ε
(1)
i and ε

(2)
i are generated independently from X(1) and X(2) ac-

cording to a standard centered Gaussian distribution.
The next two paragraphs detail the different design scenarios under study as

well as test statistics, collections and calibrations in competition. Each experi-
ment is repeated 1000 times.

Design scenarios under study

Sparsity patterns We study six different sparsity patterns as summarized in
Table 1. The first two are meant to validate type I error control. The last four
allow us to compare the performances of the various test statistics, collections
and calibrations under different sparsity levels and proportions of shared coeffi-
cients. In all cases, the choices of sparsity parameters η and η2 lead to strong to
very strong levels of sparsity. The last column of Table 1 illustrates the signal
sparsity patterns of β(1) and β(2) associated with each scenario. In scenarios 1
and 2, sample-specific signals share little, if not none, non zero coefficient. In
scenarios 3 and 4, sample-specific coefficients show some overlap. Scenario 4 is
the most difficult one since the number of sample-2-specific coefficients is much
smaller than the number of common non zero coefficients: the sparsity of the
difference between β(1) and β(2) is much smaller than the global sparsity of β(2).
This explains why the illustration in the last column might be misleading: the
two patterns are not equal but do actually differ by only one covariate.

Beyond those six varying sparsity patterns, we consider three different cor-
relation structures Σ(1) and Σ(2) for the generation of the design matrix. In all
three cases, we assume that Σ(1) = Σ(2) = Σ. On top of the basic orthogonal
matrix Σ(1) = Σ(2) = Ip, we investigate two randomly generated correlation
structures.

Power decay correlation structure First, we consider a power decay correlation
structure such that Σi,j = ρ|i−j|. Since the sparsity pattern of β(1) and β(2)

is linked to the order of the covariates, we randomly permute at each run the
columns and rows of Σ in order to make sure that the correlation structure is
independent from the sparsity pattern.

Gaussian graphical model structure Second, we simulate correlation structures
with the R package GGMselect. The function simulateGraph generates covari-
ance matrices corresponding to Gaussian graphical model structure made of
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Table 1
Summary of the six different sparsity patterns under study

Setting η ] common η2 ] β(2) specific Signals

H00 – 0 – 0
β(2)

β(1)

H0 5/8 7 - 0
β(2)

β(1)

1 – 0 5/8 7
β(2)

β(1)

2 7/8 1 5/8 7
β(2)

β(1)

3 5/8 7 5/8 7
β(2)

β(1)

4 5/8 7 7/8 1
β(2)

β(1)

clusters with some intra-cluster and extra-cluster connectivity coefficients. See
Section 4 of [20] for more details. A new structure is generated at each run.

Both random correlation structures are calibrated such that, on average,
each covariate is correlated with 10 other covariates with correlations above
0.2 in absolute value. This corresponds to fixing ρ at a value of 0.75 in the
power decay correlation structure and the intra-cluster connectivity coefficient
to 5% in the Gaussian graphical model structure. With the default option of
the function simulateGraph the extra-cluster connectivity coefficient is taken
five times smaller.

Test statistics, collections and calibrations in competition In the fol-
lowing, we present the results of the proposed test statistics combined with two
test collections, namely a deterministic and data-driven model collection, re-
spectively S1 and ŜLasso, as well as with a Bonferroni (B) or Permutation (P)
calibration (computed with 100 random permutations).

Furthermore, to put those results in perspective, we compare our suggested
test statistic to the usual Fisher statistic and we compare our approach with
the parallel work of [43].

Fisher statistic For a given support |S| of reduced dimension the usual likeli-

hood ratio statistic for the equality of β
(1)
S and β

(2)
S follows a Fisher distribution
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with |S| and n1 + n2 − 2|S| degrees of freedom:

FiS =
‖Y−XS β̂S‖2−‖Y(1)−X

(1)
S β̂

(1)
S ‖2−‖Y(2)−X

(2)
S β̂

(2)
S ‖2

‖Y(1)−X
(1)
S β̂

(1)
S ‖2 + ‖Y(2)−X

(2)
S β̂

(2)
S ‖2

n1 +n2− 2|S|
|S| ,

(41)

where β̂S is the maximum likelihood estimator restricted to covariates in support
S on the concatenated sample (X,Y). While this statistic FiS is able to detect
differences between β(1) and β(2), it is not really suited for detecting differences
between the standard deviations σ(1) and σ(2).

The Fisher statistic FiS is adapted to the high-dimensional framework simi-
larly as the suggested statistics (FS,V , FS,1, FS,2), except that exact p-values are

available. The corresponding test with a collection Ŝ and a Bonferroni (resp.

permutation) calibration is denotes TB,Fisher

Ŝ
(TP,Fisher

Ŝ
).

Procedure of Städler and Mukherjee [43] The DiffRegr procedure of Städler
and Mukherjee performs two-sample testing between high-dimensional regres-
sion models. The procedure is based on sample-splitting: the data is split in two
halves, the first one allowing to reduce dimensionality (screening step) and the
second being used to compute p-values based on a restricted log-likelihood-ratio
statistic (cleaning step). Contrary to our procedure, which compares the pre-
dictive ability of the same model S in both conditions, the DiffReg procedure
is based on the selection of three distinct models at the screening step, one for
each condition separately and one on the joint sample. This approach results
in an intricate non-nested model comparison at the cleaning step. To increase
the stability of the results the splitting step is repeated multiple times and the
resulting p-values must be aggregated. We choose to use the p-value calcula-
tions based on permutations as it remains computationally reasonable for the
regression case, see [43]. The single-splitting and multi-splitting procedures are
denoted respectively by SS(perm) and MS(perm).

Validation of type I error control

Control under the global null hypothesis H00 Table 2 presents estimated type
I error rates, that is the percentage of simulations for which the null hypothesis
is rejected, based upon 1000 simulations under the restricted null hypothesis
H00, where β(1) = β(2) = 0 and under orthogonal correlation structure. The
desired level is α = 5%, and the estimated levels are given with a 95% Gaussian
confidence interval.

As expected under independence, the combination of the S1 collection with
Bonferroni correction gives accurate alpha-level when applied to the usual Fisher
statistic. On the contrary when applied to the suggested statistics, the use of
upper bounds on p-values leads to a strong decrease in observed type-I error.
This decrease is exacerbated when using the ŜLasso collection, since we are ac-
counting for many more models than the number actually tested in order to
prevent overfitting. This effect can be seen both on the Fisher statistic and our
suggested statistic. Even with the usual Fisher statistic, for which we know the
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Table 2
Estimated test levels in percentage along with 95% Gaussian confidence interval

(in percentage) under H00 based upon 1000 simulations

(a) Tests T ∗
Ŝ

Model collection S1 ŜLasso
Calibration (B) (P) (B) (P)
n = 25 1± 0.6 6.9± 1.6 0± 0 6.9± 1.6
n = 50 1.8± 0.8 5.8± 1.4 0± 0 6± 1.5
n = 100 1± 0.6 7.4± 1.6 0.1± 0.2 7.3± 1.6

(b) Tests T ∗,Fisher

Ŝ

Model collection S1 ŜLasso
Calibration (B) (P) (B) (P)
n = 25 5.5± 1.4 6.8± 1.6 0.5± 0.4 6.5± 1.5
n = 50 4.5± 1.3 5.5± 1.4 0.1± 0.2 5.3± 1.4
n = 100 4.8± 1.3 6.6± 1.5 0.1± 0.2 6.5± 1.5

(c) DiffRegr procedure

Model collection SS (perm) MS (perm)
n = 25 4.3± 1.3 0.1± 0.2
n = 50 4.1± 1.2 0.2± 0.3
n = 100 3.5± 1.1 0.1± 0.2

exact p-value, it is unthinkable to use Bonferroni calibration as soon as we adopt
data-driven collections instead of deterministic ones.

On the contrary, a calibration by permutations restores a control of type-I
error at the desired nominal level, whatever the test statistic or model collection.

As noted by [43], the multi-splitting procedure yields conservative results in
terms of type I error control at level 5%.

Control under the global equality of non null coefficients H0 Figures 1 and 3
present level checks under H0 but with non null β(1) = β(2) 6= 0, under re-
spectively orthogonal and non-orthogonal correlation structures. Conclusions
are perfectly similar to the case H00: all methods behave well, except the multi-
split DiffRegr procedure and the Bonferroni calibration-based procedures TB

Ŝ
(for any collection Ŝ) and TB,Fisher

ŜLasso
. In particular, the Fisher statistic combined

with S1 and Bonferroni calibration is more conservative than the desired nomi-
nal level under correlated designs.

Power analysis We do not investigate the power of the Bonferroni-based
procedures TB

Ŝ
and TB,Fisher

Ŝ
as they have been shown to be too conservative in

the above Type I error analysis. Figure 4 represents power performances for the
test TP

Ŝ
and the usual likelihood ratio test TP,Fisher

Ŝ
combined with either S1 or

ŜLasso test collections using a calibration by permutation under an orthogonal
covariance matrix Σ, as well as power performance for the DiffRegr procedure.
Figure 5 represents equivalent results for power decay and GGM covariance
structures when n = 50.
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Fig 1. Estimated test levels in percentage under H0 for varying magnitudes of common non
null coefficients, based upon 1000 simulations. Bonferroni calibration in dotted lines, calibra-
tion by permutation in plain lines. Blue squares represent the suggested test T ∗

Ŝ
, red triangles

stand for the Fisher test T ∗,Fisher

Ŝ
. The deterministic collection S1 is drawn in empty points,

while the data-driven collection ŜLasso is in plain points. Green circles represent the DiffRegr
procedure, respectively plain and empty for single-splitting and multi-splitting.
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FiS - ŜLasso - (B)
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Fig 2. Legend of the procedures under study
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Fig 3. Estimated test levels in percentage under H0 for varying magnitudes of common non
null coefficients, based upon 1000 simulations, under power decay and GGM correlation struc-
tures when n = 50. Bonferroni calibration in dotted lines, calibration by permutation in plain
lines. Blue squares represent the suggested test T ∗

Ŝ
, red triangles stand for the Fisher test

T ∗,Fisher

Ŝ
. The deterministic collection S1 is drawn in empty points, while the data-driven

collection ŜLasso is in plain points. Green circles represent the DiffRegr procedure, respec-
tively plain and empty for single-splitting and multi-splitting.
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Fig 4. Power (in percentage) as a function of signal magnitude parameter r for various
sparsity pattern under the assumption of uncorrelated designs Σ(1) = Σ(2) = Ip. Results for

the suggested test TP
Ŝ

and the test TP,Fisher

Ŝ
, combined with S1 or ŜLasso test collections. Blue

squares represent the suggested test TP
Ŝ

, red triangles stand for the Fisher test TP,Fisher

Ŝ
. The

deterministic collection S1 is drawn in empty points, while the data-driven collection ŜLasso is
in plain points. Results for the DiffRegr procedure are represented by green circles, respectively
plain and empty for single-splitting and multi-splitting approaches.

In the absence of common coefficients (scenarios 1 and 2), the test TP
Ŝ

reaches

100% power from very low signal magnitudes and small sample sizes. Compared
to the test based on usual likelihood ratio statistics, which does not reach more
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Fig 5. Power (in percentage) as a function of signal magnitude parameter r for various
sparsity patterns under power decay and GGM correlated designs, at n = 50 observations.

Results for the suggested test TP
Ŝ

and the test TP,Fisher

Ŝ
, combined with S1 or ŜLasso test

collections and a calibration by permutation. Blue squares represent the suggested test TP
Ŝ

,

red triangles stand for the Fisher test TP,Fisher

Ŝ
. The deterministic collection S1 is drawn

in empty points, while the data-driven collection ŜLasso is in plain points. Results for the
DiffRegr procedure are represented by green circles, respectively plain and empty for single-
splitting and multi-splitting approaches.

than 40% power when n = 25 given the signal magnitudes under consideration,
the suggested statistics proves itself extremely efficient. Under these settings as
well, any subset of size 1 containing one of the variables activated in only β(2)
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can suffice to reject the null, which is why collection S1 performs actually very
well when associated with (FS,V , FS,1, FS,2) and not so badly when associated
with FiS .

However, in more complex settings 3 and 4, where larger subsets are required
to correct for strong and numerous common effects, subset collection ŜLasso

yields a higher power than the collection S1.
For small n, the test TP

ŜLasso
outperforms the DiffRegr procedure. However,

when n = 100 the procedure DiffRegr performs better than our procedure in
the highly challenging setting 4.

Figure 5 provide similar results under respectively power decay correlated
designs and GGM-like correlated designs for a sample size of n = 50, leading to
similar conclusions as in the uncorrelated case.

6. Application to GGM

The following section explicits the extension of the two-sample linear regression
testing framework to the two-sample Gaussian graphical model testing frame-
work. We describe the tools and guidelines for a correct interpretation of the
results and illustrate the approach on a typical two-sample transcriptomic data-
set.

6.1. How to apply this strategy to GGM testing

Neighborhood selection approach The procedure developed in Section 2
can be adapted to the case of Gaussian graphical models as in [48]. We quickly
recall why estimation of the Gaussian graphical model amounts to the estimation
of p independent linear regressions when adopting a neighborhood selection
approach [34].

Consider two Gaussian random vectors Z(1) ∼ N (0, [Ω(1)]−1) and Z(2) ∼
N (0, [Ω(2)]−1). Their respective conditional independence structures are rep-
resented by the graphs G(1) and G(2), which consist of a common set of nodes
Γ = {1, . . . , p} and their respective sets of edges E(1) and E(2). When speaking of
gene regulation networks, each node represents a gene, and edges between genes
are indicative of potential regulations. In contrast with gene co-expression net-
works, edges in Gaussian graphical models do not reflect correlations but partial
correlations between gene expression profiles.

Formally, an edge (i, j) belongs to the edge set E(1) (resp. E(2)) if Z
(1)
i

(resp. Z
(2)
i ) is independent from Z

(1)
j (resp. Z

(2)
j ) conditional on all other vari-

ables Z
(1)
\i,j (resp. Z

(2)
\i,j). When the precision matrix Ω(k) is nonsingular, the

edges are characterized by its non zero entries.
The idea of neighborhood selection is to circumvent the intricate issue of

estimating the precision matrix by recovering the sets of edges neighborhood by

neighborhood, through the conditional distribution of Z
(k)
i given all remaining

variables Z
(k)
\i . Indeed, this distribution is again a Gaussian distribution, whose

mean is a linear combination of Z
(k)
\i while its variance is independent from Z

(k)
\i .
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Hence, Z
(k)
i can be decomposed into the following linear regression:

Z
(k)
i =

∑

j 6=i

Z
(k)
j β

(k)
ij + ε

(k)
i = Z

(k)
\i β

(k)
i + ε

(k)
i , (42)

where β
(k)
ij = −Ω

(k)
ij /Ω

(k)
ii and Var[ε

(k)
i ] = (Ω

(k)
ii )−1.

Given an n1-sample of Z(1) and an n2-sample of Z(2), we recall that our
objective is to test as formalized in (4)

HG0 : Ω(1) = Ω(2) versus HG1 : Ω(1) 6= Ω(2).

As a result of Equation (42), testing for the equality of the matrix rows Ω
(1)
i. =

Ω
(2)
i. is equivalent to testing for β

(1)
i = β

(2)
i and Var[ε

(1)
i ] = Var[ε

(2)
i ]. Denote

by Σ
(k)
\i the covariance of Z

(k)
\i . Under the null HG0 , we have that for any i,

Σ
(1)
\i = Σ

(2)
\i . Consequently, we can translate the GGM hypotheses given in

Equation (4) into a conjunction of two-sample linear regression tests:

HG0 :
⋂

i

[
β

(1)
i = β

(2)
i , Ω

(1)
ii = Ω

(2)
ii , Σ

(1)
\i = Σ

(2)
\i

]
(43)

HG1 :
⋃

i

[
β

(1)
i 6= β

(2)
i

]
∪
[
Ω

(1)
ii 6= Ω

(2)
ii

]
.

Concretely, we apply the previous two-sample linear regression model with

X(1) = Z
(1)
,\i ,X

(2) = Z
(2)
,\i , Y(1) = Z

(1)
,i , and Y(2) = Z

(2)
,i for every gene i and

combine multiple neighborhood tests using a Bonferroni calibration as presented

in Algorithm 5. The equality of σ(k)’s in H0 models the equality of Ω
(k)
ii ’s in HG0

while the equality of Σ(k)’s accounts for the equality of Σ
(k)
\i ’s.

Algorithm 5 Gaussian Graphical Model Testing Strategy

Require: Data Z(1),Z(2), maximum model dimension Dmax and desired level α
for each gene i = 1, . . . , p do

procedure Neighborhood Test

Define X(1) = Z
(1)
,\i , X(2) = Z

(2)
,\i

Define Y(1) = Z
(1)
,i , Y(2) = Z

(2)
,i

Apply the Adaptive Testing Strategy of Algorithm 1 to X(1),X(2),Y(1),Y(2)

end procedure
end for
Reject the global null hypothesis if at least one Neighborhood Test is rejected at level α/p

Interpretation Because we need Ω
(1)
ii = Ω

(2)
ii and Σ

(1)
\i = Σ

(2)
\i for every neigh-

borhood in the two-sample GGM null hypothesisHN0 (43), the assumptions that
σ(1) = σ(2) and Σ(1) = Σ(2) in the two-sample linear regression null hypothesis
H0 (3) are crucial for each neighborhood test to be interpreted correctly. As a
result, only the global test can be strictly speaking interpreted in a statistically
correct sense.
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However in practice, when the global null hypothesis is rejected, our construc-
tion of neighborhood tests provides helpful clues on the location of disruptive
regulations. In particular, for each rejected neighborhood test i, one can keep
track of the rejected model SiR, retaining sensible information on which partic-
ular regulations are most likely altered between samples.

6.2. Illustration on real transcriptomic breast cancer data

We apply this strategy to the full (training and validation) breast cancer dataset
studied by [23] and [37], whose training subset was originally published in [39].
The full dataset consists of microarray gene expression profiles from 133 patients
with stage I–III breast cancer undergoing preoperative chemotherapy. A major-
ity of patients (n = 99) presented residual disease (RD), while 34 patients
demonstrated a pathologic complete response (pCR). The common objective
of [23] and [37] was to develop a predictor of complete response to treatment
from gene expression profiling. In particular, [23] identified an optimal predictive
subset of 30 probes, mapping to 26 distinct genes.

Ambroise and co-authors [1] inferred Gaussian graphical models among those
26 genes on each patient class using weighted neighborhood selection. The cor-
responding graphs of conditional dependencies for medium regularization are
presented in Figure 6. Those two graphs happen to differ dramatically from one
another. The question we tackle is whether those differences remain when taking
into account estimation uncertainties.

We run for each of the p = 26 genes a neighborhood test TP
ŜLasso

at level

0.05/26. We associate to each neighborhood test the empirical p-value defined
in Equation (24), which has to be be compared to α/p.

Most of the graph estimation methods proposed in the literature, such as
the procedure of [1] leading to Figure 6, rely on the assumption that obser-

Pathologic Complete Response (pCR) Residual Disease (RD)

Fig 6. Graphs of conditional dependencies among the 26 genes selected by [23] on patients
with pathologic complete response or residual disease with medium regularization as presented
in Figure 3 of [1].
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Table 3
Homogeneity test between training and test samples among pCR patients. Summary of test

decisions after Bonferroni multiple testing correction and empirical p-values for each
neighborhood test as defined in Section 3.4

AMFR BB S4 BECNI BTG3 CA12 CTNND2
decision 0 0 0 0 1 0
pempirical 0.0492 0.0072 0.1972 1 0.0018 0.0100

E2F3 ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT
decision 0 0 0 0 0 0
pempirical 0.1080 0.5610 0.0242 0.2542 0.0312 0.1158

GFRAI IGFBP4 JMJD2B KIA1467 MAPT MBTP SI
decision 0 0 0 0 0 0
pempirical 0.5318 0.0458 0.0128 0.0272 0.0178 0.0062

MELK METRN PDGFRA RAMPI RRM2 SCUBE2
decision 0 0 1 0 0 0
pempirical 0.5602 1 0.0012 0.0444 0.0022 0.2372

THRAP2 ZNF552
decision 0 0
pempirical 0.0228 0.0028

vations are i.i.d. Yet the training and validation datasets have been collected
and analyzed separately by two different clinical centers. We therefore start by
checking whether the pooled sample can be considered as homogeneous. Within
each group of patients (RD and pCR), we lead a test for the homogeneity of
Gaussian graphical models between the training and validation subsets.

Within pCR patients (Table 3), two neighborhood tests corresponding to
CA12 and PDGFRA are rejected at level 0.05/26. Within RD patients (Table 4),
half of the neighborhoods happen to differ significantly between the training and
validation datasets. Genes CA12 and JMJD2B are responsible for the rejection
of respectively seven and six neighborhoods.

Because of these surprisingly significant divergences between training and
validation subsets, we restrict the subsequent analysis to the training set (n = 82
patients, among which 61 RD and 21 pCR patients).

To roughly check that we got rid of the underlying heterogeneity, we create
an artificial dataset under H0 by permutation of the patients, regardless of their
class. No neighborhood test is rejected at a level corrected for multiple testing.
We also cut the group of patients with residual disease artificially in half. When
testing for the difference between the two halves, no significant heterogeneity
remains, whatever the neighborhood.

Within the training set, the comparison of Gaussian graphical structures be-
tween pCR and RD patients leads to the rejection of all neighborhood tests after
Bonferroni correction for multiple testing of the 26 neighborhoods, as summa-
rized in Table 5. RRM2, MAPT and MELK genes appear as responsible for the
rejection of respectively nine, nine and four of these neighborhood tests. Quite
interestingly, these three genes have all been described in clinical literature as
new promising drug targets. Reference [22] exhibited inhibitors of RRM2 ex-
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Table 4
Homogeneity test between training and test samples among RD patients. Summary of test

decisions after Bonferroni multiple testing correction and empirical p-values for each
neighborhood test as defined in Section 3.4

AMFR BB S4 BECNI BTG3 CA12 CTNND2
decision 0 1 1 0 1 0
pempirical 0.0046 <0.0001 <0.0001 0.0202 <0.0001 0.0684

E2F3 ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT
decision 0 0 1 1 1 1
pempirical 0.0428 0.26 <0.0001 <0.0001 0.002 <0.0001

GFRAI IGFBP4 JMJD2B KIA1467 MAPT MBTP SI
decision 0 0 1 1 0 1
pempirical 0.3606 0.389 <0.0001 2e-04 0.006 6e-04

MELK METRN PDGFRA RAMPI RRM2 SCUBE2
decision 0 0 1 0 0 0
pempirical 0.1556 0.1054 <0.0001 0.2288 0.2988 0.3552

THRAP2 ZNF552
decision 1 1
pempirical <0.0001 <0.0001

Table 5
Summary of neighborhood tests between RD and pCR patients within the training set

(n = 82). Decision is made at level 0.05/26 to correct for multiple testing. The empirical
p-value and the rejected model are defined in Section 3.4

AMFR BB S4 BECNI BTG3 CA12 CTNND2
decision 1 1 1 1 1 1
pempirical < 0.0001 <0.0001 4e-04 <0.0001 2e-04 <0.0001
rejected model RRM2 RRM2 MAPT MAPT MAPT RRM2

E2F3 ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT
decision 1 1 1 1 1 1
pempirical <0.0001 <0.0001 4e-04 4e-04 <0.0001 <0.0001
rejected model MAPT MELK MAPT RRM2 MAPT RRM2

GFRAI IGFBP4 JMJD2B KIA1467 MAPT MBTP SI
decision 1 1 1 1 1 1
pempirical <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
rejected model BTG3 MELK MAPT MELK RRM2 E2F3

MELK METRN PDGFRA RAMPI RRM2 SCUBE2
decision 1 1 1 1 1 1
pempirical <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
rejected model MAPT MELK RRM2 RRM2 MAPT BTG3

THRAP2 ZNF552
decision 1 1
pempirical <0.0001 2e-04
rejected model E2F3 RRM2

pression, which reduced in vitro and in vivo cell proliferation. Reference [40] led
functional biology experiments validating the relationship between MAPT ex-
pression levels and response to therapy, suggesting to inhibit its expression to in-
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Table 6
Summary of neighborhood tests between RD and pCR patients within the validation set

(n = 51). Decision is made at level 0.05/26 to correct for multiple testing. The empirical
p-value and the rejected model are defined in Section 3.4

AMFR BB S4 BECNI BTG3 CA12 CTNND2
decision 0 0 0 1 0 0
pempirical 0.0024 0.0028 0.0048 0.0018 0.0028 0.0082
rejected model – – – SCUBE2 – –

E2F3 ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT
decision 1 1 0 1 0 0
pempirical <0.0001 0.0014 0.0072 8e-04 0.0142 0.0046
rejected model METRN SCUBE2 – SCUBE2 – –

GFRAI IGFBP4 JMJD2B KIA1467 MAPT MBTP SI
decision 1 1 0 1 0 0
pempirical 8e-04 2e-04 0.0054 0.0018 0.0032 0.0078
rejected model E2F3 SCUBE2 – SCUBE2 – –

MELK METRN PDGFRA RAMPI RRM2 SCUBE2
decision 0 1 0 0 0 1
pempirical 0.0036 4e-04 0.0104 0.0056 0.0034 2e-04
rejected model – E2F3 – – – FLJ10916

THRAP2 ZNF552
decision 0 0
pempirical 0.0024 0.006
rejected model – –

crease sensitivity to treatment. More recently, [14] developed a therapeutic can-
didate inhibiting MELK expression that was proved to suppress the growth of
tumor-initiating cells in mice with various cancer types, including breast cancer.

For comprehensiveness, we add that a similar analysis of the validation set
(n = 51 patients, among which 38 RD and 13 pCR patients) leads to the iden-
tification of only 9 significantly altered neighborhoods between pCR and RD
patients (see Table 6). This difference in the number of significantly altered
neighborhoods can be explained by the reduced size of the sample. Yet, genes
responsible for the rejection of the tests differ from those identified on the train-
ing set. In particular, five of the significant tests are rejected because of SCUBE2,
which has been recently recognized as a novel tumor suppressor gene [30].

7. Discussion

Design hypotheses In this work, we have made two main assumptions on
the design matrices:

(i) The design matrices X(1) and X(2) are random.
(ii) Under the null hypothesis (3), we further suppose that the population

covariances Σ(1) and Σ(2) are equal.

Although this setting is particularly suited to consider the two-sample GGM
testing (Section 6), one may wonder whether one can circumvent these two
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restrictions. We doubt that this is possible without making the testing problem
much more difficult.

First, the formulation (3) allows the null hypothesis to be interpreted as a
relevant intermediary case between two extreme fixed design settings: design
equality (X(1) = X(2)) and arbitrary different design (X(1) 6= X(2)). In the first
case, the two-sample problem amounts to a one-sample problem by considering
Ỹ = Y(1) − Y(2) and it has therefore already been thoroughly studied. The
second case is on the contrary extremely difficult as illustrated by the proposition
below.

Proposition 7.1. Consider the design matrices X(1) and X(2) as fixed and
assume that σ(1) = σ(2) = 1. If the (n1 + n2) × p matrix formed by X(1) and
X(2) has rank n1 + n2, then any test T of β(1) = β(2) vs β(1) 6= β(2) based on
the data (Y,X) satisfies:

sup
β∈Rp

Pβ,β [T = 1] + inf
β(1) 6=β(2)∈Rp

Pβ(1),β(2) [T = 0] ≥ 1,

where Pβ(1),β(2)(.) denotes the distribution of (Y(1),Y(2)). In other words, any
level-α test T has a type II error larger than 1 − α, and this uniformly over
β(1) and β(2). Consequently, any test in this setting cannot perform better than
complete random guess.

Under the assumptions of the above proposition, for any β(1) 6= β(2) there
exists some vector β such that X(1)β(1) = X(1)β and X(2)β(1) = X(2)β. Conse-
quently, it is impossible to distinguish the null hypothesis from the alternative
hypothesis.

Furthermore, if Σ(1) 6= Σ(2) is allowed in the null (3), then the two-sample
testing problem seems to become much more difficult in the sense that it is im-
possible to reformulate the null hypothesis into a conjunction of low-dimensional
hypotheses as done in Lemma 2.1. Indeed, consider the following toy example:
σ(1) = σ(2) = 1, β(1) = β(2) = (a, 0, 0, . . .)T for some a > 0, Σ(1) = Ip and
Σ(2) = (ρ + 1i=j)1≤i,j≤p for some ρ > 0. Then, for any subset S that does not

contain the first component, the parameters β
(1)
S and β

(2)
S are different. Conse-

quently, β
(1)
S 6= β

(2)
S does not imply that β(1) 6= β(2) and one should not rule out

the parameter equality hypothesis relying on some low-dimensional regressions.

Comparison with related work [43, 44] Städler and Mukherjee propose
a very general approach to high-dimensional two-sample testing, being applica-
ble to a wide range of models. In particular this approach allows for the direct
comparison of two-sample Gaussian graphical models without adopting a neigh-
borhood selection approach. This avoids the burden of multiple neighborhood
linear regression and the multiple testing correction which follows.

Because they estimate the supports of sample-specific estimators and joint
estimator separately in the screening step, they resort to an elegant estimation
of the p-values for the non-nested likelihood ratio test in the cleaning step. Yet,
they do not provide any theoretical controls on type I error rate or power for
their overall testing strategy.
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Finally, it appears in the numerical experiments that our procedure outper-
forms the DiffRegr Procedure when n is small but that the multi-split procedure
shows stable results and performs well even in difficult scenarios.

Non asymptotic bounds and constants In the spirit of [5], our type II
error analysis is completely non-asymptotic. However, the numerical constants
involved in the bounds are clearly not optimal. Another line of work initiated
by [16] considers an asymptotic but high-dimensional framework and aims to
provide detection rates with optimal constants. For instance [2, 24] have de-
rived such results in the one-sample high-dimensional linear regression testing
problem under strong assumptions on the design matrices. In our opinion, both
analyses are complementary. While deriving sharp detection rates (under per-
haps stronger assumptions on the covariance) is a stimulating open problem, it
is beyond the scope of our paper.

Loss functions and interpretation The Kullback discrepancies considered
in the power analysis of the test depend on β(1) and β(2) through the prediction
distances ‖β(1) − β(2)‖Σi , i = 1, 2 rather than the l2 distance ‖β(1) − β(2)‖.
On the one hand, such a dependency on the prediction abilities is natural, as
our testing procedures relies on the likelihood ratio. On the other hand, it is
possible to characterize the power of our testing procedures as in Theorems 4.1
and 4.4 in terms of the distance ‖β(1) − β(2)‖ by inverting Σ(1) and Σ(2) at
β(1) − β(2). However, the inversion would lead to an additional factor of the
form Φ−1

|β(1)−β(2)|0,−
(
√

Σ(i)) in the testing rates.

In terms of interpretation, even though our procedure adopts a global testing
approach through prediction distances, our real dataset example illustrates that
identifying which subset in the collection is responsible for rejecting the null
hypothesis provides clues into which specific coefficients are most likely to differ
between samples.

Gene network inference Thinking of gene network inference by Gaussian
graphical modeling, the high levels of correlations encountered within transcrip-
tomic datasets and the potential number of missing variables result in highly
unstable graphical estimations. Our global testing approach provides a way to
validate whether sample-specific graphs eventually share comparable predictive
abilities or disclose genuine structural changes. Such a statistical validation is
obviously crucial before translating any graphical analysis into further biologi-
cal experiments. Interestingly, the three main genes pointed out by our testing
strategy have been validated as promising therapeutic targets by functional bi-
ology experiments. In that particular respect, exploiting our multiple testing
scheme to pinpoint differences between the networks, or identifying differen-
tially regulated gene-sets within the networks as procedure [44] does, will be
extremely useful to exhibit new targets and pathways of interest.

Finally, this test should also facilitate the validation of the fundamental i.i.d.
assumption across multiple samples, paving the way to pooled analyses when
possible. In that respect, we draw attention to the significant heterogeneity de-
tected between the training and validation subsets of the well-known Hess et al.
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dataset, suggesting that these samples should be used separately as originally
intended. Methods which require i.i.d. observations should only be applied with
caution to this dataset if considered as a single large and homogeneous sample.

8. Proofs

8.1. Two-sample testing for fixed and different designs

Proofs of Proposition 7.1. Using the rank condition, we derive that for any
vector (a, b) in Rn1 × Rn2 , there exists β ∈ Rp such that X(1)β = a and
X(2)β = b. Consequently, under the null hypothesis, (Y(1),Y(2)) follows any
distributions N (a, In1

) ⊗ N (b, In2
) with (a, b) arbitrary in Rn1 × Rn2 . Hence,

for any β(1) 6= β(2) ∈ Rp, the distribution Pβ(1),β(2) of (Y(1),Y(2)) is not distin-
guishable from the null hypothesis. The result follows.

8.2. Upper bounds of the quantiles

Proof of Proposition 3.3. In the sequel, we note N = n1 − |S|. Furthermore
(Z1, . . . , Z|S|) denotes a standard Gaussian random vector and WN is a χ2

random variable with N degrees of freedom. We apply Laplace method to upper
bound P[FS,1 ≥ u]:

P[FS,1 ≥ u] = P



|S|∑

i=1

aiZ
2
i ≥ uWN/N


 ≤ inf

λ>0
E exp


λ

|S|∑

i=1

aiZ
2
i − λuWN/N




≤ inf
0<λ<|a|∞/2

exp [ψu(λ)] ,

where

ψu(λ) = −1

2

|S|∑

i=1

log(1− 2λai)−
N

2
log

(
1 +

2λu

N

)
.

The sharpest upper-bound is given by the value λ∗ which minimizes ψu(λ). We
obtain an approximation of λ∗ by canceling the second-order approximation of
its derivative. Deriving ψu gives

ψ′u(λ) =

|S|∑

i=1

ai
1− 2λai

− u

1 + 2λu
N

,

which admits the following second order approximation:

|a|1 +
2λ‖a‖2

1− 2|a|∞λ
− u

1 + 2λu
N

. (44)

Canceling this quantity amounts to solving a polynomial equation of the
second degree. The smallest solution of this equation leads to the desired λ∗.

Additional Notations Given a subset S, Π
(1)
S (resp. Π

(2)
S ) stands for the

orthogonal projection onto the space spanned by the rows of X
(1)
S (resp. X

(2)
S ).
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Moreover, Π
(1)

S⊥
denotes the orthogonal projection along the space spanned by

the rows of X
(1)
S . Finally, to use similar notations for each i ∈ {V, 1, 2}, we

define Q̃V,|S|(FS,V |XS) := q̃V,S = QV,|S|(FS,V |XS) the exact p-value associated
to FS,V .

8.3. Distributions of FS,V , FS,1 and FS,2 (Proposition 3.1)

Let us consider the regression of Y (1) (resp. Y (2)) with respect to X
(1)
S

(resp. X
(2)
S ):

Y (1) = X
(1)
S β

(1)
S + ε

(1)
S , Y (2) = X

(2)
S β

(2)
S + ε

(2)
S .

Define the random variable T1 and T2 as

T1 =
‖Π(1)

S⊥
ε

(1)
S ‖2

(n1 − |S|)(σ(1)
S )2

, T2 =
‖Π(2)

S⊥
ε

(2)
S ‖2

(n2 − |S|)(σ(2)
S )2

. (45)

Under the null hypothesis H0,S , we have β
(1)
S = β

(2)
S and σ

(1)
S = σ

(2)
S . For

the sake of simplicity, we write βS and σS for these two quantities. Given XS ,
T1/T2 follows a Fisher distribution with (n1 − |S|, n2 − |S|) degrees of freedom.
Observing that under the null hypothesis

FS,V = −2 +
T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

+
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

allows us to prove the first assertion of Proposition 3.1. Let us turn to the second
statistic:

FS,1 =
n1

n2(n1 − |S|)
U

T1
,

where under the null hypothesis H0,S

U =
‖X(2)

S (X
(2)ᵀ
S X

(2)
S )−1X

(2)ᵀ
S ε

(2)
S −X

(2)
S (X

(1)ᵀ
S X

(1)
S )−1X

(1)ᵀ
S ε

(1)
S ‖2

σ2
S

.

Given XS , U is independent from T1 since T1 is a function of Π
(1)

S⊥
ε

(1)
S while U is

a function of (ε
(2)
S ,Π

(1)
S ε

(1)
S ). Furthermore, U is the squared norm of a centered

Gaussian vector with covariance

X
(2)
S

[
(X

(1)ᵀ
S X

(1)
S )−1 + (X

(2)ᵀ
S X

(2)
S )−1

]
X

(2)ᵀ
S .

8.4. Calibrations

Proof of Proposition 3.4. By definition of the p-values q̃i,S , we have under H0

for each S ∈ S and each i ∈ {V, 1, 2}
P [q̃i,S ≤ αi,S |XS ] ≤ αi,S .



A global homogeneity test for high-dimensional linear regression 359

Applying a union bound and integrating with respect to X allows us to control
the type I error:

P[TBŜ = 1] = P
[
∃S ∈ Ŝ, ∃i ∈ {V, 1, 2}, q̃i,S ≤ αi,S

]

≤
∑

S∈S

∑

i=V,1,2

P (q̃i,S < αi,S)

≤
∑

S∈S

∑

i=V,1,2

E [P ( q̃i,S < αi,S |XS)] ≤
∑

S∈S
αi,S ≤ α,

where we have upper bounded the sum over the random collection Ŝ by the sum
over S.

Proof of Proposition 3.5. Consider i ∈ {V, 1, 2}. Under H0, the distributions of

min
S∈Ŝπ

[
q̃πV,S

(
p

|S|

)]
,

min
S∈Ŝπ

[(
q̃π1,S ∧ q̃π2,S

)( p

|S|

)]

are invariant with respect to the permutation π. Hence, we derive that under H0

P
[

min
S∈Ŝπ

q̃πV,S

(
p

|S|

)
≤ ĈV

]
= α/2,

P
[

min
S∈Ŝπ

(
q̃π1,S ∧ q̃π2,S

)( p

|S|

)
≤ Ĉ1

]
= α/2.

Applying an union bound, we conclude that the type I error is smaller than the
sum of these two last probabilities.

8.5. Proof of Theorem 4.3

Intuitively, the test TBS should be powerful when some distance between the
two sample-specific distributions is large enough. The objective here is to char-
acterize the minimal distance that enforce the power of the procedure to be
larger than 1 − δ. As exposed in Theorem 4.3, we rely on the semi-distances
K1(S) +K2(S) for S ∈ S:

2(K1(S) +K2(S)) =

(
σ

(1)
S

σ
(2)
S

)2

+

(
σ

(2)
S

σ
(1)
S

)2

− 2 +
‖β(2)

S − β
(1)
S ‖2Σ(2)

(σ
(1)
S )2

+
‖β(2)

S − β
(1)
S ‖2Σ(1)

(σ
(2)
S )2

. (46)

We start from the definition (7) of the test:

P[TBS = 1] = P [∃S ∈ S, ∃i ∈ {V, 1, 2}, q̃i,S ≤ αi,S ]
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≥ sup
S∈S

P [q̃V,S ∧ q̃1,S ∧ q̃2,S ≤ αS ] ,

where we recall that αS = mini=V,1,2 αi,S . In the remainder of the proof, we
show, that if for some S ∈ S, both conditions (30) and (31) are fulfilled then
P[q̃V,S ∧ q̃1,S ∧ q̃2,S ≤ αS ] is larger than 1− δ.

The proof is split into five main lemmas. First, we upper bound Q̃−1
V,|S|(x|XS),

Q̃−1
1,|S|(x|XS), and Q̃−1

2,|S|(x|XS) in Lemmas 8.1, 8.2 and 8.3. Then, we control

the deviations of FS,V , FS,1, and FS,2 under H1,S in Lemmas 8.4 and 8.5. In
the sequel, we call S ′ the subcollection of S made of subsets S satisfying |S| ≤
(n1 ∧ n2)/2 and

log(12/δ) < L•1(n1 ∧ n2), log(1/αS) ≤ L•2(n1 ∧ n2), |S| ≤ L•3 (47)

where the numerical constants L•1, L•2, and L•3 only depend on L∗2 in (54) and
on the constants introduced in Lemmas 8.1–8.5. These conditions allow us to
fix the constants in the statement (30) of Theorem 4.3.

Lemma 8.1 (Upper-bound of Q̃−1
V,|S|(x|XS)). There exists a positive universal

constant L such that the following holds. Consider some 0 < x < 1 such that
16 log(2/x) ≤ n1 ∧ n2. For any subset S of size smaller than (n1 ∧ n2)/2, we
have

Q̃−1
V,|S|(x|XS) ≤ L

{( |S|(n1 − n2)

n1n2

)2

+ log(2/x)

(
1

n1
+

1

n2

)}
. (48)

We recall that a = (a1, . . . , a|S|) denotes the positive eigenvalues of

n1

n2(n1 − |S|)
X

(2)
S

[
(X

(1)ᵀ
S X

(1)
S )−1 + (X

(2)ᵀ
S X

(2)
S )−1

]
X

(2)ᵀ
S .

Lemma 8.2 (Upper-bound of Q̃−1
1,|S|(x|XS)). There exist two positive universal

constants L1 and L2 such that the following holds. If |a|1 < u ≤ (n1 − |S|)|a|∞
and if |S| ≤ L1n1,

log
[
Q̃1,|S|(u|XS)

]
≤ − (u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]

+
(u− |a|1)u3

2(n1 − |S|) [|a|∞(u− |a|1) + ‖a‖2]
2 .

For any 0 < x < 1 satisfying

L2 log(1/x) ≤ n1 − |S|, (49)

we have the following upper bound

Q̃−1
1,|S|(x|XS) ≤ |a|∞

[
2|S|+ 2

√
2|S| log(1/x) + 8 log(1/x)

]
. (50)
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Lemma 8.3 (Upper-bound of |a|∞). There exist two positive universal con-
stants L1 and L2 such that the following holds. Consider δ a positive number
satisfying L1 log(4/δ) < n1 ∧ n2. With probability larger than 1− δ/2, we have

|a|∞ ≤ L2




1

n2
+

ϕmax

{√
Σ

(2)
S (Σ

(1)
S )−1

√
Σ

(2)
S

}

n1


 .

Lemma 8.4 (Deviations of FS,V ). There exist three positive universal constants
L1, L2 and L3 such that the following holds. Assume that L1 log(1/δ) ≤ n1∧n2.
With probability larger than 1− δ, we have

FS,V ≥ L2

(
(σ

(1)
S )2 − (σ

(2)
S )2

σ
(1)
S σ

(2)
S

)2

− L3

[
|S|2

(
1

n2
1

+
1

n2
2

)
+ log

(
1

δ

)(
1

n1
+

1

n2

)]
. (51)

Lemma 8.5 (Deviations of FS,1). There exist two positive universal constants
L1 and L2 such that the following holds. Assume that

L1 log(12/δ) < n1 ∧ n2. (52)

With probability larger than 1− δ/2, we have

FS,1 ≥
‖β(2)

S − β
(1)
S ‖2Σ(2)

8(σ
(1)
S )2

− log (12/δ)L2

[
1

n2

(σ
(2)
S )2

(σ
(1)
S )2

+
ϕS
n1

]
, (53)

where ϕS is defined in (29).

Consider some S ∈ S ′. Combining Lemmas 8.1 and 8.4, we derive that
Q̃V,|S|(FS,V |XS) ≤ αS holds with probability larger than 1− δ if

[
(σ

(1)
S )2 − (σ

(2)
S )2

]2

(σ
(1)
S )2(σ

(2)
S )2

≥ L
[
|S|2

(
1

n2
1

+
1

n2
2

)
+ log[2/(αSδ)]

(
1

n1
+

1

n2

)]
.

Similarly, combining Lemmas 8.2, 8.3, and 8.5, we derive that Q̃1,|S|(FS,1|
XS) ≤ αS with probability larger than 1− δ if

‖β(2)
S − β

(1)
S ‖2Σ(2)

(σ
(1)
S )2

≥ L′1 (ϕS + 1)

(
1

n1
+

1

n2

)[
|S|+ log

(
12

δαS

)]

+
L′2
n2

(
σ

(2)
S

σ
(1)
S

)2

log

(
12

δ

)
.
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A symmetric result holds for Q̃2,|S|(FS,2|XS). Consequently, we have

P
[
TBS = 1

]
≥ P [q̃V,S ∧ q̃1,S ∧ q̃2,S ≤ αS ] ≥ 1− δ

as soon as

K1(S) +K2(S) ≥ L∗1ϕS
(

1

n1
+

1

n2

)[
|S|+ log

(
12

αSδ

)]

+ L∗2 log(12/δ)

(
1

n1
+

1

n2

)

(
σ

(2)
S

σ
(1)
S

)2

+

(
σ

(1)
S

σ
(2)
S

)2

 . (54)

Since it is assumed that 4L∗2 log(12/δ) ≤ n1 ∧ n2 (see (47)), this last condition
is fulfilled as soon as

K1(S) +K2(S) ≥ L∗ϕS
(

1

n1
+

1

n2

)
[|S|+ log{12/(αSδ)}] .

This concludes the proof. We now proceed to the proof of the five previous
lemmas.

Proof of Lemma 8.1. Let u ∈ (0, 1) and F̄−1
D,N (u) be the 1−u quantile of a Fisher

random variable with D and N degrees of freedom. According to [5], we have

F̄−1
D,N (u) ≤ 1 + 2

√(
1

D
+

1

N

)
log

(
1

u

)
+

(
N

2D
+ 1

)[
exp

(
4

N
log

(
1

u

))
− 1

]
.

Let us assume that 8/N log(1/u) ≤ 1. By convexity of the exponential function
it holds that

F̄−1
D,N (u) ≤ 1 + 2

√(
1

D
+

1

N

)
log

(
1

u

)
+

(
4

D
+

8

N

)
log

(
1

u

)
.

Recall T1 and T2 defined in (45). Given XS ,

T1

T2
∼ Fisher(n1 − |S|, n2 − |S|).

Consider some x > 0 such that [8/(n1− |S|)∨ 8/(n2− |S|)] log(2/x) ≤ 1. Then,
with probability larger than 1− x/2 we have,

T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

≤
(

1 +
|S|(n1 − n2)

n1(n2 − |S|)

)(
1 + 8

√
log(2/x)

n1 − |S|
+ 8

√
log(2/x)

n2 − |S|

)

≤
(

1 +
|S|(n1 − n2)

n1(n2 − |S|)

)
1 + 12

√
log(2/x)

n1
+ 12

√
log(2/x)

n2




≤ L,
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where we used in the last inequality that |S| ≤ (n1 ∧ n2)/2. Similarly, with
probability at least 1− x/2, we have

T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

≤



(

1 +
|S|(n2 − n1)

n2(n1 − |S|)

)
1 + 12

√
log(2/x)

n1
+ 12

√
log(2/x)

n2




 ∧ L. (55)

Depending on the sign of T1

T2

n2(n1−|S|)
n1(n2−|S|) − 1, we apply one the two following

identities:

T1

T2

n2(n1− |S|)
n1(n2− |S|)

+
T2

T1

n1(n2− |S|)
n2(n1− |S|)

− 2 =

(
T1

T2

n2(n1− |S|)
n1(n2− |S|)

− 1

)2
T2

T1

n1(n2− |S|)
n2(n1− |S|)

,

T1

T2

n2(n1− |S|)
n1(n2− |S|)

+
T2

T1

n1(n2− |S|)
n2(n1− |S|)

− 2 =

(
T2

T1

n1(n2− |S|)
n2(n1− |S|)

− 1

)2
T1

T2

n2(n1− |S|)
n1(n2− |S|)

.

Combining the different bounds, we conclude that with probability larger than
1− x,

FS,V =
T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

+
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

− 2

≤ L

[( |S|(n1 − n2)

n1n2

)2

+ log(2/x)
n1 + n2

n1n2

]
.

Proof of Lemma 8.2. As in the proof of Proposition 3.3, we note N = n1 − |S|.
Recall that Q̃1,|S|(u|XS) is defined as expψu(λ?) (see Definition 3.2). We start
by upper-bounding ψu(λ?). This will entail the first upper-bound of the tail

probability log Q̃1,|S|(u|XS). We then exhibit a value ux such that ψux(λ?) ≤
log x.

Upper-bound of the tail probability First we provide two bounds on λ∗.
Since Equation (44) is increasing with respect to λ and with respect to N , λ∗

decreases with N . Consequently,

λ∗ ≤ λ+ :=
u− |a|1

2 [|a|∞(u− |a|1) + ‖a‖2]
.

By convexity, 1−
√

1− x ≥ x/2 for any 0 ≤ x ≤ 1. Applying this inequality, we
upper bound

√
∆ and derive that

λ∗ ≥ λ− :=
u− |a|1

2
[
|a|∞(u− |a|1) + ‖a‖2 + |a|1u

N

] .

Since u ≤ N |a|∞, we have 2λ∗u ≤ N . Observing that − log(1 − 2x)/2 ≤
x+x2/(1− 2x) for any 0 < x < 1/2 and that log(1 +x) ≥ x−x2 for any x > 0,
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we derive

ψu(λ∗) ≤ |a|1λ+ +
λ2

+‖a‖2
1− 2|a|∞λ+

− λ∗u+ 2
(λ∗)2u2

N

≤ − (u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]
+

2λ2
+u

2

N
+ (λ+ − λ−)u

≤ − (u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]
+

(u− |a|1)u3

2N [|a|∞(u− |a|1) + ‖a‖2]
2 . (56)

Upper-bound of the quantile Let us turn to the upper bound of
Q̃−1

1,|S|(x|XS). Consider ux the unique solution larger than |a|1 of the equation

(u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]
= 2 log(1/x),

and observe that

2‖a‖
√

log(1/x) ≤ ux − |a|1 ≤ 2
√

2‖a‖
√

log(1/x) + 8|a|∞ log(1/x).

Choosing L1 and L2 large enough in the condition |S| ≤ L1n1 and in Condition
(49) leads us to ux ≤ N |a|∞. We now prove that ψux∨2|a|1(λ∗) ≤ log x. If
ux ≥ 2|a|1, then u3

x ≤ 8(ux − |a|1)3 and it follows from (56) that

ψux(λ∗) ≤ log(1/x)

[
−2 +

28 log(1/x)

N

]
,

which, in turn, is smaller than − log(1/x) if we take L2 large enough in Condi-
tion (49). If ux ≤ 2|a|1, then |a|21/(|a|∞|a|1 + ‖a‖2) ≥ 8 log(1/x) and

ψux∨2|a|1(λ∗) ≤ − |a|21
4 [|a|∞|a|1 + ‖a‖2]

[
1− 24|a|21

N [|a|∞|a|1 + ‖a‖2]

]
,

which is smaller than − log(1/x) if we take L1 and L2 large enough in the two
aforementioned conditions. since |S| ≤ 2−6n1. Thus, we conclude that

Q̃−1
1,|S|(x|XS) ≤ ux ∨ 2|a|1 ≤ |a|1 +

[
2
√

2‖a‖
√

log(1/x) + 8|a|∞ log(1/x)
]
∨ |a|1.

Proof of Lemma 8.3. Upon defining Z
(1)
S = X

(1)
S (Σ

(1)
S )−1/2 and Z

(2)
S =

X
(2)
S (Σ

(2)
S )−1/2, it follows that Z

(1)
S and Z

(2)
S follow standard Gaussian distri-

butions.

|a|∞ ≤
n1

n2(n1 − |S|)

×
[
1 + ϕmax

{
Z

(2)
S

√
Σ

(2)
S (Σ

(1)
S )−1

(
Z

(1)ᵀ
S Z

(1)
S

)−1
√

(Σ
(1)
S )−1Σ

(2)
S Z

(2)ᵀ
S

}]
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≤ 2

n2
+ 2

ϕmax[Z
(2)ᵀ
S Z

(2)
S ]

n2ϕmin[Z
(1)ᵀ
S Z

(1)
S ]

ϕmax

[√
Σ

(2)
S (Σ

(1)
S )−1

√
Σ

(2)
S

]
.

In order to conclude, we control the largest and the smallest eigenvalues of
Standard Wishart matrices applying Lemma 8.12.

Proof of Lemma 8.4. By symmetry, we can assume that σ
(1)
S /σ

(2)
S ≥ 1. Recall

the definition of T1 and T2 in the proof of Proposition 3.1. Given XS , T1/T2

follows a Fisher distribution with (n1−|S|, n2−|S|) degrees of freedom. Moreover

FS,V = −2 +
T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

(σ
(1)
S )2

(σ
(2)
S )2

+
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

(σ
(2)
S )2

(σ
(1)
S )2

Case 1. Suppose that T1/T2 ≥ 1.

FS,V ≥ [(σ
(1)
S )2 − (σ

(2)
S )2]2

(σ
(1)
S )2(σ

(2)
S )2

+
(σ

(1)
S )2

(σ
(2)
S )2

(
T1

T2
− 1

)
+

(σ
(2)
S )2

(σ
(1)
S )2

(
T2

T1
− 1

)

≥ [(σ
(1)
S )2 − (σ

(2)
S )2]2

(σ
(1)
S )2(σ

(2)
S )2

. (57)

Case 2. Suppose that T1/T2 ≤ 1.

FS,V =

(
(σ

(1)
S )2

(σ
(2)
S )2

− T2

T1

)2
(σ

(2)
S )2

(σ
(1)
S )2

T1

T2

≥ T1

T2

[(σ
(1)
S )2 − (σ

(2)
S )2]2

4(σ
(1)
S )2(σ

(2)
S )2

1
(σ

(1)
S

)2

(σ
(2)
S

)2
−1≥2

(
T2
T1
−1
).

We need to control the deviations of T2/T1. Using the bound (55), we get

T2

T1
≤
(

1 +
|S|(n2 − n1)

n2(n1 − |S|)

)
1 + 12

√
log(1/δ)

n1
+ 12

√
log(1/δ)

n2


 ,

with probability larger than 1− δ. Since |S| ≤ (n1 ∧ n2)/2, we derive that

T2

T1
− 1 ≤ 2|S|

n1
+ 24

√
log(1/δ)

n1
+ 24

√
log(1/δ)

n2
,

which is also smaller than 3 if the constant L1 is large enough in the statement
of the lemma. In conclusion, we have

P

[
FS,V ≥

[(σ
(1)
S )2 − (σ

(2)
S )2]2

16(σ
(1)
S )2(σ

(2)
S )2

]
≥ 1− δ, (58)
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as long as

[(σ
(1)
S )2 − (σ

(2)
S )2]2

(σ
(1)
S )2(σ

(2)
S )2

≥ L
[ |S|2
n2

1

+
|S|2
n2

2

+ log(1/δ)

(
1

n1
+

1

n2

)]
. (59)

Combining (57), (58), and (59), we derive

FS,V ≥
[(σ

(1)
S )2 − (σ

(2)
S )2]2

16(σ
(1)
S )2(σ

(2)
S )2

− L
[ |S|2
n2

1

+
|S|2
n2

2

+ log(1/δ)

(
1

n1
+

1

n2

)]
,

with probability larger than 1− δ.
Proof of Lemma 8.5. We want to lower bound the random variable FS,1 =

n1R

(σ
(1)
S )2T1(n1−|S|)

where R is defined by

R := ‖X(2)
S (β

(2)
S − β

(1)
S ) + Π

(2)
S ε

(2)
S −X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(1)ᵀ
S ε

(1)
S ‖2/n2.

Let us first work conditionally to X
(1)
S and X

(2)
S . Upon defining the Gaussian

vector W by

W ∼ N
[
0, (σ

(2)
S )2Π

(2)
S + (σ

(1)
S )2X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S

]
,

we get R = ‖X(2)
S (β

(2)
S − β

(1)
S ) +W‖2/n2. We have the following lower bound:

R ≥
(
‖X(2)

S (β
(2)
S − β

(1)
S )‖+

〈
W,

X
(2)
S (β

(2)
S − β

(1)
S )

‖X(2)
S (β

(2)
S − β

(1)
S )‖

〉)2

/n2

≥ ‖X(2)
S (β

(2)
S − β

(1)
S )‖2

2n2
− 1

n2

〈
W,

X
(2)
S (β

(2)
S − β

(1)
S )

‖X(2)
S (β

(2)
S − β

(1)
S )‖

〉2

The random variable ‖X(2)
S (β

(2)
S − β

(1)
S )‖2/‖β(2)

S − β
(1)
S ‖2Σ(2) follows a χ2 distri-

bution with n2 degrees of freedom. Given (X
(1)
S ,X

(2)
S ), 〈W, X

(2)
S (β

(2)
S −β

(1)
S )

‖X(2)
S (β

(2)
S −β

(1)
S )‖
〉2 is

proportional to a χ2 distributed random variable with one degree of freedom

and its variance is smaller than (σ
(2)
S )2+ϕmax[X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S ](σ

(1)
S )2.

Applying Lemma 8.11, we derive that with probability larger than 1− x/6,

R ≥ ‖β(2)
S − β

(1)
S ‖2Σ(2)

2


1− 2

√
log(12/x)

n2




− 4
log (12/x)

n2

[
(σ

(2)
S )2 + (σ

(1)
S )2ϕmax{X(2)

S (X
(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S }

]
.

Using the upper bound |S| ≤ (n1 ∧ n2)/2 and Lemma 8.12, we control the last
term

P
[
ϕmax

[
X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S

]
≤ LϕS

n2

n1

]
≥ 1− 2 exp[−(n1 ∧ n2)L′].
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If we take the constant L1 large enough in condition (52), then we derive that

R ≥ ‖β
(2)
S − β

(1)
S ‖2Σ(2)

4
− log (12/δ)L

[
(σ

(2)
S )2

n2
+

(σ
(1)
S )2

n1
ϕS

]
, (60)

with probability larger than 1− δ/3.

Let us now upper bound the random variable T1(n1 − |S|)/n1. Since (n1 −
S)T1 follows a χ2 distribution with n1 − |S| degrees of freedom, we derive from
Lemma 8.11 that

T1(n1 − |S|)/n1 ≤ 1 + 2

√
log(6/δ)

n1
+

2

n1
log(6/δ) ≤ 2, (61)

with probability larger than 1− δ/6. Gathering (60) and (61), we conclude that

FS,1 ≥
‖β(2)

S − β
(1)
S ‖2Σ(2)

8(σ
(1)
S )2

− log

(
12

δ

)
L


 1

n2

(
σ

(2)
S

σ
(1)
S

)2

+
ϕS
n1


 ,

with probability larger than 1− δ/2.

8.6. Proof of Theorem 4.1: Power of TB
S≤k

This proposition is a straightforward corollary of Theorem 4.3. Consider the
subsets S∨ and S∆ of {1, . . . , p} such that S∨ is the union of the support of β(1)

and β(2) and S∆ is the support of β(2) − β(1). Assume first that S∨ and S∆ are
non empty. By Definition (20) of the weights, we have

log

(
1

αi,S∨

)
≤ log(4k) + log(1/α) + |S∨| log(p) ≤ 2|S∨| log(p) + log(1/α).

A similar upper bound holds for log(1/αi,S∆
). If we choose the numerical con-

stants large enough in Conditions A.1 and A.2, then the sets S∨ and S∆ follow
the conditions of Theorem 4.3.

Applying Theorem 4.3, we derive that TBS≤k rejects H0 with probability larger
than 1− δ when

K1(S∨) +K2(S∨) ≥ LϕS∨
(

1

n1
+

1

n2

)[
|S∨|+ log

(
1

αS∨δ

)]
.

Observing that ϕS∨ ≤ ϕΣ(1),Σ(2) , K1(S∨) = K1, K2(S∨) = K2 and that |S∨| ≤
|β(1)|0 + |β(2)|0 concludes the first part of the proof. Let us turn to the second
result. According to Theorem 4.3, TBS≤k rejects H0 with probability larger than
1− δ when

K1(S∆) +K2(S∆) ≥ LϕS∆

(
1

n1
+

1

n2

)[
|S∆|+ log

(
1

αS∆
δ

)]
.

Since K1(S∆) +K2(S∆) ≥ ‖β(1)−β(2)‖2Σ
2[Var(Y (1))∧Var(Y (2))]

and since |S∆| = |β(1)− β(2)|0,

the second result follows.
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If S∨ = ∅, then we can consider any subset of size 1 to prove the first result.
If S∆ = ∅, then β(1) = β(2) and Condition (26) cannot be fulfilled.

8.7. Proof of Proposition 4.5

For simplicity, we assume in the sequel that β(1) 6= 0 or β(2) 6= 0, the case
β(1) = β(2) = 0 being handled by any set S ∈ S1 ⊂ ŜLasso. Recall that we note
αS := mini=V,1,2 αi,S . We start from the basic inequality

P
[
TBŜLasso

= 0
]
≤ P

[
∀S ∈ ŜLasso, min

i=V,1,2
q̃i,S > αS

]
.

Denote Ŝ any (possibly random) collection of indices. If Ŝ ∈ ŜLasso, then
TB
ŜLasso

= 0 implies mini=V,1,2 q̃i,Ŝ > αŜ . Hence, we get

P
[
TBŜLasso

= 0
]
≤ P

[
Ŝ /∈ ŜLasso

]
+ P

[{
min
i=V,1,2

q̃i,Ŝ > αŜ

}
∩
{
Ŝ ∈ ŜLasso

}]
.

(62)

In the sequel, we shall construct of subset Ŝ belonging to ŜLasso with large prob-
ability and such that Ŝ is close enough to S∗∨ so that the p values mini=V,1,2 q̃i,Ŝ
is smaller than αŜ with large probability.

Recall that the collection ŜLasso is based on the Lasso regularization path of
the following heteroscedastic Gaussian linear model,

[
Y(1)

Y(2)

]
=

[
X(1) X(1)

X(2) −X(2)

][
θ

(1)
∗

θ
(2)
∗

]
+

[
ε(1)

ε(2)

]
(63)

which we denote for short Y = Wθ∗+ ε. Given a tuning parameter λ, θ̂λ refers
to the Lasso estimator of θ:

θ̂λ = arg inf
θ∈R2p

‖Y −Wθ‖2 + λ|θ|1.

In the sequel, we fix

λ0 = 16(σ(1) ∨ σ(2))

√
2(n1 + n2)

[
Φ1,+(

√
Σ(1)) ∨ Φ1,+(

√
Σ(2))

]
log(p). (64)

and we consider the set Ŝ := Ŝλ0
defined by the union of the support of θ̂

(1)
λ0

and

θ̂
(2)
λ0

. By definition of Ŝ(1)
L , the subset Ŝλ0

belongs to ŜLasso as soon as the size

of the Lasso estimators Ŝλ are smaller than k∗ for all λ ≥ λ0. In order to bound
the probability of this event, we study the behavior of the Lasso estimator θ̂λ.

Lemma 8.6 (Control of the design W). If we take the constants L∗, L∗1, and
L∗2 in Proposition 4.5 small enough then the following holds. The event

A :=

{
∀θ s.t. |θ|0 ≤ k∗, 1/2 ≤ ‖X

(1)θ‖2
n1‖θ‖2Σ(1)

≤ 2 and 1/2 ≤ ‖X
(2)θ‖2

n2‖θ‖2Σ(2)

≤ 2

}
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⋂



κ
[
6, |θ∗|0,X(1)/

√
n1

]

κ
[
6, |θ∗|0,

√
Σ(1)

]
∧ κ

[
6, |θ∗|0,X(2)/

√
n1

]

κ
[
6, |θ∗|0,

√
Σ(2)

] ≥ 2−3





has probability larger than 1− δ/4. Furthermore, on the event A,

Φk,+(W) ≤ 4(n1 + n2)
[
Φk,+(

√
Σ(1)) ∨ Φk,+(

√
Σ(2))

]
,

Φk,−(W) ≥ (n1 ∧ n2)
[
Φk,−(

√
Σ(1)) ∧ Φk,−(

√
Σ(2))

]
,

for any k ≤ k∗.
The following property is a slight variation of Lemma 11.2 in [46] and Lem-

ma 3.2 in [21].

Lemma 8.7 (Behavior of the Lasso estimator θ̂λ). If we take L∗2 in Proposi-
tion 4.5 small enough then the following holds. The event

B =

{
|WT ε|∞ ≤ 2(σ(1) ∨ σ(2))

√
2Φ1,+(W) log(p)

}

occurs with probability larger than 1− 1/p. Assume that

λ ≥ 8(σ(1) ∨ σ(2))
√

2Φ1,+(W) log(p).

Then, on the event A ∩ B we have

‖W(θ̂λ − θ∗)‖2 ≤ L1
λ2/(n1 ∧ n2)

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0, (65)

|θ̂λ|0 ≤ L2
n1 ∨ n2

n1 ∧ n2

Φk∗,+(
√

Σ(1)) ∨ Φk∗,+(
√

Σ(2))

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0 ≤ k∗/2. (66)

We deduce from Lemma 8.7 that, on the event A ∩ B, the cardinal of Ŝλ
is smaller than k∗ for all λ ≥ λ0 and Ŝλ0

belongs therefore to Ŝ(1)
L ⊂ ŜLasso

(see Eq. (12)). Thus,

P
[
Ŝλ0

/∈ ŜLasso

]
≤ P [Ac] + P [Bc] ≤ δ/4 + p−1 ≤ δ/2,

since δ is supposed to be larger than p/4 (Condition (37)). From (62), we deduce
that

P
[
TBŜLasso

= 0
]
≤ P

[
Ŝλ0 /∈ ŜLasso

]
+ P

[{
min
i=V,1,2

q̃i,Ŝ > αŜ

}
∩
{
Ŝ ∈ ŜLasso

}]

≤ P [(A ∩ B)c] + P
[{

min
i=V,1,2

q̃i,Ŝλ0
> αŜλ0

}
∩ A ∩ B

]
. (67)

Thus, it suffices to prove that the right hand side probability is smaller than δ/2.

In the following lemma, we compare K1(Ŝλ0
) +K2(Ŝλ0

) to K1 +K2. Define

RΣ(1),Σ(2) =

∨
i=1,2 Φk∗,+(

√
Σ(i))

∧
i=1,2 Φk∗,−(

√
Σ(i))

∨
i=1,2 Φ1,+(

√
Σ(i))

∧
i=1,2 κ

2[6, |θ∗|0,
√

Σ(i)]
.
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Lemma 8.8. Under the event A ∩ B, we have

L
[
K1(Ŝλ0) +K2(Ŝλ0)

]
≥ 1 ∧

[
K1 +K2 − L′RΣ(1),Σ(2)

|S∨|(n1 ∨ n2)

(n1 ∧ n2)2
log(p)

]
.

We show in Lemma 8.9 below that the p-values q̃i,Ŝλ0
are smaller than αŜλ0

as soon as K1(Ŝλ0
) +K2(Ŝλ0

) is large enough.

Lemma 8.9. If, under the event A ∩ B, we have

K1(Ŝλ0
) +K2(Ŝλ0

) ≥ LϕŜλ0

(
1

n1
+

1

n2

)[
|Ŝλ0
| log(p) + log

(
1

αδ

)
+ log(p)

]
,

(68)
then, P[{mini∈{V,1,2} q̃i,Ŝλ0

> αŜλ0
} ∩ A ∩ B] ≤ δ/2.

Under the event A ∩ B, we derive from (66) that,

|Ŝλ0
| ≤ L′n1 ∨ n2

n1 ∧ n2

∨
i=1,2 Φk∗,+(

√
Σ(i))

∧
i=1,2 κ

2[6, |θ∗|0,
√

Σ(i)]
|S∨|.

If we take the numerical constant L∗3 large enough in Proposition 4.5, it then
follows from Lemma 8.8 and from the assumption on K1 + K2 that Condition
(68) in Lemma 8.9 is satisfied. Then, gathering this lemma with the bound (67),
we conclude that the type II error is smaller than δ.

Proof of Lemma 8.6. In order to bound P(A), we apply Lemma 8.12 to si-

multaneously control ϕmax(X
(1)ᵀ
S X

(1)
S ), ϕmax(X

(2)ᵀ
S X

(2)
S ), ϕmin(X

(1)ᵀ
S X

(1)
S ), and

ϕmin(X
(2)ᵀ
S X

(2)
S ) for all sets S of size k∗. Combining a union bound with Con-

ditions (36) and (37) allows us to prove that

P
[{
∀θ s.t. |θ|0≤ k∗, 1/2≤ ‖X

(1)θ‖2
n1‖θ‖2Σ(1)

≤ 2 and 1/2≤ ‖X
(2)θ‖2

n2‖θ‖2Σ(2)

≤ 2

}]
≥ 1− δ/8.

Applying Corollary 1 in [38], we derive that there exist three positive constant
c1, c2 and c3 such that the following holds. With probability larger than 1 −
c1 exp[−c2(n1 ∧ n2)], we have

∧

i=1,2

κ
[
6, |θ∗|0,X(i)/

√
ni
]

κ
[
6, |θ∗|0,

√
Σ(i)

] ≥ 2−3,

if |θ∗|0 log(p) < c3
∧i=1,2κ

2[6,|θ∗|0,
√

Σ(i)]

∨i=1,2Φ1,+(
√

Σ(i))
(n1 ∧ n2). Since log(1/δ) is small in front

of n1 ∧ n2 (Condition (37)), we conclude that P[A] ≥ 1− δ/4.

Consider an integer k ≤ k∗ and a k-sparse vector θ =
(
θ(1)

θ(2)

)
in R2p. Under

event A, we have

‖Wθ‖2 = ‖X(1)(θ(1) + θ(2))‖2 + ‖X(2)(θ(1) − θ(2))‖2
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≤ 2n1‖θ(1) + θ(2)‖2Σ(1) + 2n2‖θ(1) − θ(2)‖2Σ(2)

≤ 4(n1 + n2)
[
Φk,+(

√
Σ(1)) ∨ Φk,+(

√
Σ(2))

]
‖θ‖2

‖Wθ‖2 ≥ 1

2

[
n1‖θ(1) + θ(2)‖2Σ(1) + n2‖θ(1) − θ(2)‖2Σ(2)

]

≥ (n1 ∧ n2)
[
Φk,−(

√
Σ(1)) ∧ Φk,−(

√
Σ(2))

]
‖θ‖2.

Proof of Lemma 8.7. Observe that the variance of [Wᵀε]i given W is smaller
than Φ1,+(W)(σ(1) ∨ σ(2))2. Using a union bound and the deviations of the
Gaussian distribution, it follows that P(B) ≥ 1− 1/p.

Recall the definition of η in (35). A slight variation of Lemma 11.2 in [46]
ensures that on event B:

‖W(θ̂λ − θ∗)‖2 ≤ L
λ2

η2[3, |θ∗|0,W]
|θ∗|0. (69)

In order to show (65), we need to lower bound η2[3, |θ∗|0,W]. Fix k = |θ∗|0
and consider any θ =

(
θ(1)

θ(2)

)
∈ C(3, T ) with |T | = k. We shall prove that either

θ(1) + θ(2) or θ(1) − θ(2) belongs to some cone. Then, we will deduce from it a
control of the ratio k‖Wθ‖2/|θ|21 which will enforce a bound of η2[3, |θ∗|0,W].
Define T ′ = {i ∈ {1, . . . , p}, s.t. i ∈ T or i+ p ∈ T}. We have

|(θ(1) + θ(2))T ′c |1 ∨ |(θ(1) − θ(2))T ′c |1 ≤ |θ(1)
T ′c |1 + |θ(2)

T ′c |1 ≤ |θT c |1 ≤ 3|θT |1
≤ 3

[
|θ(1)
T ′ |1 + |θ(2)

T ′ |1
]

≤ 6
[
|(θ(1) + θ(2))T ′ |1 ∨ |(θ(1) − θ(2))T ′ |1

]

Assume that |(θ(1) + θ(2))T ′ |1 ≥ |(θ(1) − θ(2))T ′ |1. It follows from the previous
inequality that θ(1)+θ(2) ∈ C(6, T ′). Let us lower bound the l1 norm of θ(1)+θ(2)

in terms of θ.

2|θ(1) + θ(2)|1 ≥
[∣∣∣
(
θ(1) + θ(2)

)
T ′

∣∣∣
1

+
∣∣∣
(
θ(1) − θ(2)

)
T ′

∣∣∣
1

]
≥ |θT |1 ≥

|θ|1
4
,

since θ belongs to C(3, T ). Thus, we derive the lower bound

k‖Wθ‖2
|θ|21

≥ k‖X(1)(θ(2) + θ(1))‖2
|θ|21

+
k‖X(2)(θ(2) − θ(1))‖2

|θ|21

≥ (n1 ∧ n2)|θ(2) + θ(1)|21
|θ|21


 ∧

i=1,2

η2
(

6, k,X(i)/
√
ni

)



≥ L(n1 ∧ n2)


 ∧

i=1,2

κ2
(

6, k,X(i)/
√
ni

)



≥ L(n1 ∧ n2)
[
κ2
(

6, k,
√

Σ(1)
)
∧ κ2

(
6, k,

√
Σ(2)

)]
, (70)
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where we used in the second line that θ(1) + θ(2) ∈ C(6, T ′) and in the third line
that |θ(1) + θ(2)|1 ≥ |θ|1/8. The last inequality derives from the definition of the
event A. Exchanging the role of θ(1) + θ(2) and θ(1) − θ(2), we also prove (70)
when |(θ(1) + θ(2))T ′ |1 ≤ |(θ(1) − θ(2))T ′ |1. Thus, we have proved that

L′η2[3, |θ∗|0,W] ≥ (n1 ∧ n2)
[
κ2
(

6, k,
√

Σ(1)
)
∧ κ2

(
6, k,

√
Σ(2)

)]
.

Gathering this bound with (69), it follows that

‖W(θ̂λ − θ∗)‖2 ≤
L′λ2/(n1 ∧ n2)

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0,

which allows us to prove (65).

Let us turn to the proof of (66). Lemma 3.1 in [21] tells us that on event B,

λ2|θ̂λ|0 ≤ 16Φ|θ̂λ|0,+(W)‖W(θ̂λ − θ∗)‖2.

Gathering the last two bounds and Lemma 8.6, we obtain

|θ̂λ|0 ≤ L
Φ|θ̂λ|0,+(W)

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0. (71)

Recall that |θ∗|0 ≤ |β(1)|0 + |β(2)|0. The upper-bound Φ|θ̂λ|0,+(W) ≤ (1 +

|θ̂λ|0/k∗)Φk∗,+(W) and Lemma 8.6 enforce

|θ̂λ|0 ≤ L
n1 ∨ n2

n1 ∧ n2

Φk∗,+(
√

Σ(1)) ∨ Φk∗,+(
√

Σ(2))

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0

[
1 +
|θ̂λ|0
k∗

]

≤
(
k∗ + |θ̂λ|0

)
/2,

where the last inequality holds if we take L∗2 in (38) small enough. Hence,

|θ̂λ|0 ≤ k∗. Coming back to (71), we can now replace Φ|θ̂λ|0,+(W) by Φk∗,+(W).

We obtain (66).

Proof of Lemma 8.8. Given the Lasso estimator θ̂λ0
of θ∗ in model (63), we

define β̂
(1)
λ0

and β̂
(2)
λ0

by

β̂
(1)
λ0

= θ̂
(1)
λ0

+ θ̂
(2)
λ0
, β̂

(2)
λ0

= θ̂
(1)
λ0
− θ̂(2)

λ0
.

On eventA∩B, we upper bound the difference between (β(1), β(2)) and (β̂
(1)
λ0
, β̂

(2)
λ0

).

‖β(1) − β̂(1)
λ0
‖2Σ(1) + ‖β(2) − β̂(2)

λ0
‖2Σ(2)

≤ 2

[
‖X

(1)

√
n1

(β(1) − β̂(1)
λ0

)‖2 + ‖X
(2)

√
n2

(β(2) − β̂(2)
λ0

)‖2
]
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≤ 2

n1 ∧ n2
‖W(θ∗ − θ̂λ0

)‖2

≤ L

∨
i=1,2 Φ1,+(

√
Σ(i))

∧
i=1,2 κ

2[6, |θ∗|0,
√

Σ(i)]

|S∨|(n1 ∨ n2)

(n1 ∧ n2)2
log(p)(σ(1) ∨ σ(2))2, (72)

where the last inequality follows from Lemmas 8.6 and 8.7. Let us now lower
bound the Kullback discrepancy 2[K1(Ŝλ0

) +K2(Ŝλ0
)] which is equal to



σ

(1)

Ŝλ0

σ
(2)

Ŝλ0




2

+



σ

(1)

Ŝλ0

σ
(2)

Ŝλ0




2

− 2 +
‖β(2)

Ŝλ0

− β(1)

Ŝλ0

‖2
Σ(2)

(σ
(1)

Ŝλ0

)2
+
‖β(2)

Ŝλ0

− β(1)

Ŝλ0

‖2
Σ(1)

(σ
(2)

Ŝλ0

)2
.

The analysis is divided into two cases depending on the discrepancy between
the conditional variances σ(1) and σ(2).

Case 1: σ(1)∨σ(2)

σ(1)∧σ(2) ≥
√

2. By symmetry, we can assume that σ(1) > σ(2). Since

(σ
(i)
S )2 = (σ(i))2 + ‖β(i) − β(i)

S ‖2Σ(i) , we have

(σ
(1)

Ŝλ0

)2 = (σ(1))2 + ‖β(1) − β(1)

Ŝλ0

‖2Σ(1) ≥ (σ(1))2,

(σ
(2)

Ŝλ0

)2 = (σ(2))2 + ‖β(2) − β(2)

Ŝλ0

‖2Σ(2) ≤ (σ(2))2 + ‖β(2) − β̂(2)
λ0
‖2Σ(2)

≤ (σ(2))2 + L
|S∨|(n1 ∨ n2) log(p)

∨
i=1,2 Φ1,+(

√
Σ(i))

(n1 ∧ n2)2
∧
i=1,2 κ

2[6, |θ∗|0,
√

Σ(i)]
(σ(1))2 (73)

≤ (σ(2))2 +
(σ(1))2

4
,

where we used conditions (36) and (38) in the last inequality assuming that
we have taken L∗ and L∗2 small enough in these two conditions. The above
inequalities enforce

2
[
K1

(
Ŝλ0

)
+K2

(
Ŝλ0

)]
≥



σ

(1)

Ŝλ0

σ
(2)

Ŝλ0




2

+



σ

(1)

Ŝλ0

σ
(2)

Ŝλ0




2

− 2 ≥ 1

12
.

Case 2: σ(1)∨σ(2)

σ(1)∧σ(2) ≤
√

2. Let us note

A = 2L

∨
i=1,2 Φ1,+(

√
Σ(i))

∧
i=1,2 κ

2[6, |θ∗|0,
√

Σ(i)]

|S∨|(n1 ∨ n2)

(n1 ∧ n2)2
log(p),

with L as in (73). Using Conditions (36) and (38), we can assume that A ≤ 1.
Arguing as in Case 1, we derive that

(σ(1))2 ≤ (σ
(1)

Ŝλ0

)2 ≤ (σ(1))2 [1 +A] ≤ 2(σ(1))2,
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(σ(2))2 ≤ (σ
(2)

Ŝλ0

)2 ≤ (σ(2))2 [1 +A] ≤ 2(σ(2))2.

Let us lower bound K1(Ŝλ0) +K2(Ŝλ0
) in terms of K1 +K2. First, we consider

the ratio of variances.

(σ
(1)

Ŝλ0

)2

(σ
(2)

Ŝλ0

)2
+

(σ
(2)

Ŝλ0

)2

(σ
(1)

Ŝλ0

)2
− 2 ≥

[
(σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2

]
/(1 +A)− 2

≥ (σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2
− 2− A

1 +A

[
(σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2

]

≥ (σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2
− 2− 3A. (74)

Let us now lower bound the remaining part of K1(Ŝλ0
) +K2(Ŝλ0

). For i = 1, 2,

|β(i) − β̂(i)
λ0
|0 ≤ |θ∗|0 + |θ̂λ0

|0 ≤ k∗ by Lemma 8.7 and Condition (38). Thus, we
obtain

‖β(1) − β(2)‖2
Σ(2)

(σ(1))2
+
‖β(1) − β(2)‖2

Σ(1)

(σ(2))2

≤ 3

(σ(1))2 ∧ (σ(2))2

×
2∑

i=1

[
‖β(1) − β(1)

Ŝλ0

‖2Σ(i) + ‖β(2) − β(2)

Ŝλ0

‖2Σ(i) + ‖β(1)

Ŝλ0

− β(2)

Ŝλ0

‖2Σ(i)

]

≤ L1



‖β(1)

Ŝλ0

− β(2)

Ŝλ0

‖2
Σ(1)

(σ(2))2
+
‖β(1)

Ŝλ0

− β(2)

Ŝλ0

‖2
Σ(2)

(σ(1))2




+
L2

(σ(1) ∧ σ(2))2

∨
i=1,2 Φk∗,+(

√
Σ(i))

∧
i=1,2 Φk∗,−(

√
Σ(i))

[
2∑

i=1

‖β(i) − β̂(i)
λ0
‖2Σ(i)

]

≤ L1



‖β(1)

Ŝλ0

− β(2)

Ŝλ0

‖2
Σ(1)

(σ(2))2
+
‖β(1)

Ŝλ0

− β(2)

Ŝλ0

‖2
Σ(2)

(σ(1))2


+ L2

∨
i=1,2 Φk∗,+(

√
Σ(i))

∧
i=1,2 Φk∗,−(

√
Σ(i))

A,

where we used σ(1) � σ(2 in the second line and the bound (72) in the last line.
Gathering the last inequality with (74) yields

K1(Ŝλ0) +K2(Ŝλ0) ≥ L1 [K1 +K2]− L2

∨
i=1,2 Φk∗,+(

√
Σ(i))

∧
i=1,2 Φk∗,−(

√
Σ(i))

A.

Proof of Lemma 8.9. For any non empty set S of size smaller or equal to k∗,
define δS = δ(2

(|S|
p

)
k∗)
−1. If we take L∗ and L∗1 in (36–37) small enough, then

1 + log[1/(αSδS)]/(n1 ∧ n2) is smaller than some constant L small enough so
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that we can apply Theorem 4.3. Arguing as in the proof of this Theorem, we
derive that

P
[

min
i∈{V,1,2}

q̃i,S < αS

]
≥ 1− δS

if

K1(S) +K2(S) ≥ LϕS
(

1

n1
+

1

n2

)[
|S| log(p) + log

(
1

αδ

)
+ log(p)

]
.

Let us call SK the collection of subsets S of size smaller of equal to k∗ that
satisfy the above inequality. Applying an union bound over all sets S in SK, we
obtain

P
[

max
S∈SK

(
min

i∈{V,1,2}
q̃i,S − αS

)
> 0

]
≤ δ/2.

As we assume that {Ŝλ0 ∈ SK} ⊂ A ∩ B, we conclude that

P
[{

min
i∈{V,1,2}

q̃i,Ŝλ0
> αŜλ0

}
∩ A ∩ B

]
≤ δ/2.

8.8. Proof of Proposition 4.6

We follow the same approach as for the previous proof. Taking L̃∗ small enough,
we can assume that n1 ∨ n2 ≤ 2(n1 ∧ n2). Rewrite the linear regression model
Y = Wθ∗ + ε as follows:

Y = W(1)θ
(1)
∗ + W(2)θ

(2)
∗ + ε.

From the definition of the Lasso estimator θ̂λ =
( θ̂(1)

λ

θ̂
(2)
λ

)
, we derive that θ̂

(2)
λ is

the solution of the following minimization problem:

arg min
θ∈Rp

‖ε+ W(2)θ
(2)
∗ + W(1)(θ

(1)
∗ − θ̂(1)

λ )−W(2)θ‖+ λ|θ′|1. (75)

We fix

λ0 = 16(σ(1) ∨ σ(2))

√
2(n1 + n2)Φ1,+(

√
Σ) log(p).

and we suppose that event A ∩ B (defined in the proof of Proposition 4.5)

holds. Recall that P[A ∩ B] ≥ 1 − δ/4 − 1/p. Consider the set Ŝ
(2)
λ0

defined

as the support of θ̂
(2)
λ0

. Arguing as in the proof of Proposition 4.5, we have

{Ŝ(2)
λ0
⊂ ŜLasso} ⊂ (A ∩ B) and it suffices to prove that

P
[{

min
i=V,1,2

q̃
i,Ŝ

(2)
λ0

> αŜλ0

}
∩ A ∩ B

]
≤ δ/2. (76)

Lemma 8.10. If we take constants L̃∗ and L∗2 in Proposition 4.6 small enough,
then the following holds. There exists an event C of probability larger than 1−1/p
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such that, under A ∩ B ∩ C, we have

|W(2)ᵀW(1)
(
θ

(1)
∗ − θ̂(1)

λ0

)
|∞ ≤ λ0/8. (77)

It follows from the above lemma that on A ∩ B ∩ C∣∣∣W(2)ᵀ
[
ε+ W(1)

(
θ

(1)
∗ − θ̂(1)

λ0

)]∣∣∣
∞
≤ λ0/4.

Since θ̂
(2)
λ0

is the solution of a Lasso minimization problem with “noise” ε +

W(1)(θ
(1)
∗ − θ̂(1)

λ0
) (see (75)), we can argue as in the proof of Lemma 8.7. Taking

L∗2 small enough, we derive that on A ∩ B ∩ C,

‖W(2)(θ
(2)
∗ − θ̂(2)

λ0
)‖2 ≤ L1

λ2
0/(n1 ∧ n2)

κ2[6, k̃∗,
√

Σ]
|θ(2)
∗ |0, (78)

|θ̂(2)
λ0
|0 ≤ L2

Φk∗,+(
√

Σ)

κ2[6, k̃∗,
√

Σ]
|θ(2)
∗ |0 ≤ k̃∗/2 ≤ k∗/2. (79)

This allows us to upper bound ‖θ(2)
∗ − θ̂(2)

λ0
‖2Σ on event A∩ B ∩ C. By definition

of A,

‖θ(2)
∗ − θ̂(2)

λ0
‖2Σ ≤ L

n1 ∧ n2

[
‖X(1)(θ

(2)
∗ − θ̂(2)

λ0
)‖2 + ‖X(2)(θ

(2)
∗ − θ̂(2)

λ0
)‖2
]

≤ L

n1 ∧ n2
‖W(2)(θ

(2)
∗ − θ̂(2)

λ0
)‖2.

Pythagorean inequality then gives

‖β(1) − β(2)‖2Σ = ‖β(1)

Ŝ
(2)
λ0

− β(2)

Ŝ
(2)
λ0

‖2Σ + ‖β(1) − β(2) − β(1)

Ŝ
(2)
λ0

+ β
(2)

Ŝ
(2)
λ0

‖2Σ

≤ ‖β(1)

Ŝ
(2)
λ0

− β(2)

Ŝ
(2)
λ0

‖2Σ + ‖θ(2)
∗ − θ̂(2)

λ0
‖2Σ

≤ ‖β(1)

Ŝ
(2)
λ0

− β(2)

Ŝ
(2)
λ0

‖2Σ + L
|θ(2)
∗ |0 log(p)

n1 ∧ n2

Φ1,+(
√

Σ)

κ2[6, k̃∗,
√

Σ]
(σ(1) ∨ σ(2))2,

where we use the two previous upper bounds in the last line. Consequently, we
obtain

K1(Ŝ
(2)
λ0

) +K2(Ŝ
(2)
λ0

) ≥ L ‖β(1) − β(2)‖2Σ
Var(Y (1)) ∨Var(Y (2))

− L′ |θ
(2)
∗ |0 log(p)

n1 ∧ n2

Φ1,+(
√

Σ)

κ2[6, k̃∗,
√

Σ]
.

If we take the numerical constant L∗3 large enough in Proposition 4.6, it then
follows from the above lower bound that Condition (68) in Lemma 8.9 is satisfied

by Ŝ
(2)
λ0

. Thus, we conclude from Lemma 8.9 that P[{mini=V,1,2 q̃i,Ŝ(2)
λ0

> αŜλ0
}∩

A ∩ B ∩ C] ≤ δ/3. (In comparison to the original statement of Lemma 8.9, δ/2
is replaced by δ/3, but this change only impacts the universal constants in the
statement of Proposition 4.6) Since P[Cc] ≤ 1/p ≤ δ/6, we have shown (76). The
proof is finished.

Proof of Lemma 8.10. Given any matrix A, we define the norm ‖A‖∞ =
maxi,j |Ai,j |. Suppose that we are under events A∩B defined previously. Arguing
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as in the proof of Lemma 8.7, we derive that |θ∗|0 + |θ̂λ0 |0 ≤ k̃∗ and

‖W(θ̂λ0 − θ∗)‖2 ≤ L1
λ2

0

κ2[6, |θ∗|0,
√

Σ](n1 ∧ n2)
k̃∗. (80)

Thus, |θ(1)
∗ − θ̂(1)

λ0
|0 ≤ k̃∗ and we derive

∣∣∣W(2)ᵀW(1)
(
θ

(1)
∗ − θ̂(1)

λ0

)∣∣∣
∞

=
∣∣∣
(
X(1)ᵀX(1) −X(2)ᵀX(2)

)(
θ

(1)
∗ − θ̂(1)

λ0

)∣∣∣
∞

≤ ‖θ(1)
∗ − θ̂(1)

λ0
‖
√
k̃∗‖X(1)ᵀX(1) −X(2)ᵀX(2)‖∞

≤ ‖W(θ∗ − θ̂)‖√
Φk∗,−(W)

√
k̃∗‖X(1)ᵀX(1) −X(2)ᵀX(2)‖∞

≤ L λ0k̃∗‖X(1)ᵀX(1) −X(2)ᵀX(2)‖∞√
n1 ∧ n2κ[6, |θ∗|0,

√
Σ]
√

Φk∗,−(W)
, (81)

where we used (80) in the last line.
Combining deviation inequalities for χ2 distributions (Lemma 8.11) and for

Gaussian distributions and a union bound, we derive that

‖X(1)ᵀX(1)−X(2)ᵀX(2)‖∞≤Φ1,+(
√

Σ)
[
|n1−n2|+L

√
(n1 ∨ n2) log(p)

]
, (82)

defining event C, holds with probability larger than 1 − 1/p. Consider some θ
with |θ|0 ≤ k∗. When the event A defined in Lemma 8.6 holds, we have

‖Wθ‖2
‖θ‖2 =

‖X(1)(θ(1) + θ(2))‖2
‖θ‖2 +

‖X(2)(θ(1) − θ(2))‖2
‖θ‖2

≥ Φk∗,−(
√

Σ)

2

n1‖θ(1) + θ(2)‖2 + n2‖θ(1) − θ(2)‖2
‖θ‖2

≥ Φk∗,−(
√

Σ)(n1 ∧ n2).

Let us note TΣ =
Φ1,+(

√
Σ)

κ[6,k∗,
√

Σ]Φ
1/2
k∗,−

(
√

Σ)
. Gathering the last upper bound with (81)

and (82), we get

∣∣∣W(2)ᵀW(1)
(
θ

(1)
∗ − θ̂(1)

λ0

)∣∣∣
∞
≤ Lλ0k̃∗


 |n1 − n2|
n1 ∧ n2

+

√
log(p)

n1 ∧ n2


TΣ,

since n1∨n2 ≤ 2(n1∧n2). Taking L̃∗ small enough in definition (39) of k̃∗ allows
us to conclude.

8.9. Proof of Proposition 4.2

By symmetry, we can assume that n1 ≤ n2. Let us fix β(2) = 0 and σ(2) = 1.
Fix some positive integer s ≤ p1/2−γ and fix r ∈ (0, 1/

√
2).

We consider the test of hypotheses H0 : β(1) = 0, σ(1) = 1 against H1 :
|β(1)|0 = s, ‖β(1)‖ = r2, and σ(1) =

√
1− r2. Note that for this problem, the

data (Y(2),X(2)) do not bring any information on the hypotheses. This one-
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sample testing problem is a specific case of the two-sample testing problem
considered in the proposition. Thus, a minimax lower bound for the one-sample
problem provides us a minimax lower bound for the two-sample problem.

According to Theorem 4.3 in [49], no level α test has power larger than 1−δ if

r2

1− r2
≤ s

2n1
log

(
1 +

p

s2
+

√
2p

s2

)

Since s ≤ p1/2−γ , no level α test has power larger than 1− δ if

r2

1− r2
≤ γ |s|

n1
log(p). (83)

By Assumption (A.2), one may assume that that the right-hand side term is
smaller than 1/2. Observe that

2(K1 +K2) =
2r2

1− r2
and

‖β(1) − β(2)‖2Ip
Var[Y (1)] ∧Var[Y (2)]

= r2 ≥ 1

2

r2

1− r2
,

for r ≤
√

2. The result follows.

8.10. Technical lemmas

In this section, some useful deviation inequalities for χ2 random variables [27]
and for Wishart matrices [15] are reminded.

Lemma 8.11. For any integer d > 0 and any positive number x,

P
(
χ2(d) ≤ d− 2

√
dx
)
≤ exp(−x),

P
(
χ2(d) ≥ d+ 2

√
dx+ 2x

)
≤ exp(−x).

Lemma 8.12. Let ZᵀZ be a standard Wishart matrix of parameters (n, d) with
n > d. For any positive number x,

P

{
ϕmin (ZᵀZ) ≥ n

({
1−

√
d

n
− x
}
∨ 0

)}
≤ exp(−nx2/2),

and

P


ϕmax (ZᵀZ) ≤ n

(
1 +

√
d

n
+ x

)2

 ≤ exp(−nx2/2).
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[44] Städler, N. and Mukherjee, S. (2015). Multivariate gene-set testing

based on graphical models. Biostatistics 16, 1, 47–59.
[45] Sun, T. and Zhang, C.-H. (2012). Scaled sparse linear regres-

sion. Biometrika 99, 4, 879–898. http://dx.doi.org/10.1093/biomet/

ass043. MR2999166
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