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Introduction

We study in this paper the problem of detecting a planted solution in a random
k-SAT formula of m clauses on n variables. This is formulated as a hypothesis
testing problem: Given a formula φ, our goal is to decide whether it is a typical
instance, drawn uniformly among all formulas, or if it has been drawn such that
it is guaranteed to be satisfiable, by planting a solution.

There is a resurgence in statistics of hypothesis testing problems, i.e., distin-
guishing null hypotheses with pure noise, against the presence of a structured
signal in a high-dimensional setting. The seminal work of [Ing82, Ing98, DJ04],
on the problem of detecting sparse or weakly sparse signals in high dimension
has inspired a wide literature of detection problems. Examples include [ITV10]
in the context of sparse linear regression, [ACCD11, BI13, ACV14, MW13] for
small cliques or communities in graphs and matrices, [ABBDL10] for general
combinatorial structured signals, and [ACBL12, BR12, BR13] for sparse prin-
cipal components of covariance matrices. These problems are combinatorial in
nature, and the complexity of the class of possible signals (sparse vectors, cliques
in a graph, small submatrices, or here the n-dimensional hypercube) has a direct
influence on the statistical and algorithmic difficulties of the detection prob-
lem.

Minimax theory gives a formal definition of the statistical complexity of a
hypothesis testing problem, in terms of the sample size needed to identify with
high probability the underlying distribution of given instances. It describes the
interplay between the interesting parameters of a problem: sample size, ambient
dimension, signal-to-noise ratio, sparsity, underlying dimension, etc.

This framework is particularly adapted to the study of random instances of
k-SAT formulas: a random formula φ can be interpreted as m independent, iden-
tically distributed clauses, each on k of the n variables. The uniform distribution
is equivalent to pure noise, the absence of signal. Planting a solution is equiv-
alent to changing the distribution of the clauses, dependent on an assignment
x ∈ {0, 1}n. This planted satisfying assignment is the signal whose presence we
seek to detect. The optimal rate of detection will describe how largem (the sam-
ple size) needs to be for detection to be possible, as a function of n (the ambient
dimension), and k, treated as a constant.

The properties of random instances of uniform k-SAT formulas have been
widely studied in the probability and statistical physics literature. Particular
attention has been paid to the notions of satisfiability thresholds (sharp changes
of behavior when the clause-to-variable density ratio ∆ = m/n varies) [AP04,
AM06, CO09, COP13, CO14, DSS14], maximum satisfiability [ANP03] geome-
try of the space of solutions [ANP03, ART06, ACO08, KMRT+07, MRT11], and
concentration of specific statistics [AM14, AM13]. The planted distribution has
also been studied, often in order to create random instances that are known to be
satisfiable, such as in [BHL+02, HJKN06, AGKS00, AJM04, ACO08, JMS05],
and at high density in [AMZ06, CoKV07, FMV06]. Methods from statistical
physics such as belief and survey propagation have been applied to this prob-
lem and rigorously studied [BMZ05, MPZ02, MZ02, CO11]. More recently, the
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algorithmic complexity (in a specific computational model) of estimating the
planted assignment has been studied in [FPV13].

Here, the use of tools from statistical analysis, such as the likelihood ratio
and the total variation distance, highlights the importance of a specific statistic:
the number of satisfying assignments. More specifically, we study its deviations
from its expected value. Optimal rates of detection are obtained by proving new
results concerning the concentration (or absence thereof) of this statistic. We
address algorithmic issues by showing that the optimal rates of detection can be
obtained by a newly introduced polynomial-time test. We also show the effect of
choosing a different planting distribution on the detection problem, particularly
on the optimal rates of detection.

The following subsection introduces notations for k-SAT formulas. Our hy-
pothesis testing problem is formally described in Section 1. The optimal rates
of detection are derived in Section 2, and the problem of testing in polynomial
time is addressed in Section 3. The effect on the detection rates of different
choices for the planting distributions is studied in Section 4.

Notations for k-SAT formulas

Let n and m be positive integers. For all fixed positive integers k, we denote
by Fk

n,m the set of boolean formulas on n variables that are the conjunction of

m disjunctions of k distinct literals. Formally, for all φ ∈ Fk
n,m, we have for all

x ∈ {0, 1}n

φ(x) =

m
∧

i=1

Ci(x),

where for all i ∈ {1, . . . ,m}, the clause Ci is the disjunction of k literals on k
distinct variables, i.e., the value of a variable or its negation

Ci(x) = ℓi,1 ∨ · · · ∨ ℓi,k, ℓi,j ∈ {x1, x̄1, . . . , xn, x̄n}, and ℓi,j /∈ {ℓi,j′ , ℓ̄i,j′}.

The k-SAT problem (short for satisfiability) is the decision problem of deter-
mining whether a given formula φ is satisfiable, i.e., if there exists x ∈ {0, 1}n
such that φ(x) evaluates to ‘true’. For a given k-SAT formula φ, we denote by
S(φ) the set of satisfying assignments

S(φ) =
{

x ∈ {0, 1}n : φ(x) = ‘true’
}

,

and by Z(φ) = |S(φ)| the number of satisfying assignments for φ. We often
write Z when it is not ambiguous. For a subset S of {1, . . . ,m}, we define the
sub-formula

φS =
∧

i∈S

Ci.

The definition of satisfying assignments extends to single clauses and sub-
formulas in general, with the notations S(Ci) and S(φS) for the set of assign-
ments satisfying respectively, the clause Ci or the formula φS . We denote by
SAT the set of satisfiable formulas: those with satisfying assignments.
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1. Problem description

We are interested in distinguishing two distributions on Fk
m,n, the uniform, and

planted distributions. The uniform distribution, denoted by Punif, is generated
by independently selecting each clause uniformly from the 2k

(

n
k

)

possible choices.
The planted distribution, denoted by Pplanted, is generated by randomly select-
ing an assignment x∗ uniformly among the 2n elements of {0, 1}n, and then
independently selecting all the clauses among the (2k − 1)

(

n
k

)

clauses that are
satisfied by x∗ (denoted by Px∗). Each clause is given as k literals, in a uni-
formly random order. We represent this as a hypothesis testing problem, on the
observation φ ∈ Fk

m,n

H0 : φ ∼ Punif

H1 : φ ∼ Pplanted =
1

2n

∑

x∈{0,1}n

Px.

It is also possible to consider the detection problem with composite alternative
hypothesis over the Px. Our formulation is equivalent to choosing a uniform
prior over the planted assignments, and to consider the distribution Pplanted,
mixture of the Px. We will mention two regimes: the linear regime, when
m = ∆n, for some ∆ > 0, usually the only one considered in the probabil-
ity theory literature; and the square-root regime, when m = C

√
n, for some

C > 0, particularly relevant to the study of our statistical problem. We will of-
ten consider m,n large enough, but will mainly focus on non-asymptotic results.

We define a test as a measurable function Ψ : Fk
m,n → {0, 1}, whose goal

is to determine the underlying distribution of the observation φ. We define the
probability of error as the maximum of the probabilities of type I and type II
error, formally

Punif(Ψ(φ) = 1) ∨Pplanted(Ψ(φ) = 0).

This quantity is used here to measure the success of any test Ψ. We will consider
that a test is successful when its probability of error is smaller than δ ∈ (0, 1),
considered fixed for the whole problem, such as δ = 0.05.

We can make the simple observation that under the planted distribution,
formulas are guaranteed to be satisfiable. This suggests to test satisfiability of
the formula in order to solve the hypothesis testing problem. This test has a
probability of error of type II equal to zero. Under the uniform distribution, the
behavior of Punif(φ ∈ SAT) has been extensively studied, and a phase transition
has been shown to exist in the linear regime of m = ∆n, from satisfiability to
unsatisfiability, around some ∆k close to 2k log(2). We refer to [COP13, CO14]
and references therein for more information, as well as [DSS14] for a proof of
the sharpness of the phase transition, for k large enough. In this setting, when
∆ > ∆k, the satisfiability test ΨSAT = 1{· ∈ SAT} has a probability of error
going to 0, and when ∆ < ∆k, the error will converge to 1 (entirely because of
the probability of a type I error).

When thinking of the formula φ as a sequence of m i.i.d. clauses, m can be
interpreted as the sample size, and the problem becomes easier when ∆ increases.
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When ∆ is too small, the probability of error of the test ΨSAT converges to 1. We
see in the following section that this simple rate can be significantly improved.

2. Optimal testing

In this section, we derive the optimal rate of detection for this problem, i.e.,
how large m should be for a test to be able to distinguish with high probability
the two hypotheses. We prove that the likelihood-ratio test is successful in the
square-root regime, and show that it is information-theoretic optimal.

2.1. Likelihood-ratio test

A test based on the likelihood ratio between the two candidate distributions can
distinguish between them with high probability, in the square-root regime. When
m ≥ C

√
n for a specific constant C, the probability of error of the likelihood-

ratio test is smaller than δ ∈ (0, 1).

Theorem 2.1. For all k ≥ 2, positive m,n, denote ΨLR the likelihood-ratio test
defined by

ΨLR(φ) = 1{Z(φ) > Eunif[Z]}. (1)

For any δ ∈ (0, 1), there exists C̄k,δ > 0 such that for m ≥ C̄k,δ
√
n, for m,n

large enough, it holds

Punif(ΨLR(φ) = 1) ∨Pplanted(ΨLR(φ) = 0) ≤ δ.

Proof. We first prove that the likelihood-ratio test has indeed form (1). For
discrete distributions, the likelihood ratio is simply equal to the ratio of the two
distributions. For all φ ∈ Fk

m,n, it holds

Pplanted(φ)

Punif(φ)
=

1

2n

∑

x∈{0,1}n

Px(φ)

Punif(φ)
.

To compute the probabilities in the above ratios, we can interpret the drawing
of φ by placing m balls in N = 2k

(

n
k

)

bins independently – if it has distribution

Punif – or otherwise in the Nk = (2k − 1)
(

n
k

)

bins corresponding to clauses that
are satisfied by x. Therefore, it holds for all φ

Px(φ)

Punif(φ)
=

{

0 if x /∈ S(φ)
(

N
Nk

)m

otherwise

It can then be expressed in terms of 1{x ∈ S(φ)}, and N/Nk = 1/(1− 2−k)

Pplanted

Punif
(φ) =

1

2n

∑

x∈{0,1}n

( N

Nk

)m

1{x ∈ S(φ)}

=
1

Eunif[Z(φ)]

∑

x∈{0,1}n

1{x ∈ S(φ)} =
Z(φ)

Eunif[Z(φ)]
,
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by the known closed form of Eunif[Z(φ)] = 2n(1 − 2−k)m, which can be di-
rectly derived by linearity. The likelihood-ratio test is therefore indeed ΨLR(φ) =
1{Z(φ) > Eunif[Z(φ)]}. It is now sufficient to prove Punif(Ψ(φ) = 1) +
Pplanted(Ψ(φ) = 0) ≤ δ, as the maximum of two nonnegative numbers is smaller
than their sum. By definition of the likelihood-ratio test,

Punif(ΨLR(φ) = 1) +Pplanted(ΨLR(φ) = 0) = 1− dTV (Punif,Pplanted).

Furthermore, by definition of the total variation distance

dTV (Punif,Pplanted) =
∑

φ∈Fk
m,n

Punif(φ)>Pplanted(φ)

{Punif −Pplanted}(φ)

=
∑

φ∈Fk
m,n

Z(φ)/E[Z]<1

(

1− Z(φ)

E[Z]

)

Punif(φ)

= Eunif

[(

1− Z(φ)

E[Z]

)

+

]

.

The total variation distance between distributions of i.i.d. elements being
non-decreasing in the sample size, we obtain by Lemma 2.2 that in the square-
root regime, for C large enough and m ≥ C

√
n,

dTV (Punif,Pplanted) ≥ (1 − e−γkC
2/C0)(1− C0/C

2).

This bound yields the desired result for some large enough constant Ck,δ > 0.

The proof of this theorem indicates that it is possible to distinguish the two
distributions whenever Z is not concentrated around its expectation under the
uniform distribution. Our result is a consequence of the following lemma, that
states that in the square-root regime, for a constant C large enough, the ratio
Z/E[Z] is much smaller than 1, with high probability.

Lemma 2.2. For all k ≥ 2, C0 an absolute constant, m = C
√
n, and C, n large

enough, it holds with probability 1− C0/C
2, for some constant γk > 0 that

Z < e−γkC
2/C0 E[Z].

A stronger result, concerning the linear regime, can be derived similarly in
order to answer a question regarding the behavior of Z with respect to its expec-
tation. It is known [AM14] that for ∆ small enough and n → +∞, n−1 log(Z)
and n−1E[log(Z)] have the same limit, called the quenched average. In the fol-
lowing lemma, we prove that this limit is actually different from the constant
n−1 log(E[Z]), called the annealed average, for all ∆ > 0.

Lemma 2.3. For all k ≥ 2, ∆ > 0, and m = ∆n large enough, if φ ∼ Punif, it
holds with probability 1− o(1), for some constant ck,∆ > 0 that

Z < e−ck,∆n E[Z].
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This result is tangential to the problem at hand but of interest in and of
itself. We show here that the quenched and annealed averages are different for
all ∆ and k, with a gap greater than ck,∆, for which we give no explicit formula.
This phenomenon is hinted at in [ACO08, CO09], and proven to hold for ∆
large enough in [COP13], with an explicit lower bound for the gap. We provide
a proof for Lemma 2.2 and 2.3 in Appendix A.

2.2. Information-theoretic lower bound

The proof of Theorem 2.1 also hints at a lower bounds for the statistical problem.
The total variation distance dTV between the uniform and planted distributions
is close to 0 (and the statistical problem is impossible) when Z(φ) is concentrated
around its expectation.

The number of satisfying assignments is actually equal to its expectation
whenever no variable appears in two different clauses. Indeed, when this is the
case, the set of satisfying assignments can be described thus. There arem clauses
on m distinct groups of k distinct variables. Each clause allows a specific group
of k variables to take 2k−1 values, and the n−km remaining variables are free.
There are therefore (2k − 1)m possible values for the constrained variables and
2n−km possible values for the n−km remaining. Overall, Z = (2k−1)m2n−km =
2n(1− 2−k)m = E[Z]. This observation yields the following lower bound.

Theorem 2.4. For ν ∈ (0, 1/2), m ≤ 2
√
νn/k, and m,n large enough, it holds

that

inf
Ψ

{

Punif(Ψ(φ) = 1) ∨Pplanted(Ψ(φ) = 0)
}

≥ 1

2
− ν.

Proof. We use the total variation bound, for any test Ψ

Punif(Ψ(φ) = 1) ∨Pplanted(Ψ(φ) = 0)

≥ 1

2

(

Punif(Ψ(φ) = 1) +Pplanted(Ψ(φ) = 0)
)

≥ 1− dTV (Punif,Pplanted)

2
.

We denote by F the set of formulas where no variable appears in two different
clauses

dTV (Punif,Pplanted)

=
1

2

∑

φ∈Fk
m,n

|Punif −Pplanted|(φ)

=
1

2

∑

φ∈F

|Punif −Pplanted|(φ) +
1

2

∑

φ∈F c

|Punif −Pplanted|(φ)

=
1

2

∑

φ∈F

∣

∣

∣

Z(φ)

E[Z]
− 1

∣

∣

∣
Punif(φ) +

1

2

∑

φ∈F c

|Punif −Pplanted|(φ).
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As noticed above, for all φ ∈ F , Z(φ) = E[Z]; the likelihood ratio is equal
to 1. The first term of this equation is therefore equal to 0. This also implies that
Punif(φ) = Pplanted(φ) for all φ ∈ F , and Punif(F ) = Pplanted(F ). The second
term is thus upper bounded by Punif(F

c) = Pplanted(F
c). It is sufficient to prove

that Punif(F
c) ≤ 2ν, a variant of the “birthday problem”: We place a group of

k balls in n distinct bins uniformly at random, m times independently. The
probability that none of these m groups intersect is equal to Punif(F ). When
i groups have already been drawn, occupying ki bins, the probability that one
of the next k balls falls in an occupied bin is smaller than k2i/n (the expected
number of such collisions). As k2(m − 1)/n < 1/2 (for fixed ν and n large
enough) the following holds

Punif(F ) ≥
m−1
∏

i=1

(

1− k2i

n

)

>

m−1
∏

i=1

e−2k2i/n = e−k2(m−1)(m−2)/n > 1− k2m2/n.

This gives the desired result.

From the last two theorems, we can conclude that the optimal rate of de-
tection is m∗ =

√
n. When m = C

√
n, detection is possible with probability

of error smaller than δ, for C greater than some constant C̄k,δ , by using the
likelihood-ratio test. It is impossible to distinguish the two hypotheses with er-
ror probability smaller than 1/2− ν for C < Ck,ν := 2

√
ν/k. No effort has been

made to optimize (or even quantify) the constant C̄k,δ , as a function of k and δ.

3. Polynomial-time testing

For k ≥ 2, computing the outcome of the likelihood-ratio test involves solving
a #P-complete problem [Val79], and for k ≥ 3, even computing the outcome of
the satisfiability test ΨSAT (which is already suboptimal) is equivalent to solv-
ing a NP-hard problem. The testing methods described in the previous section
are not computationally efficient: determining if a formula is satisfiable is the
quintessential hard problem, the first known to be NP-complete [Coo71, Lev73],
at the root of the web of problems known to be in the same class [Kar72]. None
of the tests described above can be computed in a computationally efficient
manner. It is therefore legitimate to examine the performance of tests that can
be computed in polynomial time.

Finding a satisfying assignment in formulas that are known to be satisfi-
able has been the focus of substantial efforts [BMZ05, Fla02, KV06, CoKV07].
A polynomial-time algorithm that does so in the linear regime (for a large
enough ∆) is presented in [CoKV07], for the case k = 3 (their results extend
to any fixed k). A similar problem is studied as well in [FPV13]. This method
can be used as a tool for detection: in the unsatisfiable regime (when ∆ is large
enough), the existence of a satisfying assignment is a sufficient reason to reject
the null. The main issue of this approach is that the regime of detection is not
optimal: m needs to be of order n (linear regime), when only

√
n (square-root

regime) is required for the likelihood-ratio test.
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3.1. Variable coupling test

The proof that the likelihood-ratio test has a low probability of error in the
optimal regime is based on the fact that there is a large number of variables
that appear more than once, and on the fact that under the null distribution, a
couple of literals based on the same variable have equal probability to have the
same sign or opposite signs. We can use this fact to design a test that runs in
polynomial time and achieves the optimal rate of detection.

We recall that in each clause, the literals are given in a uniformly random
order. Let T be the number of variables (among the n possible) that appear
more than once as the first literal of a clause of φ (according to the random
ordering in the data) and P (resp. D) the number of those for which the first
two occurrences (according to the natural order of the clauses) of the same
variable have the same sign (resp. different signs), so that P + D = T . The
following holds

Theorem 3.1. For all k ≥ 2, m,n > 0 and δ ∈ (0, 1), denote ΨCOU the test
defined by

ΨCOU(φ) = 1{P/T > 1/2 + 1/[2(2k − 1)]2},
and

C̃k,δ := [2(2k − 1)]2
√

2 log(2/δ) ∨
√

1024/δ.

For m ≥ C̃k,δ
√
n, it holds

Punif(ΨCOU(φ) = 1) ∨Pplanted(ΨCOU(φ) = 0) ≤ δ.

Proof. For each variable that appears at least twice as the first literal of a
clause, consider the probability that the two first occurrences (according to
the natural order of the clauses) of a variable as the first literal of a clause
(according to the random ordering in the data) have the same value. It is equal
to 1/2 under the uniform distribution, and conditionally on the value of T ,
P ∼ B(T, 1/2). Under the planted distribution, each literal has independently
probability (1 + 1/(2k − 1))/2 to have the same value as the corresponding
variable in x∗

i , and probability (1 − 1/(2k − 1))/2 to have a different value.
Overall, the probability that these two literals have the same sign under the
planted distribution is

1

4

(

1 +
1

2k − 1

)2
+

1

4

(

1− 1

2k − 1

)2
=

1

2
+

1

2(2k − 1)2
.

Therefore, conditionally on the value of T , P has distribution B(T, 1/2 +
1/[2(2k − 1)2]). By Hoeffding’s inequality, the following holds for all ε > 0

Punif

(

P/T > 1/2 + ε |T
)

≤ exp(−2ε2T )

Pplanted

(

P/T < 1/2 + 1/[2(2k − 1)2]− ε |T
)

≤ exp(−2ε2T )

By Lemma A.1, and by definition of C̃k,δ, T ≥ C̃2
k,δ/4 with probability at least

1 − δ/2. Let ε = 1/[2(2k − 1)]2, and condition on the event T ≥ C̃2
k,δ/4. The
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previous yields, for Ck,δ ≥
√

2 log(2/δ)/ε

Punif

(

P/T > 1/2 + 1/[2(2k − 1)]2 |T
)

≤ δ/2

Pplanted

(

P/T < 1/2 + 1/[2(2k − 1)]2 |T
)

≤ δ/2.

Which gives the desired result by a simple union bound.

3.2. Hardness hypothesis on random instances

The result of Theorem 3.1 can be contrasted with a hypothesis by Feige, formu-
lated in [Fei02], to prove hardness of approximation results in the worst case. We
recall the proposed assumption on the hardness of determining the satisfiability
of 3-SAT formulas on average:

“Even when ∆ is an arbitrarily large constant independent of n, there is no
polynomial time algorithm that refutes most 3CNF formulas with n variables
and m = ∆n clauses, and never wrongly refutes a satisfiable formula.”

Formally, in a statistical language, it is conjectured in this hypothesis that
for all ∆ > 0, in the linear regime, there is no test Ψ that runs in polynomial
time such that Punif(Ψ = 1) ≤ 1/2, and P1(Ψ = 0) = 0, for any distribution P1

supported on SAT. In particular, in our testing problem, this hypothesis states
that no test that runs in polynomial time has a type I error smaller than 1/2
and a type II error equal to 0. At first sight, this is in apparent contradiction
with theorem 3.1. Interestingly, this result shows that up to the optimal square-
root regime it is possible to design a test with small type I and type II errors
simultaneously, even though it is conjectured and widely believed that it is
impossible to distinguish those distributions with a completely one-sided error.

There has been a recent interest in the notions of optimal rates for polynomial-
time algorithms. More specifically, there is a growing literature on limitations,
beyond those imposed by information theory, to the statistical performance
of computationally efficient procedures. Such phenomena have been hinted at
[DGR98, Ser00, CJ13, SSST12], and studied in specific computational models,
such as in [FGR+13, FPV13]. More recently, these barriers have been proven
to hold for various supervised tasks such as in [DLS13], based on a primitive
on random 3-SAT instances, and unsupervised problems in statistics in [BR13]
and the subsequent [MW13, Che13, WBS14], based on a hardness hypothesis
for the planted clique problem. The above discussion shows the difficulty of us-
ing Feige’s hypothesis as a primitive to prove computational lower bounds for
statistical problems: it does not imply that it is impossible to detect planted
distributions in a computationally efficient manner in the linear regime, and is
extremely sensitive to the allowed probability of type I and type II errors.

4. Alternative choices for planting distributions

The tests described in Theorems 2.1 and 3.1 exploit a fundamental difference
between the two considered distributions. Planting a satisfying assignment x∗ ∈
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{0, 1}n breaks the symmetry of the uniform distribution. The likelihood ratio
Z/E[Z] is affected by the imbalances in interactions between variables. Similarly,
the variable coupling test is based on the bias in the signs of chosen literals,
under the planted distribution.

This asymmetry is a characteristic of our choice of the planting distribution.
In this section, we observe that the rates of detection are different for other
natural choices of distribution on SAT, the set of satisfiable formulas. Such
an example is PSAT, the uniform distribution on SAT. In this new statistical
problem, the alternative hypothesis becomes H̃1 : φ ∼ PSAT.

It is a fundamentally different statistical problem: its optimal rate of detection
is the linear regime m∗ = n, achieved by the satisfiability test ΨSAT. Indeed, as
shown in a simple remark in Section 1, this test is successful in the satisfiable
part of the linear regime. Furthermore, as PSAT is the uniform distribution on
SAT, or Punif( · |φ ∈ SAT), the total variation distance dTV (Punif,PSAT) is equal
toPunif(φ /∈ SAT). As explained before, this probability vanishes to 0 for ∆ small
enough, which yields the matching lower bound. From a statistical point of view,
this modified hypothesis testing problem is a significantly harder task than the
detection of planted satisfiability.

Among all distributions on satisfiable formulas, the closest in total variation
distance to the uniform distribution (and therefore the choice of alternative
that yields the hardest statistical problem) is the uniform distribution on SAT.
Other distributions used to generate formulas that are hard to solve, with hid-
den solutions (usually, with no immediate asymmetry) as in [AJM04, BHL+02,
JMS05, KMZ12] are candidates to create detection problems with optimal rate
of detection in the linear regime. Such an example is the uniform distribution
on formulas that are not-all-equal, or NAE satisfiable.

Appendix A: Proofs of technical results

Lemma 2.2 and 2.3 are a consequence of the following result on the number of
variables that appear at least twice in the formula. For simplicity of the proof, we
only consider the first literal of each clause, which is sufficient to our objective.

Lemma A.1. Let φ be a random formula of Fk
m,n with distribution Punif. Let

T be the number of variables (among the possible n) that appear more than once
as the first literal of a clause of φ.

• Let ∆ > 0, and m = ∆n. There exists positive constants ε∆ and r∆ such
that

P(T < ε∆n) ≤
r∆
n
.

• Let C > 0, and m = C
√
n. It holds that

P(T < C2/4) ≤ 576

C2
.

Proof. We prove this deviation bounds in the two regimes.
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Linear regime

We first place ourselves in the linear regime m = ∆n. The first literals of the
clauses of the random formula can be interpreted as being drawn by indepen-
dently placing m balls uniformly in n bins, and Ti is the indicator of the event
“there are at least two balls in bin i”. This is the complement of having either
one or no ball in bin i, which yields

E[Ti] = 1−
[(

1− 1

n

)m

+m
(

1− 1

n

)m−1 1

n

]

= 1−
[(

1− ∆

m

)m

+∆
(

1− ∆

m

)m−1]

,

which has limit 1 − (1 + ∆)e−∆ = 2ε∆ > 0. Therefore, for m large enough,
E[Ti] > ε∆. By, definition T and Ti, we have

T = T1 + · · ·+ Tn.

Therefore, it holds E[T ] = E[T1 + · · · + Tn] > nε∆. These variables are not
independent and the variance is less simple

Var[T ] = nVar[T1] + n(n− 1)
[

E[T1T2]−E[T1]E[T2]
]

.

We control the last term

E[T1T2] = P[T1 = 1, T2 = 1] = P[T1 = 1|T2 = 1]P[T2 = 1]

= P[T1 = 1|T2 = 1]E[T2]

=
[

1−
[(

1− 1

n

)m−2

+ (m− 2)
(

1− 1

n

)m−3 1

n

]]

E[T2]

Therefore, we obtain the bound

E[T1T2]−E[T1]E[T2] ≤
[

1−
(

1− 1

n

)2

+∆
(

1−
(

1− 1

n

)2)]

E[T2]

≤ 3 + 3∆

n
.

Overall, this yields Var[T ] ≤ (4 + 3∆)n. We now apply Chebyshev’s inequality,
with r∆ = (3 + 3∆)/(E[T1]− ε∆)

2

P[T < ε∆n] ≤
Var[T ]

(E[T1]− ε∆)2n2
≤ r∆

n
.

Square-root regime

This proof is a simple modification of the proof of the linear regime with the
same notations, for m = C

√
n. We derive the expectation and variance of T

E[Ti] = 1−
[(

1− 1

n

)m

+m
(

1− 1

n

)m−1 1

n

]
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= 1−
[(

1− 1

n

)C
√
n

+
C√
n

(

1− 1

n

)C
√
n−1]

= 1−
[

1− C√
n
+

C2

2n
+ o

( 1

n

)

+
C√
n
− C2

n
+ o

( 1

n

)]

=
C2

2n
+ o

( 1

n

)

.

Therefore, for n large enough E[Ti] ∈ (C2/3n,C2/n) and E[Ti] ∈ (C2/3, C2).
For the variance, as in the linear regime it holds

Var[T ] = nVar[T1] + n(n− 1)
[

E[T1T2]−E[T1]E[T2]
]

.

We obtain in a similar way the following bound, for n large enough

E[T1T2]−E[T1]E[T2] ≤
[

1−
(

1− 1

n

)2

+
C√
n

(

1−
(

1− 1

n

)2)]

E[T2] ≤
3

n
×C2/n.

Therefore, Var[T ] ≤ 4C2, and we have, using Chebyshev’s inequality

P[T ≥ C2/4] ≤ Var[T ]

(C2/3− C2/4)2
≤ 576

C2
.

Proof of Lemma 2.2 and 2.3. For all x ∈ {0, 1}n, x ∈ S(φ) if and only if x
satisfies all the clauses of φ. We can therefore write

Z =
∑

x∈{0,1}n

m
∏

i=1

1{x ∈ S(Ci)}.

We recall that this yields, for φ drawn uniformly E[Z] = 2n(1− 2−k)m.

In the proof of Theorem 2.4, we use that Z is equal to its expectation when
the km variables in the formula are distinct. In the linear regime, or in the
square-root regime for a large enough constant, it is not the case, with high
probability. The interactions between the clauses that share the same variable
will create an imbalance between couples of clauses where the same variables
appears with the same sign, and those where it appears with a different one.

We compute the conditional expectation of Z, given the first variable of each
clause, and whether the first two occurrences of every variable (when there are
two or more) are the same literal or not. Formally, we denote G = (G1, . . . , Gn)
the partition of {1, . . . ,m} in n sets (allowing some of them to be empty), where

Gi =
{

j ∈ {1, . . . ,m} : Cj(x) ∈ {xi ∧ . . . , x̄i ∧ . . .}
}

,

and σ = (σ1, . . . , σn), where σi = 0 if there are less than two elements in Gi,
σi = 1 if the first two elements of Gi have the same first literal (either both xi

or both x̄i), and σi = −1 otherwise. By linearity of expectation, it holds

E[Z | (G, σ)] =
∑

x∈{0,1}n

E
[

1{x ∈ S(φ)} | (G, σ)
]

.

We now observe that this conditional expectation is constant, for all x ∈ {0, 1}n.
Indeed, let e0 be the assignment of all zeroes, and tx be the literal-flipping
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transformation such that tx(e0) = x, and Tx the corresponding literal-flipping
transformation on formulas. For all x, it holds

φ(x) = φ(tx(e0)) = (Txφ)(e0).

For all x, Txφ also has distribution Punif, and (G, σ) is invariant by this trans-
formation. Therefore, it holds

E[Z | (G, σ)] =
∑

x∈{0,1}n

E
[

1{x ∈ S(φ)} | (G, σ)
]

=
∑

x∈{0,1}n

E
[

1{e0 ∈ S(Txφ)} | (G, σ)
]

= 2nE
[

1{e0 ∈ S(φ)} | (G, σ)
]

.

The assignment e0 will satisfy the formula φ if and only if it satisfies all
the sub-formulas φG1

, . . . , φGn
(the empty formula is always satisfied). Given

(G, σ), the events {e0 ∈ S(φGi
)} are independent: the sub-formulas are satisfied

by e0 if and only if every clause contains at least one negated literal, which occurs
independently, conditioned on (G, σ). We can therefore compute the conditional
expectation

E
[

1{e0 ∈ S(φ)} | (G, σ)
]

= E
[

n
∏

i=1

1{e0 ∈ S(φGi
)} | (G, σ)

]

=

n
∏

i=1

E
[

1{e0 ∈ S(φGi
)} | (G, σ)

]

=

n
∏

i=1

E
[

1{e0 ∈ S(φGi
)} | (Gi, σi)

]

The product terms can be expressed as a function of gi = |Gi|. If σi = 0, in the
case of gi < 2, treating separately the cases gi = 0 or 1, we have

E
[

1{e0 ∈ S(φGi
)} | (Gi, σi = 0)

]

=
(

1− 1

2k

)gi
.

If there are at least two elements in Gi, we have

E
[

1{e0 ∈ S(φGi
)} | (Gi, σi = 1)

]

=
1

2

[

1 +
(

1− 1

2k−1

)2](

1− 1

2k

)gi−2

E
[

1{e0 ∈ S(φGi
)} | (Gi, σi = −1)

]

=
(

1− 1

2k−1

)(

1− 1

2k

)gi−2

.

Overall, this yields

E
[

1{e0 ∈ S(φGi
)} | (Gi, σi)

]

=
[

1 +
σi

22k(1− 2−k)2

](

1− 1

2k

)gi
.

Recall that we denote P (resp. D) the number of groups for which σi = 1 (resp.
−1). It holds that
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E[Z | (G, σ)] = 2n
(

1− 1

2k

)m[

1 +
1

22k(1− 2−k)2

]P [

1− 1

22k(1− 2−k)2

]D

.

It is possible to design a set of (G, σ), event of probability close to 1, for
which this expectation has the desired value. To do so, we study the behavior
of P and D, the number of variables that appear at least twice among the first
variables of the clauses, for which respectively σi = 1 or −1.

Indeed, for a large T = P + D, with P and D close to (P + D)/2, this
expectation is significantly smaller than E[Z]. Indeed, for all t ∈ (0, 1), the
function ft : α 7→ (1+ t)1+α(1− t)1−α is continuous and ft(0) = 1− t2, so there
exists αt ∈ (0, 1) such that ft(α) < 1 − t2/2 for all |α| < αt. Therefore, there
exists αk ∈ (0, 1) such that

[

1+
1

22k(1− 2−k)2

]1+α[

1− 1

22k(1− 2−k)2

]1−α

< 1− 1

24k+1(1 − 2−k)4
:= e−γk ,

for all |α| < αk, for some γk > 0.

For every variable, we denote Ti = |σi| ∈ {0, 1}, and T = T1 + · · ·+ Tn. We
now prove independently the two lemmas.

Linear regime, Lemma 2.3

We control P and D in the regime m = ∆n. By lemma A.1, it holds that

P[T < ε∆n] ≤
r∆
n
.

Of these T variables, between T/2(1 + αk) and T/2(1 − αk) will have their
first two occurrences with the same literal, with probability greater than 1 −
e−α2

kε∆n/2, by Hoeffding’s inequality. We call B the event T ≥ nε∆ and P ∈
(T/2(1 − αk), T/2(1 + αk)). By the above, P(B) = 1 − o(1). For (G, σ) in the
event B, it holds

E[Z | (G, σ)] = 2n
(

1− 1

2k

)m[

1 +
1

22k(1 − 2−k)2

]P [

1− 1

22k(1 − 2−k)2

]D

< 2n
(

1− 1

2k

)m

(e−γk)T/2 < e−γkε∆n/2E[Z] := e−2ck,∆n E[Z].

Therefore E[Z |B] < e−2ck,∆n E[Z]. We can now conclude by conditioning on B
and using Markov’s inequality

P(Z > e−ck,∆n E[Z]) = P(Z > e−ck,∆n E[Z] |B)P(B) +

P(Z > e−ck,∆n E[Z] |Bc)P(Bc)

≤ P(Z > e−ck,∆n E[Z] |B) +P(Bc)

≤ E[Z |B]

e−ck,∆n E[Z]
+P(Bc)

≤ e−ck,∆n +P(Bc).

Which yields the desired result.
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Square-root regime, Lemma 2.2

As in the linear regime, we control P and D when m = C
√
n. Lemma A.1

yields

P[T ≥ C2/4] ≤ 576

C2
.

Again, of these T variables, between T/2(1 + αk) and T/2(1− αk) will have
their first two occurrences with the same literal, with probability greater than
1 − e−α2

kC
2/8, by Hoeffding’s inequality. We call B the event T ≥ C2/4 and

P ∈ (T/2(1−αk), T/2(1+αk)). By the above, P(B) = 1−O(1/C2). For (G, σ)
in the event B, it holds

E[Z | (G, σ)] = 2n
(

1− 1

2k

)m[

1 +
1

22k(1− 2−k)2

]P [

1− 1

22k(1− 2−k)2

]D

< 2n
(

1− 1

2k

)m

(e−γk)T/2 < e−γkC
2/8E[Z].

Therefore E[Z |B] < e−γkC
2/8 E[Z]. We can now conclude by conditioning

on B and using Markov’s inequality

P(Z > e−γkC
2/16 E[Z]) = P(Z > e−γkC

2/16 E[Z] |B)P(B) +

P(Z > e−ck,∆n E[Z] |Bc)P(Bc)

≤ P(Z > e−γkC
2/16 E[Z] |B) +P(Bc)

≤ E[Z |B]

e−γkC2/16 E[Z]
+P(Bc)

≤ e−γkC
2/8 +P(Bc).

This yields the second result, for C large enough, and some absolute constant C0.
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Hard satisfiable clause sets for benchmarking equivalence reason-
ing techniques, Journal on Satisfiability, Boolean Modeling and
Computation 2 (2006), no. 1, 27–46.

[Ing82] Ingster, Y. I., The asymptotic efficiency of tests for a simple
hypothesis against a composite alternative, Teor. Veroyatnost. i
Primenen. 27 (1982), no. 3, 587–592. MR0673934

[Ing98] Ingster, Y. I., Minimax detection of a signal for ln-balls,
Math. Methods Statist. 7 (1998), no. 4, 401–428 (1999).
MR1680087 (2000f:62012)

[ITV10] Ingster, Y. I., Tsybakov, A. B., andVerzelen, N., Detection
boundary in sparse regression, Electron. J. Stat. 4 (2010), 1476–
1526. MR2747131

[JMS05] Jia, H., Moore, C., and Strain, D., Generating hard satisfiable
formulas by hiding solutions deceptively, in AAAI (2005), 384–389.

[Kar72] Karp, R. M., Reducibility among combinatorial problems, Com-
plexity of computer computations (Proc. Sympos., IBM Thomas
J. Watson Res. Center, Yorktown Heights, N.Y., 1972), Plenum,
New York, 1972, pp. 85–103. MR0378476

[KMRT+07] Krzakala, F., Montanari, A., Ricci-Tersenghi, F., Semer-

jian, G., and Zdeborova, L., Gibbs states and the set of solu-
tions of random constraint satisfaction problems, Proceedings of
the National Academy of Sciences 104 (2007), no. 25, 10318–10323.
MR2317690
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